
Is machine learning energy-efficient enough to

be used in mobile fashion applications?

Bachelor’s Project Thesis

Paul Pintea, s3593673, p.pintea@student.rug.nl,

Supervisors: dr. C.P. Lawrence and prof. dr. H. Jaeger

Abstract: This report aims to analyze the energy efficiency of readily available mobile neural net-
works: MobileNet-V2, EfficientNet-lite0 and ResNet-50. MobileNet-V2 represents a lightweight
neural network created for efficiency. EfficientNet-lite0 is a neural network built on a modern
architecture that uses active scaling. ResNet-50 is a powerful neural network with 50 layers and
high computational costs. All neural networks have been retrained on a modified version of the
Fashion Product Images Dataset (Aggarwal, 2019). Testing focused on the energy consumption
of the neural networks under an image classification task. The task was performed in a custom
fashion-oriented application. Results show that MobileNet-V2 is the most energy-efficient, fol-
lowed by EfficientNet-lite0 and then ResNet-50. A mean CPU usage of 26.5 to 28% was recorded
for all three networks, while running on a Samsung A8 (2018). This represents a 12 to 13%
increase from the simple version of the application. From the computational costs, ResNet-50
was expected to perform 10 times slower than the other two neural networks. This was not the
case, from testing ResNet-50 ran 2 times longer, not 10 times, compared to the other two neu-
ral networks. This might be caused by the way multi-threaded mobile architectures work. Less
demanding tasks occupy fewer threads and are not optimized as well, whilst more demanding
tasks are split across multiple threads to improve energy efficiency. Even so, all three NNs seem
energy efficient enough for deployment in different mobile environments.

1 Introduction

The fashion industry has changed drastically in the
last 20 years. In current times, the industry has al-
ready shifted towards the ”fast fashion” approach.
This was realized by creating more ”fashion sea-
sons” compared to the classic 4 seasons present in
past decades. The most important aspect of this
type of shift is that it impacts consumers’ pur-
chasing habits and their view on trends (Bhardwaj
and Fairhurst, 2010). Due to fashion quickly chang-
ing, consumers might be inclined to shop compul-
sively which only leads to misspend time and a
lot of waste that could be avoided. As a response,
Fashion-oriented applications which use machine
learning might be used to help and guide con-
sumers’ buying habits. Neural Networks have al-
ready become a widespread tool for solving com-
plex tasks in many fields. Furthermore, many pre-
vious papers have tested different types of neu-

ral networks on how well are they able to label
and detect fashion items (Bhatnagar, Ghosal, and
Kolekar, 2017; Hara, Jagadeesh, and Piramuthu,
2016). In these articles, the main analysis focus is
the accuracy of the neural networks, but in mobile
environments, the energy efficiency might be even
more important. So, are neural networks energy ef-
ficient enough for mobile use?

The main interest of this report is to ana-
lyze and show the differences in the energy effi-
ciency of different well known mobile neural net-
works. MobileNet-v2 is built by using the classi-
cal approach of using depth-wise separable convolu-
tions.To improve efficiency, the model also uses an
inverted residual structure, built on a narrow −→
wide −→ narrow approach. This way, each in-
verted block takes an input with a reduced num-
ber of channels and its output will also have a re-
duced number of channels (Sandler, Howard, Zhu,
Zhmoginov, and Chen, 2018). EfficientNet-Lite0 is

1



built using a new approach of scaling in three di-
mensions: resolution, depth, width, by using a com-
pound coefficient. The result is a new model which
is supposed to yield better efficiency and accuracy
compared to the classical neural networks (Tan and
Le, 2019). ResNet-50 represents a powerful neural
network with 50 total layers which is built by us-
ing classic residual bottleneck layers. The result is
a big neural network with great accuracy, but with
a big computational cost as well (He, Zhang, Ren,
and Sun, 2015).

Transfer Learning has been used to retrain the
neural networks to accommodate the focus of this
study. The training has been done on a modified
version of the Fashion Product Images Dataset
(Small) (Aggarwal, 2019). The original dataset in-
cluded items such as ”accessories” which had to
be eliminated since they did not accommodate the
study. Furthermore, the dataset had to be rear-
ranged to fit the requirements of the transfer learn-
ing procedure.

For testing, a custom Android application has
been created. The application uses the CameraX
module from Android Jetpack to take a picture.
That picture is then labelled using one of the men-
tioned neural networks. The correctness of the la-
belling and the confidence level are taken as mea-
surements for comparing the models.

Other measurements such as the CPU, memory,
battery usage and run-time are also taken as vari-
ables in the comparison. To record the variables,
the Resource Profiler pre-implemented in Android
Studio is used.

The methods section will explain in detail the
main structure of the project, how training was per-
formed and all the terms which were introduced.
In the results section, not only will the energy con-
sumption be presented, but a new ”efficiency score”
will be introduced. This score comes as an aid for
the reader to better visualize which neural network
is the most efficient, without any fine-tuning. The
discussion section will explain the results and it will
present the positive and negative aspects of each
neural network. Furthermore, this section will also
offer suggestions for improvements in future stud-
ies.

2 Methods

This project is divided into three important blocks.
The first block is filtering and rearranging the
dataset to accommodate the retraining procedure.
The second block is retraining the neural networks
using transfer learning. The final block is the cus-
tom application used for testing and running the
neural networks. A visual representation of the
project’s architecture is depicted in Figure 2.1.
First of all, in this section, the architecture of each
neural network will be presented in detail. After,
the project’s three blocks and their procedures will
be explained.

2.1 The MobileNet-V2 architecture

The MobileNet-v2 neural network family still main-
tains the classical approach of using depth-wise sep-
arable convolutions, which was used in the first
generation family of MobileNet-v1 (Howard, Zhu,
Chen, Kalenichenko, Wang, Weyand, Andreetto,
and Adam, 2017). In addition, the second gener-
ation (MobileNet-v2) is using an inverted resid-
ual structure which increases the accuracy of the
model (Sandler et al., 2018). The inverted block
first widens the input by using a 1x1 convolution
layer, then a 3x3 depth-wise convolution layer is
used (which decreases the number of parameters)
and then another 1x1 convolution layer is used to
shrink the number of channels. A graphical repre-
sentation of the convolutional blocks can be seen in
Figure 2.2. Overall, MobileNet-v2 uses a full con-
volutional layer with 32 filters as its starting layer,
followed by 19 inverted bottleneck blocks. The full
model architecture is depicted in Table 2.1. Each
bottleneck sequence can either start with the Stride
1 or 2 blocks (seen in Figure 2.2) and they are
then continued with the Stride 1 block. The starting
block is also mentioned in Table 2.1. The model’s
computational cost for one image is around 300 mil-
lion floating point operations per second (FLOPS)
(Tan and Le, 2019).

2.2 The EfficientNet-lite0 architec-
ture

EfficientNet-lite0 is built on a modern architectural
design that improves both the accuracy and the
computational cost. The model also uses inverted

2



Figure 2.1: Flowchart of how the project functions. On the far right, the dataset filtering block and
the neural network retraining block are depicted. On the left, the application block is depicted.

Table 2.1: MobileNet-V2 complete architecture,
reproduced from Sandler et al. (2018)

Operator No. Layers Starting Stride
conv2d 1 2
bottleneck 1 1
bottleneck 2 2
bottleneck 3 2
bottleneck 4 2
bottleneck 3 1
bottleneck 3 2
bottleneck 1 1
conv2d 1x1 1 1
avgpool 7x7 1 -
conv2d 1x1 -

Figure 2.2: Graphical representation of the con-
volutional blocks in MobileNet-v2. Taken from
Sandler et al. (2018)

3



bottleneck Convolutional layers (also called MB-
conv blocks) for its primary block (Sandler et al.,
2018), see Figure 2.2 for graphical reference. In ad-
dition EfficientNet-lite0 also uses compound coeffi-
cients to uniformly scale on all dimensions of res-
olution/depth/width, to improve the accuracy and
computational costs of the network. This scaling
works on the concept that higher quality pictures
need more layers to better define fine-grained pat-
terns. So, compound scaling, instead of just increas-
ing the number of layers (increasing the depth of
the network), it also increases the resolution of the
layers and the width of the layers, just like it is de-
picted in Figure 2.3. If EfficientNet-lite0 needs to
use 2N more resources the constant scaling coeffi-
cients will be raised to the power N as well, so: αN ,
βN and γN . For the base model (EfficientNet-lite0,
also named EfficientNet-B0), the optimal scaling
coefficients have been determined to be α = 1.2 for
depth, β = 1.1 for width and γ = 1.15 for resolution
(Tan and Le, 2019). The scaling coefficients can be
determined using a small grid search on the model.
Overall, the full model architecture is presented in
Table 2.2. The model’s computational cost for one
image is around 407 million FLOPS (Tan and Le,
2019).

2.3 The ResNet-50 architecture

ResNet-50 is the most classic of all the neural net-
works used. As the base building blocks, ResNet-50
uses simple residual bottleneck layers. Compared to
the smaller neural networks in the ResNet family,
ResNet-50 uses 3 layers in one block instead of 2,
see Figure 2.4. These types of blocks work on a

Table 2.2: EfficientNet-lite0 complete architec-
ture, reproduced from Tan and Le (2019)

Operator No. Layers
Conv 3x3 1
MBConv1, k3x3 1
MBConv6, k3x3 2
MBConv6, k5x5 2
MBConv6, k3x3 3
MBConv6, k5x5 3
MBConv6, k5x5 4
MBConv6, k3x3 1
Conv1x1 & Pooling & FC 1

wide −→ narrow −→ wide approach. The ResNet-
50 blocks start with a 1x1 convolution layer which
compresses the input, followed by a 3x3 convolution
layer and then another 1x1 convolution layer which
restores the number of channels for the output (He
et al., 2015). A visual representation is depicted on
the right side of Figure 2.4. In total, ResNet-50 has
50 layers and the full architecture is depicted in
Table 2.3. The model’s computational cost for one
image is around 4.1 billion FLOPS (Tan and Le,
2019).

2.4 The dataset

Fashion Product Images Dataset(Small) (Aggar-
wal, 2019) contains 44000 fashion items with a res-
olution of 60x80 pixels. These images are stored
in the same folder and a table with all the infor-
mation about the images was offered. The dataset
had to be filtered because items such as ”watches”
are not important for the task. A new dataset was
created, only from the ”Apparel” and ”Footwear”
categories. From these categories, the ’Innerwear’,
’Loungewear and Nightwear’ and ’Socks’ subcat-
egories have been eliminated. after the filtering
process the dataset was reduced to 28321 images.
To accommodate TensorflowLite Model-Maker the
images had to be divided into separate folders
based on their category. 5 categories have been cre-
ated: ”bottoms” with 2693 items, ”complete” (im-
ages which represent entire outfits) with 106 items,
”dress” with 905 items, ”shoes” with 9219 items
and tops with 15398 items. See algorithm 2.1 for
a pseudo-code explanation of the procedure. After
empirically analyzing the dataset, the ”complete”
category was dropped before the retraining proce-
dure, due to its relatively small size in compari-

Table 2.3: ResNet-50 complete architecture, re-
produced from He et al. (2015)

Operator No. Layers
conv1 7x7 1
maxpool 3x3 1
3layer block 3
3layer block 4
3layer block 6
3layer block 3
avgpool, 1000-d fc, softmax 1

4



Figure 2.3: Graphical representation of the compound scaling structure, compared to other simple
types of scaling. Taken from Tan and Le (2019)

Figure 2.4: Graphical representation of the
building blocks for the ResNet family. Left: ar-
chitecture for smaller networks from the fam-
ily. Right: architecture for ResNet-50 and big-
ger networks in the family. Taken from He et al.
(2015)

Algorithm 2.1 Dataset Processing

Require: dataset ⇐ Fashion Product Images
Dataset(Small) (Aggarwal, 2019)

Ensure: Filter dataset
{Separate the dataset into categories}
for all items in dataset == ”clothingtype” do
Save items in ”clothingtype” folder

end for

son with the other categories. Therefore, the final
dataset included a total of 28215 items.

2.5 Transfer Learning

To better fit the task of this study, the neu-
ral networks had to be retrained. Transfer learn-
ing is a procedure in which the knowledge of the
model (such as features and weights) is kept, but
the input layers are changed and retrained on a
new dataset. To perform this task TensorflowLite
Model-Maker is used. Model-Maker already has in
its library all three neural networks: EfficientNet-
lite0, MobileNet-v2 and ResNet-50. A new model is
created by inputting the new train and validation
data, and which neural network should be used by
the image classifier function in Model-Maker. 80%
of the entire dataset is reserved for training, 10%
for validation and 10% for testing. After retraining,
the model is tested for performance on the test data
and then saved, see algorithm 2.2.

2.6 The Android application

The testing phase will be performed in a custom
Android application. The main activity represents
a camera view implemented with the CameraX
package from Android Jetpack. Furthermore, a sim-
ple ”Add Item” button is implemented at the bot-
tom of the view, see Figure 2.5.

The ”Add Item” button is used to take a photo
and save it to the device’s internal storage. Imme-

5



Algorithm 2.2 Transfer Learning procedure

Require: TensorflowLite Model-Maker
Ensure: dataset ⇐ new data
train ⇐ 80%dataset
validate ⇐ 10%dataset
test data ⇐ 10%dataset
img class = Model −Maker.image classifier
Model ⇐ img class(train,modeltype, validate)
Test the Model on test data
Save Model

Figure 2.5: The View of the MainActivity.

Figure 2.6: The View of the MainActivity after
the image is processed and the label and confi-
dence level appear on the screen.

Algorithm 2.3 Image Processing

Require: model ⇐ Neural Network, Jetpack
CameraX, ML Kit’s Image Labeler

Ensure: OnButtonClick(SaveImageToStorage)
threshold ⇐ Threshold acceptance level
labeler ⇐ ImageLabeling(model, threshold)
labeler.process(image)
Print label and confidence level

diately after, the image labeller from Android’s ML
kit starts processing that image, using one of the
three neural networks. The neural network has to
be manually specified in the code of the application.
The acceptance threshold has been set to 30% con-
fidence, to ensure that the application will yield a
choice. After the image is processed a toast mes-
sage appears showing the first choice label and the
confidence level for that label, see Figure 2.6 for ref-
erence. A pseudo-code explanation of the process is
offered in algorithm 2.3.

2.7 Testing Phase

All testing has been performed manually by repeat-
edly taking images of clothing items. For each of
the four categories, three separate clothing items
have been photographed. Each item was processed
5 times (5 photos), to account for differences in
positioning and hand movement. Some of the im-
ages taken can be seen in Figure 2.7. In total, 180

6



Figure 2.7: Illustration of some of the images
taken during testing.

Figure 2.8: Illustration of the main view in the
Android Studio Profiler.

data-points have been manually recorded for each
neural network. These data-points are equally split
between CPU usage, runtime and confidence level.
For reference, 60 data-points were also recorded for
a version of the application which does not run a
neural network. The CPU usage and the run-time
have been recorded by observing the measurements
given by Android Studio’s Profiler (see Figure 2.8).
If a classification failure occurred (an item was mis-
classified), a 0 was recorded as the confidence level,
instead of the actual confidence level. Furthermore,
testing was performed on an Android device, not in
a virtual environment. Samsung’s A8 2018 phone
has been used. This device is promoted on mul-
tiple websites to have a computational power of
29 GFLOPS (Samsung Galaxy A8 (2018): Specs,
Benchmarks, and User Reviews, n.d.).

3 Results

3.1 Confidence Levels and accuracy

All three neural networks have performed poorly in
the accuracy area. The neural networks had many

misclassifications and none of the neural networks
have managed to correctly classify the ”dress” cat-
egory. This complete misclassification, might have
been caused by the relatively small number of items
present in the ”dress” category compared to the
other three categories. Furthermore, dresses usu-
ally have similar features to many of the items that
could be found in the ”tops” category. This aspect
might have impacted the choice of the models.

For the ”tops” category, MobileNet-v2 and
EfficientNet-lite0 have completely misclassified two
out of the three items, whilst ResNet-50 has cor-
rectly classified all the items at least one time. In
the ”bottoms” category ResNet-50 has completely
misclassified one out of the three items, whilst the
other two neural networks have correctly classi-
fied all the items at least once. The ”shoes” cat-
egory showed the best result with higher confi-
dence levels compared to the rest of the categories.
Only EfficientNet-lite0 has completely misclassified
one of the items, whilst the other two neural net-
works have correctly classified all the items, multi-
ple times.

The mean confidence levels of the neural net-
works can also reflect their accuracy. MobileNet-
v2 showed the highest mean confidence scores in
the ”shoes” category, followed by the ”bottoms”
and then ”tops” category. EfficientNet-lite0 yielded
the highest mean confidence in the ”bottoms” cat-
egory, followed by the ”shoes” and then the ”tops”
category. The overall mean confidence level was
around 24% for the MobileNet-v2 and 31% for the
EfficientNet-lite0. ResNet-50 also showed the high-
est mean confidence level in the ”shoes” category,
but it was followed by the ”tops” and then the ”bot-
toms” category. Its overall mean confidence level
was recorded at around 28%. For the exact mean
confidence levels, see Table 3.1.

Table 3.1: Mean confidence levels yielded by
each of the neural networks for each category.

MobileNet EfficientNet ResNet
Shoes 53.85% 39.79% 65.59%
Tops 13.20% 2.68% 33.17%
Bottoms 29.58% 83.12% 12.31%
Dress 0 0 0
Overall 24.16% 31.39% 27.77%

7



3.2 Resource Consumption

All neural networks show mostly the same mean
CPU usage. MobileNet-v2 mean CPU usage ranges
from around 25% to 29%, between the four cate-
gories. The overall mean CPU usage of MobileNet-
v2 is computed at around 26.5%. The mean CPU
usage of EfficientNet-lite0 ranges from 26% to 28%,
across the categories. Its overall mean CPU usage
is recorded at around 26.5%. ResNet-50 has a mean
CPU usage ranging from 27% to 29%, between the
categories. ResNet-50 overall mean CPU usage is
calculated at around 28%. For the detailed mean
CPU usage levels, see Table 3.2.

As a point of reference, the CPU usage of the
application was recorded without running any of
the neural networks. The mean CPU usage of this
simple version of the application was calculated at
around 14.5%. Overall, the neural networks showed
an increase between 12% and 13% in the CPU us-
age, when compared to the simple version of the
application, see Figure 3.1

Furthermore, the measured RAM usage and bat-
tery usage for the three neural networks were
mostly the same. The battery usage was always
recorded at the lowest level ”Light”. The RAM us-
age stayed mostly constant at around 256MB of
memory. Both the battery and RAM usage showed
small spikes in correlation to the CPU usage spikes,
see Figure 2.8 for reference.

Since similar resource utilization was recorded
across the models, the CPU usage had to be nor-
malized by multiplying it to the run-time of the
neural network, see Equation 3.1. For a more pre-
cise estimation, the area under the CPU usage
would have to be calculated, but the simple mul-
tiplication from Equation 3.1, should offer a good
base for comparing the models. Even if the run-time
was recorded in milliseconds, in the equations it was

Table 3.2: CPU usage levels yielded by each of
the neural networks for each category.

MobileNet EfficientNet ResNet
Shoes 25.93% 27.53% 28.86%
Tops 29.4% 25.8% 28.13%
Bottoms 24.6% 26% 26.53%
Dress 26.53% 26.06% 27.8%
Overall 26.61% 26.35% 27.83%

Figure 3.1: CPU usage of the simple application
and the neural networks’ versions of the appli-
cation.

used in seconds. MobileNet-V2 measured a mean
run-time of around 207 milliseconds. EfficientNet-
lite0 on average ran for about 228 milliseconds
and ResNet-50 for around 487 milliseconds, see Ta-
ble 3.4 for exact numbers. From the normalized
CPU usage, ResNet-50 took more than two times
the resources, to process one image, compared to
MobileNet-V2 and EfficientNet-lite0. Check Figure
3.2 for a graphical representation.

normalizedCPU [i ] = CPU [i ] ∗meanRuntime
(3.1)

The theoretical expectations were also computed
as a reference point against the normalized CPU
usage. These expectations represent the CPU us-
age level, that each neural network should consume
during testing. The theoretical CPU usage was cal-
culated by dividing each model’s theoretical com-
putational cost (see Table 3.3) by the total power
of the device (29 billion FLOPS). The result was
then multiplied by 100 to compute percentages (see
Equation 3.2). From the theoretical expectations,
ResNet-50 was supposed to take around ten times
more resources, to process one image, compared to
MobileNet-V2 and EfficientNet-lite0. Check Figure
3.2 for a graphical representation.

expectations = 100 ∗ computationalCost

devicePower
(3.2)

The efficiency score is used to better visualize
how did the neural networks perform, without any
fine-tuning. The score was computed by taking the
best average Confidence level which was divided

8



Figure 3.2: Normalized CPU usage and Theoretical expectations for the neural networks.

by the mean CPU usage and the mean run-time,
for each neural network (see Equation 3.3). Over-
all, EfficientNet-lite0 yielded the best and highest
score, followed by MobileNet-v2 and then ResNet-
50. See Table 3.4 for exact values.

effScore =
bestAvgConfidenceLevel

meanCPU ∗meanRuntime
(3.3)

Table 3.3: Computational cost for each of the
neural networks.

MobileNet EfficientNet ResNet

FLOPS
300

Million
407

Million
4.1

Billion

Table 3.4: All the measurements needed to cal-
culate the Efficiency Score.

MobileNet EfficientNet ResNet
Best

confLevel
33.23% 37.14% 48.73%

CPU 26.61% 26.35% 27.83%
runtime 206.93ms 228.03ms 486.5ms
effScore 0.006034 0.006181 0.003598

4 Discussion

4.1 Model Comparison

Overall, the neural networks have performed poorly
in recognizing the items(see Table3.1 for exact re-
sults). Many misclassifications were recorded for all
the models. Furthermore, none of the models man-
aged to recognize the ”dress” category. This was
to be expected since the neural networks were re-
trained on the default settings and no fine-tuning
was performed. The main focus of the paper was
not the accuracy, but rather the energy efficiency
of the models and whether they can be deployed
in mobile applications. Even so, recording and ob-
serving the accuracy and the models’ choices have
offered more insight on how the neural networks
behaved. MobileNet-V2 was the most equilibrated
out of the models. EfficientNet-lite0 showed a high
affinity for misclassifying other items as ”bottoms”.
In the same manner, ResNet-50 showed an affinity
for the ”tops” category, but not as pronounced as
EfficientNet-lite0.

When it comes to energy consumption, all three
models measured a mean CPU usage between
26.5% and 28% (see Table 3.2 for exact measure-
ments). This represents just a small increase of 12
to 13% compared to running the application with-
out any of the models. Since the increase was rel-
atively small it implies that all three neural net-
works could be used in mobile environments with-
out problems. Even so, to better distinguish be-

9



tween the energy performance of each model, the
CPU usage had to be normalized using the run-
time.
By normalizing the CPU usage the models can

also be compared to the theoretical expectations.
MobileNet-V2 and EfficientNet-lite0 had higher
CPU usage levels compared to the expectations for
the device that was used. ResNet-50 has mostly
stayed in line with the expectations regarding its
CPU usage levels. From their computational costs,
ResNet-50 was expected to perform around ten
times slower than the other models. From test-
ing, it was observed that actually, ResNet-50 per-
formed only two times slower compared to the
other two neural networks. This might indicate
that models with a higher computational cost could
be used in mobile environments without a ma-
jor loss in energy-efficiency. Even so, MobileNet-
v2 and EfficientNet-lite0 are more energy efficient,
compared to ResNet-50, which indicates that they
might be better suited for mobile environments. As
an extra point for comparison, the models’ overall
performance was analyzed as well.
The efficiency score indicates which neural net-

work has performed the best overall, without
any fine-tuning. EfficientNet-lite0 and MobileNet-
V2 show mostly the same performance. Still,
EfficientNet-lite0 is ahead by a small margin.
ResNet-50 is almost two times less efficient, due
to its longer run-times and similar accuracy to the
other models. Therefore, the efficiency score shows
that EfficientNet-lite0 might be the most optimal
solution for mobile applications.

4.2 Future Studies

Overall, the energy consumption did not vary dras-
tically across the different categories and items.
This would indicate that increasing the number
of categories or items, would not have an impact
on the conclusions made in regards to energy con-
sumption. In contrast, the confidence levels and the
number of misclassifications vary a lot between the
categories, items and models. Therefore, in the fu-
ture, it would be important to see what impact does
fine-tuning have on the overall performance of the
neural networks. To start, future studies should try
to augment the dataset to reduce the discrepancy
between the number of items in each of the cate-
gories. This way, the models would be less likely to

form affinities for one of the categories. In addition,
by also focusing and recording the error-rate of the
models a more complex efficiency analysis could be
performed. This type of analysis would better show
which model is the most optimal for mobile envi-
ronments.

Furthermore, in the future, larger neural net-
works could be added to the analysis. One example
of such models would be EfficientNet-B4 which has
similar computational costs to ResNet-50 (Tan and
Le, 2019). This way, it could be observed if the dis-
crepancy between the theoretical expectations and
the actual results can be observed for other models
as well, not just for ResNet-50.

Finally, to be able to ensure that future studies
will have the possibility to reproduce all the results
given in this report, a GitHub repository has been
created which includes all the necessary data and
scripts important for testing and recreating the re-
sults Pintea (2022).

4.3 Conclusion

All three neural networks seem to be energy ef-
ficient enough to be deployed in mobile environ-
ments. All models have their benefits and down-
sides. MobileNet-V2 consumes the least amount of
energy due to its short run-times and low CPU us-
age. The trade-off is made when it comes to accu-
racy. MobileNet-V2 has the smallest confidence lev-
els and some misclassifications. EfficientNet-lite0
seems to be a middle ground and the most opti-
mal model for mobile applications. It is very en-
ergy efficient and it has relatively high confidence
levels, but it also has an affinity for misclassifying
items as ”bottoms”. ResNet-50 should be the easi-
est model to implement. The neural network offers
very high confidence levels without fine-tuning, but
it also consumes the most amount of energy and it
has misclassifications.

Finally, to create a more complex efficiency anal-
ysis, the error-rate should also be taken into consid-
eration to better illustrate the most optimal neu-
ral network. The dataset should also be augmented
to have similar numbers of items in each category.
This way, the models would be less prone to form
affinities for a specific category. Larger networks
could also be included to be able to inspect the dis-
crepancy between the theoretical expectations and
the actual results, shown by ResNet-50.

10



References

Samsung Exynos 7885 Specs, Features and
performance score 28th January 2022.
URL https://www.giznext.com/mobile-

chipsets/samsung-exynos-7885-chipset-gnt.

Samsung Galaxy A8 (2018): specs,
benchmarks, and user reviews. URL
https://nanoreview.net/en/phone/samsung-

galaxy-a8-2018.

P. Aggarwal. Fashion prod-
uct images (small), 2019. URL
https://www.kaggle.com/paramaggarwal/fashion-

product-images-small/metadata.

Vertica Bhardwaj and Ann Fairhurst. Fast fash-
ion: response to changes in the fashion industry.
The international review of retail, distribution
and consumer research, 20(1):165–173, 2010.

Shobhit Bhatnagar, Deepanway Ghosal, and Ma-
heshkumar H. Kolekar. Classification of fash-
ion article images using convolutional neural net-
works. In 2017 Fourth International Conference
on Image Information Processing (ICIIP), pages
1–6, 2017. doi: 10.1109/ICIIP.2017.8313740.

Kota Hara, Vignesh Jagadeesh, and Robinson Pi-
ramuthu. Fashion apparel detection: the role
of deep convolutional neural network and pose-
dependent priors. In 2016 IEEE Winter Con-
ference on Applications of Computer Vision
(WACV), pages 1–9. IEEE, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Deep residual learning for image recog-
nition, 2015.

Andrew G. Howard, Menglong Zhu, Bo Chen,
Dmitry Kalenichenko, Weijun Wang, To-
bias Weyand, Marco Andreetto, and Hartwig
Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applica-
tions. CoRR, abs/1704.04861, 2017. URL
http://arxiv.org/abs/1704.04861.

Paul Pintea. GitHub Repository for WardrobeAI,
a Bachelor Thesis, 02 2022. URL
https://github.com/Paul0808/WardrobeAI.

Mark Sandler, Andrew G. Howard, Menglong Zhu,
Andrey Zhmoginov, and Liang-Chieh Chen. In-
verted residuals and linear bottlenecks: Mobile
networks for classification, detection and seg-
mentation. CoRR, abs/1801.04381, 2018. URL
http://arxiv.org/abs/1801.04381.

Mingxing Tan and Quoc V. Le. Efficientnet: Re-
thinking model scaling for convolutional neural
networks. CoRR, abs/1905.11946, 2019. URL
http://arxiv.org/abs/1905.11946.

11


