
C O S T A N D P E R F O R M A N C E T R A D E - O F F E VA L U AT I O N
I N M I C R O S E RV I C E S I M PA C T E D B Y T H E C A P

T H E O R E M L I M I TAT I O N S

D E E P S H I G A R G

M A S T E R ’ S T H E S I S

Department of Computing Science
Faculty of Science and Engineering

University of Groningen

supervisors :
Dr. V. Andrikopoulos

Diarmuid Kelly
Prof. dr. A. Lazovik

September 2021 - January 2022

Deepshi Garg: Cost And Performance Trade-off Evaluation In Microservices Im-
pacted By The CAP Theorem Limitations, Master’s Thesis © September 2021 -
January 2022

supervisors:
Dr. V. Andrikopoulos
Diarmuid Kelly
Prof. dr. A. Lazovik

location:
Groningen

time frame:
September 2021 - January 2022

A B S T R A C T

A microservices architecture is effectively a distributed system, with each
microservice being a single (or a collection of) nodes(s). Thus, the principles
and limitations of the CAP theorem also apply to microservices, and espe-
cially when these are used to implement data-focused applications such as
federated learning. This project provides a research framework to refine the
design of data-focused microservices architecturally and infrastructurally
while keeping in mind their CAP theorem constraints. We present an elab-
orate procedure to analyse different design alternatives for a microservice
application with CAP theorem impositions, evaluate the trade-offs amongst
different feasible solutions in terms of performance and operational ex-
penses, and arrive at an optimal architecture in terms of implementation
and infrastructure cost viability. Additionally, we exemplify the whole pro-
cess with three examples from a case study in an industrial context, each
lying on a different edge of the CAP triangle. Important thing to note here
is that we only use CAP theorem to set the context for the research, by
classifying the microservices as CA, CP or AP.

iii

A C K N O W L E D G E M E N T S

First and foremost, I thank my supervisor, Dr. Vasilios Andrikopoulos. He
has been a very supportive supervisor all throughout. He has been espe-
cially helpful in defining sequential steps and a clear timeline for the re-
search. He gave me biweekly goals, and reviewed the progress accordingly.
He always inspired me to dig deeper into the problem, and find multi-
dimensional solutions to it. For instance, he has been very keen on exploring
architectural solutions as well, especially when I was limiting my focus onto
infrastructural solutions. He consistently encouraged me to find supporting
literature for every statement I make, and validate if it is in the correct di-
rection or not. This saved me a lot of time by exploring only the relevant
solutions, and not going into any random solution which crosses my mind.
Consequently, this not only ensured that my project is well researched into
the current state-of-the-art, but also gave me an experience of a professional
scientific research.

Another important factor for this research being of the current quality
is the supervision from Diarmuid Kelly, the Co-Founder of BranchKey. He
has resulted in a steep enhancement in my learning curve. He has been
extremely patient, even with the most elementary questions. He tried to
explain stuff in the easiest way possible, and provided relevant resources
for me to self study as and when needed. Despite his busy schedule, he was
highly available for daily catch-ups, and progress discussions. He created
ample opportunities for me to practically test all the implementations or
solutions I proposed for the problems at hand. This provided me hands-
on experience with production grade systems. In my opinion, such active
participation in configuration and maintenance of real world systems not
only adds feasibility value to my research, but also prepared me for future
industrial experiences.

iv

C O N T E N T S

1 introduction 1

1.1 Rationale . 2

1.2 Research Question . 4

1.3 Approach and Document Overview 4

2 literature review 6

2.1 CAP Theorem . 6

2.2 Databases . 7

2.3 Distributed Databases . 9

2.4 Cloud Native Applications . 11

2.5 Microservice Architecture . 11

2.6 CAP Theorem in Microservices Architecture 13

2.7 Federated Learning Implementations 15

2.8 Infrastructure Evaluation . 16

3 branchkey architecture 18

3.1 Authenticator . 19

3.1.1 Functional Requirements 19

3.1.2 Non-Functional Requirements 19

3.2 File Uploader . 20

3.2.1 Functional Requirements 20

3.2.2 Non-Functional Requirements 20

3.3 File Downloader . 21

3.3.1 Functional Requirements 21

3.3.2 Non-Functional Requirements 22

4 experimental implementation 23

4.1 Authenticator . 26

4.1.1 Experiment 1: Master/slave DB distribution 28

4.1.2 Experiment 2: Server side caching 30

4.2 File Uploader . 30

4.2.1 Experiment 1: Redis Master/Slave 33

4.2.2 Experiment 2: Redis Cluster 34

4.3 File Downloader . 34

4.3.1 Experiment 1: Data Replication 37

4.3.2 Experiment 2: Data partitioning 38

5 evaluation 39

5.1 Authenticator . 40

5.1.1 Current System . 41

5.1.2 Results from the experiments 43

5.1.3 Evaluate the results and compare across relevant pa-
rameters . 49

5.2 File Uploader . 50

5.2.1 Current System . 51

5.2.2 Results from the experiments 53

5.2.3 Evaluate the results and compare across relevant pa-
rameters . 60

5.3 File Downloader . 62

5.3.1 Current System . 62

5.3.2 Results from each experiments 64

5.3.3 Evaluate the results and compare across relevant pa-
rameters . 69

v

contents vi

5.4 Discussion . 71

6 conclusion and future work 73

6.1 Conclusion . 73

6.2 Future Work . 75

i appendix 76

a requirement analysis of other branchkey microser-
vices 77

a.1 Authoriser . 77

a.1.1 Functional Requirements 77

a.1.2 Non-Functional Requirements 77

a.2 API Gateway . 78

a.2.1 Functional Requirements 78

a.2.2 Non-Functional Requirements 78

a.3 Aggregation Task Creator . 79

a.3.1 Functional Requirements 79

a.3.2 Non-Functional Requirements 79

a.4 Central Aggregator . 79

a.4.1 Functional Requirements 80

a.4.2 Non-Functional Requirements 80

bibliography 81

L I S T O F F I G U R E S

Figure 1 CAP Theorem Triangle and use case placement . . . 3

Figure 2 Current architecture of BranchKey data flow pipeline 18

Figure 3 Authenticator: Service Interface 19

Figure 4 File Uploader: Service Interface 20

Figure 5 File Downloader: Service Interface 21

Figure 6 Research Framework 23

Figure 7 Experimentation Protocol 24

Figure 8 Monitoring Stack . 39

Figure 9 Authenticator Dashboard [Current System] 41

Figure 10 Authenticator PostgreSQL Dashboard [Current System] 41

Figure 11 Authenticator PostgreSQL Dashboard Continued [Cur-
rent System] . 42

Figure 12 Authenticator Service Pod CPU Load [Current System] 42

Figure 13 Authenticator PostgreSQL Pod CPU Load [Current
System] . 42

Figure 14 Authenticator Service Pod Memory Usage [Current
System] . 43

Figure 15 Authenticator PostgreSQL Pod Memory Usage [Cur-
rent System] . 43

Figure 16 Authenticator PostgreSQL Persistent Volume Usage
[Current System] . 43

Figure 17 Authenticator Dashboard [Experiment 1] 44

Figure 18 Authenticator Read Service Pod CPU Load [Experi-
ment 1] . 45

Figure 19 Authenticator Write Service Pod CPU Load [Experi-
ment 1] . 45

Figure 20 Authenticator Master DB Pod CPU Load [Experiment
1] . 45

Figure 21 Authenticator Slave DB Pod CPU Load [Experiment 1] 45

Figure 22 Authenticator Read Service Pod Memory Usage [Ex-
periment 1] . 46

Figure 23 Authenticator Write Service Pod Memory Usage [Ex-
periment 1] . 46

Figure 24 Authenticator Master DB Pod Memory Usage [Exper-
iment 1] . 46

Figure 25 Authenticator Slave DB Pod Memory Usage [Experi-
ment 1] . 46

Figure 26 Authenticator Master DB Persistent Volume Usage
[Experiment 1] . 46

Figure 27 Authenticator Slave DB Persistent Volume Usage [Ex-
periment 1] . 46

Figure 28 Authenticator Dashboard [Experiment 2] 47

Figure 29 Authenticator Redis Dashboard [Experiment 2] 47

Figure 30 Authenticator Service Pod CPU Load [Experiment 2] 48

Figure 31 Authenticator DB Pod CPU Load [Experiment 2] . . . 48

Figure 32 Authenticator Redis Pod CPU Load [Experiment 2] . 48

Figure 33 Authenticator Service Pod Memory Usage [Experi-
ment 2] . 48

vii

List of Figures viii

Figure 34 Authenticator DB Pod Memory Usage [Experiment 2] 48

Figure 35 Authenticator Redis Pod Memory Usage [Experiment
2] . 49

Figure 36 Authenticator DB Persistent Volume Usage [Experi-
ment 2] . 49

Figure 37 File Uploader Dashboard [Current System] 51

Figure 38 File Uploader Redis Dashboard [Current System] . . 51

Figure 39 File Uploader Service Pod CPU Load [Current System] 52

Figure 40 File Uploader Redis Pod CPU Load [Current System] 52

Figure 41 File Uploader Service Pod Memory Usage [Current
System] . 53

Figure 42 File Uploader Redis Pod Memory Usage [Current Sys-
tem] . 53

Figure 43 File Uploader Dashboard [Experiment 1] 54

Figure 44 File Uploader Redis Dashboard [Experiment 1] 54

Figure 45 File Uploader Redis Dashboard (Continued) [Experi-
ment 1] . 54

Figure 46 File Uploader Service Pod CPU Load [Experiment 1] 55

Figure 47 File Uploader Redis Master Pod CPU Load [Experi-
ment 1] . 55

Figure 48 File Uploader Redis Slave Pod CPU Load [Experi-
ment 1] . 56

Figure 49 File Uploader Service Pod Memory Usage [Experi-
ment 1] . 56

Figure 50 File Uploader Redis Master Pod Memory Usage [Ex-
periment 1] . 56

Figure 51 File Uploader Redis Persistent Volume Usage [Exper-
iment 1] . 56

Figure 52 File Uploader Dashboard [Experiment 2] 57

Figure 53 File Uploader Redis Master Dashboard [Experiment 2] 57

Figure 54 File Uploader Redis Slave Dashboard [Experiment 2] 57

Figure 55 File Uploader Service CPU Load [Experiment 2] . . . 58

Figure 56 File Uploader Redis Master CPU Load [Experiment 2] 59

Figure 57 File Uploader Redis Slave CPU Load [Experiment 2] 59

Figure 58 File Uploader Service Pod Memory Usage [Experi-
ment 2] . 59

Figure 59 File Uploader Redis Master Pod Memory Usage [Ex-
periment 2] . 59

Figure 60 File Uploader Redis Slave Pod Memory Usage [Ex-
periment 2] . 59

Figure 61 File Uploader Redis Master Persistent Volume Usage
[Experiment 2] . 60

Figure 62 File Uploader Redis Slave Persistent Volume Usage
[Experiment 2] . 60

Figure 63 File Downloader Dashboard [Current System] 62

Figure 64 File Downloader PostgreSQL Dashboard [Current Sys-
tem] . 63

Figure 65 File Downloader PostgreSQL Dashboard (Continued)
[Current System] . 63

Figure 66 File Downloader Service Pod CPU Load [Current Sys-
tem] . 63

Figure 67 File Downloader DB Pod CPU Load [Current System] 64

List of Figures ix

Figure 68 File Downloader Service Pod Memory Usage [Cur-
rent System] . 64

Figure 69 File Downloader DB Pod Memory Usage [Current
System] . 64

Figure 70 File Downloader DB Persistent Volume Usage [Cur-
rent System] . 64

Figure 71 File Downloader Dashboard [Experiment 1] 65

Figure 72 File Downloader PostgreSQL Dashboard [Experiment
1] . 65

Figure 73 File Downloader PostgreSQL Dashboard (Continued)
[Experiment 1] . 66

Figure 74 File Downloader Service CPU Load [Experiment 1] . 66

Figure 75 File Downloader Master DB CPU Load [Experiment 1] 66

Figure 76 File Downloader Slave DB CPU Load [Experiment 1] 67

Figure 77 File Downloader Service Memory Usage [Experiment
1] . 67

Figure 78 File Downloader Master DB Memory Usage [Experi-
ment 1] . 67

Figure 79 File Downloader Slave DB Memory Usage [Experi-
ment 1] . 67

Figure 80 File Downloader Master DB Persistent Volume Usage
[Experiment 1] . 67

Figure 81 File Downloader Slave DB Persistent Volume Usage
[Experiment 1] . 67

Figure 82 File Downloader Dashboard [Experiment 2] 68

Figure 83 File Downloader Service Pod CPU Load [Experiment
2] . 68

Figure 84 File Downloader DB Pod CPU Load [Experiment 2] . 69

Figure 85 File Downloader Service Pod Memory Usage [Exper-
iment 2] . 69

Figure 86 File Downloader DB Pod Memory Usage [Experiment
2] . 69

Figure 87 File Downloader DB Persistent Volume Memory Us-
age [Experiment 2] . 69

Figure 88 Authoriser: Service Interface 77

Figure 89 API Gateway: Service Interface 78

Figure 90 Aggregation Task Creator: Service Interface 79

Figure 91 Central Aggregator: Service Interface 80

L I S T O F TA B L E S

Table 1 AWS Pricing Model . 40

Table 2 Memory Footprint of the Current System 40

Table 3 Authenticator Evaluation: API Response Times and
Server Errors . 49

Table 4 Authenticator Evaluation: System Health Metrics . . 50

Table 5 Authenticator Evaluation: Persistent Volume Usage . 50

Table 6 File Uploader Evaluation: API Response Times and
Server Errors . 61

Table 7 File Uploader Evaluation: System Health Metrics . . 61

Table 8 File Uploader Evaluation: Persistent Volume Usage . 61

Table 9 File Downloader Evaluation: API Response Times and
Server Errors . 70

Table 10 File Downloader Evaluation: System Health Metrics . 70

Table 11 File Downloader Evaluation: Persistent Volume Usage 70

x

1I N T R O D U C T I O N

CAP Theorem [22] states that a shared data system can have at most two of
the three following properties: Consistency, Availability, Partition Tolerance.
As defined by Gilbert and Lynch in [45],

• Consistency refers to the assurance that a server returns only the ap-
propriate response per request received.

• Availability guarantees that every request receives some response from
a running server

• Partition Tolerance says that a system can be partitioned into different
independent nodes. In events where one or more nodes are out of
service, the system still responds to every request.

The past few years have seen ample research in this area. Computer sci-
entists have evaluated each of these properties in immense detail, devel-
oped the implementation algorithms, and even evaluated the workarounds
in most cases. However, such research has either been very generic, or highly
use case specific. For instance, research by Gilbert and Lynch [45] presents
a general perspective over the CAP Theorem, and its implications over the
achievement of certain non-functional requirements, mainly safety and live-
ness, in an application. Eric Brewer’s revisiting of the topic in [23] presents
a general overview of the CAP Theorem in context of present day appli-
cations, such as its standing against the modern Atomic, Consistent, Isolated,
Durable (ACID) [49] and Basically Available, Soft state, Eventually consistent
(BASE) [42] design philosophies for consistency. However, results of such
generic studies are difficult to extend down to discrete industrial scenarios,
where use case specific investigations need to be performed per use case
basis. M. Stonebraker has recorded the effects of the CAP Theorem over
databases [103], but it is mostly a compilation of comments and arguments,
very specific to the use case under investigation.

Discussing one such research, Simon in [101] analysed that the CAP The-
orem leads to a system with only one of the following three characteristics:

• High consistency and high availability, but no partition tolerance: The sys-
tem in this scenario does not define a set behaviour in case one or
more of the components fail.

• High availability and partition tolerance, but no consistency: Individual
nodes are available, even in case of some failures. However, data across
nodes is not consistent.

• High consistency and partition tolerance, but less availability: It needs con-
stant data consistency across partitions. Thus, in case of a component
failure, system can become unavailable.

These characteristics play an important part in designing the architecture
for distributed systems. As the authors of [31] discuss, the CAP Theorem not
only dominates the architectural design process, but also helps in making in-
formed decisions about which properties can be prioritised while others are

1

1.1 rationale 2

being sacrificed. They also discuss the possibility of arriving at an optimised
compromise of consistency or availability (in addition to partition tolerance),
rather than giving them up totally. This paves a way for the application of
the CAP Theorem in microservices architectures [81]. The microservices ar-
chitecture paradigm refers to the breaking down of a bigger application into
more fine-grained, loosely coupled smaller components, each performing a
small part of the bigger application. This enables the development, deploy-
ment, scaling, and maintenance of each smaller component independently.
It gives us, the software engineers, an opportunity to divide and conquer
the requirements of different parts of the system. It allows us to break down
a bigger system into smaller subsystems, and choose amongst consistency,
availability and partition tolerance for each of them.

We plan to assess the performance of different architectural designs for
each of the three scenarios identified by Simon, as discussed above, however
confining them to different components of a microservices architecture, and
restricting them to the corresponding business requirements.

1.1 rationale

This research will be conducted in collaboration with BranchKey [18]. Branch-
Key is a federated learning platform which provides distributed machine
learning solutions to its customers. In simple terms, BranchKey exposes
APIs for multiple user clients to upload their individual models, which are
aggregated over the central server, and the result is flowed down to each
client. The current system implements a microservices architecture, where
the Single Responsibility Principle [75] defines the boundaries of each sub-
system. This provides the ability to tackle the functional and non-functional
requirements of each subsystem separately. Over the course of developing
this high scalalable, robust and resilient system, the software platform engi-
neers at BranchKey stumbled upon the need for data management systems,
each with one of the above described requirements:

1. High consistency and high availability: Every request coming onto the
platform needs to be authenticated against the user credentials. More-
over, it also needs to be authorised for its permission to access the
service it requests. This data needs to be highly consistent. For exam-
ple, if a user updates its credentials, all the upcoming requests need
to match the updated values. Additionally, this data demands high
availability, for every request which hits the platform shall first be ver-
ified via this authentication and authorisation system. However, since
user credentials and permissions are not volume intensive, all of it can
be stored in a single partition, thus eliminating the need for partition
tolerance.

2. High availability and partition tolerance: Every time a client sends in its
model for higher level aggregation, it needs to be cached for a fast
synchronous response. Later, it can be persisted, and used for aggre-
gation. This cache needs to be highly available as it is a part of the
synchronous client API. BranchKey accepts client models up to 1 MB
per request. With growing requirements to scale, every aggregation
can be up to thousands of clients, making this data collectively huge,
especially if multiple user aggregations happen concurrently. Thus, it
arises an inevitable need to partition tolerance. But since the aggrega-

1.1 rationale 3

tion happens asynchronously, this system can afford eventual consis-
tency [115].

3. High consistency and partition tolerance: Customers like to access the his-
tory of their clients, in terms of files uploaded by each of them, aggre-
gations happened, clients (and their models) which participated in a
given aggregation, etc. As explained in the previous use case, this data
collectively becomes huge, and demands storage across partitions. Fur-
thermore, it needs to be consistent across all the partitions. However,
since accessing history is only an on-demand non-critical feature, it is
acceptable to compromise over the availability of this system

Figure 1: CAP Theorem Triangle and use case placement

This research aims to develop the means to systematically evaluate multi-
ple architectural designs and database configurations for each of the above
use cases, to assist BranchKey deploy the best possible strategies, while
knowing the trade-offs for each of them. Figure 1 shows the placement of
use cases against the CAP theorem limitations in pictorial format.

In a more generic sense, this is an exploratory case study performed along
the guidelines provided by Runeson et al. in [95]. The aim here is to inves-
tigate different existing architectural designs and patterns for data-focused
applications, such as federated learning, that are constrained by one of the
three CAP Theorem scenarios, and devise the optimal strategy for the re-
quired use case. We will be studying multiple architectural designs, vary-
ing from implementing the application level logic for optimising cost and
performance while incorporating the CAP theorem constraints, to export-
ing it down to the database level by using the native database algorithms.
Following this, we would weigh the trade-offs between the two solutions
for industrial scale deployments, thus providing an experimental study for
all the future readers. The broad idea behind this being the establishment
of this research as a trustworthy reference for helping application develop-
ers identify the optimal architecture per use case basis. In a generic sense,
we provide an elaborate and self-sufficient research framework which can
be used to evaluate different possible architectural and infrastructural solu-
tions of a data-focused microservice which is impacted by the CAP theorem
limitations, and obtain an optimal architectural and/or database solution

1.2 research question 4

for the same, under specified constraints. In specific sense, we apply this
research framework to three microservices of the BranchKey platform, and
exemplify the process for the same.

In the context of this study, optimal architecture is the one with the least
operational expenses and best performance metrics related to the service
level objectives. The performance metrics involve minimal response time la-
tency, and error percentages. The operational expenses mainly include the
deployment costs over different cloud service providers, along with the net-
work bandwidth usage, the data usage, and their respective costs incurred.
It is an accepted industry practice to minimise these costs in accordance
with the required performance and scale. This is important to save both, the
financial resources as well the development and maintenance effort.

1.2 research question

Formalizing the idea described above, the focus of this research is narrowed
down to the following research question:

"How to evaluate different architectural designs towards optimising the overall
cost and performance of data-focused microservices affected by the limitations of the
CAP Theorem?"

This can be segregated into three sub-questions:

RQ.1 How do the limitations imposed by the CAP theorem affect the design of a
data-focused microservice?

RQ.2 How to identify different architectural and infrastructural alternatives for a
data-focused microservice with the restrictions imposed by the CAP theorem,
while keeping in mind the business requirements of cost and performance?

RQ.3 How to decide on the most suitable architectural and infrastructural solution
for the optimal cost and performance of the microservice under investigation?

Important thing to note here is that the cost and performance is analysed
in terms described in Section 1.1.

1.3 approach and document overview

This study focuses on evaluating each sub question from Section 1.2 with
respect to existing literature and helping the developers identify optimal
solutions in accordance with the use cases under investigation. Firstly, we
review the existing literature in the concerned fields to examine the effects of
CAP theorem restrictions over the choice of architectural and infrastructural
designs for data-focused microservices, and narrow down a list of the same
to be assessed in the remainder of this research. This review is in Chapter 2.
Then, in Chapter 3, we give an overview of the current BranchKey system
architecture, and define in brief detail the functional and non-functional re-
quirements of all the modules being investigated in this project. Chapter 4

talks about a generic research framework to use all of this knowledge as
an advantageous investigation tool for some BranchKey specific use cases
at hand. Using this framework, we design and implement industrial scale
experiments for each of the use cases being studied in this investigation.

1.3 approach and document overview 5

Chapter 5 provides an evaluation of the results obtained from each experi-
ment in terms of the system’s operational cost, computational cost, response
latency, fault tolerance, etc. It also discusses the overall viability of the re-
search framework in accordance with the research questions postulated in
this chapter. Finally, we draw the conclusions as to which strategies are best
suited per use case, and discuss future work in regards to this study in
Chapter 6.

2L I T E R AT U R E R E V I E W

In this chapter, we extend upon the basic concepts needed for this research,
and examine existing literature within similar contexts. This literature re-
view also helps us answer RQ.1 by analysing different architectural and
infrastructural solutions for each of the CAP theorem scenarios. We start
by formally defining CAP Theorem, and its alternatives in Section 2.1. We
then look through basic properties of different databases in Section 2.2. Sec-
tion 2.3 combines the idea of CAP Theorem into databases, thus discussing
distributed databases. Thereafter, we move on to discuss the implications of
CAP Theorem over Cloud Native Applications in general in Section 2.4. Fi-
nally we dive into the details of microservice architecture in Section 2.5, and
discuss its ramifications with CAP Theorem in Section 2.6. Next, we discuss
some practical implementation solutions for federated learning systems in
Section 2.7. This is to address specifics of the BranchKey system. Lastly, we
discuss ways to evaluate an infrastructural solution in Section 2.8, and use
them to compare different selected deployment strategies for a use case at
hand.

2.1 cap theorem

A distributed system is a collection of computation units spread over a com-
mon network, but working together to provide the facade of a single com-
puter to the end user. These computation units could store multiple parti-
tions of same data, or could individually perform parts of a large computa-
tion. This gives rise to the need for three important properties, namely consis-
tency, availability, and partition tolerance to be analysed deeply while design-
ing such systems. CAP Theorem, as explained in Chapter 1, explains that
only two of these three properties can be guaranteed in a distributed system.
Gilbert and Lynch define and formally prove this claim in [44]. Kleppmann
[58] also provides a detailed explanation of the terms consistency, availabil-
ity, and partition tolerance, and their implications over a distributed system.
These implications include the consequences of choosing absolutely two of
these properties in a system, or sometimes eventually achieving the third
property. Extending more into this domain, [78] explores the consistency
characteristics of highly available and scalable distributed systems which
can tolerate network partitions. It labels atomic consistency as the strongest
form, and provides a compromise of weakly and eventually consistent sys-
tems, along with their formal proofs.

Since CAP Theorem limits the abilities of distributed systems by demand-
ing strict trade-offs, many researchers tried to substantiate middle grounds
between these trade-offs. For instance, Martin Kleppmann [58] proposes a
delay sensitivity framework for reasoning about trade-offs between consis-
tency guarantees and tolerance of network faults in a replicated database.
Similarly, in [2], Abadi says that CAP Theorem only talks about failure cases,
where network partitions, and the database has to choose between availabil-
ity and consistency. It does not talk about normal cases. Failures are rare.
And in fact, in normal scenarios, distributed databases are fully capable

6

2.2 databases 7

of providing ACID transactions. Thus, he proposes PACELC, which con-
siders network latency as an alternative to partition tolerance, which may
help practitioners reason about the trade-offs between consistency guaran-
tees and tolerance of network faults, especially in replicated databases.

Continuing over the same line of thought, [65] provides a another alter-
native to CAP theorem by introducing CAL theorem. It takes into account
network latency instead of partition tolerance, and assumes infinite latency
to be same as an unreachable network partition. Further, it discusses the
trade-offs between consistency and availability, by examining centralised co-
ordination against decentralised coordination. [53] gives a fresh perspective
to the idea of consistency in a system. It says that if a problem is mono-
tonic in a coordination-free program, it guarantees consistency in all ex-
ecutions. However, non-monotonic problems require run-time consistency
checks. Thus, we, as software engineers, can totally avoid consistency checks
in monotonic problems. Likewise, [4] introduces the concept of consistabil-
ity, a combination metric to measure the consistency and availability of a
distributed system in case of failures.

Converging all the theoretical knowledge gathered from the aforemen-
tioned articles, we explored some more literature to look for implementa-
tion details. [13] describes a middle layer tool to convert weak consistency
to strong consistency. Considering the alternatives to CAP theorem, which
suggested the substitution of partition tolerance with network communica-
tion latencies, the article CAP Twelve years later: How the "Rules" have Changed
[23] proposes a solution to be able to optimise both consistency and avail-
ability when a network partition exists, by taking into account communi-
cation latencies. Alternatively, Vogels, in his research Eventually Consistent
[115] meticulously enlists the situations when we can choose eventual con-
sistency over strong consistency in distributed systems.

2.2 databases

A database (DB) is a data storage provision, organised and optimised for
easy access, management, modification and control. Priority order of each
of these properties gives rise to different categories of databases. For in-
stance, we have databases which support ACID or BASE transactions, as
described in detail by D. Pritchett in [86]. Briefly stating, ACID states for
Atomic, Consistent, Isolated and Durable database transactions, whereas BASE
is for Basically Available, Soft state, Eventually consistent transactions. Further-
more, databases can be distinguished based on how data is stored. Rela-
tional databases (also called SQL databases) store data in the form of tables,
with inter-table and intra-table relationships established to optimise access.
Non-relational databases (also called NoSQL databases) store data without
a fixed schema. These can again be categorised into wide column stores,
document store, graph databases, key-value stores, object stores, time series
databases, etc. The survey [29] performs a detailed analyses of 15 categories
of NoSQL databases, and proposes the principles to choose the best suited
NoSQL database for different enterprise use cases. Another study, [57], ex-
tends the classification of NoSQL databases by incorporating features such
as CAP characteristics, free/proprietary ownership, etc in addition to the
data model. This survey, performed over 80 NoSQL databases, also narrows
down the best suitable ones for different applications. Memcached, Redis, and

2.2 databases 8

Aerospike Key-Value Stores Empirical Comparison [10] performs a similar anal-
ysis for key value stores.

Once a competent database is selected for the use case at hand, it can
be scaled or performance optimised further via multiple mechanisms. Data
partitioning or sharding allows to divide data horizontally or vertically and
store it in different tables within a single node, or across different nodes
distributed in a network respectively. Data replication facilitates duplicating
critical data across multiple copies, which can either be stored on the same
node, or on different nodes. Distributed control allows for actual data stor-
age to be separated from the database management system server. Caching
enables the server to store a copy of frequently accessed data, so as to serve
future queries faster. This can be implemented over any of the previously
described mechanisms, i.e., partitions, replications, or even distributed con-
trol. These mechanisms demand additional infrastructure in the form of
additional nodes in the network, either to store chunks of data, or to serve
the queries. Thus, these solutions claim a wise decision to be taken in re-
gards of whether the additional infrastructure cost is worth the additional
performance claims. [102] gives a performance comparison between these
mechanisms, where as [59] compares them in regards to their infrastructure
costs across different cloud providers in the market. Rehmann and Folk-
erts [92] also provide an extensive performance evaluation mechanism for
database deployments in cloud infrastructure.

Moving on to the implementation details of data intensive applications, se-
lecting an adept database and modelling the schema therein are not the easi-
est things to do. Aforementioned literature does compare multiple databases
over certain properties, and gives a framework to make a selection, but it
does not describe which properties to look for, when designing for a certain
use case. Cattell [105] gives a list of rules to which can be used to design
the database requirements for a use case at hand, and thus stipulate the
"properties" to look for.

Once this selection is made, schema modelling is the next thing to do. This
part of the process is fundamentally based on the type of database, i.e., non-
relational or relational. In case of non-relational databases, it becomes tricky
for it requires a change in our very basic understanding of data as a tabu-
lar entity. Moreover, every non-relational database compels for a different
model. For instance, the modelling for a key-value store has to be entirely
different from a graph-database. The survey [112] enlists many resources
which can be referred to for this. It focuses on "contexts like benchmark, eval-
uations, migration, and schema generation, as well as features to be considered for
modelling NoSQL databases, such as the number of records by entities, CRUD1

operations, and system requirements (availability, consistency, or scalability)."

For relational databases, schema can be designed in coherence with the
idea of entity relations in an object oriented application. Data is observed in
tabular form, and modelled into database design patterns. These database
design patterns can be incorporated into the rudimentary database code, or
into the schema designed over it. Merlowe, Ku, and Benham propose a ped-
agogy to study the rudimentary database design patterns in [73]. However,
these are are very difficult to implement, and we mostly scope this project

1 Create, Read, Update, Delete

2.3 distributed databases 9

towards schema level designing in existing databases. Relational Database De-
sign Patterns [50] gives an extensive list of 24 such design patterns, with an
aim of easing database architecture for industrial applications. Eessaar, [35]
proposes a practical implementation of these patterns with a code generat-
ing tool which automates the generation of database queries based on the
selected database pattern.

Considering some real world examples of implementing the above dis-
cussed database mechanisms and patterns, the researchers at Google re-
count the semantics and the replication algorithm of Megastore in [14]. They
claim that Megastore is designed to provide the high availability and hori-
zontal scaling abilities of a non-relational database with the strongly consis-
tent ACID transactions of a relational database. Similarly, [88] demonstrates
a rudimentary database design algorithm by optimising query execution for
a partitioned database. However, as stated before, such algorithms are very
low level, and are beyond the scope of this project.

2.3 distributed databases

As defined in [84], a distributed database is a collection of physically sep-
arated chunks of data stored of different nodes connected over a network.
These data chunks can be replication copies of same data, or smaller parti-
tions of a bigger data. Since these data chunks are to be made accessible to
the end user as a single database without exposing the internal nodal distri-
bution, they are expected to be compliant with CAP theorem requirements
as well [104]. As explored by A distributed database can be one of CA (con-
sistent and available), AP (available and partition tolerant) or CP (consistent and
partition tolerant). Since it is a "distributed" database, it is expected to be par-
tition tolerant. Thus, we mostly examine the trade-offs between consistency
and availability in accordance with the specific use case.

Consistency becomes important if none of the users can afford to be served
an older version of the data. However, this means that every update needs
to be committed and communicated to all the nodes in the network be-
fore approving it as a successful update. This is bound to slow down the
response time, or even lead to infinite latency (or failure) if network parti-
tions and some nodes become unreachable in the network. Consequently,
it lowers the availability quotient of the system. On the contrary, if the re-
quirement is to be available at all times, consistency needs to be discounted.
However, this does not mean a completely inconsistent system, rather an
eventually or weakly consistent system arises. Different models of consis-
tency, namely weak, PRAM2, causal, sequential and strict, etc., are available
w.r.t. distributed databases. A brief survey on replica consistency in cloud envi-
ronments [24] defines in detail many of these for replicated databases, and
also discusses their trade-offs against multiple properties like performance,
scalability and latency. A similar study is done by Diogo, et al., [32] where
they discuss the consistency models, and their trade-offs with availability in
distributed databases which provide partition tolerance by default.

Data can be partitioned vertically or horizontally. Vertical partitioning, as
described in [79], refers to breaking down a table along columnar lines to
store different data in different tables. This is called normalisation [56] in

2 Pipelined Random Access Memory

2.3 distributed databases 10

the world of relational databases. Horizontal partitioning is splitting a table
along rows, such that every sub-table contains a subset of all the data rows.
In both cases, all of these partitions can either be stored on a single node, or
in many different nodes, often distributed physically over a network. The
basic idea behind this is to enhance the performance and availability of the
database. Horizontal partitioning can be of different types, like range parti-
tioning, schema level partitioning, graph-level partitioning, etc. [15] reviews
many of these partitioning techniques from the perspective of reduced dis-
tributed transactions and enhanced scalability of distributed databases. If
every partition is stored in a different physical node, it is called sharding.
[30] explores the idea of sharding, using the technique of hash partition-
ing. Distributed databases can also be subjected to transaction partitioning,
where a query can be served from multiple data warehouses. [16] analyses
the effect of workload-driven data partitioning model over the performance
and scalability of a distributed database.

Although partitioning eases the access for non-relational databases, it is
still a difficult paradigm for relational databases. [3] evaluates the best strate-
gies to horizontally partition a relational database, while keeping in mind
the tabular relations, indexes and the joins.

Data replication is another widely used strategy to amplify the security,
availability, bandwidth, reliability, and lower response time of data access
in both relational and non-relational databases. [100] presents a comprehen-
sive aggregation of many data replication schemes categorised as dedupli-
cation, auditing or handling, and relatively compares them. Replication also
strongly impacts the consistency and availability of a distributed database.
Intuitively, higher replication requirements would add to consistency as
well as availability, if only replication happens asynchronously. Synchronous
replication might end up reducing response times, but increase reliability
and availability in times of partial node failures. Continuing the investiga-
tion in this field, [40] discusses the impact of data replication on different
consistency models (strong and weak consistencies), as well as propose repli-
cation techniques for highly available systems.

Strong consistency, in general, is a difficult notion to achieve in distributed
systems. It requires every node to be in constant communication with every
other node, thus making the system unavailable in times of network fail-
ures. Bailis et al. study this in [12]. They discuss the downsides of strong
consistency in distributed systems, and suggest ways to implement eventual
consistency instead. Google’s in-house distributed storage system for struc-
tured data, BigTable [28] is an example of one such system which claims to
be a highly available and partition tolerant distributed system with eventual
consistency. Saito and Shapiro [96] also provide practical implementations
of asynchronous data replication (as discussed above), which "propagates
changes in the background, discovers conflicts after they happen, and reaches agree-
ment on the final contents incrementally." Theoretically, this choice of eventual
or weak consistency should lead to relatively higher availability, lower la-
tency and better network partition tolerance. [116] investigates whether that
is actually the case in practical scenarios or not. It studies the consumer level
observation of consistency and performance in cases of both, the strongly
consistent and the weakly consistent system configurations offered by dif-
ferent platforms, and infers that it can rarely be distinguished in non-failure

2.4 cloud native applications 11

scenarios. The researchers in [116] conclude that taking up weaker consis-
tency configurations rarely add up any extra benefit to the system.

Additionally, there are some use cases which strictly demand strong con-
sistency over a distributed system. For example, a financial transaction datab-
ase demands strong consistency to avoid any monetary discrepancies, but
also high availability and partition tolerance for better consumer experi-
ence. [62] proposes an architecture design for such a system in a distributed
NoSQL database. Similarly, [119] presents a transaction manager for a scal-
able distributed database, which not only guarantees high availability, but
also ACID transactions over multi-node queries even in times of network
partition or server failure. Such configurations are not organic to the nature
of distributed databases, but definitely offer a solution in cases where any
compromise on CAP theorem is unacceptable.

2.4 cloud native applications

Cloud native applications is an organised assembly of multiple independent
services, coupled loosely and deployed continuously, to exploit the benefits
of cloud computing architecture. A survey by Kratzke and Quint [61] dis-
cusses the concepts of cloud native applications in detail, and extensively
enlists the literature for research in the domain.

In this project, we restrict the study with regards to the interference of
CAP Theorem and cloud native applications. Andrikopoulos, Fehling and
Leymann in [8] researched the ramifications of application design paradigms
over the CAP attributes of cloud native applications. Further, Andrikopou-
los in [9] continued the research in this domain, by proposing an application
design methodology for cloud native applications, by taking into account
the required CAP theorem trade-offs. This research provides an easy to use
framework which facilitates the estimation of CAP theorem implications on
the cloud native application under investigation, and makes provisions to
adapt the design accordingly.

Providing pragmatic implementation details in this regard, [54] provides
an extensive list of 24 design patterns for cloud applications. Each of these
patterns is classified according to the quality attributes they satisfy for their
major functionality, as explained in the provided sample code implemen-
tations. It also discusses the implications of data consistency policies over
data intensive cloud applications.

2.5 microservice architecture

Speaking informally, the development of a software application has aged
from monolith architecture to service oriented architecture (SOA) to mi-
croservices architecture in use these days. The main idea behind microser-
vices is that every individual microservice is individually responsible only
for a small portion of the entire application. This leads to dealing with
scalability, maintainability, flexibility, reliability, security, performance and
availability of every microservice individually, thus eliminating the need to
tackle these non-functional requirements on a massive scale of the entire
application at once. [34] discusses these aspects in more details. Krylovskiy,
Jahn and Patti in [63] also briefly argue towards the eminence of microser-
vice architecture in comparison to other prevalent ones, especially in regards

2.5 microservice architecture 12

to acceptance for technological heterogeneity, resilience, scaling, organiza-
tional alignment and composability. Extending the applications of microser-
vices architecture to other aspects, [6] vouches for using similar organisa-
tional principles into system development as a whole. They claim that this
is better than service oriented architecture, majorly in terms of smart end-
points used by SOA to communicate amongst services, as opposed to dumb
pipelines used by microservice approach. Augmenting along the same lines
of thought, Zimmermann presents an elaborate comparison of the microser-
vices architecture against the service oriented architecture in [123].

As much as theory suggests that microservice architecture enhances the
quality attributes of a software application, defiant beliefs demand prac-
tical proofs. Hasselbring and Steinacker performed an empirical analysis
over the scalability, agility and reliability of software systems in the Ger-
man e-commerce website otto.de. In [52], they discuss how microservice
architecture helped them in terms of vertical decomposition of the appli-
cation, achieve loose coupling and eventual consistency amongst modules,
enhanced scalability and fault tolerance, and eased deployment and devel-
opment. Identically, the researchers at one of the biggest technical compa-
nies, Accenture and Infosys, collaborated in [98]. They have pragmatically
shown that migrating an industrial scale banking application from monolith
to microservice architecture allowed for a reduction in system application
faults by facilitating the developers to localise incoming faults, and reduce
the fixing, building and deploying effort.

Since microservice architecture is a collection of small loosely coupled
modules, they need to be assembled and interacted with in certain mecha-
nisms based on specific requirements. This gives space for architecture de-
sign patterns amongst these modules. [83] gives an extensive list of many
architectural patterns for implementing and optimising microservices archi-
tecture. Taibi, Lenarduzzi and Pahl also examined several microservices ar-
chitectural patterns in [107], and summarised their advantages and disad-
vantages based on certain case studies. This evaluation is mainly in terms
of quality attributes every pattern promises to deliver. Reversing the per-
spective, there can be scenarios where we need to engineer certain quality
attributes. To realise the patterns suitable for each of these cases, [111] pro-
vides a mapping between quality attributes and architectural patterns.

This project is focused over data intensive use cases. Owing to this re-
quirement, we looked into architectural patterns specific to database appli-
cations in microservice domain. Messina et al. introduce the Database-is-the-
service pattern in their articles A Simplified Database Pattern for the Microser-
vice Architecture [77], and The Database-is-the-Service Pattern for Microservice
Architectures [76]. In layman’s words, it transfers the responsibility of the
database management system and the corresponding data storage from the
owner/prime user of the data to an external cloud architecture provider.
Note that this is different from the Database-per-service pattern, where every
service owns and manages its database. Database-is-the-service does lighten
up the load of application, but adds external dependencies and reduces
control for the data owner. In [121], Xi analyses the pros and cons of this
pattern. While these articles strongly advise splitting of the database across
microservices in either database-is-the-service fashion, or the database-per-
service fashion, they do not provide the necessary guidelines. Kholy and Fa-
tatry researched this aspect of the problem, and proposed a framework for

2.6 cap theorem in microservices architecture 13

managing the database split across microservices, while maintaining data
consistency and low latency. In [37], they follow the database-per-service
approach, by performing the split corresponding to the business boundaries
of each microservice.

Gathering from all the aforementioned literature, as much important as
it seems to split a database, there are also downsides of not doing it. [110]
clearly states as to how a shared database becomes an anti-pattern in a mi-
croservice architecture. In fact, [120] gives an in-depth analysis of real-world
industrial implementations of microservice architecture, and the implica-
tions of not following the prescribed architectural conventions like decen-
tralised data management, infrastructure automation, architectural patterns,
monitoring strategies, etc. As defined in [41], such "symptoms of bad code
or design that can cause different quality problems, such as faults, technical debt,
or difficulties with maintenance and evolution" are called architectural smells.
To give better understanding of such pitfalls, and to be able to avoid them
when possible, [80] systematically reviews existing literature around the de-
sign conventions and architectural smells for microservices. It also proposes
ways to refactor existing smells in the codebase.

The idea of many microservices working in coherence with each other
to serve user queries also coincides with the concept of a distributed sys-
tem. Thus, the intersection of these two domains of computer science is
inevitable. [97] evaluates the implementation of distributed systems with re-
spect to client-server paradigm, service-oriented architecture, and microser-
vices architecture. They provide a feature analysis of distributed systems
against each of these architectures, and conclude that microservices is the
best suitable one.

2.6 cap theorem in microservices architecture

Combining microservices with distributed systems gives rise to an entirely
new arena of fault tolerance and CAP requirements in microservices. Gill
and Buyya discuss many fault tolerance pitfalls for distributed systems
with microservices architecture in cloud infrastructure, and propose solu-
tions for some industrial use cases in their research [46]. Making this dis-
cussion generic, [51] proposes decision models to take into account the im-
plications of availability and consistency while designing microservices. It
exemplifies many patterns like service discovery, versioning, service regis-
tration, caching, and load balancing. Narrowing down the focus to database
intensive microservices, [94] implements master-slave replication for SQL
databases and eventual consistency for NoSQL databases in microservices
ecosystem.

As described above, the overlap of CAP theorem and microservices archi-
tecture is ineluctable. Thus, it has led to many software scientists discussing
this in their studies. Sometimes they just brush past the subject, while other
times they discuss it at required lengths. For instance, [26], while compar-
ing SOA and microservices architecture, and mapping of the qualities of mi-
croservices to their evident studies, minutely mentions CAP requirements
as a part of fault tolerance aspect. Similarly, [25] references the assumed ig-
norance of CAP theorem while migrating from monolith to microservices
architecture. Brown and Woolf [25] also discuss the implications of CAP the-

2.6 cap theorem in microservices architecture 14

orem over the architectural patterns for microservices, especially a key-value
store.

Alternatively, some studies even propose an alternative for CAP theorem
in microservices architecture. One such substitute is BAC - Backup, Availabil-
ity, and/or Consistency theorem proposed by Pardon, Pautasso and Zimmer-
mann in [85]. They consider the requirement of being able to back up a
microservice in events of failure as the partition tolerance equivalent of CAP
theorem. They claim that in an event of failure, should a entire application
designed using microservices architectures needs a backup, both availabil-
ity and consistency cannot be provided. We can only opt for either of them.
They prove this by considering the cases of consistent backups with limited
availability and eventual inconsistency with full availability.

The two scenarios described by BAC theorem can be compared to the CP
and AP from the CAP theorem. Exploring both of them in detail, firstly
lets discuss CP. For data intensive microservices, CP refers to strong data
consistency. [39] provides an in-depth analysis of the three state-of-the-art
data consistency models in microservices architecture, namely, strong con-
sistency, weak consistency and final consistency. It compares these with
ACID transactions, and propose ways to achieve each of them. [68] also
discusses the ways and the implications of implementing data consistency
in microservices architecture. It mainly explores private database per mi-
croservice, and cloned database across all microservices.

The alternate scenario is AP. This demands for higher availability, and
allows for eventual consistency. Contrasting to Section 2.3, satisfying these
requirements on architectural level allow for domain level implementations
of eventual consistency and/or high availability. Braun, Bieniusa and El-
berzhager [19], advocate that choosing eventual consistency over strong con-
sistency shifts the responsibility of data consistency from the infrastructure
to the application domain. Further, they also propose ways to implement
eventual consistency in the domain layer. Another article [43] elaborates
over the three main challenges of migrating a monolith to microservices,
i.e., multitenancy, statefulness and data consistency. While discussing ways
to resolve the third one of these, they perform an intricate comparison of a
weakly consistent AP system against a strongly consistent system leading
to lower availability, and conclude with preferring the former over the latter.
Further, they also discuss ways to implement eventual data consistency in
the domain layer.

Moving on to the practical aspects of implementing eventual consistency
in the domain layer of a microservices architecture, Braun and Deßloch
present ECD3 framework to design eventually consistent domain driven
models based on data replication semantics [20]. Adapting these theoreti-
cal concepts into real world applications, [33] describes the monolith to mi-
croservices migration of the core mission critical system of the Danske Bank.
They acknowledge the implications of CAP theorem, and choose to design
a highly available and partition tolerant system which offers weak consis-
tency, to ensure low latencies and better consumer experience even in times
of network partitions. Following the idea of exploring the pragmatic prob-
lems faced by engineers working towards implementing microservices, the
researchers of [21] conducted a close observation research over the team of

2.7 federated learning implementations 15

a multi-site platform development project. They studied the practical impli-
cations and problems in designing distributed data intensive systems, and
recommended eventual consistency as the safest way to move forward.

An AP system not only requires eventual consistency, but also needs a
high availability. Availability, as opposed to eventual consistency, is eas-
ier solved on infrastructure level than on domain layer. [99] evaluates syn-
chronous (REST3, gRPC4) and asynchronous (AMQP5 using RabbitMQ) inter-
process communication methods in microservices, only to conclude that
asynchronous communication delivers higher availability, especially as the
number of users in the system increase. Márquez and Astudillo [74], reveal
many architectural patterns which can be implemented to enhance the avail-
ability of a microservices based application. They highlight the importance
of a circuit breaker for synchronous communication, service registry for
decoupling the physical address from registered address, and that of asyn-
chronous messaging for reliable communication. However, implementing
all of these patterns individually adds to the development overhead. [113]
introduces a tool which abstracts away all of this functionality, and reduces
the development overhead. It is an alternative to data redundancy strategies
like data replication over multiple places, or pub-sub communication across
multiple microservices. It rather makes the database of one service available
with a read-only view to all the other services, thus reducing the need for
inter-service communications to fetch data.

2.7 federated learning implementations

As explained in Section 1.1, BranchKey is a federated learning as a service
platform. This is relatively a new area of software development, with com-
paratively less industrial scale implementations. Thus, the peculiar pitfalls
of implementing this system for production usages are still being explored.
There are many existing implementations with modular architecture. For
instance, [71] presents a Python library which can be integrated easily into
a federated learning system at client as well as server levels. Similarly, [60]
proposes "Federated Learning as a Service system enabling 3rd-party applications
to build collaborative, decentralized, privacy-preserving ML models". This imple-
mentation is also follows modular service architecture, and evaluates the so-
lution in terms od memory usage, computation costs and on-device power
costs. Further, [122] proposes an easy to use beginners’ tool to implement
and experiment with federated learning. It also exposes its internal archi-
tecture, which promises a modular system with efficient deployment. While
these systems guarantee easy implementation and prototyping, [17] claims
to be the first production grade federated learning system for running on
mobile phones. It uses actor design pattern with the tensorflow library.

Moving into the domain of serverless systems with cloud deployments,
[48] presents a framework for serverless federated learning Function-As-A-
Service (FaaS), which can be hosted on any cloud platform, an on premise
data center or even on edge computing devices. A similar FaaS implemen-
tation is also presented by [27]. While FaaS interfaces are easy to use, they
limit control over multiple aspects of the system. [118] instead, exemplifies
a python based implementation of federated learning using serverless AWS

3 REpresentational State Transfer
4 Google Remote Procedure Call
5 Advanced Message Queuing Protocol

2.8 infrastructure evaluation 16

Lambda service. This explains the development of a production grade sys-
tem from scratch, and provides a detailed evaluation of infrastructural costs
of its deployment in AWS Lambda. [36] presents another open source tool
to implement and integrate federated learning into a consumer software. It
ensures scalable, efficient and robust federated learning. It even explains the
intern system architecture and the programming patterns followed.

As promising all these tools and frameworks sound, they are very spe-
cific to their own implementations. The architectural patterns they use, or
the infrastructural solutions they implement are not generic in a sense to be
blindly adopted by BranchKey. To answer for such questions of generic ar-
chitectural and infrastructural solutions for federated learning systems, [70]
compiles a list of architectural patterns for designing federated learning sys-
tems. [70] not only categorizes them per use case, i.e., client management,
model management model training and model aggregation, but also evalu-
ates them with detailed benefits and drawbacks. Further, [69] surveys the
state of the art for federated learning in software engineering perspective
including architecture design, implementation and evaluation.

2.8 infrastructure evaluation

The third research question RQ.3 in Section 1.2 imposes the need for tools
to evaluate and compare different infrastructural solutions against the re-
quired specifications. These comparisons can happen via graphical repre-
sentation of metrics data collected from the system, or via absolute param-
eter values observed. [66] presents CostHat, an approach which can help
to optimise a microservice architecture by modelling its deployment costs,
computation costs, and even network bandwidth costs caused by IO. It can
even be integrated into the developers’ Integrated Development Environ-
ment to raise alerts about potentially costly code changes. The main essence
of CostHat is to predict the costs based on certain pre-devised heuristics.
The results can differ from the real observations under many probabilities.
Timon Back, in his study [11] rather presented a simulation based approach,
where a simulator "assists in finding the Pareto optimal hybrid deployment strat-
egy for cost minimization of any cloud application, in both low load as well as bursty
load scenarios". Extending this, Reuter et al [93] provide a simulation tool for
deciding on a cost optimal deployment solution for a hybrid serverless and
serverful application.

While simulation and prediction based tools do promise efficient results,
they are still bound to overlook certain corner cases. The most efficient cal-
culation can only be done at run-time with production load. Although such
run-time monitoring tools reduce the space for action and rather demand
immediate fixing as per need, they give the most reliable results. Patrick
Vogel [114] proposes one such model to monitor the deployment costs and
resource wastage for a containerised cloud based application at run time.

[5] presents an approach to consider the deployment cost of an applica-
tion over multiple cloud service providers, and recommend an orchestration
plan for the application deployment, not only in agreement with cost con-
straints, but also envisioning the scalability needed for peak load times. As
far as an actual tool to implement such a plan is concerned, [72] presents "a
microservices elastic management system for cost reduction in the cloud, which is
designed to optimize usage of a single cloud-server instance before it needs to scale

2.8 infrastructure evaluation 17

out to a second instance". It mainly aims to provide a reliable cost efficient
solution without using the overpriced cloud-provider services like dynamic
load balancing and native cloud autoscaling.

One of the most important contributors to the operational cost of a soft-
ware application is the infrastructure deployment cost. Since BranchKey is
far from setting up their own cloud engine, they are bound to use the ser-
vices offered by one of the key cloud service providers in the market. How-
ever, making a selection out of the available choices in this aspect needs to
be a well informed decision. [67] presents a tool to compare different cloud
providers in terms of performance and cost efficiency. It mainly monitors
the elastic computing, persistence storage and networking services offered
therein. Simultaneously, [55] proposes a stochastic metric approach to anal-
yse and quantify the availability of a cloud service, by taking into account
their geographically distributed data centers. Diving into more specific anal-
ysis, [117] provides an extensive comparison of Google App Engine with
Microsoft Azure across multiple aspects like portability, and ease of use. In
context of our project, it provides a basic comparison approach in which we
can also observe the currently used cloud provider in BranchKey, i.e., AWS.

3B R A N C H K E Y A R C H I T E C T U R E

As described in Section 1.1, BranchKey [18] is a Federated-Learning-As-A-
Service platform. It allows users to communally train, and devise the learn-
ings of a centrally shared prediction model, without sharing their individual
training datasets with other users in the network. This dissociates the con-
joint relation between the need to share and store data over cloud, and the
ability to perform prediction across a distributed multi-user system. In short,
it is distributed machine learning which trains an aggregated model using
segregated data. However, just the algorithm alone is not enough to make
this application consumer-friendly. It needs a whole data flow pipeline,
which ensures security, reliability, scalability, maintainability and desired
performance. In this regard, BranchKey follows a microservices architecture
with the design shown in Figure 2.

Client

Authenticator

API Gateway

Authoriser

File Uploader Aggregation
Task Creator

Central
AggregatorDownloader

Register
and login

Store
Configuration

Send file for
aggregation

Authenticate
Request

Authorise
Request

Store
input
file

Pull cached
files for

aggregation

Send files
for aggregation

Store
aggregated

output file

Clear
cache

Async notification
when aggregation

is done

Download
output
file

Download
File

1

2

3

4 5

6

7
8

9

10

11

12

13 14

15

BranchKey
System

Figure 2: Current architecture of BranchKey data flow pipeline

Here, each box shows one microservice. Services which fall into the syn-
chronous flow from the client are shown in blue, while the ones which work
asynchronously are shown in green. Gray box encloses the BranchKey sys-
tem. External client, shown in yellow, refers to the end user. Numbers in red
define the sequence of steps performed across the whole pipeline, starting
from registering a user to triggering an aggregation to downloading the ag-
gregated results. Important to note in the figure is that an arrow from A to
B means that the corresponding action is initiated by entity A, and is an-
swered upon by entity B. Step number is written next to the initiator of the
respective step in the pipeline.

Of these all, we will focus our investigation only on three components,
namely, authenticator, file uploader and file downloader. Each of these
is a data intensive microservice, falling on a different edge of the CAP tri-
angle, as shown in Figure 1. As discussed in Section 1.1, authenticator is
a CA system, file uploader is a AP system, and file downloader is a CP
system. Let us look into the details of each of these microservices1. For each

1 Requirement analysis of all the other microservices is provided in Appendix A

18

3.1 authenticator 19

of them, we will examine their communication interface for other services in
the system, their dependency graph, and their functional and non-functional
requirements.

3.1 authenticator

Authenticator is responsible for user data and their authentication into the
system. As shown in Figure 3, it allows to create a new user, and stores its
credentials for facilitating login and logout. Additionally, it also provisions
the authentication check for users whenever they make a request into the
system by examining if they are allowed accesses within the system.

Python
Application PostgreSQL

DB

Authenticator
Register

customer / group / user

Login
customer / group / user

Logout
customer / group / user

Authenticate
customer / group / user

APIs Dependency

Create group config
with new group register

Authoriser

Figure 3: Authenticator: Service Interface

3.1.1 Functional Requirements

Following are the functional requirements for this system:

• Should allow user creation in context of their respective roles: cus-
tomer / group / user

• Should store all user details

• Should create authorisation configuration on new group registration

• Should not allow a customer to create a group under other customers

• Should not allow a group to create user under other groups/customers

• Should allow session management and authentication

3.1.2 Non-Functional Requirements

Following are the non-functional requirements for this system:

• Should be able to scale for different APIs accordingly:

– Write APIs: Create, Login and Logout User: Less frequent: total
of 25 requests per second

– Read APIs: Authenticate User: Very high frequency (25 requests
per second), called from API Gateway for any request received

• All APIs should respond within 200 ms.

• Strong consistency over all data

• Highly Available, especially for read APIs

3.2 file uploader 20

• Create and Login APIs are external: should have basic security mech-
anisms

• Should push application logs and metrics to appropriate end points

3.2 file uploader

File-uploader temporarily caches the user data file, and its corresponding
user information before aggregation with the data from other users. Once
the aggregation is completed and results are permanently stored, it expects
this cache to be cleared. As shown in Figure 4, it exposes the two described
enpoints, and has no downstream dependency.

GoLang
Application

Redis
Cache

File Uploader

File Upload

Clear Cache

APIs

RabbitMQ
event queue

Figure 4: File Uploader: Service Interface

3.2.1 Functional Requirements

Following are the functional requirements for this system:

• Should cache the input file uploaded by the client, until the corre-
sponding aggregation is complete

• Should store the related index data (owner-id, group-id, group-config,
file-metadata, etc) for each of these input files

• Should expose an endpoint to clear this cache once aggregation is suc-
cessfully completed

3.2.2 Non-Functional Requirements

Following are the non-functional requirements for this system:

• Should scale to receive input files from all the clients at 20 requests per
second

• Should scale to handle a file size of upto 1 MB per request2

2 It is a 3 layer convolutional neural network with shapes [1 x 32], [32 x 32] and [32 x 64]

connected to a fully connected Rectifier Linear Unit of dimension [(3 x 3 x 64) x 256]. Thus
a total of 3 x 3 x 64 x 256 = 1,47,456 variables. Since each variable is a float value, it takes
8 bytes to store each value. Hence, we need a total of 1,47,456 x 8 = 11,79,648 bytes or 1.18
MB.

3.3 file downloader 21

• Scaling might need deployment across multiple network partitions
like different data center availability zones, regions, etc. Thus, should
highly prioritise availability and tolerance to network partitioning

• Should be eventually consistent (strong consistency not needed) be-
cause further steps down this pipeline happen asynchronously

• Should have as low response time needs as possible (up to a maximum
of 400 ms), because this is a part of sync call from client

• Should push application logs and metrics to appropriate end points

3.3 file downloader

File Downloader stores the aggregated output result file received from cent-

ral-aggregator, and clears the cache in the file-uploader. It then informs
the client when an aggregated output file is ready for download. This client
intimation happens via an event queue. It also provides the download API
for the client to download the corresponding aggregated output file. The
exposed endpoints and external dependencies of file-downloader are sum-
marised in Figure 5.

GoLang
Application

File Downloader

Store Aggregated Output

APIs Dependencies

Clear Cache

RabbitMQ
event queue

PostgresSQL
DB

Download Aggregated
Output

File Uploader

Figure 5: File Downloader: Service Interface

3.3.1 Functional Requirements

The functional requirements for file-downloader are as follows:

• Should expose an endpoint to upload aggregation output result file

• Should store a list of all the output files, along with their group-ids
and group-configs

• Should send out asynchronous events to clients once this output file is
ready to be downloaded

• Should expose an endpoint that allows clients to download these out-
put files

• Should verify if the calling client is authorised to download the re-
quested file

• Should delete the output files after their corresponding expiry time set
in group-config

3.3 file downloader 22

3.3.2 Non-Functional Requirements

The non-functional requirements for file-downloader are as follows:

• Should be scaled enough to store all the output files as per need

• Should be able to respond on all the endpoints within reasonable re-
sponse time

• Should be scaled differently for each API:

– Write: file upload would be called only on the completion of each
aggregation, i.e., it would have less throughput

– Read: file download would be called at least once by each client
participating in every aggregation, i.e., it is expected to have rela-
tively higher throughput

• Since this serves history, which is a non-critical on-demand feature, it
is acceptable to have less availability for this system

• Should have high consistency, so that clients get the correct output file

• Should persist files, at least until their expiry time

• Should push application logs and metrics to appropriate end points

4E X P E R I M E N TA L I M P L E M E N TAT I O N

In layman’s terms, the aim of this thesis is to enable the enhancement of an
existing microservice, or even design it from scratch, in compliance with its
functional and non-functional requirements, constrained by CAP theorem
limitations. As an exemplary use case, we will perform this examination
over BranchKey microservices. The idea is to evaluate their current imple-
mentations against their stipulated non-functional requirements in terms of
consistency, availability and partition tolerance, and propose enhancements
if needed. In pragmatic terms, we hope to present a general procedure for
a software engineer to evaluate any microservice under such criteria, and
decide on the most suitable architectural and infrastructural solution for
the same. To facilitate this, we present a generic Research Framework (RF),
which will enable the aforementioned evaluations.

Gather requirements1

Evaluate in terms of CAP Theorem2

Review existing literature in terms of Architectural Patterns3

Review existing literature in terms of databases4

List feasible solutions5

Setup and perform experiments6

Evaluate results and make conclusions7

Figure 6: Research Framework

The proposed research framework, shown in Figure 6, is a series of seven
steps. However, the sixth step is further decomposed into seven sub-steps
again, to form the Experimentation Protocol (EP) shown in Figure 7.

23

experimental implementation 24

Label

Label

Label

Label

Label

1

2

3

4

5

6

7

Identify quantifiable parameters

Enlist the load or thoughput requirements

Benchmark the current system

Apply the needed application level modifications for running the experiment

Setup the infrastructure for running the experiment

Run the experiment with the same load and benchmark the same parameters

Identify quantifiable parameters

Compare and evaluate the results

Figure 7: Experimentation Protocol

For the experiment to be conducted on one microservice, the whole re-
search framework, with the first series of seven steps, needs to be applied
once. The seven sub-steps of the sixth step in this framework would, how-
ever, have to be looped through for every feasible and possible enhancement
solution. Let us look at these steps in more detail.

Understanding research framework (RF):

RF.1 Gather Requirements: List down the functional and the non-functional
requirements of the microservice under investigation.

RF.2 Evaluate in terms of CAP Theorem: Evaluate all the requirements listed
in step RF.1 in terms of the consistency, availability and partition tol-
erance. Using this evaluation, devise the CAP theorem requirements,
for instance, does the microservice demand high availability, strong or
weak consistency, etc.

RF.3 Review existing literature in terms of Architectural Patterns: Review the
existing literature to identify architectural solutions and pattern im-
plementations concerning the CAP Theorem restrictions listed in step
RF.2.

RF.4 Review existing literature in terms of databases: Review the existing litera-
ture again to look for database level solutions. The questions aimed to
be answered here are in the lines of which database to be considered,
how to design it, with what configuration, etc., especially in accor-
dance with the CAP Theorem restrictions listed in step RF.2.

RF.5 List feasible solutions: Converge the literature review performed in steps
RF.3 and RF.4, and list down the feasible solutions for the microservice

experimental implementation 25

under investigation. Important thing to note here is that feasibility is
measured in terms of development and maintenance time, effort and
cost, deployment cost, infrastructure cost, etc.

RF.6 Setup and perform experiments: For each of the solutions listed in step
RF.5, design an experiment. An experiment is a prototypical imple-
mentation of the proposed solution, to test if it would actually per-
form as per theoretical predictions. More details about this step are
explained in the experimental framework discussed later.

RF.7 Evaluate results and make conclusions: Evaluate the results obtained from
each of the experiments performed in step RF.6, and compare them
against each other. Further, use these evaluations to make a decision on
the best available solution (to implement into the production system)
under the given requirements and development conditions.

Here, RF.6 demands the refactoring of the current system in accordance
with the proposed solution, and its comparison against the current system.
To explain the exact procedure for the same, we defined the Experimentation
Protocol shown in Figure 7. As discussed above, the RF.6 is split into sub-
sequent steps, and the protocol is expected to be iterated upon as required.
Understanding each of these subsequent steps of the experimentation pro-
tocol:

EP.1 Identify quantifiable parameters: List the parameters which can be used to
compare the state of the system before and after the proposed changes.
These can be response time, error rate, memory used, CPU load, etc.

EP.2 Specify the load profile: Explicitly state the foreseeable system require-
ments which are needed to run the system error-free with production
load. These could be defined in terms of expected load, throughput,
response time, data bandwidth, etc.

EP.3 Benchmark the current system: Run the current system, without any
changes, with requirements specified in EP.2, and monitor the param-
eters specified in EP.1.

EP.4 Apply the needed application level modifications for running the experiment:
Identify the application level changes needed for the proposed exper-
iment, and perform them. Be aware to perform these changes in a
separate copy (or branch) from the current deployed application code.

EP.5 Setup the infrastructure for running the experiment: Identify the infrastruc-
ture level changes needed for the proposed experiment, and perform
them. Be aware to perform these changes in a separate deployment
from the current deployment. It is also recommended to setup the
entire experimentation setup in an isolated machine, so as to obtain
standardise results unaffected by other entities in the system.

EP.6 Run the experiment with the same load profile, and benchmark the same pa-
rameters: Once the application and infrastructure changes are done,
treat the deployment with the same amount of system requirements
as decided in EP.2. Benchmark the parameters identified in EP.1, in the
same form as was done for the current application in EP.3.

4.1 authenticator 26

EP.7 Compare and evaluate the results: Compare the benchmarking results ob-
tained in EP.3 against the ones from EP.6. If the experiment promises
improvements to the current system, consider it for critical analysis
against all the experiments later.

Limiting the scope of this study, we will investigate only three microser-
vices from the BranchKey architecture, namely, the Authenticator in Sec-
tion 3.1, the File Uploader in Section 3.2, and the File Downloader in Sec-
tion 3.3. In this chapter, we will apply the above discussed research frame-
work and experimentation protocol on each of them. However, for better or-
ganisation, we will present the results of benchmarking the current system,
and that of running every experiment in Chapter 5, and provide conclu-
sions in Chapter 6. Simply put, for each iteration of experimentation proto-
col, EP.3, EP.6 and EP.7 is presented in Chapter 5, and for every application
of the overall research framework, RF.7 is presented in Chapter 6. Another
thing to note is that RF.1 demands the functional and non-functional re-
quirements for the microservice under investigation. Since, we have already
listed them down Chapter 3, we will not repeat them here. Summarising,
RF.1, RF.7, EP.3, EP.6 and EP.7 are skipped from this chapter.

4.1 authenticator

As described in Figure 3, the current implementation of authenticator is a
Python application with a PostgreSQL database. Let us look towards evalu-
ating this microservice and proposing modifications for its enhancement.

Authenticator:RF.2: Evaluate in terms of CAP Theorem
Evaluating the functional and non-functional requirements for the authenti-
cator, we converge over the following CAP requirements:

• Strong Consistency

• High Availability for Read APIs

• All data can be accommodated in a single partition

Authenticator:RF.3: Review existing literature in terms of Architectural Patterns:
Authenticator is a special example where it is acceptable to put all the data
into a single partition. This means that authenticator as an individual mi-
croservice need not be treated as a distributed system. Thus, we can neglect
the effects of CAP theorem herein, and focus on solutions which guaran-
tee strong consistency and high availability within a single partition. We
referred the literature for architectural patterns in microservices, to solve
for a strongly consistent and highly available single node microservice.

[107] suggests three database patterns for a microservice. They are database
per service, a database cluster and a shared database server. A database clus-
ter is basically a separate cluster of database nodes, which store data for all
the microservices in the system. Although the data storage is shared, data is
organised in multiple databases, each privately accessible only to the owner
microservice. It is the same as a shared database server, but in a distributed
format. It promises more availability and reliability compared to a single
database server, but keeping all the data in one place could again lead to

4.1 authenticator 27

a critical data bottleneck in the entire system. Also, it forces all data inten-
sive services to use one database management system. This is clearly not
the case in BranchKey. Here, every service uses a different database man-
agement system. This makes the creation and maintenance of such a shared
database server/cluster pointless. As far as the third pattern, i.e., database
per service is concerned, authenticator already implements that.

Another highlighted pattern in the literature is DBaaS, i.e., database as a
service pattern. As described in [77] and [76], it creates the database into
an independent microservice of its own. Implementation wise, this means
that we use the database service provided by the cloud platform provider.
In BranchKey’s case, this gives the ownership of the database management
server to the external cloud provider AWS. This also demands that business
logic be implemented within the database layer, and eliminates the need for
corresponding application domain layer. Implementing business logic into
databases is very complex to do, and maintain. Also, this transfers the con-
trol of the database to the cloud platform, thus making the possibility of
migration to another cloud platform intensely complicated. Thus, this ap-
proach is also discarded.

As a fix to the issues of this pattern, [121] proposes a Trinity Model. This
involves a load balancer, a sharded relational database management system,
a replication server and a non-relational NoSQL distributed database. The
idea behind this configuration is that all data is stored in the sharded re-
lational database in a structured format, and is asynchronously replicated
to the non-relational database by the replication server. It promises a high
availability and scalability, along with the ACID properties of a relational
database. It hopes to serve all the online transaction processing queries from
the relational database, and all the online analytical processing queries from
the non-relational database. As promising as this model sounds, it is an over-
engineered solution for the problem at hand. Firstly, given the small size of
data, we do not need a distributed system for this use case. Secondly, an-
alytical processing on this data is not specified as a requirement. Thirdly,
sharding of the relational database can potentially reduce the consistency of
the data. Thus, this approach is rejected.

Authenticator:RF.4: Review existing literature in terms of databases:
The user data and the session management data to be stored in authen-

ticator is an explicit example of tabular format, where tables would be
connected via foreign keys, and primary keys and complex indexes would
be needed to perform insert, update and lookup queries. Such a configura-
tion is not natively supported by NoSQL databases. Thus, we will narrow
down our search for relational databases. [50] lists 24 design patterns for re-
lational databases. Some of them are of importance for our use case, like the
"Created When" and "Updated When" to log and analyse data accesses. The
"Record Status" pattern can be used for storing the status of a user’s login
activity. The "Session" pattern can be used to log when exactly a record was
created and updated. However, these are all already implemented within
the data model for the authenticator.

[57] gives a detailed analysis of 80 databases. Filtering the search to rela-
tional databases which promise consistency and availability, and are freely
available, we narrow down to PostgreSQL as the only recommended op-
tion. Thus, we select PostgreSQL for our use case, which is also already a

4.1 authenticator 28

part of the current implementation. [57] also suggests that in a relational
database, we scale read operations using a master/slave architecture. Cur-
rently, authenticator does not follow this, making this a valid approach for
an experiment.

[102] suggests client side caching as a solution for faster fetch data queries.
In BranchKey’s case, the clients for authenticator’s data are either the ex-
ternal users, or the api-gateway. If we maintain client side cache for read
queries, it has to be at api-gateway. According to the flow in Figure 2, every
time a user logs in, the authenticator somehow needs to communicate the
new access token to the api-gateway. This falls outside the responsibilities
of authenticator and violates the Single Responsibility Principle [75] for
microservices. Also, this makes the api-gateway stateful, which is an anti-
pattern. Thus, we reject the idea of client side caching. However, this opens
up a discussion for server side caching.

Authenticator:RF.5: List feasible solutions:

We can narrow down the research from Authenticator:RF.3 and Authenti-
cator:RF.4 to the following two feasible solutions:

• The first alternate solution for authenticator can be designed to provi-
sion a master/slave architecture for its database. This can be exploited
to serve read queries faster by pointing the read queries to slaves only,
while only the write queries go to the master database instance. This
also makes the two independently scalable, as we can provision many
slaves for a single master.

• The second solution can explore server side caching for storing the
data for read queries. We can maintain an in-memory cache at the au-

thenticator to serve the read queries faster. This data would be local
to the authenticator, and thus can be updated with every write query.
Although, whether this will actually reduce the response latency, and
be cost efficient, needs to be experimented through.

Authenticator:RF.6: Setup and perform experiments:
We perform two experiments:

• Master/slave configuration for the database, with write queries di-
rected to master and read queries directed to slave

• Server side caching

An iteration of experimentation protocol is performed for each of these, as
described below.

4.1.1 Experiment 1: Master/slave DB distribution

Let us now apply the experimentation protocol described in Figure 7 to the
first experiment for authenticator.

4.1 authenticator 29

Authenticator.1:EP.1: Identify quantifiable parameter:
The primary aim of investigating the authenticator is to reduce the re-
sponse time and the error rate for the desired throughput. Thus, these are
the most important metrics to be measured in this experiment. We observe
API response time to identify a total of the processing lag introduced by the
application logic and the time taken by the database to serve the correspond-
ing data query. This would help us compare different database level strate-
gies, along with their impact on the application logic layer. Since availability
is one of the CAP requirements for the authenticator, we will monitor the
error rate for the API calls. Increased internal server errors would directly
translate to low availability here.

In addition, we also monitor the CPU load and the memory usage of the
database instance and the service instance. This would help us identify the
optimal horizontal scaling configuration.

Authenticator.1:EP.2: Specify the load profile:
As described in Section 3.1, we have two throughput requirements for au-

thenticator:

• Write queries with at least 25 requests per second, with a response time
of at most 200 ms

• Read queries with at least 25 requests per second with a response time
of at most 200 ms

Important thing to note here is that the write queries refer to the register,
login and logout APIs, while the read queries refer to the authenticate API.

Authenticator.1:EP.4: Apply the needed application level modifications needed to
run the experiment:
There is no application level modification needed for this experiment.

Authenticator.1:EP.5: Setup the infrastructure for running the experiment:
Following infrastructure level modifications are performed for this experi-
ment:

• We first create a master/slave configuration of the PostgreSQL database.
This is implemented using Kubegres [64].

• We need to separate the database configuration of the service, so that
it calls master database for write queries, and slave for reads. To avoid
propagating this into the application logic, we rather deploy two dif-
ferent instances of the authenticator service, one of which points to
master database and other points to the slave.

• Since BranchKey uses Kubernetes, we deploy these two service in-
stances as two different deployment objects. The clients for register,
login and logout requests call the former instance, while the clients
for authenticate requests call the latter instance. This separation comes
easy in the current architecture because a client does not make both
calls. Write calls come only from external users, while read calls come
only from the api-gateway.

4.2 file uploader 30

4.1.2 Experiment 2: Server side caching

Let us now apply the experimentation protocol described in Figure 7 to the
second experiment for authenticator.

Authenticator.2:EP.1: Identify quantifiable parameter:
Same as Authenticator.1:EP.1

Authenticator.2:EP.2: Specify the load profile:
Same as Authenticator.2:EP.1

Authenticator.2:EP.4: Apply the needed application level modifications needed to
run the experiment:
We need the following application level modifications for this experiment:

• Every time the login API is called, a database write for login-details and
user access-token happens. To employ server side caching, we create a
cache entry for this data if it does not exist, or update it if it already
exists.

• Every time the authenticate API is called, the service first checks the
cache. If the cache contains the relevant entry, it is used to serve the
client request. This saves a read call to the database. However, if for
some reason there is no cache entry, the database is called, and a cache
entry is created in accordance with the data fetched.

Authenticator.2:EP.5: Setup the infrastructure for running the experiment:
The following infrastructure setup is needed to perform this experiment:

• We need to setup an in-memory caching database. We use Redis for
this.

One thing to note here is that we limit the scope of this experiment by only
working with a vanilla Redis configuration. However, it can be explored fur-
ther by implementing a master/slave in Redis, or a Redis cluster, or even Re-
dis Sentinel configuration if needed. Moreover, other in-memory databases
apart from Redis can also be considered.

4.2 file uploader

As described in Figure 4, this microservice is currently implemented as a
GoLang application. It uses Redis as caching database, and RabbitMQ as a
message broker for queuing file upload events and facilitating asynchronous
communication with the downstream services. Let us look towards evaluat-
ing this microservice and proposing modifications for its enhancement.

File Uploader:RF.2: Evaluate in terms of CAP Theorem
Evaluating the functional and non-functional requirements for the file up-
loader we converge over the following CAP requirements:

• Eventual Consistency

• High Availability

• Partition tolerance or bounded response latency

4.2 file uploader 31

File Uploader:RF.3: Review existing literature in terms of Architectural Patterns:
This microservice needs to be designed in compliance with high availability
and partition tolerance requirements. This means that, unlike authentica-

tor, the file-uploader service instance itself can be deployed across dif-
ferent networks (or availability zones in cloud terminology), or even on the
very lowest level, the database can be distributed over many nodes. Accord-
ing to the current BranchKey architecture in Figure 2, this service not only
needs to be highly available for client communications, but to also facilitate
easy data access for the downstream consumers of the input file data. [99]
and [74] suggest asynchronous inter process communication for better data
availability to downstream services. This does theoretically validate the cur-
rent data flow, which implements a server-worker pattern to consume data
from file-uploader in an asynchronous manner, and send it to the central-

aggregator asynchronously as well. The authors of [74] also suggest service
registry pattern for highly available communication amongst different ser-
vices in a network. Since BranchKey uses Kubernetes as a deployment tool,
service registry comes by default therein.

[113] proposes that providing a read-only data view to the data access-
ing services reduces the need for data replication, pub-sub communica-
tion, etc. The current implementation already follows this where central-

aggregator reads the file data from the file-uploader Redis directly. It is
not published to any secondary place. This risks the security of the data
and violates the data ownership rules for microservices. Thus, we should
configure a replica or a slave of the master Redis database, and let aggrega-
tor access this slave only. [43] also suggests using master/slave replicas. [43]
says that although replication introduces temporary inconsistencies, but it
also allows for better availability and performance. These inconsistencies are
very short lived in cases of live replication, and are thus eventually corrected.
As long as eventual consistency with a bounded data synchronisation delay
is acceptable, replication should be implemented.

The current vanilla Redis implementation is a single node instance which
has no persistence. This is a potentially critical bottleneck, which in case
of failure, can not only cause system downtime, but also lead to loss of all
data. Thus, another promising strategy to explore in this regard would be
a Redis cluster, along with background data persistence. Data persistence,
however, can lead to slowed down response times from Redis [91]. Hence,
we can design an experiment to test whether redis-cluster with persistence
is a feasible solution or not.

File Uploader:RF.4: Review existing literature in terms of databases:
The data in file-uploader is not of the tabular form. It is a use case for
the caching of input files from users, and some of the index data for each
of these files. Neither the file, nor the index data is structured. Thus, we
are going to narrow down our search for solutions into the domain of non-
relational or NoSQL databases. Focusing on NoSQL databases compatible
with the CAP requirements of file uploader, we research the literature for
provisions with high availability and eventual consistency. An important
thing to note here is that although strong consistency is not needed, even-
tual consistency is expected. The system cannot afford to lose data. Keeping
these in mind, some solutions propose ways to implement eventual consis-
tency at down at the database design level. However, they are discarded for
this project because devising changes at that level and ending up designing

4.2 file uploader 32

an entirely new database management system is beyond the scope of this
project. This leaves us to focus on solutions which promise high availability
instead.

[94] gives an example of the practical industrial use of a NoSQL databases
to ensure availability by relaxing consistency guarantees to eventual consis-
tency. They use Cassandra database with three replicas. However, for our
use case, Cassandra does not fit because we do not have columnar data. As
discussed above, file uploader data is a key-value kind. Thus, the current
implementation already uses Redis, which is also a NoSQL database.

[10] explains in detail how Redis is in fact better suited for our use case as
compared to other key-value in-memory cache databases like Memcached
and Aerospike. The most distinguishing property of Redis over other data
stores considered here is largest key and value size allowed (512 MB). Al-
though Memcached provides multi-threading client handling, and lower la-
tencies in read-heavy applications, and Aerospike provides lowest memory
footprint amongst the three, Redis is the best option for complex value types
like the file data storage in file-uploader.

Further, for the asynchronous message passing, [33] suggests using a Rab-
bitMQ cluster with at least once delivery guarantee. Although the current
system still uses a RabbitMQ, it is a single instance deployment. We can ex-
periment with a cluster to achieve higher availability and increased through-
put. The researchers of [33] say that "should a RabbitMQ node terminate or be-
come unavailable due to a network partition, the cluster will automatically handle
partitioning based on its consistency configuration". They also claim that such
a scaled asynchronous communication can ease horizontal scaling on the
consumer end of the queue. In BranchKey’s pipeline, multiple aggregation-

task-creators and central-aggregators can be deployed to enhance con-
current processing. Overall, [33] comments that such horizontal scaling, data
replication, and clustering improves availability of the system. They have
also used Redis cluster as one of the components.

File Uploader:RF.5: List feasible solutions:

We can narrow down the research from File Uploader:RF.3 and File Up-
loader:RF.4 to the following three feasible solutions:

• The first solution would compare the current single instance Redis
with a master/slave Redis configuration, and background data persis-
tence. Important point of observation here would be if slave replication
or background data persistence adds any delay into the Redis response
time. All other benefits of a slave, such as data security and better data
ownership are already provided.

• The second experiment would test the feasibility of Redis cluster along
with slave configuration and background data persistence. Again, we
examine if this introduces any delay in the Redis response time. An-
other highly available Redis configuration is Redis Sentinel Cluster
[90]. It deploys sentinel nodes to auto-promote one of the slaves to
master, in case the previous master node fails. However, this does not
allow for multi-master configuration. Thus, there is no point testing
this if our first experiment of single master-slave setup does not prove

4.2 file uploader 33

to be viable. Hence, we scope the Redis Sentinel experiment into future
work, under the condition that first experiment proves to be promising
for the file-uploader requirements.

• We could also evaluate RabbitMQ cluster, or even compare RabbitMQ
to another event queue like Kafka.

File Uploader:RF.6: Setup and perform experiments:
We perform two experiments:

• Master/slave configuration for Redis with data persistence

• Redis cluster with replication and data persistence

We do not perform experiments to evaluate the third solution because
changes from this would mostly be experienced on the consumer end of
these message queues. That would mean changing and testing the whole
BranchKey system at once, which is beyond the scope for this project. We
are only focusing on solutions which can be tested on one individual mi-
croservice.

4.2.1 Experiment 1: Redis Master/Slave

We will now apply the experimentation protocol described in Figure 7 to
the first experiment of the file-uploader evaluation.

FileUploader.1:EP.1: Identify quantifiable parameters:
The most important parameter to be observed here is the response-time from
the redis-cache (in Figure 4) as well the overall response-time of the service
for upload file API calls. This allows us to quantify the latency of the service.
This experiment will however also include the delay for replication and the
persistence, and put us in a position to evaluate if the master/slave config-
uration leads to any extra delay in the API response, and if that delay is
acceptable or not.

Secondly, we plan to monitor the error-rate on the upload file API calls,
and segregate these into service errors and redis errors. The error-rate pa-
rameter directly translates to the availability of the service as well as that of
the redis. In case redis becomes unavailable, how much time does it take
for promoting the slave to master, and how difficult is that, would be some
questions we can answer with this.

Thirdly, we can monitor the CPU load, the memory load, and the memory
fragmentation of the redis instances (both master and slave), to keep an eye
on the requirements for scaling. With this configuration, horizontal scaling
is not possible. If vertical is scaling needed, and if it is feasible or not would
be answered here.

FileUploader.1:EP.2: Specify the load profile:
As discussed in Section 3.2, we have two throughput requirements for file-
uploader:

• File upload queries with at least 20 requests per second, with a response
time of at most 400 ms

4.3 file downloader 34

• File size varying up to 1 MB

FileUploader.1:EP.4: Apply the needed application level modifications needed to
run the experiment:
There is no application level modification needed for this experiment.

FileUploader.1:EP.5: Setup the infrastructure for running the experiment:
We need to provision a slave for the existing Redis master. Additionally, we
configure data persistence. As explained in the official Redis documentation
[89], there are multiple ways to configure data persistence. We use the com-
bination of Redis Database (RDB) and Append Only File (AOF), to get the best
of both worlds.

4.2.2 Experiment 2: Redis Cluster

We will now apply the experimentation protocol described in Figure 7 to
the second experiment of the file-uploader evaluation.

FileUploader.2:EP.1: Identify quantifiable parameters:
The prime strength of Redis cluster over single node Redis is the ability
to scale horizontally. Thus, in addition to all the parameters mentioned in
FileUploader.1:EP.1, we monitor the system health metrics for all the Redis
cluster nodes as well. This will help us understand the needs for horizontal
scalability in the cluster.

FileUploader.2:EP.2: Specify the load profile:
Same as in FileUploader.1:EP.2.

FileUploader.2:EP.4: Apply the needed application level modifications needed to
run the experiment:
The only application level change needed here is to switch the Redis client
from single node to cluster client.

FileUploader.2:EP.5: Setup the infrastructure for running the experiment:
We need to perform the following actions in the infrastructure layer:

• Setup the Redis cluster, with at least 3 nodes.

• Configure a slave for each of the nodes in the cluster.

• Configure background data persistence for all the nodes, with the RDB
+ AOF configuration as explained in FileUploader.1:EP.5.

4.3 file downloader

File-downloader, as shown in Figure 5, is currently a GoLang application
with a PostgreSQL database. Current implementation stores file indexing
data in PostgreSQL, and the actual files in the local file system. It also uses
RabbitMQ for the purposes of asynchronous communications as needed. Let
us look towards evaluating this microservice and proposing modifications
for its enhancement.

4.3 file downloader 35

File Downloader:RF.2: Evaluate in terms of CAP Theorem
Evaluating the functional and non-functional requirements for the authenti-
cator, we converge over the following CAP requirements:

• Strong Consistency

• Eventual/Low Availability

• Partition tolerance or bounded response latency

File Downloader:RF.3: Review existing literature in terms of Architectural Pat-
terns:
In the spectrum defined by CAP theorem for distributed systems, file-

downloader prefers strong consistency over high availability. This is of course
in addition to partition tolerance. Reduced availability implicitly reduces
the performance of the system, for if network partitions, fulfilment of con-
sistency guarantees can take infinite latencies. Even [54] says that in a phys-
ically distributed cloud application, strongly consistent systems are not the
most available or scalable ones. In fact, many data storage formats don’t
even support strong consistency for cloud based applications distributed
across data centers. [54] mostly promotes eventual consistency, especially in
cases of replicated data sets. In fact, it suggests to split data according to
the requirement identification, such that each split can implement a differ-
ent policy with regards to data consistency. This allows to implement strong
consistency only when absolutely needed. In our case, we can have it only
for the file indexing data stored in PostgreSQL database, and not for the
actual files stored in the file system. This reduces down the scope for main-
taining strong consistency.

Another thing suggested in [54] is that a strongly consistent system can
afford to be eventually consistent, with some possible inconsistencies while
processing the transactions. In file-downloader, the requirement states that
the system should be consistent for the user to be able to download a file. Be-
fore that it can, however, afford eventual consistency. Thus, we can perform
the intermediate transactions of creating a record entry in the PostgreSQL
database and storing the file in the file system separately. This allows for
eventual consistency in the system before finally sending out an event to
the end user to avail the file for download. This also opens up opportunities
to handle the failed transactions in an idempotent manner before a user hits
the download API. Once data is consistently stored across all nodes, users
can access it with strong consistency guarantees. This architectural solution
is also already implemented in the current system.

File Downloader:RF.4: Review existing literature in terms of databases:
As described in File Downloader:RF.3, we can make the download API
strongly consistent even with eventual consistency within intermediate trans-
actions in the file-downloader. This means that two steps of storing the file
records in PostgreSQL database, and storing the file in the file system can be
individually eventually consistent. Referring back to the literature for even-
tual consistency models in relational databases, [100] proposes many data
replication schemes for cloud applications. However, all of these schemes
suggest changes on the base database implementation level, which is be-
yond the scope of this project. Thus, we restrict ourselves to the inbuilt

4.3 file downloader 36

replication strategy of the PostgreSQL database. The current single node
implementation of PostgreSQL database promises strongly consistent ACID
transactions by default. We can however, evaluate if replication adds any
value to the system by comparing its performance with the current single
node implementation.

[62] suggests a Scalable Distributed Two-layered Data Structures (SD2DS)
architecture for achieving strong consistency with NoSQL databases like
Mongo or Memcached. Similarly, [119] suggests a 2-phase commit protocol
to provide ACID transactions with distributed NoSQL databases. As promis-
ing as these solutions seem, their infrastructure requirements are far greater
than the current scalability requirements of the BranchKey system. Thus,
these vastly complex implementations are bound to be an example of over-
engineering in this context. Hence, we discard these approaches, and limit
ourselves to the replication strategies provided by PostgreSQL database for
now.

As far as alternatives for PostgreSQL are considered, [88] suggests some
databases for consistent and partition tolerant database management sys-
tems which are freely available. However, all of them are either key value
stores, or document oriented stores, or wide column stores. None of these
fit the tabular data structure of a file record to be stored in file down-
loader. Thus we stick to PostgreSQL. Although the native deployment of
PostgreSQL is not partition tolerant, we can play around by provisioning
some replication slaves. Moreover, this data need not be stored across parti-
tions anyway. Files would have to be stored across distributed nodes.

PostgreSQL also supports table partitioning [106]. As [3] suggests, hor-
izontal table partitioning can be used to tackle big datasets in relational
databases with optimal efficiency. In the case of file-downloader, we can
partition the file indexing data, and look for performance enhancements.
Since all the partitions are stored in the same node, it does not compromise
the consistency of the system, even in case of network partitions. On the con-
trary, since each partition is now smaller than the entire table, it promises
faster response times from the database.

File Downloader:RF.5: List feasible solutions:

We can narrow down the research from File Downloader:RF.3 and File
Downloader:RF.4 to the following three feasible solutions:

• As a first solution, we can explore the effects of adding a replica to the
existing PostgreSQL database in the current system. Using the native
master/slave provision in PostgreSQL, we can direct write queries to
the master database and the read queries to the slave database.

• Secondly, we can examine the pragmatic enhancements offered by ta-
ble partitioning in PostgreSQL database. We can horizontally partition
the data using the hash partitioning technique for the group-id field.
This not only promises to speed up the get data queries, but also pro-
visions for better data management and archival.

• Lastly, we can evaluate different file storage systems and perform a
comparative study as in terms of their fault tolerance, response latency
and data consistencies.

4.3 file downloader 37

File Downloader:RF.6: Setup and perform experiments:

We perform two experiments:

• Replication on PostgreSQL using master/slave configuration, with write
queries directed to master and read queries directed to slave only

• Horizontal table partitioning by hashing the group-id field

We do not perform the experiment to evaluate multiple file storage sys-
tems because the changes needed for that are beyond the scope of this
project. Additionally, we could evaluate cloud storage systems, but BranchKey
has already discarded the use of AWS S3 as an external file storage. This is
in order to avoid vendor lock in. As far as other distributed file systems
like Mongo GridFS or IPFS is concerned, they are relatively complicated to
integrate and evaluate for this project.

4.3.1 Experiment 1: Data Replication

Let us now apply the experimentation protocol described in Figure 7 to the
first experiment for file-downloader.

FileDownloader.1:EP.1: Identify quantifiable parameters:

Strong consistency is the most important requirement of the file-downloa-
der. So, we plan to monitor the error rate on the API calls. We can segregate
these errors into errors of data consistency and errors of service unavailabil-
ity. Lower the number of corresponding errors would mean stronger data
consistency on the backend.

The second most important parameter is the response latency, which will
be measured in terms of overall response-times of the APIs and the individual
response times from the file indexing and the file storage databases. This is
where we notice the performance enhancement provided by the PostgreSQL
configuration under evaluation, if any.

Thirdly, we can monitor the system health metrics on the database in-
stances, mainly the CPU load, and the memory usage. If only read queries
are adding to load, we have an option to horizontally scale the number of
slaves and deploy service instances to only answer read data queries using
those slaves. However, if write queries are the main ones contributing to the
system load, we might have to explore vertical scaling. Horizontal scaling is
not an option in that case because it is a single master database.

FileDownloader.1:EP.2: Specify the load profile:

Based on the requirements stated in Section 3.3, we identify three through-
put requirements for file-downloader:

• Aggregated file save queries with at least 5 requests per second, with a
response time of at most 50 ms

• File download queries with at least 5 requests per second, with a re-
sponse time of at most 10 ms

• File size up to 1 MB

4.3 file downloader 38

FileDownloader.1:EP.4: Apply the needed application level modifications needed
to run the experiment:

For this experiment, we just need to change the service layer to accept
both, the master and the slave database instances, and redirect write and
read data queries accordingly.

FileDownloader.1:EP.5: Setup the infrastructure for running the experiment:

On the infrastructure level, we need to provision a master/slave configu-
ration for the PostgreSQL database.

4.3.2 Experiment 2: Data partitioning

Let us now apply the experimentation protocol described in Figure 7 to the
second experiment for file-downloader.

FileDownloader.2:EP.1: Identify quantifiable parameters:
Same as FileDownloader.1:EP.1

FileDownloader.2:EP.2: Specify the load profile:
Same as FileDownloader.1:EP.2

FileDownloader.2:EP.4: Apply the needed application level modifications needed
to run the experiment:

We need to perform the following application level modifications:

• Firstly, we need to change the database schema to create hash parti-
tions for all the group-ids. Since group-ids are UUIDs, we will hash
them into 16 buckets for now. If this approach proves to be viable, we
can change this number to a larger value.

• Secondly, we need to change all the database queries to also incorpo-
rate group-id, to help redirect to the correct table partition.

FileDownloader.2:EP.5: Setup the infrastructure for running the experiment:
We do not need any infrastructural changes for this experiment.

5E VA L U AT I O N

In this chapter we will discuss the results from each of the experiments
described in Chapter 4, and evaluate them against the set criteria.

To subject each of the systems with desired load requirements, we created
a load-test script. It is a GoLang application which hits the API to be tested
with configured requests per second rate. This load-test script exposes
APIs to start and stop the load tests for every microservice. Each load test
launches multiple goroutines [109]. Each of these goroutines is a REST client
which fires an HTTP request to the microservice under investigation, and
records the response status. This load-test application is also deployed as
a Kubernetes service in the same cluster to avoid additional network delays.
However, for the sake of isolating this system and keeping it from interfering
with the actual BranchKey platform, it is deployed on an separate node. This
is done via node tainting and toleration [108].

To evaluate the performance parameters of the system, we deploy a monito-

ring-stack within the BranchKey ecosystem, as shown in Figure 8. It con-
sists of Prometheus [87] and Grafana [47]. Each of the microservices exposes
business metrics onto a REST endpoint, which is scraped by prometheus met-
rics scrapers at regular intervals. This data is then visualised into graphical
format on grafana dashboard.

BranchKey
microservices

Prometheus Metrics
Scrapers Prometheus

Database

Grafana

Hit REST
endpoints
at regular
intervalsExpose

metrics
via REST
endpoints

Store collected
metrics in the DB

Fetch metrics
data from the DB

to plot graphs
on the dashboards

Monitoring
Stack

Figure 8: Monitoring Stack

We also evaluate the system in terms of its infrastructural cost. Currently,
BranchKey uses Amazon Web Services cloud platform to deploy the system.
Table 1 gives the pricing model and an estimate for the monthly cost for the
same.

This infrastructure cost highly depends on two variables: the computation
power and the memory usage of the system. Table 2 evaluates the current
technological stack in terms of its bare minimum memory footprint in no-
load state and no-data state. Quantitatively, this is the minimum memory
needed to horizontally scale an instance of the corresponding type. A key
observation made here is that a Golang application is a about 9 times more

39

5.1 authenticator 40

Entity Rate
Monthly

Cost1
Source

Amazon EKS
cluster

$ 0.10 per hour $ 73 [7]

Classic Load
Balancer

$ 0.028 per hour + $ 0.008 per
GB of data processed

$ 27.452 [38]

Amazon EC2

On-Demand3

$ 0.0368 for EC2 + $ 0.11 per
GB for ESB

$ 116.264 [82]

Total Cost $ 216.71 [1]

1 Considering 730 hours per month
2 For 10 agents uploading and downloading a file of 1 MB each, performing 1 aggregation per

minute = 10 * 2 MB = 20 MB per minute
3 t3.medium: 2 vCPUs, 4GB Memory with an Elastic Block Storage Disk: 20 GB gp2
4 For 4 instances

Table 1: AWS Pricing Model

memory efficient than a Python application. Hence, the redevelopment of
the authenticator into a Golang application can be a future consideration.

Entity Memory Footprint

Typical Python Application 44 MB

Typical Golang Application 5 MB

PostgreSQL DB 34 MB

Redis 7 MB

RabbitMQ 110 MB

Table 2: Memory Footprint of the Current System

5.1 authenticator

We subjected authenticator to throughput of about 45 requests per second
with the following load on each of the following APIs:

• Write APIs: 20 requests per second

– Login API: 15 requests per second

– Logout API: 1 request per second

– Signup API: 5 requests per second

• Read API: 25 requests per second

– Authenticate API: 25 requests per second

The experiment was run for a total duration of 30 minutes. The system
was seeded with the credentials of 25 users to begin with. Following subsec-
tions present a detailed evaluation of the system performance under these
conditions, with each of the prescribed architectural solutions. For the sake
of these experiments, we assumed that the rest of the BranchKey platform
performs ideally. Thus, the downstream dependency over the authoriser

and the upstream dependency over api-gateway do not affect the perfor-
mance of this system.

5.1 authenticator 41

5.1.1 Current System

The current system uses a single instance of service pod deployment to
serve all the requests. An overview of its performance parameters is shown
in Figure 9. This service pod is backed by a single instance PostgreSQL
deployment, which performed as per Figure 10 and Figure 11. The graphs
develop in spikes because of small sleep windows triggered in the load
tester in between the requests, so as to control the number of open and
connections and the system resources in use.

Figure 9: Authenticator Dashboard [Current System]

Figure 10: Authenticator PostgreSQL Dashboard [Current System]

5.1 authenticator 42

Figure 11: Authenticator PostgreSQL Dashboard Continued [Current System]

Analysing the response-status for each of the APIs in Figure 9, we see that
the error rate from all the APIs is absolutely zero for server errors. This
means that the current implementation provides high availability. Also the
response-times are bounded within 150 ms for both read and write APIs.

Evaluating in terms of system health metrics, we see that the CPU load on
the service pod is less than 0.7 as shown in Figure 12, and that for database
pod is less than 0.1 as shown in Figure 13. In terms of process memory
usage, the service uses about 325 MB as presented in Figure 14 where as the
database uses only about 53 MB, as shown in Figure 15. Also the persistent
volume usage of the database is only 130 MB as shown in Figure 16. Overall,
the system is healthy, and beyond the need for horizontal scaling currently.

Figure 12: Authenticator Service Pod CPU Load [Current System]

Figure 13: Authenticator PostgreSQL Pod CPU Load [Current System]

5.1 authenticator 43

Figure 14: Authenticator Service Pod Memory Usage [Current System]

Figure 15: Authenticator PostgreSQL Pod Memory Usage [Current System]

Figure 16: Authenticator PostgreSQL Persistent Volume Usage [Current System]

5.1.2 Results from the experiments

Let us now enlist the results obtained from the experiments performed over
the authenticator.

5.1.2.1 Experiment 1

The first experiment evaluated the efficiency of a master/slave architecture for
the PostgreSQL database. When subjected to the defined load requirements,
service performed as shown in Figure 17. Evaluating the quantifiable param-
eters, we can see that service returns absolutely zero unavailability errors for
all the APIs. In fact, secluding the database write queries to master and the
read queries to the slave instance has resulted in a vast improvement in the
response-time of all the APIs. All the write APIs now respond within 100 ms

where as the read APIs take only 35 ms.

5.1 authenticator 44

Figure 17: Authenticator Dashboard [Experiment 1]

Further, we evaluate the service and the database instances in terms of
their system health metrics, i.e., CPU Load and memory usage. For the ser-
vice pods, the CPU Load of both the service instances, shown in Figure 18

and Figure 19, is less than that of single service instance in the current sys-
tem. Summed together, they both have a CPU Load of 0.650, which is 7.14%

less than the current system. Similar trend is followed for the two database
instances as well, as plotted in Figure 20 and Figure 21. Even with the ad-
ditional load of maintaining data replication, each of these instances uses
less computation power. Numerically speaking, the master has a CPU Load
of 0.02, and the slave has a CPU Load of 0.025. Together, they are still 55%
less than the database of the current system. This can be highly attributed
to the distribution of queries across the instances. Discussing the memory
usage for the service shown in Figure 22 and Figure 23, although the indi-
vidual memory requirements of the two service deployments are each less
than the single service deployment of the current system, their combined
value in fact adds up to slightly bigger value of 330 MB. For the database de-
ployments, although the slave instance is low on memory usage (Figure 25),
the master instance takes up 13 MB more memory instead (Figure 24). As
far as persistent volume is considered, the databases, as shown in Figure 26

and Figure 27, individually use less memory than the current system, but
totally add up to 220 MB, which is about 62% more than the persistent vol-
ume usage of the current system. However, this can be optimised further by
removing a persistent volume storage from the slave. This is because slave is
replicating the same data as the master. We do not need another persistent
storage of the same data.

5.1 authenticator 45

Figure 18: Authenticator Read Service Pod CPU Load [Experiment 1]

Figure 19: Authenticator Write Service Pod CPU Load [Experiment 1]

Figure 20: Authenticator Master DB Pod CPU Load [Experiment 1]

Figure 21: Authenticator Slave DB Pod CPU Load [Experiment 1]

5.1 authenticator 46

Figure 22: Authenticator Read Service Pod Memory Usage [Experiment 1]

Figure 23: Authenticator Write Service Pod Memory Usage [Experiment 1]

Figure 24: Authenticator Master DB Pod Memory Usage [Experiment 1]

Figure 25: Authenticator Slave DB Pod Memory Usage [Experiment 1]

Figure 26: Authenticator Master DB Persistent Volume Usage [Experiment 1]

Figure 27: Authenticator Slave DB Persistent Volume Usage [Experiment 1]

5.1 authenticator 47

5.1.2.2 Experiment 2

This experiment explored the efficiency and feasibility of server-side caching
for serving the read queries in the authenticator. In addition to monitoring
the database in a dashboard similar to Figure 10, we monitored the redis

cache as shown in Figure 29. Analysing the needed metrics, we can see that
there are no errors for any of the APIs. However, when compared to the first
experiment, there is no noticeable improvement in the response-times as well.

Figure 28: Authenticator Dashboard [Experiment 2]

Figure 29: Authenticator Redis Dashboard [Experiment 2]

Looking into the system health metrics, we can see in Figure 30 that the
CPU Load for the service instance is 42% less than that of the current system
and about 38.4% less than that of the first experiment. For the database
and the redis instances combined, however, it is 66.67% more than the first
experiment, but 25% less than the current system. Comparing in terms of
process memory usage, as Figure 33, Figure 34 and Figure 35 shown, it is less
than both the previous implementations for all instances, i.e., the service, the
database as well as the redis. Comparing the overall memory footprint of
this configuration with other the two, it is 13.8% less than the current system
and 23.5% less than first experiment. Persistent volume usage, monitored in

5.1 authenticator 48

Figure 36, is however 12 MB higher that the current implementation and 29

MB higher than the master database of the experiment 1.

Figure 30: Authenticator Service Pod CPU Load [Experiment 2]

Figure 31: Authenticator DB Pod CPU Load [Experiment 2]

Figure 32: Authenticator Redis Pod CPU Load [Experiment 2]

Figure 33: Authenticator Service Pod Memory Usage [Experiment 2]

Figure 34: Authenticator DB Pod Memory Usage [Experiment 2]

5.1 authenticator 49

Figure 35: Authenticator Redis Pod Memory Usage [Experiment 2]

Figure 36: Authenticator DB Persistent Volume Usage [Experiment 2]

5.1.3 Evaluate the results and compare across relevant parameters

We summarise the results obtained from all the above system evaluations
in the tables below. As per the observations made in Table 3, all the solu-
tions provide strong consistency and high availability with zero server errors.
However, the master/slave database configuration of the first experiment re-
sults in lowest response latencies from the service. However, Table 4 shows
that the infrastructure for the second experiment is the most cost efficient,
because it has the lowest CPU Load of 0.475 in total and the lowest memory
usage of 326 MB in total, thus leading to low infrastructure cost. The persis-
tent volume usage of the database is the lowest for the current system, as
noted in Table 5.

System Configuration API Type Response Time Server Errors

Current System Read API 150 ms 0

Write API 150 ms 0

Experiment 1 Read API 35 ms 0

Write API 100 ms 0

Experiment 2 Read API 50 ms 0

Write API 100 ms 0

Table 3: Authenticator Evaluation: API Response Times and Server Errors

5.2 file uploader 50

System Configuration Instance CPU Load Memory Usage

Current System Service 0.700 325 MB

DB 0.100 53 MB

Experiment 1 Read Service 0.200 52 MB

Write Service 0.450 278 MB

Master DB 0.020 66 MB

Slave DB 0.025 30 MB

Experiment 2 Service 0.400 241 MB

DB 0.070 82 MB

Redis 0.005 3 MB

Table 4: Authenticator Evaluation: System Health Metrics

System Configuration Instance Type Persistent Volume Usage

Current System DB 135 MB

Experiment 1 Master DB 118 MB

Slave DB 102 MB

Experiment 2 DB 147 MB

Table 5: Authenticator Evaluation: Persistent Volume Usage

The decision about the most suited configuration here highly depends
on the preferred order of priority between response latency and estimated
infrastructure expense. In terms of infrastructure cost differences, all the
configurations have almost similar overall CPU Load. They differ in their
memory and persistent volume usage. Current infrastructure provisions 4

GB instances, and uses gp2 SSD disks for persistent storage which are priced
at $ 0.11 per GB per hour. Both the experiments provide same write API
latency, and differ only 15 ms in the read API latency. However, the memory
requirement is almost double for the first experiment. Thus, if infrastructure
cost is a big factor and a delay of 15 ms is tolerable on the read API, we
recommend the second experiment for this microservice.

5.2 file uploader

The load testing script for the file-uploader fired the file-upload API with a
request rate of 20 requests per second for 30 minutes. Each of these requests
simulated the file upload action initiated by the user, by uploading a file of
944 KB. Let us see how each of the system configurations reacted to this test.
An important assumption made in here is that all the other microservices
in the BranchKey platform perform to their ideal capacity. A highly optimal
api-gateway is assumed with minimal addition to the response latency for
the file-upload API calls. central-aggregator is assumed to be fast enough
that the data in redis need not be stored for more than 5 seconds.

5.2 file uploader 51

5.2.1 Current System

We prepared a grafana dashboard as shown in Figure 37 to monitor the
service level metrics for the file-uploader. A similar dashboard to monitor
the health and performance of the redis was also provisioned, as shown in
Figure 38.

Figure 37: File Uploader Dashboard [Current System]

Figure 38: File Uploader Redis Dashboard [Current System]

As can be seen in Figure 37, the system was subjected to a load of about
20 requests per second. Since every API request leads to 2 redis calls, the
number of redis calls per second is 40. Intermittent dips in the graph can
be attributed to a temporary sleep window configured in the load tester, so
as to keep a check on the number of connections and resources being used.

Magnifying into the relevant metrics, we first dive into the response-time of
the service and the cache. The overall time taken by the service to analyse
and processing the incoming request body, calling redis for storing the
data, and finally formulating the response for the client is averaged over all
the calls to plot as Average Response Time in Figure 37. This value rises to

5.2 file uploader 52

a maximum of 125 milliseconds(ms).1 In here, the end-to-end call from the
service to the redis takes less time, as shown in the plot for Redis Average
Response Time. It is about 20 ms for storing a file, where as only 10 ms for
storing the index data. This makes a total of approximately 30 ms for the
redis calls, which means the domain layer handling of the request takes 90

ms for this Golang application. Another thing to note here is that a command
duration, as experienced by redis, is even less. It is only 5 ms for a SET

command, as shown in the plot for Command Duration in Figure 38. We can
attribute a difference of 15 ms experienced by the service for this call to
network latency.

Looking into the error rate of the system in Figure 37, Response Status:
v1/file/upload plots the response status of the API calls against the time inter-
val, and Response Status: file_cache_redis and Response Status: index_cache_redis
show the error rate for the corresponding redis calls. As we can see in all
these graphs, most calls succeed. Error is rate is very low for all of these.

Finally, monitoring the system health of the service pod as well as the
redis pod, we observe in Figure 39 and Figure 40 that with this throughput,
the current deployments are manageable in terms of CPU load, with a value
of 0.25 and 0.10 respectively. As far as memory is concerned, service is only
taking up about 17.5 MB (Figure 41 and the redis is limited to about 177.4
MB (Figure 42), with memory fragmentation ration less than 1.15, as seen in
Memory Fragmentation Ratio in Figure 38.

Figure 39: File Uploader Service Pod CPU Load [Current System]

Figure 40: File Uploader Redis Pod CPU Load [Current System]

1 An exceptional peak seen can be attributed to some network delay experienced by the system,
beyond the control of application logic.

5.2 file uploader 53

Figure 41: File Uploader Service Pod Memory Usage [Current System]

Figure 42: File Uploader Redis Pod Memory Usage [Current System]

5.2.2 Results from the experiments

Let us now see the observations made from the two experiments performed
over this microservice.

5.2.2.1 Experiment 1

The first experiment for file-uploader tweaks the redis to add a data
persistence and slave replication. As described in FileUploader.1:EP.5, we
initially configured RDB + AOF persistence for redis. RDB allows for an
asynchronous data dump into a persistent file at regular intervals2. AOF
synchronously creates a log of all the write commands and replays them in
case of failures. Although the files to be stored in file-uploader are big in
size (1 MB) but only need to be stored for a small period (5 seconds). Thus,
even though redis keys were expiring continuously keeping the memory
usage in check, the AOF file kept growing beyond feasibility. Thus, this ap-
proach was modified to only use RDB persistence3.

Thus, subjecting the above described system to the stipulated load testing
script, we observed the following dashboards for the service in Figure 43,
and the master and the slave redis in Figure 44 and Figure 45

2 Configured to happen every 300 seconds if at least 1 key is changed
3 However, with increased efficiency. Now, a backup was taken every 5 seconds if at least 1 key

is changed.

5.2 file uploader 54

Figure 43: File Uploader Dashboard [Experiment 1]

Figure 44: File Uploader Redis Dashboard [Experiment 1]

Figure 45: File Uploader Redis Dashboard (Continued) [Experiment 1]

As we can see in Throughput and Redis Calls Per Sec Figure 43, service
throughput is maintained at 20 requests per second with 40 calls per second for
redis.

5.2 file uploader 55

Observing the response-time for this load, we can see in Average Response
Time in Figure 43 that the service response time increases to about 200 ms,
with a corresponding increase in response from redis as well. As plotted in
Redis Average Response Time, the time for storing a file increases to about 25
ms and that for index data increases to about 15 ms. However, the increment
in the command duration, plotted as Command Duration in Figure 44, is only
to 7.13 ms. This means that redis takes an extra 5 ms to perform the syn-
chronous slave replication. However, the service experiences an extra 75 ms

of delay. This could be because of asynchronous data persistence happening
in the redis, thus affecting its availability and latency.

Exploring the error rates in this setup, we can see the service and the
redis error rates in Figure 43 and the redis. There is a slight increase in
the number of 500 errors from the service, mainly propagated by the errors
from the file-store call on redis.

Lastly, evaluating the effects of this configuration over the system health,
we see in Figure 46, Figure 47 and Figure 48 that the CPU Load on the ser-
vice remains the same as the current system. However, the CPU Load for the
redis pods has increased as compared to the current system implementa-
tion, with a total summed up load of 0.45. However, this value is still far
from alarming levels. In terms of memory usage, service pod is now using
an increased amount of about 23.7 MB Figure 49, where as the redis is now
using a little lesser memory of 156 MB Figure 50 with a similar memory frag-
mentation of 1.15, as shown in Figure 45. Slight reduction of 12.4% in the
memory usage of redis could be due to continuously expiring keys, and
thus can be ignored for practical purposes.

Figure 46: File Uploader Service Pod CPU Load [Experiment 1]

Figure 47: File Uploader Redis Master Pod CPU Load [Experiment 1]

5.2 file uploader 56

Figure 48: File Uploader Redis Slave Pod CPU Load [Experiment 1]

Figure 49: File Uploader Service Pod Memory Usage [Experiment 1]

Figure 50: File Uploader Redis Master Pod Memory Usage [Experiment 1]

Figure 51: File Uploader Redis Persistent Volume Usage [Experiment 1]

5.2.2.2 Experiment 2

In this experiment we explore horizontal partitioning of file data by shard-
ing it across multiple redis nodes. We employ a redis-cluster of 6 nodes, with
a configuration of 3 masters and 3 slaves. Additionally, we add persistence to
the data stored therein. However, as discussed in the previous experiment,
we use only RDB persistence.4

Applying the load of 20 requests per second, each with a file of size 1 MB,
this system produced the following dashboard for service (Figure 52). For
evaluating the redis instances, instead of observing all the 6 instances, we
randomly pick out one master and one slave instance. Their respective dash-
boards are shown in Figure 53 and Figure 54.

4 With the same configuration as the one in Experiment 1.

5.2 file uploader 57

Figure 52: File Uploader Dashboard [Experiment 2]

Figure 53: File Uploader Redis Master Dashboard [Experiment 2]

Figure 54: File Uploader Redis Slave Dashboard [Experiment 2]

As is evident in Throughput and Redis Calls Per Sec in Figure 52, service
throughput is maintained at 20 requests per second, thus subjecting redis to
40 calls per second.

5.2 file uploader 58

As expected, the API response-time for this setup has increased to an av-
erage value of 350 ms even though the increment in redis response time
is only to 40 ms for storing file and 25 ms for storing the index data. This
is because the time to communicate with a single redis instance is still
the same, however, the cluster configuration sometimes demands commu-
nication with multiple instances. This happens especially when the needed
key is not stored in the communicated instance. Although, the sharding of
dataset has reduced the lookup time through each of the instances, thus
reducing the command duration for each redis instance to only 3 microsec-
onds.

Looking into the error rates for this experiment, we notice that there are
absolutely no errors experienced. All the API calls return success response.
This means the the cluster configuration does live up to its claim of high
availability.

Finally, evaluating system health for this configuration, we see that the
CPU Load for service (shown in Figure 55) is 0.25, which is equal to that
of the current system and the experiment 1. For the redis instances, the
load of master in Figure 56 is 0.12, which is less than the half of that com-
pared from experiment 1. Similarly, the CPU Load for the slave instance is
0.1, as shown in Figure 57. This value is also half of the load for the slave
instance in the first experiment. Overall, the system is healthy in terms of
its computation requirements. In terms of memory usage, service pod, as
shown in Figure 49, uses the same memory of about 23.8 MB as in the first
experiment. However, the memory footprints of each of the redis instances,
as can be seen in Figure 59 and Figure 60, has decreased drastically to 52

MB and 53 MB respectively. This is because the total memory usage is now
distributed across all the nodes of the cluster. Hence, the overall memory
footprint is still the same (or even more depending on the number of nodes
in the cluster). A similar trend is also followed by the persistent volume us-
ages as described in Figure 61 and Figure 62. A single master instance uses
61 MB. If we use this as a base value to estimate the persistent volume usage
for all the three master nodes, it would be 183 MB, which is about 23 MB more
than that of first experiment.

Figure 55: File Uploader Service CPU Load [Experiment 2]

5.2 file uploader 59

Figure 56: File Uploader Redis Master CPU Load [Experiment 2]

Figure 57: File Uploader Redis Slave CPU Load [Experiment 2]

Figure 58: File Uploader Service Pod Memory Usage [Experiment 2]

Figure 59: File Uploader Redis Master Pod Memory Usage [Experiment 2]

Figure 60: File Uploader Redis Slave Pod Memory Usage [Experiment 2]

5.2 file uploader 60

Figure 61: File Uploader Redis Master Persistent Volume Usage [Experiment 2]

Figure 62: File Uploader Redis Slave Persistent Volume Usage [Experiment 2]

5.2.3 Evaluate the results and compare across relevant parameters

All the results shown in the graphical form are tabulated below. Table 9

helps us evaluate the system configurations in terms of response-times and
error-rates. We see that the current system gives the lowest overall response
latency (125 ms) for the file-upload API. With regards to error-rates, the cur-
rent system and the first experiment do report a small number of system er-
rors. They are observed due to limited system resources. The high through-
put from the load test makes the service or the redis pod reach the limit
of maximum open connections allowed, or the maximum resources avail-
able, thus giving server errors to all the requests received until the engaged
resources are freed up. However, the second experimental setup gives ab-
solutely zero server errors, thus guaranteeing high availability. Further, we
can see that the current system is also the most infrastructurally optimised
solution in terms of its lowest CPU Load of 0.35 in total and lowest memory
usage of 194.9 MB, as listed down in Table 7. Important thing to note here
is that for the second experiment, there are 3 redis masters and 3 redis slaves.
Thus, the CPU Load and the memory usage need to be multiplied by a factor
of 3 for both these instances. One major drawback of the current system is
that it lacks persistent storage of data. When compared in terms of persis-
tent volume used, Table 8 shows that first experiment is more efficient than
the second, with only 160 MB of persistent volume used. This is because the
persistent volumes for the second experiment again need to be multiple by
3 to get the actual value of 183 MB for the master instances and 195 MB for
the slave instances.

5.2 file uploader 61

System
Configuration

Entity
Response

Time
Server Errors

Current System Overall API 125 ms 0.5 per second

Redis File Storage 20 ms 0.25 per second

Redis Index Storage 10 ms 0

Redis Command
Duration

5 ms N/A

Experiment 1 Overall API 200 ms 1 per second

Redis File Storage 25 ms 1 per second

Redis Index Storage 15 ms 0

Redis Command
Duration

7 ms N/A

Experiment 2 Overall API 350 ms 0

Redis File Storage 40 ms 0

Redis Index Storage 25 ms 0

Redis Command
Duration

0.3 ms N/A

Table 6: File Uploader Evaluation: API Response Times and Server Errors

System
Configuration

Instance
CPU
Load

Memory
Usage

Memory
Fragmentation

Current System Service 0.250 17.5 MB N/A

Redis 0.100 177.4 MB 1.15

Experiment 1 Service 0.250 23.75 MB N/A

Master
Redis

0.300 156 MB 1.15

Slave
Redis

0.250 160 MB 1.15

Experiment 2 Service 0.250 23.8 MB N/A

Master
Redis

0.120 52 MB 1.97

Slave
Redis

0.100 53 MB 2.52

Table 7: File Uploader Evaluation: System Health Metrics

System Configuration Instance Type Persistent Volume Usage

Current System Redis N/A

Experiment 1 Master Redis 160 MB

Experiment 2 Master Redis 61 MB

Slave Redis 65 MB

Table 8: File Uploader Evaluation: Persistent Volume Usage

5.3 file downloader 62

Thus, for file-uploader, current system seems to be the most optimised
version, if it is configured with a persistent volume as well. However, file-
uploader is a AP system, which means high availability is of essence here.
Thus, we recommend the redis-cluster configuration of the second experi-
ment. It not only promises high server availability and data persistence, but
also provides an easy horizontal scaling option whenever needed. Both of
the other configurations use single master redis, which limit the scaling
capabilities in times of need.

5.3 file downloader

To test the resilience of the file-downloader, we designed a load test to fire
the service with about 5 requests per second of each of the upload-aggregated-
file and the file-download APIs. Each of these APIs included an upload or
a download of a file of 944 KB. This microservice was tested under the as-
sumptions of an ideal performance by rest of the entities in this ecosystem.
Once an event to avail the download of an aggregated-output-result file is sent
to the clients, it is assumed that all of them download the file within 10 sec-
onds. Following this assumption, we mark a file as expired after 10 seconds of
its creation, and run a background job to periodically delete all such expired
file. Thus, all the clients requesting for a file after 10 seconds get a HTTP 404:

file not found error.

5.3.1 Current System

We subjected the current system implementation to the load specified in
Section 4.3 and observed the grafana dashboards for the service and the
database shown in Figure 63, Figure 64 and Figure 65. Here we can see that
there are no HTTP 500:service unavailable errors for either of the API
calls. Additionally, the response-times are bound within 30 ms for the upload-
aggregated-file API and within 5 ms for the file-download API. Breaking this
down to the database level, it takes about 5 ms to perform a write query
whereas about 2 ms to perform a read query.

Figure 63: File Downloader Dashboard [Current System]

5.3 file downloader 63

Figure 64: File Downloader PostgreSQL Dashboard [Current System]

Figure 65: File Downloader PostgreSQL Dashboard (Continued) [Current System]

Assessing the system health aspects of the system, we can see in Figure 66

and Figure 67 that the CPU Load for both the service as well as the database
instance is very low, 0.05 and 0.01 respectively. The memory usage is also
only 23.5 MB for the service (Figure 68) and 42.4 MB for the database (Fig-
ure 69). Thus, the current implementation is highly optimised in terms of its
infrastructural requirements. The persistent volume requirement is 103 MB

on average, as observed in Figure 70.

Figure 66: File Downloader Service Pod CPU Load [Current System]

5.3 file downloader 64

Figure 67: File Downloader DB Pod CPU Load [Current System]

Figure 68: File Downloader Service Pod Memory Usage [Current System]

Figure 69: File Downloader DB Pod Memory Usage [Current System]

Figure 70: File Downloader DB Persistent Volume Usage [Current System]

5.3.2 Results from each experiments

Let us now monitor the results from the two experiments performed for this
microservice.

5.3.2.1 Experiment 1

In this experiment, we assess the performance of the master/slave configu-
ration of the database. With the logical distribution of write queries to the
master database and the read queries to the slave database, we observe the
service metrics as shown in Figure 71 and the database metrics as shown
in Figure 72 and Figure 73. We see here that the response-times have in fact
increased for both the APIs. The database response-time has increased to 10

ms for a write query and to 5 ms for a read query, thus leading to increased
response-times of 40 ms for upload-aggregated-file API and about 5 ms for the
download-file API. Error rates however, still remain zero for both the APIs.

5.3 file downloader 65

Figure 71: File Downloader Dashboard [Experiment 1]

Figure 72: File Downloader PostgreSQL Dashboard [Experiment 1]

5.3 file downloader 66

Figure 73: File Downloader PostgreSQL Dashboard (Continued) [Experiment 1]

Evaluating the system health metrics for this configuration, we see that
the CPU Load for the service instance, shown in Figure 74 is 0.01 less than
that of the current system. However, the same metric for the master and
slave databases, shown in Figure 75 and Figure 76 respectively, is 0.01 more
than the current implementation. In fact, both of the combined become 0.04,
which is a four times that of the current implementation. Extending the dis-
cussion to memory-usage, the memory requirements of the service instance,
noted in Figure 77, are reduced to only 19.2 MB. However, the memory re-
quirements of the database instances, shown in Figure 78 and Figure 79 are
increased to 52.6 MB and 48.8 MB respectively, as compared to the current
system. The persistent volume usages, marked in Figure 80 and Figure 81,
remain the same to about 103 MB for the master and 102 MB for the slave
databases. Overall, we can say that infrastructurally, the service instance is
lighter while the database instances are heavier than the current implemen-
tation.

Figure 74: File Downloader Service CPU Load [Experiment 1]

Figure 75: File Downloader Master DB CPU Load [Experiment 1]

5.3 file downloader 67

Figure 76: File Downloader Slave DB CPU Load [Experiment 1]

Figure 77: File Downloader Service Memory Usage [Experiment 1]

Figure 78: File Downloader Master DB Memory Usage [Experiment 1]

Figure 79: File Downloader Slave DB Memory Usage [Experiment 1]

Figure 80: File Downloader Master DB Persistent Volume Usage [Experiment 1]

Figure 81: File Downloader Slave DB Persistent Volume Usage [Experiment 1]

5.3 file downloader 68

5.3.2.2 Experiment 2

The second experiment for file-downloader explores the effects of horizon-
tal data partitioning over the service performance. For the sake of this exper-
iment, we perform hash partitioning over the PostgreSQL table. We create
5 partitions to hash the group-ids. We seed the database with 30 group-ids,
randomly distributed over these partitions, and load test the system under
such conditions. The observed system metrics are recorded in Figure 82.
When comapred against the current system, we see that the response-times
of the APIs have increased to about 10 ms for the file-download API and to
40 ms for the upload-aggregated-file API. This increment is observed despite a
decrement of 1.5 ms in the database response time for read queries. Service,
however, still remain highly available, with no 500 errors.

Figure 82: File Downloader Dashboard [Experiment 2]

Considering the system health metrics, Figure 83 and Figure 84 show that
the CPU Load for the service as well as the database instances remain the
same as the current system, to values of 0.05 and 0.01 respectively. The
memory-usage however has decreased to 19.9 MB for the service and 27.3

MB for the database, as shown in Figure 85 and Figure 86 respectively. The
average persistent volume usage of the system, as monitored in Figure 87,
has increased slightly to 107 MB.

Figure 83: File Downloader Service Pod CPU Load [Experiment 2]

5.3 file downloader 69

Figure 84: File Downloader DB Pod CPU Load [Experiment 2]

Figure 85: File Downloader Service Pod Memory Usage [Experiment 2]

Figure 86: File Downloader DB Pod Memory Usage [Experiment 2]

Figure 87: File Downloader DB Persistent Volume Memory Usage [Experiment 2]

5.3.3 Evaluate the results and compare across relevant parameters

This section summarises the results obtained from all the above experiments
on file-downloader, and compares them against the current system con-
figuration. Table 9 provides a tabular comparison of the three system con-
figurations in terms of response-times and error-rates. Here, we see that the
current system performs the best for the given load requirements. Although
all the system configurations have zero server errors, thus guaranteeing high
server availability, the current system responds with the lowest latencies of
30 ms and 5 ms for both the APIs respectively. In terms of infrastructural
parameters seen in Table 10, all the systems have nearly similar total CPU
Load requirements. The second experiment however, uses the least memory
of 47.2 MB. In terms of persistent volume storage, the current system is the
most efficient with the least usage of 103 MB, as can be seen in Table 11. The
persistent volume usage of the second experiment is only 5 MB more than
the current system, where as for the first experiment, it is nearly double.

5.3 file downloader 70

System
Configuration

Entity
Response

Time
Server
Errors

Current System Upload Aggregated File API 30 ms 0

Download File API 5 ms 0

DB Write 5 ms 0

DB Read 2.5 ms 0

Experiment 1 Upload Aggregated File API 40 ms 0

Download File API 5 ms 0

DB Write 10 ms 0

DB Read 5 ms 0

Experiment 2 Upload Aggregated File API 40 ms 0

Download File API 10 ms 0

DB Write 6.3 ms 0

DB Read 1 ms 0

Table 9: File Downloader Evaluation: API Response Times and Server Errors

System Configuration Instance CPU Load Memory Usage

Current System Service 0.050 23.5 MB

DB 0.010 42.4 MB

Experiment 1 Service 0.040 19.2 MB

Master DB 0.020 52.6 MB

Slave DB 0.020 48.8 MB

Experiment 2 Service 0.050 19.9 MB

DB 0.010 27.3 MB

Table 10: File Downloader Evaluation: System Health Metrics

System Configuration Instance Type Persistent Volume Usage

Current System DB 103 MB

Experiment 1 Master DB 103 MB

Slave DB 102 MB

Experiment 2 DB 107 MB

Table 11: File Downloader Evaluation: Persistent Volume Usage

Even though the proposed solutions promise better scalability and fault
tolerance, we recommend the current system configuration for the current
requirements of the file-downloader. For now, both of the other solutions
seem over-engineered for the system. However, in case horizontal scalabil-
ity is needed in near future, we recommend the horizontally partitioned
database schema employed in the second experiment.

5.4 discussion 71

5.4 discussion

Let us now reflect upon the results of all these experimental evaluations
in terms of the research questions presented in Section 1.2. This research
focuses on helping the developers to optimize a data-focused microservice
application impacted by CAP theorem, in terms of architecture and infras-
tructure. This aim is highly abstract in nature, and requires immense tangi-
bility. To effectuate it empirically, we break it down into three sub-questions
RQ.1, RQ.2 and RQ.3, each with a substantial goal to be achieved. The
literature review performed in Chapter 2, and the research framework de-
scribed in Chapter 4 attempt to answer each of these sub-questions. All of
these sub-questions are individually answered with respect to the specific
requirements of the microservice under investigation.

RQ.1 emphasises the restrictions imposed by the CAP theorem limitations
over the available design choices for architectural and infrastructural solu-
tions of a data-focused microservice in general. Since we limit our project
to data-focused microservice applications, infrastructural solutions mainly
cater to database solutions. Tracing this into our research, Section 2.2 and
Section 2.3 provide an extensive analysis of the database patterns and the
corresponding infrastructural solutions for each of the CP, AP and the CA
systems. Further, Section 2.4, Section 2.5 and Section 2.6 review the existing
literature in detail to correlate the architectural patterns for microservices
architectures with the CAP theorem restrictions. The idea behind all of this
research is to study the segregation of design solutions in accordance with
the CAP theorem limitations, and compile a list of the same, to be used for
optimally (re)designing a microservice belonging to either of the CP, AP
and the CA scenarios.

RQ.2 underlines the identification of different design choices for the mi-
croservice under investigation, in terms of the architecture and infrastruc-
ture to be used. RF.1 firstly puts down all the functional and non-functional
requirements, which are used further ahead in the research to answer mul-
tiple questions. For instance, the functional requirements are translated into
answering questions like whether this microservice needs a relational database
or a non-relational database. Non-functional requirements acknowledge the
CAP requirements of the system, the load and throughput requirements,
or even the acceptable infrastructural costs for the system deployment. The
RF.2 of the research framework evaluates the requirements from RF.1 in
terms of consistency, availability and partition tolerance. This sets a context
for reviewing the literature in terms of architectural patterns in RF.3. As il-
lustrated in our case studies in 4, this review is then performed for either of
a CA, AP or CP system. Important thing to note here is that the list of solu-
tions compiled as a result of RQ.1 is used to perform this review. Finally, the
architectural patterns discovered from the literature are again classified in
terms of there feasibility to be listed in RF.5, thus paving way for objective
experiments in RF.6.

Further, RQ.2 stresses the importance of infrastructural enhancement of
the microservice under investigation. In context of our project, this refers to
database patterns and infrastructural optimisations, mainly considered in
terms of the CAP requirements of the system. Tracing this into the research
framework, RF.4 allows the researcher to study the existing literature and
list down the feasible database solutions in RF.5. This literature review is

5.4 discussion 72

narrowed down in regards to the database requirements inferred from the
requirements listed in RF.1. RF.4 ensures a well surveyed research in terms
of the most suitable databases with a final consideration of only the fea-
sible5 solutions. Although this literature survey is expected to be detailed
enough to consider and subjectively evaluate many different solutions, the
classification into feasible solutions limits the scope of the research within
practical boundaries.

Finally, RQ.3 necessitates an objective comparison of all the feasible solu-
tions gathered in the process of answering RQ.2. This comparison is per-
formed on different quantifiable parameters listed in EP.1. These quantifi-
able parameters are deduced from the non-functional requirements in RF.1
and the CAP requirements in RF.2. They are expected to compare different
feasible solutions not only in terms of overall system consistency, availabil-
ity and partition tolerance, but also in terms of the infrastructural costs of
deployment like the computation power needed and memory used. RF.6
describes an elaborate experimentation protocol for this purpose. As de-
scribed in this chapter, RF.7 provisions factual evaluations of all the feasible
solutions and leads to well researched conclusions given in Chapter 6.

Consolidating the entire process, the literature review of the Chapter 2

answers the RQ.1, while the research framework and the experimentation
protocol of the Chapter 4 provide answers for RQ.2 and RQ.3 respectively.
Thus, looking at the bigger picture, attacking each of the individual sub-
questions finally leads us to answer the main research question. Combining
the results obtained from RQ.1, RQ.2 and RQ.3, we eventually arrive at
a well researched and pragmatically evaluated survey of different architec-
tural designs for a data-focused microservice, impacted by the CAP theorem
limitations. This enables us to heuristically decide on the best suited architec-
tural and infrastructural strategy for the microservice under investigation.

The literature reviewed in Chapter 2 mostly depicts that the evaluation
of architectural and infrastructural solutions has been a subjective domain.
The research framework presented in this project however, bridges this into
the domain of practical implementations and factual observations by pre-
senting a concrete 7 step process of being able to implement and compare
these architectural and infrastructural solutions objectively. Although we in-
stantiated the whole process with BranchKey as a case study, the described
research framework is generic enough to be able to be applied on any data-
focused application in a microservice architecture.

5 A solution is considered feasible if it satisfies the needs of the system, has an acceptable infras-
tructure cost estimation, and can be implemented within project scope.

6C O N C L U S I O N A N D F U T U R E W O R K

In this chapter, we discuss the conclusions drawn from this research, and
list down the possibilities for future work in this field.

6.1 conclusion

The aim of this project was to facilitate the evaluation of different architec-
tural and infrastructural solutions for a data-focused microservices architec-
ture, to achieve an optimal cost and performance trade-off. Here, infrastruc-
ture solutions are scoped out to consider only database patterns. The prime
assumption here is that microservices follow the rules of a distributed sys-
tem, and thus adhere to the limitations defined by the CAP theorem. As
described in Section 1.2, the goal of the overall project is divided into three
smaller sub-goals.

• First one aims at studying the effect of CAP theorem limitations over
the architectural and database design of a data-focused microservice.

• Second sub-goal details out the process to identify different feasible
architectural and database design considerations to (re)design the mi-
croservice under investigation for the specified business requirements
of cost and performance.

• Third sub-goal aims at evaluating the selected database and the archi-
tectural/infrastructural designs in terms of the operational costs and
performance metrics parameters. These parameters include the cost
for infrastructure deployment, development and maintenance costs,
and the service response latencies and error percentages.

Important thing to note here is that we do not invent new architectural or
infrastructural solutions. We examine the existing literature for this purpose.
To accomplish this, Chapter 2 provides a detailed analysis of the literature
considered for this research. We have segregated out literature review into
multiple categories ranging from the theoretical definitions and implications
of the CAP theorem to the practical implementations and repercussions of
applying the CAP theorem into the databases and microservices architec-
ture.

This research is performed in collaboration with BranchKey, a federated
learning as a service platform. Chapter 3 explains the current architecture
of the BranchKey system, and describes in detail the functional and non-
functional requirements of the following three microservices selected as the
case studies for this research.

• Authenticator: It is a CA system with relational database.

• File Uploader: This is a AP system with key-value store.

• File Downloader: This is a CP system with a relational database as
well as a distributed file storage.

73

6.1 conclusion 74

This project is however, not limited to solve for these systems. It intends
to provide a generic research framework to evaluate alternative designs for
any data-focused microservice towards identifying the optimal architectural
and infrastructural solution. Thus, in Chapter 4, we provide an elaborate
but easy to follow 7 step research framework for the same. Further, we also
illustrate its application over the three aforementioned microservices from
the BranchKey system. Continuing over the same illustration, Chapter 5

presents a detailed overview of the results obtained from the application
of the research framework over the microservices under investigation, and
evaluates the results.

Discussing the specifics, and summarising the evaluations, we can make
the following conclusions with respect to the specific microservices under
investigation:

• For the authenticator, server-side caching is the recommended solu-
tion. It balances out well between the response latencies and the in-
frastructure costs. It is not as slow as the current system, and not as
infrastructurally heavy as the master/slave architecture.

• In case of file-uploader, although the current system seems to be
the most efficient design across all parameters, it severely lacks high
availability and easy scalability. Since file-uploader is to be an AP
system, we recommend the redis-cluster configuration with RDB per-
sistence. This configuration also eases the efforts for scalability, in case
our assumptions of quick data expiry are to be given upon.

• With respect to file-downloader, even though the master/slave archi-
tecture of first experiment and the horizontally partitioned database schema
of the second experiment seem highly promising and scalable, they ap-
pear unnecessary at this point. Even though they do not add much to
the response latencies, their infrastructural expenses are much greater
than the current solution. They are definitely the options to look for
in case this system needs to be upscaled, but for the current require-
ments, such a heavy infrastructure adds more cost without adding
enough value to the system.

Reviewing in a general sense, this research framework proved to be an
efficient facilitator in evaluating the trade-offs for systems lying on all the
three edges of the CAP theorem spectrum. It takes into account the exist-
ing literature for the particular use case, and provides an experimentation
protocol to test the pragmatic feasibility of the solutions suggested in the
literature. This makes this whole investigation easy to replicate and applica-
ble on any data intensive microservice. It ensures the evaluation to be well
supported by both, theoretical literature as well as practical implementation.
It provides examples to contemplate the observations made, and evaluate
the underlying trade-offs to balance out different parameters. It provides a
concrete methodology to arrive at an optimal solution for the system un-
der investigation, with the provided requirements and assumptions. It also
helps the researcher be informed about the shortcomings of the selected
solutions, and keeps space of alternate designs. As a conclusive remark, it
will not be wrong to say that this research lays down a tangible procedure
to perform architectural and infrastructural evaluations for a data-focused
microservice application.

6.2 future work 75

6.2 future work

As comprehensive as this research sounds, it does have its own limitations,
which can be worked upon in the future. Firstly, all the experiments de-
signed and conclusions drawn herewith are a result of the literature review
performed in Chapter 2. Although we tried to make this as extensive as pos-
sible, covering all the literature is beyond our scope. We may have missed
out some important publications which could have changed the course of
our conclusions entirely. Additionally, we could not find much literature
discussing the architectural designs for microservices demanding strong
consistency and partition tolerance. Although there were many solutions
proposed for AP systems, CP systems were found to be highly missing. Sim-
ilar observation was also made for the comparison of different relational
databases. Our case studies used PostgreSQL database for storing tabular
data. Evaluating alternative database management systems was a natural
course of action, however, we could not find literature to list and compare
them.

Secondly, the experiments performed in this project were scoped to small
changes in the existing system architecture. There were solutions which re-
quired bigger changes, like evaluating Golang versus Python implementa-
tion of authenticator or comparing the effects of different event queues for
file-uploader. These seemed to have promising results, but were scoped
out of the current research. Developers at BranchKey may continue this re-
search with such solutions, and arrive at better conclusions.

Thirdly, infrastructure costs for all the systems were only evaluated in
terms of the current BranchKey deployment, i.e., on AWS cloud platform.
There are many cloud service providers in the market with competing prices.
BranchKey could also deploy their own infrastructure over an in-house data
center. This research could further be extended to compare the infrastruc-
ture cost of all such solutions.

Lastly, the evaluation of different solutions in this research only consid-
ers service performance parameters and infrastructure deployment costs. It
misses out on development and maintenance costs like developer hours.
Future researchers could also extend the framework proposed herein to in-
clude such costs.

Part I

A P P E N D I X

AR E Q U I R E M E N T A N A LY S I S O F O T H E R B R A N C H K E Y
M I C R O S E RV I C E S

a.1 authoriser

Authoriser is mainly responsible to store the customer authorisation con-
figuration per group-id basis. It provides interfaces to create such records,
update them and fetch them for a given group-id. Figure 88 shows the ex-
posed interfaces for this module. It does not have any dependency on any
other microservice in the system.

GoLang
Application MongoDB

Authoriser
Create

group configuration

Update
group configuration

Get
group configuration

APIs

Figure 88: Authoriser: Service Interface

a.1.1 Functional Requirements

Listing down the functional requirements for authoriser:

• Should allow to create an authorisation configuration per group basis

• Should be able to fetch authorisation configuration per group basis

• Should be able to store the configuration in a loose scheme: fields can
be added and removed without much hassle

• Should provide configuration as asked: all data or only the service
activated

a.1.2 Non-Functional Requirements

Non-functional requirements for this system are as follows:

• Should scale according to the requirements of different APIs:

– Write API: Create config: less frequent

– Read API: Fetch Config: highly frequent, called from API Gate-
way for any request received

77

A.2 api gateway 78

• Can afford eventual consistency

• Needs to be highly available, especially for read APIs

• Should push application logs and metrics to appropriate end points

a.2 api gateway

API-gateway is in accordance with the architectural patterns recommended
for service composition in microservices by Taibi et al. in [107]. Within
Branch-Key system, it provides an authentication and authorisation check
gateway for file upload and download API calls. It is the only exposed end-
point, in addition to new user registration and login, for the client to access
the downstream services. Figure 89 shows an overview of its endpoints and
dependencies. Given the nature of its implementation, it is a stateless bot-
tleneck microservice which depends on all other microservices facilitating
synchronous communication with the client.

GoLang
Application

API Gateway

File Upload

File Download

APIs Dependencies

Authoriser

Request Authentication

File Upload

File Download

Request Authorisation

Authenticator

File Uploader

File
Downloader

Figure 89: API Gateway: Service Interface

a.2.1 Functional Requirements

Following are the functional requirements for api-gateway:

• Should provide the “only” exposed endpoint for the client to access
the BranchKey system (apart from register and login APIs)

• Should authenticate and authorise every request coming from the client

• Should forward every incoming client request to appropriate down-
stream service, and relay the response to the client accordingly

• Should rate limit client requests based on IP, group-id, etc.

• Should have a mechanism to push business metrics to a billing service

a.2.2 Non-Functional Requirements

The non-functional requirements for api-gateway are:

• Should be scaled to handle the client load

• Should have reliable synchronous connectivity with all the needed
downstream services

• Should push application logs and metrics to appropriate end points

A.3 aggregation task creator 79

a.3 aggregation task creator

Aggregation-task-creator clubs together the required number of user files
from the cache, and creates a task for the aggregation. This component
works asynchronously, and independent from the client. In coherence with
Figure 90, it depends on the event queue for registering the input files up-
loaded by the clients into the aggregation task, and the corresponding cache
to read those files and their corresponding index data.

Python
Application

Aggregation Task Creator

Consumes aggregation
input files from file

uploader event queue

APIs Dependencies

Input file
consumption

RabbitMQ
event queue

Redis
Cache

File Uploader
event queue

Input file read
File

Uploader
Cache

Figure 90: Aggregation Task Creator: Service Interface

a.3.1 Functional Requirements

Following are the functional requirements for the aggregation-task-creator:

• Should consume the events about incoming files for upload, and make
lanes per group-id

• Should create aggregation tasks per lane, with additional information
such as group-id and group-config

• Should create segregated lanes so as to allow concurrent aggregation
tasks to be processed from a single group-id

• Should create lanes such that input files from one group-id are not
inter-mixed with another

a.3.2 Non-Functional Requirements

The non-functional requirements for the aggregation-task-creator are as
follows:

• Should be scaled enough to consume the file upload events within
reasonable time

• Should scale smartly, so that once pod consumes all the events from
one group-id, or else they might be stuck in deadlocks

• Should be able to access the corresponding cache and event queues
within reasonable latencies

• Should push application logs and metrics to appropriate end points

a.4 central aggregator

Central-aggregator asynchronously picks up the aggregation tasks from
the aggregation task event queue, performs the aggregation, and sends the

A.4 central aggregator 80

aggregated output result file to file-downloader, as shown in Figure 91.
It depends on the aggregation task queue to read the tasks, the input file
cache to read the files, and the File Downloader to send the aggregated
output result files.

Python
Application

Central Aggregator

Consumes
aggregation task from

aggregation_task_creator
event queue

APIs Dependencies

Input file
consumption

Aggregation Task
Creator event

queue

Input file read
File

Uploader
Cache

Store aggregated
output file

File Downloader

Figure 91: Central Aggregator: Service Interface

a.4.1 Functional Requirements

Central-aggregator has the following functional requirements:

• Should consume aggregation lane tasks and process them accordingly

• Should send generated output file to the file downloader

a.4.2 Non-Functional Requirements

Central-aggregator has the following non-functional requirements:

• Should be scaled enough to process the aggregation tasks within rea-
sonable response time

• Should be able to access the corresponding cache and event queues
within reasonable latencies

• Should be able to process multiple tasks concurrently

• Should push application logs and metrics to appropriate end points

B I B L I O G R A P H Y

[1] AWS Pricing Calculator. Available at : https://calculator.aws/#/estimate,
accessed on 17 January, 2022.

[2] Daniel Abadi. “Consistency tradeoffs in modern distributed database
system design: CAP is only part of the story.” In: Computer 45.2
(2012), pp. 37–42. doi: 10.1109/MC.2012.33.

[3] Sanjay Agrawal, Vivek Narasayya, and Beverly Yang. “Integrating
vertical and horizontal partitioning into automated physical database
design.” In: Proceedings of the 2004 ACM SIGMOD international confer-
ence on Management of data. 2004, pp. 359–370. doi: 10.1145/1007568.
1007609.

[4] Amitanand S Aiyer, Eric Anderson, Xiaozhou Li, Mehul A Shah, and
Jay J Wylie. “Consistability: Describing Usually Consistent Systems.”
In: HotDep. 2008.

[5] Kena Alexander, Muhammad Hanif, Choonhwa Lee, Eunsam Kim,
and Sumi Helal. “Cost-aware orchestration of applications over het-
erogeneous clouds.” In: PloS one 15.2 (2020), e0228086. doi: 10.1371/
journal.pone.0228086.

[6] Sascha Alpers, Christoph Becker, Andreas Oberweis, and Thomas
Schuster. “Microservice based tool support for business process mod-
elling.” In: 2015 IEEE 19th International Enterprise Distributed Object
Computing Workshop. IEEE. 2015, pp. 71–78. doi: 10 . 1109 / EDOCW .

2015.32.

[7] Amazon EKS pricing. Available at : https://aws.amazon.com/eks/pricing/,
accessed on 17 January, 2022.

[8] Vasilios Andrikopoulos, Christoph Fehling, and Frank Leymann. “De-
signing for CAP-The Effect of Design Decisions on the CAP Proper-
ties of Cloud-native Applications.” In: CLOSER. 2012, pp. 365–374.
doi: 10.5220/0003931503650374.

[9] Vasilios Andrikopoulos, Steve Strauch, Christoph Fehling, and Frank
Leymann. “CAP-oriented design for cloud-native applications.” In:
International Conference on Cloud Computing and Services Science. Springer.
2012, pp. 215–229. doi: 10.1007/978-3-319-04519-1_14.

[10] Anthony Anthony and Yaganti Naga Malleswara Rao. “Memcached,
Redis, and Aerospike Key-Value Stores Empirical Comparison.” In:
().

[11] Timon Back. “Hybrid serverless and virtual machine deployment
model for cost minimization of cloud applications.” PhD thesis. 2018.

[12] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M Hellerstein, and Ion
Stoica. “The potential dangers of causal consistency and an explicit
solution.” In: Proceedings of the Third ACM Symposium on Cloud Com-
puting. 2012, pp. 1–7. doi: 10.1145/2391229.2391251.

[13] Peter Bailis, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica. “Bolt-
on causal consistency.” In: Proceedings of the 2013 ACM SIGMOD In-
ternational Conference on Management of Data. 2013, pp. 761–772. doi:
10.1145/2463676.2465279.

81

:
https://doi.org/10.1109/MC.2012.33
https://doi.org/10.1145/1007568.1007609
https://doi.org/10.1145/1007568.1007609
https://doi.org/10.1371/journal.pone.0228086
https://doi.org/10.1371/journal.pone.0228086
https://doi.org/10.1109/EDOCW.2015.32
https://doi.org/10.1109/EDOCW.2015.32
:
https://doi.org/10.5220/0003931503650374
https://doi.org/10.1007/978-3-319-04519-1_14
https://doi.org/10.1145/2391229.2391251
https://doi.org/10.1145/2463676.2465279

bibliography 82

[14] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khor-
lin, James Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and
Vadim Yushprakh. “Megastore: Providing Scalable, Highly Available
Storage for Interactive Services.” In: Proceedings of the Conference on
Innovative Data system Research (CIDR). 2011, pp. 223–234. url: http:
//www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf.

[15] RD Bharati and VZ Attar. “A comprehensive survey on distributed
transactions based data partitioning.” In: 2018 Fourth International
Conference on Computing Communication Control and Automation (IC-
CUBEA). IEEE. 2018, pp. 1–5. doi: 10.1109/ICCUBEA.2018.8697589.

[16] RD Bharati and VZ Attar. “Workload-Driven Transactional Partition-
ing for Distributed Databases.” In: Data Intelligence and Cognitive In-
formatics. Springer, 2021, pp. 389–396. doi: 10.1007/978- 981- 15-
8530-2_31.

[17] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba,
Alex Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Ste-
fano Mazzocchi, H Brendan McMahan, et al. “Towards federated
learning at scale: System design.” In: arXiv preprint arXiv:1902.01046
(2019).

[18] BranchKey. Available at : https://branchkey.com/, accessed on June
4, 2021.

[19] Susanne Braun, Annette Bieniusa, and Frank Elberzhager. “Advanced
Domain-Driven Design for Consistency in Distributed Data-Intensive
Systems.” In: Proceedings of the 8th Workshop on Principles and Prac-
tice of Consistency for Distributed Data. 2021, pp. 1–12. doi: 10.1145/
3447865.3457969.

[20] Susanne Braun and Stefan Deßloch. “A Classification of Replicated
Data for the Design of Eventually Consistent Domain Models.” In:
2020 IEEE International Conference on Software Architecture Companion
(ICSA-C). IEEE. 2020, pp. 33–40. doi: 10.1109/ICSA-C50368.2020.
00014.

[21] Susanne Braun, Stefan Deßloch, Eberhard Wolff, Frank Elberzhager,
and Andreas Jedlitschka. “Tackling Consistency-related Design Chal-
lenges of Distributed Data-Intensive Systems: An Action Research
Study.” In: Proceedings of the 15th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM). 2021, pp. 1–
11. doi: 10.1145/3475716.3475771.

[22] Eric Brewer. “Towards robust distributed systems.” In: PODC (Jan.
2000), p. 7. doi: 10.1145/343477.343502.

[23] Eric Brewer. “CAP twelve years later: How the "rules" have changed.”
In: Computer 45.2 (2012), pp. 23–29. doi: 10.1109/MC.2012.37.

[24] Robson A Campêlo, Marco A Casanova, Dorgival O Guedes, and Al-
berto HF Laender. “A brief survey on replica consistency in cloud en-
vironments.” In: Journal of Internet Services and Applications 11.1 (2020),
pp. 1–13. doi: 10.1186/s13174-020-0122-y.

[25] Andrés Carrasco, Brent van Bladel, and Serge Demeyer. “Migrating
towards microservices: migration and architecture smells.” In: Pro-
ceedings of the 2nd International Workshop on Refactoring. 2018, pp. 1–6.
doi: 10.1145/3242163.3242164.

http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf
https://doi.org/10.1109/ICCUBEA.2018.8697589
https://doi.org/10.1007/978-981-15-8530-2_31
https://doi.org/10.1007/978-981-15-8530-2_31
:
https://doi.org/10.1145/3447865.3457969
https://doi.org/10.1145/3447865.3457969
https://doi.org/10.1109/ICSA-C50368.2020.00014
https://doi.org/10.1109/ICSA-C50368.2020.00014
https://doi.org/10.1145/3475716.3475771
https://doi.org/10.1145/343477.343502
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1186/s13174-020-0122-y
https://doi.org/10.1145/3242163.3242164

bibliography 83

[26] Tomas Cerny, Michael J Donahoo, and Michal Trnka. “Contextual
understanding of microservice architecture: current and future direc-
tions.” In: ACM SIGAPP Applied Computing Review 17.4 (2018), pp. 29–
45. doi: 10.1145/3183628.3183631.

[27] Mohak Chadha, Anshul Jindal, and Michael Gerndt. “Towards Fed-
erated Learning using FaaS Fabric.” In: Proceedings of the 2020 Sixth
International Workshop on Serverless Computing. 2020, pp. 49–54. doi:
10.1145/3429880.3430100.

[28] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Debo-
rah A Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E Gruber. “Bigtable: A distributed storage system for struc-
tured data.” In: ACM Transactions on Computer Systems (TOCS) 26.2
(2008), pp. 1–26. doi: 10.1145/1365815.1365816.

[29] Jeang-Kuo Chen and Wei-Zhe Lee. “A study of NoSQL Database for
enterprises.” In: 2018 International Symposium on Computer, Consumer
and Control (IS3C). IEEE. 2018, pp. 436–440. doi: 10.1109/IS3C.2018.
00116.

[30] Caio H Costa, PHM Maia, F Carlos, et al. “Sharding by Hash Par-
titioning.” In: Proceedings of the 17th International Conference on Enter-
prise Information Systems. Vol. 1. 2015, pp. 313–320. doi: 10.5220/
0005376203130320.

[31] Balla Wade Diack, Samba Ndiaye, and Yahya Slimani. “CAP theorem
between claims and misunderstandings: what is to be sacrificed.”
In: International Journal of Advanced Science and Technology 56 (2013),
pp. 1–12.

[32] Miguel Diogo, Bruno Cabral, and Jorge Bernardino. “Consistency
models of NoSQL databases.” In: Future Internet 11.2 (2019), p. 43.
doi: 10.3390/fi11020043.

[33] Nicola Dragoni, Schahram Dustdar, Stephan T Larsen, and Manuel
Mazzara. “Microservices: Migration of a mission critical system.”
In: arXiv preprint arXiv:1704.04173 (2017). doi: 10.1109/TSC.2018.
2889087.

[34] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel
Mazzara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. “Mi-
croservices: yesterday, today, and tomorrow.” In: Present and ulterior
software engineering (2017), pp. 195–216.

[35] Erki Eessaar. “On pattern-based database design and implementa-
tion.” In: 2008 Sixth International Conference on Software Engineering
Research, Management and Applications. IEEE. 2008, pp. 235–242. doi:
10.1109/SERA.2008.24.

[36] Morgan Ekmefjord, Addi Ait-Mlouk, Sadi Alawadi, Mattias Åkesson,
Desislava Stoyanova, Ola Spjuth, Salman Toor, and Andreas Hel-
lander. “Scalable federated machine learning with FEDn.” In: arXiv
preprint arXiv:2103.00148 (2021).

[37] Mohamed El Kholy and Ahmed El Fatatry. “Framework for interac-
tion between databases and microservice architecture.” In: IT Profes-
sional 21.5 (2019), pp. 57–63. doi: 10.1109/MITP.2018.2889268.

[38] Elastic Load Balancing pricing. Available at : https://aws.amazon.com/-
elasticloadbalancing/pricing/, accessed on 17 January, 2022.

https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3429880.3430100
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1109/IS3C.2018.00116
https://doi.org/10.1109/IS3C.2018.00116
https://doi.org/10.5220/0005376203130320
https://doi.org/10.5220/0005376203130320
https://doi.org/10.3390/fi11020043
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1109/SERA.2008.24
https://doi.org/10.1109/MITP.2018.2889268
:

bibliography 84

[39] Weibei Fan, Zhije Han, Yujie Zhang, and Ruchuan Wang. “Method of
maintaining data consistency in microservice architecture.” In: 2018
IEEE 4th International Conference on Big Data Security on Cloud (Big-
DataSecurity), IEEE International Conference on High Performance and
Smart Computing,(HPSC) and IEEE International Conference on Intelli-
gent Data and Security (IDS). IEEE Computer Society. 2018, pp. 47–50.
doi: 10.1109/BDS/HPSC/IDS18.2018.00023.

[40] Alan D Fekete and Krithi Ramamritham. “Consistency models for
replicated data.” In: Replication. Springer, 2010, pp. 1–17. doi: 10 .

1007/978-3-642-11294-2_1.

[41] Francesca Arcelli Fontana, Valentina Lenarduzzi, Riccardo Roveda,
and Davide Taibi. “Are architectural smells independent from code
smells? An empirical study.” In: Journal of Systems and Software 154

(2019), pp. 139–156. doi: 10.1016/j.jss.2019.04.066.

[42] Armando Fox, Steven D Gribble, Yatin Chawathe, Eric A Brewer, and
Paul Gauthier. “Cluster-based scalable network services.” In: Proceed-
ings of the sixteenth ACM symposium on Operating systems principles.
1997, pp. 78–91.

[43] Andrei Furda, Colin Fidge, Olaf Zimmermann, Wayne Kelly, and Al-
istair Barros. “Migrating enterprise legacy source code to microser-
vices: on multitenancy, statefulness, and data consistency.” In: IEEE
Software 35.3 (2017), pp. 63–72. doi: 10.1109/MS.2017.440134612.

[44] Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasi-
bility of Consistent, Available, Partition-Tolerant Web Services.” In:
SIGACT News 33.2 (2002), 51–59. issn: 0163-5700. doi: 10 . 1145 /

564585.564601. url: https://doi.org/10.1145/564585.564601.

[45] Seth Gilbert and Nancy Lynch. “Perspectives on the CAP Theorem.”
In: Computer 45.2 (2012), pp. 30–36. doi: 10.1109/MC.2011.389.

[46] Sukhpal Singh Gill and Rajkumar Buyya. “Failure management for
reliable cloud computing: A taxonomy, model, and future directions.”
In: Computing in Science & Engineering 22.3 (2018), pp. 52–63. doi:
10.1109/MCSE.2018.2873866.

[47] Grafana. Available at : https://grafana.com/, accessed on 12 January,
2022.

[48] Andreas Grafberger, Mohak Chadha, Anshul Jindal, Jianfeng Gu,
and Michael Gerndt. “FedLess: Secure and Scalable Federated Learn-
ing Using Serverless Computing.” In: 2021 IEEE International Confer-
ence on Big Data (Big Data). IEEE. 2021, pp. 164–173.

[49] J. Gray. “The transaction concept: virtues and limitations.” In: 1988.

[50] Ramzi A Haraty and Georges Stephan. “Relational Database Design
Patterns.” In: 2013 IEEE 16th International Conference on Computational
Science and Engineering. IEEE. 2013, pp. 818–824. doi: 10.1109/CSE.
2013.124.

[51] Stefan Haselböck, Rainer Weinreich, and Georg Buchgeher. “Deci-
sion guidance models for microservices: service discovery and fault
tolerance.” In: Proceedings of the Fifth European Conference on the En-
gineering of Computer-Based Systems. 2017, pp. 1–10. doi: 10.1145/
3123779.3123804.

https://doi.org/10.1109/BDS/HPSC/IDS18.2018.00023
https://doi.org/10.1007/978-3-642-11294-2_1
https://doi.org/10.1007/978-3-642-11294-2_1
https://doi.org/10.1016/j.jss.2019.04.066
https://doi.org/10.1109/MS.2017.440134612
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1109/MC.2011.389
https://doi.org/10.1109/MCSE.2018.2873866
:
https://doi.org/10.1109/CSE.2013.124
https://doi.org/10.1109/CSE.2013.124
https://doi.org/10.1145/3123779.3123804
https://doi.org/10.1145/3123779.3123804

bibliography 85

[52] Wilhelm Hasselbring and Guido Steinacker. “Microservice architec-
tures for scalability, agility and reliability in e-commerce.” In: 2017
IEEE International Conference on Software Architecture Workshops (IC-
SAW). IEEE. 2017, pp. 243–246. doi: 10.1109/ICSAW.2017.11.

[53] Joseph M Hellerstein and Peter Alvaro. “Keeping CALM: when dis-
tributed consistency is easy.” In: Communications of the ACM 63.9
(2020), pp. 72–81. doi: 10.1145/3369736.

[54] Alex Homer, John Sharp, Larry Brader, Masashi Narumoto, and Trent
Swanson. Cloud Design Patterns: Prescriptive Architecture Guidance for
Cloud Applications. Microsoft patterns practices, 2014. isbn: 1621140369.
doi: 10.5555/2636530.

[55] Manar Jammal, Ali Kanso, Parisa Heidari, and Abdallah Shami. “Avail-
ability analysis of cloud deployed applications.” In: 2016 IEEE Inter-
national Conference on Cloud Engineering (IC2E). IEEE. 2016, pp. 234–
235. doi: 10.1109/IC2E.2016.44.

[56] William Kent. “A Simple Guide to Five Normal Forms in Relational
Database Theory.” In: Commun. ACM 26.2 (1983), 120–125. issn: 0001-
0782. doi: 10.1145/358024.358054. url: https://doi-org.proxy-
ub.rug.nl/10.1145/358024.358054.

[57] Samiya Khan, Xiufeng Liu, Syed Arshad Ali, and Mansaf Alam. “Bi-
variate, Cluster and Suitability Analysis of NoSQL Solutions for Dif-
ferent Application Areas.” In: arXiv preprint arXiv:1911.11181 (2019).

[58] Martin Kleppmann. “A Critique of the CAP Theorem.” In: CoRR
abs/1509.05393 (2015). arXiv: 1509.05393. url: http://arxiv.org/
abs/1509.05393.

[59] Donald Kossmann, Tim Kraska, and Simon Loesing. “An evaluation
of alternative architectures for transaction processing in the cloud.”
In: Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. 2010, pp. 579–590. doi: 10.1145/1807167.1807231.

[60] Nicolas Kourtellis, Kleomenis Katevas, and Diego Perino. “Flaas: Fed-
erated learning as a service.” In: Proceedings of the 1st Workshop on
Distributed Machine Learning. 2020, pp. 7–13. doi: 10.1145/3426745.
3431337.

[61] Nane Kratzke and Peter-Christian Quint. “Understanding cloud-native
applications after 10 years of cloud computing-a systematic mapping
study.” In: Journal of Systems and Software 126 (2017), pp. 1–16. doi:
10.1016/j.jss.2017.01.001.

[62] Adam Krechowicz, Stanisław Deniziak, and Grzegorz Łukawski. “Highly
Scalable Distributed Architecture for NoSQL Datastore Supporting
Strong Consistency.” In: IEEE Access 9 (2021), pp. 69027–69043. doi:
10.1109/ACCESS.2021.3077680.

[63] Alexandr Krylovskiy, Marco Jahn, and Edoardo Patti. “Designing
a smart city internet of things platform with microservice architec-
ture.” In: 2015 3rd International Conference on Future Internet of Things
and Cloud. IEEE. 2015, pp. 25–30. doi: 10.1109/FiCloud.2015.55.

[64] Kubegres. Available at : https://www.kubegres.io/, accessed on 21

December, 2021.

[65] Edward A Lee, Soroush Bateni, Shaokai Lin, Marten Lohstroh, and
Christian Menard. “Quantifying and Generalizing the CAP Theo-
rem.” In: arXiv preprint arXiv:2109.07771 (2021).

https://doi.org/10.1109/ICSAW.2017.11
https://doi.org/10.1145/3369736
https://doi.org/10.5555/2636530
https://doi.org/10.1109/IC2E.2016.44
https://doi.org/10.1145/358024.358054
https://doi-org.proxy-ub.rug.nl/10.1145/358024.358054
https://doi-org.proxy-ub.rug.nl/10.1145/358024.358054
https://arxiv.org/abs/1509.05393
http://arxiv.org/abs/1509.05393
http://arxiv.org/abs/1509.05393
https://doi.org/10.1145/1807167.1807231
https://doi.org/10.1145/3426745.3431337
https://doi.org/10.1145/3426745.3431337
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1109/ACCESS.2021.3077680
https://doi.org/10.1109/FiCloud.2015.55
:

bibliography 86

[66] Philipp Leitner, Jürgen Cito, and Emanuel Stöckli. “Modelling and
managing deployment costs of microservice-based cloud applications.”
In: Proceedings of the 9th International Conference on Utility and Cloud
Computing. 2016, pp. 165–174. doi: 10.1145/2996890.2996901.

[67] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. “Cloud-
Cmp: comparing public cloud providers.” In: Proceedings of the 10th
ACM SIGCOMM conference on Internet measurement. 2010, pp. 1–14.
doi: 10.1145/1879141.1879143.

[68] Guozhi Liu, Bi Huang, Zhihong Liang, Minmin Qin, Hua Zhou, and
Zhang Li. “Microservices: architecture, container, and challenges.” In:
2020 IEEE 20th International Conference on Software Quality, Reliability
and Security Companion (QRS-C). IEEE. 2020, pp. 629–635. doi: 10.
1109/QRS-C51114.2020.00107.

[69] Sin Kit Lo, Qinghua Lu, Chen Wang, Hye-Young Paik, and Liming
Zhu. “A systematic literature review on federated machine learning:
From a software engineering perspective.” In: ACM Computing Sur-
veys (CSUR) 54.5 (2021), pp. 1–39.

[70] Sin Kit Lo, Qinghua Lu, Liming Zhu, Hye-young Paik, Xiwei Xu,
and Chen Wang. “Architectural patterns for the design of federated
learning systems.” In: arXiv preprint arXiv:2101.02373 (2021). doi: 10.
13140/RG.2.2.29934.23365.

[71] Heiko Ludwig, Nathalie Baracaldo, Gegi Thomas, Yi Zhou, Ali An-
war, Shashank Rajamoni, Yuya Ong, Jayaram Radhakrishnan, Ashish
Verma, Mathieu Sinn, et al. “Ibm federated learning: an enterprise
framework white paper v0. 1.” In: arXiv preprint arXiv:2007.10987
(2020).

[72] Alex Magalhaes, Luciana Rech, Ricardo Moraes, and Francisco Vasques.
“REPO: A Microservices Elastic Management System for Cost Reduc-
tion in the Cloud.” In: 2018 IEEE Symposium on Computers and Com-
munications (ISCC). IEEE. 2018, pp. 00328–00333. doi: 10.1109/ISCC.
2018.8538453.

[73] Thomas J Marlowe, Cyril S Ku, and James W Benham. “Design pat-
terns for database pedagogy: a proposal.” In: ACM SIGCSE Bulletin
37.1 (2005), pp. 48–52. doi: 10.1145/1047124.1047375.

[74] Gastón Márquez and Hernán Astudillo. “Identifying availability tac-
tics to support security architectural design of microservice-based
systems.” In: Proceedings of the 13th European Conference on Software
Architecture-Volume 2. 2019, pp. 123–129. doi: 10.1145/3344948.3344996.

[75] Robert C Martin. “Principles of OOD.” In: URl: http://butunclebob.
com/ArticleS. UncleBob. PrinciplesofOod (Last accessed: 2nd July 2015)
(1995).

[76] Antonio Messina, Riccardo Rizzo, Pietro Storniolo, Mario Tripiciano,
and Alfonso Urso. “The database-is-the-service pattern for microser-
vice architectures.” In: International Conference on Information Technol-
ogy in Bio-and Medical Informatics. Springer. 2016, pp. 223–233. doi:
10.1007/978-3-319-43949-5_18.

[77] Antonio Messina, Riccardo Rizzo, Pietro Storniolo, and Alfonso Urso.
“A simplified database pattern for the microservice architecture.” In:
The Eighth International Conference on Advances in Databases, Knowledge,
and Data Applications (DBKDA). 2016, pp. 35–40. doi: 10.13140/RG.2.
1.3529.3681.

https://doi.org/10.1145/2996890.2996901
https://doi.org/10.1145/1879141.1879143
https://doi.org/10.1109/QRS-C51114.2020.00107
https://doi.org/10.1109/QRS-C51114.2020.00107
https://doi.org/10.13140/RG.2.2.29934.23365
https://doi.org/10.13140/RG.2.2.29934.23365
https://doi.org/10.1109/ISCC.2018.8538453
https://doi.org/10.1109/ISCC.2018.8538453
https://doi.org/10.1145/1047124.1047375
https://doi.org/10.1145/3344948.3344996
https://doi.org/10.1007/978-3-319-43949-5_18
https://doi.org/10.13140/RG.2.1.3529.3681
https://doi.org/10.13140/RG.2.1.3529.3681

bibliography 87

[78] Francesc D Muñoz-Escoí, Rubén de Juan-Marín, José-Ramón García-
Escrivá, J R González de Mendívil, and José M Bernabéu-Aubán.
“CAP Theorem: Revision of Its Related Consistency Models.” In: The
Computer Journal 62.6 (2019), pp. 943–960. doi: 10 . 1093 / comjnl /

bxy142.

[79] Shamkant Navathe, Stefano Ceri, Gio Wiederhold, and Jinglie Dou.
“Vertical Partitioning Algorithms for Database Design.” In: ACM Trans.
Database Syst. 9.4 (1984), 680–710. issn: 0362-5915. doi: 10.1145/1994.
2209. url: https://doi-org.proxy-ub.rug.nl/10.1145/1994.2209.

[80] Davide Neri, Jacopo Soldani, Olaf Zimmermann, and Antonio Brogi.
“Design principles, architectural smells and refactorings for microser-
vices: a multivocal review.” In: SICS Software-Intensive Cyber-Physical
Systems (2019), pp. 1–13. doi: [10.1007/s00450-019-00407-8.

[81] Sam Newman. Building microservices: designing fine-grained systems. "
O’Reilly Media, Inc.", 2015.

[82] On-Demand Plans for Amazon EC2. Available at : https://aws.amazon.c-
om/ec2/pricing/on-demand/, accessed on 17 January, 2022.

[83] Felipe Osses, Gastón Márquez, and Hernán Astudillo. “An exploratory
study of academic architectural tactics and patterns in microservices:
A systematic literature review.” In: Avances en Ingenieria de Software a
Nivel Iberoamericano, CIbSE 2018 (2018).

[84] M Tamer Ozsu and Patrick Valduriez. “Distributed database systems:
Where are we now?” In: Computer 24.8 (1991), pp. 68–78. doi: 10.
1109/2.84879.

[85] Guy Pardon and Cesare Pautasso. “Consistent disaster recovery for
microservices: the CAB theorem.” In: IEEE cloud computing (2017).
doi: 10.1109/MCC.2018.011791714.

[86] Dan Pritchett. “BASE: An Acid Alternative: In Partitioned Databases,
Trading Some Consistency for Availability Can Lead to Dramatic Im-
provements in Scalability.” In: Queue 6.3 (2008), 48–55. issn: 1542-
7730. doi: 10.1145/1394127.1394128. url: https://doi-org.proxy-
ub.rug.nl/10.1145/1394127.1394128.

[87] Prometheus. Available at : https://prometheus.io/, accessed on 12

January, 2022.

[88] Tilmann Rabl and Hans-Arno Jacobsen. “Query centric partitioning
and allocation for partially replicated database systems.” In: Proceed-
ings of the 2017 ACM International Conference on Management of Data.
2017, pp. 315–330. doi: 10.1145/3035918.3064052.

[89] Redis Persistence. Available at : https://redis.io/topics/persistence,
accessed on 3 January, 2022.

[90] Redis Sentinel. Available at : https://redis.io/topics/sentinel, accessed
on 3 January, 2022.

[91] Redis latency problems troubleshooting. Available at : https://redis.io/to-
pics/latency, accessed on 6 January, 2022.

[92] Kim-Thomas Rehmann and Enno Folkerts. “Performance of container-
ized database management systems.” In: Proceedings of the Workshop
on Testing Database Systems. 2018, pp. 1–6. doi: 10.1145/3209950.
3209953.

https://doi.org/10.1093/comjnl/bxy142
https://doi.org/10.1093/comjnl/bxy142
https://doi.org/10.1145/1994.2209
https://doi.org/10.1145/1994.2209
https://doi-org.proxy-ub.rug.nl/10.1145/1994.2209
https://doi.org/[10.1007/s00450-019-00407-8
:
https://doi.org/10.1109/2.84879
https://doi.org/10.1109/2.84879
https://doi.org/10.1109/MCC.2018.011791714
https://doi.org/10.1145/1394127.1394128
https://doi-org.proxy-ub.rug.nl/10.1145/1394127.1394128
https://doi-org.proxy-ub.rug.nl/10.1145/1394127.1394128
:
https://doi.org/10.1145/3035918.3064052
:
:
:
https://doi.org/10.1145/3209950.3209953
https://doi.org/10.1145/3209950.3209953

bibliography 88

[93] Anja Reuter, Timon Back, and Vasilios Andrikopoulos. “Cost effi-
ciency under mixed serverless and serverful deployments.” In: 2020
46th Euromicro Conference on Software Engineering and Advanced Appli-
cations (SEAA). 2020, pp. 242–245. doi: 10.1109/SEAA51224.2020.
00049.

[94] Daniel Richter, Marcus Konrad, Katharina Utecht, and Andreas Polze.
“Highly-available applications on unreliable infrastructure: Microser-
vice architectures in practice.” In: 2017 IEEE International Conference
on Software Quality, Reliability and Security Companion (QRS-C). IEEE.
2017, pp. 130–137. doi: 10.1109/QRS-C.2017.28.

[95] Per Runeson and Martin Höst. “Guidelines for conducting and re-
porting case study research in software engineering.” In: Empirical
software engineering 14.2 (2009), pp. 131–164. doi: 10.1007/s10664-
008-9102-8.

[96] Yasushi Saito and Marc Shapiro. “Optimistic replication.” In: ACM
Computing Surveys (CSUR) 37.1 (2005), pp. 42–81. doi: 10 . 1145 /

1057977.1057980.

[97] Tasneem Salah, M Jamal Zemerly, Chan Yeob Yeun, Mahmoud Al-
Qutayri, and Yousof Al-Hammadi. “The evolution of distributed sys-
tems towards microservices architecture.” In: 2016 11th International
Conference for Internet Technology and Secured Transactions (ICITST). IEEE.
2016, pp. 318–325. doi: 10.1109/ICITST.2016.7856721.

[98] Santonu Sarkar, Shubha Ramachandran, G Sathish Kumar, Madhu K
Iyengar, K Rangarajan, and Saravanan Sivagnanam. “Modularization
of a large-scale business application: A case study.” In: IEEE software
26.2 (2009), pp. 28–35. doi: 10.1109/MS.2009.42.

[99] Benyamin Shafabakhsh, Robert Lagerström, and Simon Hacks. “Eval-
uating the Impact of Inter Process Communication in Microservice
Architectures.” In: QuASoQ@ APSEC. 2020, pp. 55–63.

[100] Ali Shakarami, Mostafa Ghobaei-Arani, Ali Shahidinejad, Moham-
mad Masdari, and Hamid Shakarami. “Data replication schemes in
cloud computing: a survey.” In: Cluster Computing (2021), pp. 1–35.
doi: 10.1007/s10586-021-03283-7.

[101] Salomé Simon. “Brewer’s cap theorem.” In: CS341 Distributed Infor-
mation Systems, University of Basel (HS2012) (2000).

[102] Swaminathan Sivasubramanian, Guillaume Pierre, Maarten van Steen,
and Gustavo Alonso. “Analysis of caching and replication strategies
for web applications.” In: IEEE Internet Computing 11.1 (2007), pp. 60–
66. doi: 10.1109/MIC.2007.3.

[103] Michael Stonebraker. “Errors in database systems, eventual consis-
tency, and the cap theorem.” In: Communications of the ACM, BLOG@
ACM (2010).

[104] Michael Stonebraker. “Errors in database systems, eventual consis-
tency, and the cap theorem.” In: Communications of the ACM, BLOG@
ACM (2010).

[105] Michael Stonebraker and Rick Cattell. “10 rules for scalable perfor-
mance in’simple operation’datastores.” In: Communications of the ACM
54.6 (2011), pp. 72–80. doi: 10.1145/1953122.1953144.

[106] Table Partitioning. Available at : https://www.postgresql.org/docs/13/ddl-
partitioning.html, accessed on 6 January, 2022.

https://doi.org/10.1109/SEAA51224.2020.00049
https://doi.org/10.1109/SEAA51224.2020.00049
https://doi.org/10.1109/QRS-C.2017.28
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1145/1057977.1057980
https://doi.org/10.1145/1057977.1057980
https://doi.org/10.1109/ICITST.2016.7856721
https://doi.org/10.1109/MS.2009.42
https://doi.org/10.1007/s10586-021-03283-7
https://doi.org/10.1109/MIC.2007.3
https://doi.org/10.1145/1953122.1953144
:

bibliography 89

[107] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. “Architectural
Patterns for Microservices: A Systematic Mapping Study.” In: CLOSER.
2018, pp. 221–232. doi: 10.5220/0006798302210232.

[108] Taints and Tolerations. Available at : https://kubernetes.io/docs/conce-
pts/scheduling-eviction/taint-and-toleration/, accessed on 12 January,
2022.

[109] The Go Memory Model. Available at : https://go.dev/ref/mem#tmp_-
5, accessed on 12 January, 2022.

[110] Rafik Tighilt, Manel Abdellatif, Nader Abu Saad, Naouel Moha, and
Yann-Gaël Guéhéneuc. “Collection and Identification Of Microser-
vices Patterns And Antipatterns.” In: July 2021.

[111] José A Valdivia, Xavier Limón, and Karen Cortes-Verdin. “Quality at-
tributes in patterns related to microservice architecture: A Systematic
Literature Review.” In: 2019 7th International Conference in Software
Engineering Research and Innovation (CONISOFT). IEEE. 2019, pp. 181–
190. doi: 10.1109/CONISOFT.2019.00034.

[112] Harley Vera-Olivera, Ruizhe Guo, Ruben Cruz Huacarpuma, Ana
Paula Bernardi Da Silva, Ari Melo Mariano, and Maristela Holanda.
“Data Modeling and NoSQL Databases-A Systematic Mapping Re-
view.” In: ACM Computing Surveys (CSUR) 54.6 (2021), pp. 1–26. doi:
10.1145/3457608.

[113] Nicolas Viennot, Mathias Lécuyer, Jonathan Bell, Roxana Geambasu,
and Jason Nieh. “Synapse: a microservices architecture for heterogeneous-
database web applications.” In: Proceedings of the Tenth European Con-
ference on Computer Systems. 2015, pp. 1–16. doi: 10.1145/2741948.
2741975.

[114] Patrick Vogel. “Computing the Cost and Waste in Cloud Computing
Monitoring.” 2019.

[115] Werner Vogels. “Eventually consistent.” In: Communications of the ACM
52.1 (2009), pp. 40–44. doi: 10.1145/1435417.1435432.

[116] Hiroshi Wada, Alan D Fekete, Liang Zhao, Kevin Lee, and Anna
Liu. “Data Consistency Properties and the Trade-offs in Commercial
Cloud Storage: the Consumers’ Perspective.” In: CIDR. Vol. 11. 2011,
pp. 134–143.

[117] Stefan Walraven, Eddy Truyen, and Wouter Joosen. “Comparing PaaS
offerings in light of SaaS development.” In: Computing 96.8 (2014),
pp. 669–724. doi: 10.1007/s00607-013-0346-9.

[118] Hao Wang, Di Niu, and Baochun Li. “Distributed machine learning
with a serverless architecture.” In: IEEE INFOCOM 2019-IEEE Con-
ference on Computer Communications. IEEE. 2019, pp. 1288–1296. doi:
10.1109/INFOCOM.2019.8737391.

[119] Zhou Wei, Guillaume Pierre, and Chi-Hung Chi. “CloudTPS: Scal-
able transactions for Web applications in the cloud.” In: IEEE Trans-
actions on Services Computing 5.4 (2011), pp. 525–539. doi: 10.1109/
TSC.2011.18.

[120] He Zhang, Shanshan Li, Zijia Jia, Chenxing Zhong, and Cheng Zhang.
“Microservice architecture in reality: An industrial inquiry.” In: 2019
IEEE international conference on software architecture (ICSA). IEEE. 2019,
pp. 51–60. doi: 10.1109/ICSA.2019.00014.

https://doi.org/10.5220/0006798302210232
:
:
https://doi.org/10.1109/CONISOFT.2019.00034
https://doi.org/10.1145/3457608
https://doi.org/10.1145/2741948.2741975
https://doi.org/10.1145/2741948.2741975
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1007/s00607-013-0346-9
https://doi.org/10.1109/INFOCOM.2019.8737391
https://doi.org/10.1109/TSC.2011.18
https://doi.org/10.1109/TSC.2011.18
https://doi.org/10.1109/ICSA.2019.00014

bibliography 90

[121] Xi Zheng. “Database as a service-current issues and its future.” In:
arXiv preprint arXiv:1804.00465 (2018).

[122] Weiming Zhuang, Xin Gan, Yonggang Wen, and Shuai Zhang. “EasyFL:
A Low-code Federated Learning Platform For Dummies.” In: arXiv
preprint arXiv:2105.07603 (2021). doi: 10.1109/JIOT.2022.3143842.

[123] O Zimmermann. “Mircroservices tenets: Agile approach to service
development and deployment.” In: Proceedings of the Symposium/Sum-
mer School on Service-Oriented Computing. 2016. doi: 10.1007/s00450-
016-0337-0.

https://doi.org/10.1109/JIOT.2022.3143842
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Rationale
	1.2 Research Question
	1.3 Approach and Document Overview

	2 Literature Review
	2.1 CAP Theorem
	2.2 Databases
	2.3 Distributed Databases
	2.4 Cloud Native Applications
	2.5 Microservice Architecture
	2.6 CAP Theorem in Microservices Architecture
	2.7 Federated Learning Implementations
	2.8 Infrastructure Evaluation

	3 BranchKey Architecture
	3.1 Authenticator
	3.1.1 Functional Requirements
	3.1.2 Non-Functional Requirements

	3.2 File Uploader
	3.2.1 Functional Requirements
	3.2.2 Non-Functional Requirements

	3.3 File Downloader
	3.3.1 Functional Requirements
	3.3.2 Non-Functional Requirements

	4 Experimental Implementation
	4.1 Authenticator
	4.1.1 Experiment 1: Master/slave DB distribution
	4.1.2 Experiment 2: Server side caching

	4.2 File Uploader
	4.2.1 Experiment 1: Redis Master/Slave
	4.2.2 Experiment 2: Redis Cluster

	4.3 File Downloader
	4.3.1 Experiment 1: Data Replication
	4.3.2 Experiment 2: Data partitioning

	5 Evaluation
	5.1 Authenticator
	5.1.1 Current System
	5.1.2 Results from the experiments
	5.1.3 Evaluate the results and compare across relevant parameters

	5.2 File Uploader
	5.2.1 Current System
	5.2.2 Results from the experiments
	5.2.3 Evaluate the results and compare across relevant parameters

	5.3 File Downloader
	5.3.1 Current System
	5.3.2 Results from each experiments
	5.3.3 Evaluate the results and compare across relevant parameters

	5.4 Discussion

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Appendix
	A Requirement Analysis of Other BranchKey microservices
	A.1 Authoriser
	A.1.1 Functional Requirements
	A.1.2 Non-Functional Requirements

	A.2 API Gateway
	A.2.1 Functional Requirements
	A.2.2 Non-Functional Requirements

	A.3 Aggregation Task Creator
	A.3.1 Functional Requirements
	A.3.2 Non-Functional Requirements

	A.4 Central Aggregator
	A.4.1 Functional Requirements
	A.4.2 Non-Functional Requirements

	Bibliography

