
Mining architectural knowledge in issue tracking
systems

Said Faroghi

Supervisors: Dr. Mohamed Soliman, Prof. Paris Avgeriou

03 02 2022

Abstract

Recording and accessing architectural knowledge (AK) is not a trivial
task. A promising source of AK could reside in issue tracking systems, which
are platforms for developers to coordinate building software, and therefore it

is a hotspot for software-related discussions. We have evaluated two tools
that specialize in extracting AK issues, by annotating the generated issues
with architectural design decisions (ADD). We developed a coding book to

help the annotation process. Furthermore, we analyzed the issues to see how
their AK characteristics and other properties differ based on the tools they

came from.

1

Contents

1 Introduction 4
1.0.1 Proposed Solution . 4
1.0.2 Thesis Structure . 5

2 Background 6
2.1 Software Architecture and its Knowledge 6
2.2 Issues and Issue Tracking Software 6
2.3 Effectiveness Metrics . 7

2.3.1 Precision and Recall . 7
2.3.2 NDCG . 7
2.3.3 Issue Properties . 8
2.3.4 Architectural Design Decisions (ADD) 9

2.4 AK-Mining tools . 9

3 Related Work 10
3.1 Representation of Architectural Design Decisions 10
3.2 Retrospective Recovery of Architectural Design Decisions 11

3.2.1 Using issue tracking systems 11

4 Methodology 12
4.1 Issue collection strategy . 12

4.1.1 Top-Down Issue Collection . 12
4.1.2 Bottom-Up Issue Collection 13

4.2 Annotation . 13
4.2.1 Iterative annotation process 14
4.2.2 Number of issues . 14
4.2.3 Differences in the labeling process between the top-down and

the bottom-up approaches . 14
4.3 Measuring the effectiveness . 15

4.3.1 Precision . 15
4.3.2 NDCG . 15
4.3.3 Missed Parents . 15

4.4 ADD type distributions . 15
4.5 Issue Property Distributions . 16

5 Results 17
5.1 RQ1: Bottom up And Top Down Effectiveness 17

5.1.1 Precision Results . 17
5.1.2 NDCG Results . 19

2

5.1.3 Missed Parents Results . 21
5.2 RQ2: ADD Type distributions . 22
5.3 Issue Property Analysis Results . 25

5.3.1 RQ2: AK-Issues Only . 25
5.3.2 RQ3: AK-Issues vs. Non-AK-Issues Results 28

6 Discussion 30
6.1 How effective are top-down and bottom-up approaches in finding ar-

chitectural issues in issue tracking systems? 30
6.2 What are the differences in AK characteristics and issue properties

between the top-down and bottom-up approaches? 30
6.3 What are the differences in issue properties between AK issues and

non-AK issues? . 31
6.4 Threats to Validity . 31

7 Conclusion 32
7.0.1 Future Work . 32

A Code Book 36
A.1 General . 36

A.1.1 Recurring architectural changes 36
A.2 Existence Decisions (Ontocrisis) . 36

A.2.1 Design Specifications . 36
A.2.2 New Architectural Component(s) 37
A.2.3 Configuration descriptions . 37
A.2.4 Bans or Non-existence . 37

A.3 Property Decisions (Diacrises) . 37
A.4 Executive Decisions (Pericrises) . 38

B Search Queries 39
B.1 Decision Factors . 39
B.2 Reusable Solutions . 39
B.3 Components and Connectors . 40
B.4 Rationale . 40

3

Chapter 1

Introduction

A software’s architecture concerns elements and behavior at the highest level, provid-
ing the foundations upon which the software is implemented. Architectural design
decisions (ADD) usually happen early in a project’s life cycle, so bad decisions here
are costly. It takes a hefty amount of expertise to design and maintain a solution
as a software architect, especially since different business goals suggest using alter-
native design decisions. It usually boils down to the developer’s experience and all
the tacit knowledge they have acquired during their career to make these important
decisions. [1]

Unfortunately, pulling that knowledge out of the developer’s heads and into some
form of systematic documentation is rarely done. As a result, both the knowledge of
successful design decisions and failed ones will eventually be lost to time, and other
developers can repeat mistakes. There have been attempts to capture architectural
knowledge (AK), usually in the form of design decisions, to facilitate the reuse of the
knowledge in future solutions. AK management tools [2, 3, 4] can help re-usability
by providing features to organize and share AK. Work has also been done in trying
to recover AK from project artifacts like source code changes, issues, commit mes-
sages, mailing lists, as well as online software communities [5, 6, 7, 8].

The goal of this thesis is to provide valuable data regarding the collection of AK
from existing projects, in the form of: architectural issue data-sets, information on
the viability of new mining tools, and the documentation of how AK is represented
in issues.

1.0.1 Proposed Solution

First, we will evaluate the effectiveness of two tools that specialize in collecting ar-
chitectural issues from the Apache JIRA issue tracking system. The first tool uses
the top-down approach, which means it uses a search engine to find issues related
to the search terms. The second tool uses the bottom-up approach, which analyzes
source code changes and eventually links them to the issues that the changes are
related to. We annotate the resulting issues with the types of ADDs they contain.

Since we now have a dataset of annotated architectural issues, we check the distri-
butions of ADD types among these issues and compare them across the different
approaches. Additionally, various properties of the issues will be compared as well.

4

Furthermore, we can also compare issue properties among architectural issues and
non-architectural issues.

This research will answer the following research questions:

1. How effective are top-down and bottom-up approaches in finding architectural
issues in issue tracking systems?

2. What are the differences in architectural issue characteristics and issue properties
between the top-down and bottom-up approaches?

3. What are the differences in issue properties between architectural issues and
non-architectural issues?

1.0.2 Thesis Structure

In Chapter 2, the relevant background is defined: Software architecture, architec-
tural knowledge, issue tracking software. In Chapter 3, relevant literature is ex-
plored concerning the topic at hand: Existing ways to document/recover architec-
tural knowledge and complementary work to this paper. Chapter 4 reviews the
research process followed in other to arrive at our results. Chapter 5 displays the
results themselves with short explanations describing the data. Chapter 6 interprets
these results and discusses threats to validity. Chapter 7 concludes the paper and
explores future work.

Additionally, Appendix A provides the coding book developed and used to annotate
issues, and Appendix B lists the queries used for the search engine in the top-down
approach.

5

Chapter 2

Background

2.1 Software Architecture and its Knowledge

Software Architecture (SA) refers to the structure/organization of software com-
ponents and their behavior, which together create a solution meeting a set of business
requirements [9]. Architectural decisions are typically made early into a project’s
life cycle. They involve technology decisions (Should we use Java EE or ASP.NET?)
and high-level structural decisions; however, they are challenging to change retro-
spectively. The architecture is closely tied to the requirements it is trying to fulfill,
therefore making the correct choices at this level is necessary for a successful out-
come.

Many definitions of Architectural Knowledge (AK) have been stipulated in lit-
erature [10]. The same is true for SA; however, the intuition behind it is helped by
drawing comparisons to architecture in other domains such as network or building
[11]. For this study, we can conform to the following definition: AK is the archi-
tecture as well as the design decisions that lead to it [3]. It is a focused definition,
where its scope is related to how rigorously design decisions are captured and doc-
umented. Design decisions reveal the ”why?” of various parts of the architecture,
and documenting them can help build architectural knowledge management tools
[12] to support the architectural design process.

2.2 Issues and Issue Tracking Software

An issue in the context of software development is a request for improvement to
the current system, which could be adding a new feature, resolving a bug, among
others. Issue tracking systems are software solutions aimed at creating and man-
aging these issues in order to collaborate on projects efficiently and keep track of the
history of changes to issues. Issues can be tagged with priority, completion status,
development time estimations, and many other issue tracker specific information
that help organize and describe issues.

An important feature that many issue tracking systems offer is commenting and
starting threads on specific issues, which attracts discussions among developers and
even stakeholders, therefore being a potentially valuable resource for information
mining.

6

2.3 Effectiveness Metrics

In order to compare the performance of the top-down and bottom-up approaches,
a couple of promising metrics have been selected. In this section, these metrics are
explained in order to gain an understanding of how they will be used in this context,
and to make sense of the values outputted.

2.3.1 Precision and Recall

Precision is a metric that calculates the percentage of relevant instances returned
by some model. It is a useful metric to determine the quality of the results returned.
Within the results, there exist true positives (TF), and (false positives) (FP). True
positives are the relevant instances the model correctly assigns, and false positives
are instances where the model assigns as relevant but is not.

Precision =
TP

TP + FP

Recall is a metric that tells us what fraction of the total relevant instances are
returned.

Recall =
TP

TP + FN

where FN = false negatives, which are relevant values the model did not label as
relevant. TP + FN contain all the relevant values of the dataset.

2.3.2 NDCG

A metric designed to grade the quality of a search result is the Normalized Dis-
counted Cumulative Gain. To understand what it does, we can analyze how the
Discounted Cumulative Gain works and how it leads to the NDCG:

DCG(Q) =

p∑
i=1

rel(Qi)

log2(i + 1)

Where p is the rank position being evaluated, Q is the list of results, Qi is the result
at position i, and rel(Qi) is the result’s relevance.
An alternative formulation for DCG (let us call it DCGa) exists that emphasizes
results appearing higher up in the list:

DCGa(Q) =

p∑
i=1

2rel(Qi) − 1

log2(i + 1)

Because the log2(i+ 1) term smoothly gets more significant at each successive posi-
tion, it penalizes results appearing lower in the result list. But how do we tell what
a good DCG value is from a bad one?

One approach is to compare it to the results of the ideal query result. The ideal
query result I is the result set ordered by relevance. If we run the DCG on this list,
we get the Ideal DCG. Dividing the DCG by the ideal DCG will give us a value
between 0 and 1, with 1 being the best result possible. Hence we get the NDCG:

7

NDCG =
DCG(R)

DCG(I)

Where R is the original result list, and I is the ideal result list.

2.3.3 Issue Properties

Issues contain a description by the author and a comment thread associated with it.
However, there are many more properties associated with issues. Properties may be
fields themselves or a derived value from the fields. Here is the breakdown of how
different pieces of information from the issues are summarized and compared across
different sets of issues.

• Status - The status of an issue depicts the current state of the task, whether
it is done or in progress, et cetera. The number of occurrences of each status
type will be recorded.

• Resolution - This field depicts the specific outcome of an issue that has been
closed. An example resolution is ’Fixed’. The number of occurrences of each
resolution type will be recorded.

• Type - Examples include Feature or Bug. Sometimes the type is a sub-task.
It does not tell us much about the actual type, but because a sub-task is a
child of a parent issue, we instead grab the type from the parent issue. The
number of occurrences of each issues type will be recorded. If the issue is
a sub-task, we also record this fact to avoid losing information about which
issues are sub-tasks.

• Description Size - One way to extract some meaning out of this field is to
measure its size - the bigger it is, the more content it has. A good way to
measure the ’size’ is to involve some basic NLP - we count the number of
words after filtering the text of stop words since stop words are meaningless
when it comes to AK.

• Comments - Two meaningful pieces of information can be extracted from
the comment section. First, we can add up the number of comments in total
for each issue. Second, we can derive the average size of the comment section.
The size of each comment is calculated similarly to the size of the description
field and then averaged. Additionally, bots’ comments are filtered out not to
obfuscate the results.

• Attachments - Most issues come with attachments, which are just files. Any
type of files can be attached, but the most common file types are .patch, .txt,
.doc, .pdf. Patch files are just code changes, and some txt files are also code
changes, so we do not look at these. However, doc and pdf files may indicate
a larger, more involved issue. We do not analyze the contents of the files, but
just the number of them.

8

2.3.4 Architectural Design Decisions (ADD)

Presented in the paper Krutchten et al. [3] is the concept of ADDs - a way to
structure the rationale aspect of architectural knowledge. Important to this thesis
are 3 types of decisions:

• Existence - An element/artifact will exist in the system’s design or imple-
mentation. This entails the structure (modules, components, layers, et cetera)
and behaviour (the interaction between different structural entities). Also in-
cluded in this definition is the opposite: An element/artifact will not exist in
the system’s design or implementation.

• Property - A property decision states an enduring, overarching trait or quality
of the system. Perhaps a suitable way of representing a property decision
is when it is related to one or more quality attributes [9] like performance,
scalability, et cetera.

• Executive - Decisions related to the environment the project exists in, which
affects its development process - such as business requirements and the choice
of tools and technologies to use.

2.4 AK-Mining tools

Top-down approach: The Archedetector tool [13] is an optimized search engine
(powered by Lucene) over Jira issues and mailing lists, responsible for extracting ar-
chitecturally relevant data employing specific queries. It also contains faculties that
help navigate issues and annotate them.

Bottom-up approach: The source code analyzer tool [7] analyzes the commits
made to specific Jira projects and then assigns them a so-called A2A metric - a value
that is calculated by looking at the code changes in the commit and determining
to what degree these changes may be architectural. The commits are then linked
to the issue that the commit is a part of if the issue exists (some commits are not
related to specific issues). As a result, it is hoped that the issue has a higher chance
of containing AK. Positive A2A values indicate architectural relevance, and negative
values do not.

9

Chapter 3

Related Work

3.1 Representation of Architectural Design Deci-

sions

The problem that can arise when creating architectures is that the design decisions
used to drive the implementation are typically lost inside the architecture or oth-
erwise poorly documented. Jansen et al. [2] has tackled this problem by treating
software architecture as a set of design decisions. Knowledge vaporization (the loss
of AK over time) is reduced by representing design decisions as first-class entities
(objects containing explicit data such as problem statements, motivation, et cetera,
and a set of potential solutions), knowledge vaporization (the loss of AK over time) is
therefore reduced. In Jansen et al., the use of such a design decision model is exem-
plified by integrating it into an architectural meta-model that unites the architecture
model and the design decision model in order to express changes in functionality.

How may collecting a set of design decisions help create a so-called architectural
knowledge management tool? Kruchten et al. [14] exemplifies such an approach by
stating the attributes which are essential to a design decision (Epitome, Rationale,
Scope, Author, Time-stamp, History, State, Category(s)) and type of relationships
between design decisions. Furthermore, a list of actors (what kind of users will ben-
efit from AK) and use cases (to what purposes the AK will be used) is specified.
Finally, a visualization tool is presented, where the design decisions are topograph-
ically displayed in a cluster map based on the relationships between the decision
types and their statuses.

Zimmerman et al. [4] concluded that the design decision models presented in Jansen
et al. [2], Krutchten et al. [14], and other similar approaches had vagueness issues
and were not formalized enough. They then formalized the architectural decision
model in the mathematical paradigm - in terms of set theory, relations, integrity
constraints, production rules, and graph theory.

10

3.2 Retrospective Recovery of Architectural De-

sign Decisions

Applying the processes outlined in the section above during the project’s life-cycle
is an effective AK documentation tool that facilitates reuse. What about trying
to mine architectural resources based on existing data about the project (version-
control commits, issues, existing existing existing documentation, et cetera)? Out-
lined next are some attempts of this in the relevant literature.

A study by Shahbazian et al. [5] developed a tool to try and recover design decisions
using a project’s version control commits and mapping them to issues, alongside re-
covering entire architectures on different versions/releases and analyzing the changes
between them. It is a lossy analysis (not all relevant decisions are captured), but
the tool still averaged a recall of 75% and precision of 77%, which is (put colloqui-
ally) not bad! This tool could also be applied during the life-cycle of the project in
iterative steps, providing a helpful source of auto-documentation.

3.2.1 Using issue tracking systems

Because issues may contain a relatively large amount of knowledge [15], the focus of
many studies has been spent analyzing issue tracking systems. For example, Bhat
et al. [6] has approached the situation via machine learning. A supervised classifi-
cation model has been trained on 1500 correctly labeled issues and used to classify
novel issues, with good results.

A collection of recent student papers have explored architectural knowledge in the
Jira issue tracking system. In A. Fydorov [16], issues were linked together by the
relevance of their discussions, and explored ways of pooling the knowledge from dif-
ferent sources into one place, providing a useful way to extract architectural knowl-
edge from. Additionally, a software tool was developed to link the issues inside a
project. In A.Dekker [17], another tool was developed which fetches commits that
contain changes in a project’s dependencies, and links them to issues, with the goal
of documenting the architectural knowledge concepts present in the issues. In T.
Boon [13], the different types of architectural design decisions was explored in both
Jira and mailing lists, by developing a searching tool that helps find and label these
resources with the appropriate decision type (further explained in the background).

An exploratory study by Soliman et al. [7] defines AK concepts and documents their
appearance in Jira issues. A coding book was developed, which contains guidelines
on identifying AK concepts in the text of the issues. A source code analyzer was
made as an effort to identify relevant architectural changes and link them to issues
(further explained in the background). The study focuses on examining the rep-
resentation of AK concepts, the frequency of appearance of each AK concept, and
which AK concepts tend to occur together.

11

Chapter 4

Methodology

Figure 4.1: Research process diagram

4.1 Issue collection strategy

Jira was selected as the source of issues because previous research in AK-mining
has used this issue tracking system with success [7], due to its repository of large
projects producing many issues to analyze.

4.1.1 Top-Down Issue Collection

To collect top-down issues, a tool called the Archedetector [13] was used. The soft-
ware collects issues from specified Jira projects, and then a Lucene-powered searcher
in the Archedetector filters the results and orders them by the significance related

12

to the search query used.

The list of Jira projects that were selected to be analyzed are HDFS, Mapreduce,
Tajo, Cassandra, Yarn, Common. All of these projects (except Cassandra) are
sub-projects stemming from the larger project Hadoop. This collection of projects
provided a sufficient issue repository for the searcher to index.

We ran the Lucene searcher with four different queries - Decision Factors, Reusable
Solutions, Components and Connectors, Rationale (Appendix B). Each query
provided a dataset of issues to annotate on. The queries contain vocabulary that
have a high chance of appearing in text containing AK. The contents of an issue that
the searcher applies the query to consist of the issue description and the comments
attached to the issue. The number of terms from the query matched to the contents
of the issue is positively correlated to its final ranking: more terms, higher ranking,
and presumably the more AK-related the issue is.

4.1.2 Bottom-Up Issue Collection

The source code analyzer tool [7] was used to collect bottom-up issues. Running this
tool is not part of the process - we started with a ranked list of commits containing
the output of this tool along with various data on each commit. The essential data
is the commit’s issue and the commit’s A2A metric. After filtering, we got a list of
issues ordered by its commit with the highest A2A metric.

4.2 Annotation

Once we collected the set of issues as described above, we began the annotating
process. The first decision taken is: what kind of annotation tags do we settle on?
In the works of Kruchten et al [3], we have four main definitions: Existence De-
cisions, Bans or Non-existence Decisions, Property Decisions, Executive
Decisions. We have decided to use three definitions as tags: Existence, Property,
Executive, with the fourth definition (Bans) acting as a sub-definition of Existence.

A Coding Book (Appendix A) has been written and updated during the annotation
process to record the labeling process systematically. It helps the annotating process
improve over time. Future annotators can also use the coding book as a manual. It
gives a short definition of each ADD type and how to identify them in an issue.

Two extra tags not related to the type of AK were also added to the set of possible
tags: One tag if the issue was present in the top-down collection of issues, and an-
other tag if the issue was present in the bottom-up collection of issues.

The text most focused on for the source of AK is the descriptions of the issues. It
was done for two reasons: As a time saver (since some comment chains are long),
and also because, in many cases, the range of topics discussed in the comments
may be too broad to narrow down details about the potential AK discussed reliably.
One exception to this rule: sometimes the description is part of the first comment,

13

authored by the publisher of the issue. In that case, we took that comment into
account when annotating.

4.2.1 Iterative annotation process

The goal was to annotate a certain number of top-ranked issues in the bottom-up
and top-down results. But we did not know how many issues to annotate before-
hand, so it was done in an iterative fashion. It was decided that if further iterations
will not yield significantly more architectural issues, then the annotation process
should stop. What ended up happening is that the densities of architectural issues
(especially for the top-down, as seen in the Results section) remained high, so we
stopped annotating when we decided that enough architectural issues were collected.

In the case of the top-down annotations, the iteration process went like so: Top
50 for each query, top 150 for each query, top 250 for each query, top 400 for each
query, top 600 for each query. Within some of these iterations, updates have been
made to the ADDs of some issues too, because the knowledge of how to label the
issues have increased over time, hence allowing previous annotations to be fixed in
later iterations.

The bottom up was only iterated on twice - the first time, we annotated the same
number of issues as the top-down, but was decided that this yielded too little archi-
tectural issues compared to the top-down so in the second iteration we annotated
further.

4.2.2 Number of issues

During the annotation process of the top-down results, the top 600 results returned
by the Archedetector searcher have been annotated successfully. However, this does
not translate to 600*4 = 2400 unique issues because there is an overlap of issues
returned by the queries. The total amount of unique issues annotated is 1062.

During the annotation process of the bottom-up results, the top 1600 results have
been successfully annotated.

4.2.3 Differences in the labeling process between the top-
down and the bottom-up approaches

The two batches of data come from different software solutions, and the output
formats are different. They yield a slightly different labeling process for each:

• Top-Down - The Archedetector itself has an interface to browse issues, de-
fine tags and add them to issues, which then get stored into its PostgreSQL
database.

• Bottom-Up - The issues were labeled inside the excel sheet itself. However,
this was not the only operation done - we also wanted a way to save these
values into the Archedetector Database. For this, the labeling was performed
twice per issue - first on the excel sheet, then on the Archedetector.

14

4.3 Measuring the effectiveness

After collecting and annotating issues, we had two sets of data: A collection of
labeled top-down issues and another collection of labeled bottom-up issues. In order
to calculate the AK-retrieval effectiveness, two suitable metrics were chosen. Using
these metrics, we can answer Research Question 1.

4.3.1 Precision

Issues that contain AK were counted as positive instances for any particular output
generated by the search query for the top-down method and the A2A ordered output
of the bottom-up method. Let AK = issues containing AK. Then:

Precision =
AK

AK + ¬AK
We evaluated the precision of the returned results at each rank until a maximum
rank. This is called precision at n. The calculation stays the same, except for each
rank n, AK + ¬AK contains all the issues until n.

Recall is a metric that could have been useful, but unfortunately, we have no way of
knowing how many total AK issues there are - the dataset of issues is too big to go
through all issues. One can potentially use this metric on a smaller subset of issues
with a known amount of positive instances, but that is not within the scope of this
research.

4.3.2 NDCG

The relevance was chosen to be 1 for an AK issue or 0, so it is a binary value.
Because the log2(i + 1) term smoothly gets larger at each successive position, the
overall contribution of each relevant AK issue strictly gets smaller.

As with precision, the NDCG at n was evaluated. In order to determine what the
IDCG is for each rank n, the results until n were sorted by relevance.

4.3.3 Missed Parents

While not an effectiveness metric, we still wanted to know how well the methods
are at finding the parents of issues that are marked as sub-tasks.

There can be cases where we have an issue containing AK, but it is a sub-task issue,
meaning that it has a parent issue. Furthermore, the analysis methods never caught
the parent of the issue. We checked every labelled issue’s parents and recorded
whether they were already previously found or not

4.4 ADD type distributions

We have dealt with issues that either contain AK or do not contain AK. We also
checked how the distribution of ADD in AK issues differs across different queries in

15

the top-down and bottom-up approaches. For this goal, the analysis was straight-
forward. We collected the total amount of Existence, Property, and Executive tags
used for each list of results and then compared them.

There were many instances where issues are labeled with more than one tag. For this
purpose, we checked distributions of all the tag combinations possible for each list
of results and then compared them. Additionally, the same Precision and NDCG
analysis performed on the whole data was performed on specific ADDs. We also
analyzed the distribution of ADDs across specific projects.

Comparing the distribution of ADDs in the issues across the top-down and bottom-
up methods will answer Research Question 2.

4.5 Issue Property Distributions

In order to get some more answers for Research Question 2, we made three sets
of data - top-down-only, intersected, and bottom-up-only. The contents are self-
explanatory: the first set deals with issues only present in the top-down analysis,
the last set deals with all the issues only present in the bottom-up analysis, and
the middle set are the issues present in both. The issue properties described in the
background section were then compared across these different sets of issues.

Next, we would like to try and answer Research Question 3. For this purpose,
we made two sets: AK issues and non-AK issues, from both the bottom-up and
top-down approaches. The property analysis was ran and a comparison was made
between these sets.

16

Chapter 5

Results

5.1 RQ1: Bottom up And Top Down Effective-

ness

5.1.1 Precision Results

Figure 5.1: Precision at k for the top 600 results of each top-down
query and the top 1600 results for the bottom up results

In Fig 5.1, a violent variation of precision occurs for all result sets, with a quick
stabilization into a gradual decline as k increases. First, let us understand why the
precision values evolve the way they do. When k is very low, the data is jagged and
violently shifting directions. It is because new entries are affecting the precision by
a large magnitude. At larger k values, every new contribution minimizes, smoothing
out the line.

All top-down queries perform similarly well, but the precision of the bottom-up
issues is much lower. This likely happens because a lot of the commits have a high

17

A2A metric despite lacking in architectural changes, and this occurs in cases where
a simple operation like renaming a variable occurs over a large portion of the code.

Figure 5.2: Same setup as Fig. 5.1, only counting the issues with
an Existence tag

In Fig 5.2, we see the same patterns as 5.1, but with one difference: The queries
of the top-down results start stabilizing with a significantly different value (with
Components and Connectors starting with a higher value, and Rationale starting
with a lower value) before eventually converging, where they remain at roughly the
same (slight) difference of precision. Because of the definition of the Existence ADD,
it makes sense why the Components and Connectors is high performing early on -
this search query contains terms related to structural elements of the architecture,
while Rationale does not.

Figure 5.3: Same setup as Fig. 5.1, only counting the issues with a
Property tag

18

In Fig 5.3, we see a similar progression of precision to the figures compared to Fig
5.1 and 5.2, but with a notably lower overall precision for all data.

Figure 5.4: Same setup as Fig. 5.1, only counting the issues with
an executive tag

Here we see record low precision values. A notable feature is that the bottom-up
precision stabilizes much closer to the precision of the queries.

5.1.2 NDCG Results

Figure 5.5: Precision at k for the top 600 results of each top-down
query and the top 1600 results for the bottom up results

19

In Fig 5.5, the NDCG of the top-down stabilizes at quite a high value compared to
the bottom up. Although the Rationale query seems to lag a little behind the other
three queries. This is because the NDCG is very sensitive to the first few results
at the top of the list, and the Rationale query happens to have fewer architectural
issues at the very top compared to the other queries.

Figure 5.6: Same setup as Fig. 5.5, only counting the issues with
an Existence tag

Fig 5.6 looks strikingly similar to figure 5.5, with maybe ever so slightly lower NDCG
values across the board.

Figure 5.7: Same setup as Fig. 5.5, only counting the issues with a
Property tag

In Fig 5.7, we see more lowering of the NDCG values and a small but not very

20

significant spread on the NDCG of the top-down queries.

Figure 5.8: Same setup as Fig. 5.1, only counting the issues with
an Executive tag

Somewhat unsurprisingly, Fig 5.8 displays the lowest NDCG scores. Here we also
see the same pattern occur as with the precision graph of the same tag (Fig 5.4),
where the bottom-up scores get relatively closer to the scores of the queries.

5.1.3 Missed Parents Results

(a) Top-down and bottom-up inclusive (b) Top-down and bottom-up separate

Figure 5.9

Fig5.9 (a) is pretty straightforward: for every AK-positive issue’s parent analyzed,
there is a higher chance that it has not been found by either method.

21

Fig 5.9 (b) shows that the top-down method classifies fewer new parents than the
bottom-up.

The bottom-up seems to do much worse at finding parents. This is because code
committed is not usually linked to parent issues, but instead to the parent’s subtask
issues. The parent issue is mostly responsible for managing the task at a higher
level.

5.2 RQ2: ADD Type distributions

It is important to note that for this analysis, the amount of bottom-up issues that
are checked has been limited to 1200 in order to roughly match the amount of AK
issues found in the top 600 of each query.

Figure 5.10: The distribution of ADDs found for each query for
the top down issues with the bottom up issues alongside. CAC:
Components and Connectors, DF: Decision Factors, R: Rationale,
RS: Resusable Solutions

In Fig 5.10, there are similar parallels to the general number of each tag present
when compared to the precision results in the previous section. There are relatively
similar proportions of ADDs for each query in the top-down result set. Existence
ADDs are predominant, followed by the less common property ADDs, which is then
followed by the least common executive ADDs. These results are consistent with the
fact that the issue tracking system is mostly used by developers creating project-
building tasks, and that means an overall focus on the structural and behavioural
elements added or removed from the project, while executive ADDs like business
decisions are usually kept out of this system, with the exception of third party soft-
ware discussions.

The bottom-up set is distributed similarly but not quite the same - the amount of
existence ADDs are also large, but the property and executive ADDs are roughly

22

the same in number relative to each other. Relative to the top-down queries, there
are less bottom-up property ADDs found and slightly more executive ADDs.

Figure 5.11: The distribution all the combinations of ADDs found
for each query for the top down issues and bottom up issues

In Fig 5.11, we see that the existence ADD once again predominates, primarily by
itself, but also co-occurring with property a significant amount of times compared
to the other combinations. Issues containing all three ADDs are very scarce. The
reasoning for these distributions mirrors the ones shown in the previous figure, but
with a few differences: there is a decent proportions of results with the existence,
property combination, and very few with the property, executive combination. This
is likely because most issues suggest structural and behavioural changes as a solution,
so property/executive-focused tasks are no exception to this.

23

(a) (b)

(c) (d)

(e) (f)

Figure 5.12: Project specific distributions of ADDs

For project-specifc ADDs in Fig 5.12, we summarize some notable details:

• the rationale query has the fewest ADDs compared to the other top-down
queries, except for CASSANDRA, where it has the most.

• The YARN project has an even larger tendency for existence ADDs compared
to the other ones.

• The bottom-up ADDs have significant variations of total ADDs compared to
the top-down ADDs. The most extreme difference is present in TAJO, where
the top-down found almost no issues but are much more common in bottom-
up.

24

• The total number of ADDs across all top-down and bottom-up approaches
for each project is shown to be varying a lot, with projects like TAJO and
MAPREDUCE containing much fewer issues with ADDs compared to the
other projects.

The reasons as to why these variations occur is uniquely project-specific.

5.3 Issue Property Analysis Results

5.3.1 RQ2: AK-Issues Only

First, we look at the results we obtained when we compare AK issues from the
bottom up against the top down. The number of AK issues unique to top-down is
388, unique to bottom-up is 409, and present in both is 122.

(a) (b)

(c) (d)

Figure 5.13

Fig 5.13 shows us the percentage of issues of a particular value for each subset of
AK issues created. Percentages, rather than frequency, were chosen for this graphic
because a fraction of the total issues better represents how dense the issues are with

25

a specific property when each set contains an unequal amount of issues.

Fig 5.13 (a) shows us that most of the issues from both sets are not a sub-task. This
difference is emphasized a little stronger for top-down issues compared to bottom-up
issues.

Fig 5.13 (b) has some peculiar details - while there are not any significant differ-
ences between the top-down and the bottom-up sets, the intersected sets behave less
predictably. Apparently, if the issue appears in the intersected set, it has a higher
chance of being a new feature than the top-down only or the bottom-up only. For
improvements, the reverse is true. The reasoning for this is not obvious, but its an
interesting result nonetheless.

Fig 5.13 (c) reveals a significant difference between the bottom-up and the top-down
approaches. Almost all of the bottom-up issues are marked as ’Fixed’, while only
over half of the top down issues are fixed. All the other property values present also
indicate that the relevant changes are not/will not get implemented for top-down
issues. This is likely because top down issues does not care whether issues have
actually been completed or not, while bottom-up issues are extracted from code
changes, which means that the issue has already been worked on.

Fig 5.13 (d) follows a similar narrative to (c) - unfinished top-down issues. Almost
only top-down issues exist as ”patch available” and ”open”, in addition to slightly
fewer issues being closed and resolved compared to bottom-up.

26

(a) (b)

(c) (d)

Figure 5.14

Fig 5.14 (a) shows a difference in the length of the description size: top-down issues
have a longer description size on average. The average comment size of Fig 5.14 (b)
also follows this trend with a greater degree of difference. Fig 5.14 (c) presents a
peculiar behavior inspired by Fig 5.13 (b), and Fig 5.14 (d) shows that there typi-
cally are no relevant attachments in all of the sets except maybe a few sometimes.

The presence of longer text in the top-down issues are likely because with longer
texts comes more frequent occurrences of the search terms used in the query, and
therefore becomes a more relevant result. The bottom-up only ranks the architec-
tural relevance from the degree of code changes committed.

We can also note that the shape of the plots tends to have long upper whiskers and
many outliers.

27

5.3.2 RQ3: AK-Issues vs. Non-AK-Issues Results

Now we make two sets: A set of all AK-issues and a set of all non-AK issues. It
turns out that there are 919 AK-issues and 1551 non-AK-issues. Now we check how
the issue properties differ among the two sets:

(a) (b)

(c) (d)

Figure 5.15

Fig 5.15 is similar to Fig 5.12, but now all the AK issues (formerly divided into top-
down, intersected, and bottom-up) are added together and condensed into a stacked
chart. The same thing has been done to non-AK-issues. The property values are
also expressed as a percentage of the total issues in that set.

In Fig 5.15 (a), we can see AK Issues are less likely to be represented as subtasks.
This is an expected result because sub-tasks are intuitively ’smaller’ than non-sub-
tasks.

The key differences in Fig 5.15 (b) seem to be that AK Issues consist of fewer bugs
and more new features than non-AK. Bugs are usually not architecturally related,
but rather specific code related, and new features typically involve new component(s)
which are architecturally relevant.

28

In Fig 5.15 (c), the differences are slight, but a smaller percentage of AK Issues
are considered fixed, and the non-finished states (None, Duplicate, Won’t fix) are
modestly increased. This makes sense because non-AK issues contain smaller tasks
that are more quickly resolved.

Finally, we have Fig 5.15 (d), where there are no significant differences except for a
larger number of open AK issues.

(a) (b)

(c) (d)

Figure 5.16

Fig 5.16 (a) shows a slight preference to a larger amount of total comments for AK
issues, but they are not all that different, mean-wise and distribution-wise. Fig 5.16
(b) tells a similar story to Fig 5.14 (d).

Fig 5.16 (c) and (d) can immediately appear anomalous at first glance: In (c), the
most distant outlier of the AK issue description size lies comfortably inside the upper
whisker of the non-AK distribution. In (d), the most distant outlier lies within the
mean of the titan set. This striking result is most likely because issues that contain
massive stack-traces copy pasted into them are usually not architecturally relevant.
These stack traces inflate the size of the text greatly.

29

Chapter 6

Discussion

6.1 How effective are top-down and bottom-up

approaches in finding architectural issues in

issue tracking systems?

Implication for practitioners: Comparing the average performance of the top-
down query results to the bottom-up issues shows that the bottom-up issues perform
consistently worse in all cases when it comes to the percentage of architectural is-
sues. However, revealed in section 5.3.1 is the fact that the majority of bottom-up
issues found are not present in the top-down approach. This is a useful result be-
cause users are presented with the possibility of using both top-down and bottom-up
approaches to maximize issue AK output.

Implication for researchers: Because the search engine looks effective, researches
could look into building alternative queries for it and testing out its resulting perfor-
mances. As for the bottom-up, finding ways to eliminate false-positives (code that
looks architectural but isn’t) could also be beneficial because of the bottom-up’s
ability to find architectural issues that the top-down misses.

6.2 What are the differences in AK character-

istics and issue properties between the top-

down and bottom-up approaches?

Implication for practitioners: In both of the approaches, we have the fact that
the existence occurs the most, followed by property, and then by executive. This
means that users can use this particular issue tracking system in order to find many
executive ADDs. As for deciding which approach to use, the differences in issue
properties could be used as a deciding factor: For example, almost all bottom-up
issues found are fixed/resolved, while many top down issues are still open or even
rejected.

Implication for researchers: The distribution of ADDs in specific projects are
shown to be slightly different in most cases. It would probably be useful to look into

30

more projects and see how they vary, and potentially check if any specific attributes
of the projects contain indicators of what ADDs the project’s issues contain.

6.3 What are the differences in issue properties

between AK issues and non-AK issues?

Implication for practitioners: Because there are a few differences in properties
between these two sets of issues, users can use these statistics to increase the chances
of confirming that any particular issue is architectural, like if the issue type is not a
bug, or the issue type is a new feature.

Implication for researchers: While the majority of the results indicated is not of
a degree whether further research might contribute more useful data, there is an area
of improvement to work on: because the description/comment sizes is so drastically
affected by useless information like stack-traces, a better method of calculating these
statistics could be explored.

6.4 Threats to Validity

All the results derived in this study depend on an accurately labeled set of issues.
Labeling a large number of issues can be error-prone for a single person due to
different biases and/or understandings of what ADDs to look out for and at what
point issues are decided to have relevant AK in them, but with the guidance of the
supervisor of the project, along with a large sample of data collected, the existing
inaccuracies should be minor.

An external threat to validity is most likely the source of the data: a subset of
projects in Apache JIRA. Things might be different in other issue tracking software,
and we cannot be sure how effective the analysis methods explored here will be in
a different issue tracker with different projects.

Another threat is present with the usage of the tools themselves: While the queries
used seem to be effective, there are no guarantees that better ones do not exist. Addi-
tionally, the bottom-up’s calculation of the A2A metric could also contain problems
that could be improved upon. In order to more accurately determine which of the
approaches are more effective, we likely need a collection of tools for both the top
down, and the bottom up, and aggregate the results of their usage, or isolate the
top-performing ones.

31

Chapter 7

Conclusion

This exploratory study aims to research two different approaches in which we can ac-
quire architectural knowledge from issue tracking systems, the effectiveness of these
approaches, and then use the collected data to gather information about the AK
features of these collected issues to learn better how AK is represented in such issue
tracking systems.

First, 1062 issues were classified from the top-down approach, and 1600 were classi-
fied in the bottom-up approach. It contributes a valuable dataset of issues that can
be used in other works to further this line of study.

The effectiveness of the top-down approach of using a search engine to find issues
with AK has been determined to be high. However, this was done with a carefully
constructed set of queries, so the performance of this method depends on the quality
of the query used. The bottom-up approach did not match the effectiveness of the
top-down by itself, but a good fraction of issues it did detect were unique from the
AK issues in the top-down approach, including from which projects they originated
from in some cases.

Analysis of the AK-characteristics and properties of the issues outputted from the
top-down and bottom-up approaches reveal differences in the data that can mostly
be reasoned about due to the mechanics of how each approach collects issues, there-
fore knowledge is gained on how to better collect specific types of issues.

7.0.1 Future Work

The somewhat disjointed set of AK issues that both issue collection approaches pro-
duced suggests that evaluating how effective using both approaches can be is a valid
research path to take from here.

The methodology applied in this paper can be tested on issues coming from other
projects or issue tracking software to understand how generalized these results are
across a larger domain.

Future annotation efforts could include the time spent labeling x amount of issues.
This detail was not recorded in this project, but this measurement could help pre-

32

dict how long the annotation process would take.

The accuracy and speed of the labeling process can be improved. Multiple people
could be involved in the labeling process. At a larger scale, a web application
could be designed that provides tools (bottom-up and/or top-down) to collect issues
from issue tracking systems and functionalities that let multiple users tag issues
with ADDs under the instruction of a coding book. It leads to each issue having a
distribution of possible ADDs. This solution could statistically increase the accuracy
of the labeling process and increase the raw amount of issues labeled per unit of time.
Even larger and more accurate datasets could be produced in this way.

33

Bibliography

[1] LS Schrijver. “Research in architecture : hard science or tacit knowledge?”
Undefined/Unknown. In: Doctoral education in schools of architecture across
Europe. Ed. by M Voyatzaki. ENHSA, 2014, pp. 72–75. isbn: 978-960-9502-
15-3.

[2] A. Jansen and J. Bosch. “Software Architecture as a Set of Architectural
Design Decisions”. In: 5th Working IEEE/IFIP Conference on Software Ar-
chitecture (WICSA’05). 2005, pp. 109–120. doi: 10.1109/WICSA.2005.61.

[3] Philippe Kruchten, Patricia Lago, and Hans Vliet. “Building Up and Rea-
soning About Architectural Knowledge”. In: vol. 4214. Dec. 2006, pp. 43–58.
isbn: 978-3-540-48819-4. doi: 10.1007/11921998_8.

[4] Olaf Zimmermann et al. “Managing architectural decision models with depen-
dency relations, integrity constraints, and production rules”. In: Journal of
Systems and Software 82.8 (2009). SI: Architectural Decisions and Rationale,
pp. 1249–1267. issn: 0164-1212. doi: https://doi.org/10.1016/j.jss.
2009.01.039. url: https://www.sciencedirect.com/science/article/
pii/S0164121209000181.

[5] Arman Shahbazian et al. “Recovering Architectural Design Decisions”. In:
2018 IEEE International Conference on Software Architecture (ICSA). 2018,
pp. 95–9509. doi: 10.1109/ICSA.2018.00019.

[6] Manoj Bhat et al. “Automatic Extraction of Design Decisions from Issue
Management Systems: A Machine Learning Based Approach”. In: Software
Architecture. Ed. by Antónia Lopes and Rogério de Lemos. Cham: Springer
International Publishing, 2017, pp. 138–154. isbn: 978-3-319-65831-5.

[7] Mohamed Soliman, Matthias Galster, and Paris Avgeriou. An Exploratory
Study on Architectural Knowledge in Issue Tracking Systems. 2021. arXiv:
2106.11140 [cs.SE].

[8] Mohamed Soliman et al. “Improving the Search for Architecture Knowledge
in Online Developer Communities”. In: 2018 IEEE International Conference
on Software Architecture (ICSA). 2018, pp. 186–18609. doi: 10.1109/ICSA.
2018.00028.

[9] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. SEI
series in software engineering. Addison-Wesley, 2003. isbn: 9780321154958.
url: http://books.google.fi/books?id=mdiIu8Kk1WMC.

34

[10] Remco C. de Boer and Rik Farenhorst. “In Search of ‘architectural Knowl-
edge’”. In: Proceedings of the 3rd International Workshop on Sharing and
Reusing Architectural Knowledge. SHARK ’08. Leipzig, Germany: Associa-
tion for Computing Machinery, 2008, pp. 71–78. isbn: 9781605580388. doi:
10.1145/1370062.1370080. url: https://doi-org.proxy-ub.rug.nl/10.
1145/1370062.1370080.

[11] Dewayne E. Perry and Alexander L. Wolf. “Foundations for the Study of
Software Architecture”. In: SIGSOFT Softw. Eng. Notes 17.4 (Oct. 1992),
pp. 40–52. issn: 0163-5948. doi: 10.1145/141874.141884. url: https:

//doi.org/10.1145/141874.141884.

[12] Antony Tang et al. “A comparative study of architecture knowledge man-
agement tools”. In: Journal of Systems and Software 83.3 (2010), pp. 352–
370. issn: 0164-1212. doi: https://doi.org/10.1016/j.jss.2009.08.
032. url: https : / / www . sciencedirect . com / science / article / pii /

S0164121209002295.

[13] Exploring the effectiveness of search engines for finding architectural knowledge
in open source repositories. https : / / fse . studenttheses . ub . rug . nl /

25813/. Accessed: 2020-09-22.

[14] Philippe Kruchten, Patricia Lago, and Hans Vliet. “Building Up and Rea-
soning About Architectural Knowledge”. In: vol. 4214. Dec. 2006, pp. 43–58.
isbn: 978-3-540-48819-4. doi: 10.1007/11921998_8.

[15] Shinobu Saito et al. “How Much Undocumented Knowledge is there in Agile
Software Development?: Case Study on Industrial Project Using Issue Track-
ing System and Version Control System”. In: 2017 IEEE 25th International
Requirements Engineering Conference (RE). 2017, pp. 194–203. doi: 10.1109/
RE.2017.33.

[16] Alexander Fyodorov. “Connecting Discussions within Issue Tracking Systems”.
PhD thesis. 2020.

[17] Arjan Dekker. “Exploring Technology Design Decisions in Issue Tracking Sys-
tems”. PhD thesis. 2021.

35

Appendix A

Code Book

A.1 General

A.1.1 Recurring architectural changes

While annotating, sometimes one may come across a type of architectural design
decision with repeated elements, therefore making a decision on an annotation can
be faster if such a change is encountered repeatedly. Examples:

• So the proposal for this ticket is to move the LRU cache logic completely
off heap (CASSANDRA-7438)

In the above examples, the decision template is: ”Move {component} off-heap”. In
the context of the project(s) we are currently annotating, Java is used, and therefore
its virtual machine, JVM. This decision template therefore applies to this technology,
so some decision templates are project-specific.

A.2 Existence Decisions (Ontocrisis)

Existence decisions can be split into two categories: Behavioural and Structural.
However, further dissection of the content in issue descriptions shows that it is
usually hard to separate issues in terms of structure and behaviour - they both are
relevant; discussions of structure is impractical without behaviour, and vice versa.
Therefore existence decisions are considered as a whole.

A.2.1 Design Specifications

The issue description is structured into different categories similar to how a design
document would be specified - problem, solution, rationale, feature list, pros and
cons, etc. This is indicative of a new component/system, or a change of an existing
component/system, that is of high impact. Examples:

• The goals, The mechanism, Nice-to-haves, Format and Consump-
tion, Alternate approach, Additional consumption possibility (CASSANDRA-
8844)

• Introduction, Problem statement, Proposal (HADOOP-7939)

36

A.2.2 New Architectural Component(s)

Pieces of text suggesting the addition of a new architectural component, or possibil-
ity a set of architectural components. Components can be anything from individual
classes (if impactful enough), to entire software solutions used in the project. Ex-
amples:

• ”This jira provides a new block layer, Hadoop Distributed Storage Layer
(HDSL)” (HDFS-7240)

• ”Below are the key requirements for a Resource Manager for Hadoop”
(HADOOP-3421)

A.2.3 Configuration descriptions

Oftentimes, a named component is not provided as the proposal, but instead we have
various keywords and sentence structure that indicate an existential change worthy
enough to qualify as an existential design decision. Examples (red: structure, blue:
behaviour):

• ”Service-level authorization is the initial checking done by a Hadoop service
to find out if a connecting client is a pre-defined user of that service. If not,
the connection or service request will be declined.”

• ”Datanodes should actively manage their local disk so operator intervention
is not needed.” (HDFS-1312)

A.2.4 Bans or Non-existence

Bans are a subtype of an existence decision, so we won’t include it as a separate de-
cision. Descriptions of elements and/or behavior that shall not appear, or otherwise
not allowed to do certain things, are thought of as bans. Examples:

• The Hadoop KMS implementation will not provide additional ACL to access
encrypted files. (HADOOP-10433)

A.3 Property Decisions (Diacrises)

Property decisions are best identified by the appearance of text relating to quality
attributes (see part two of bass et al [9]) Examples:

• ”More-efficient ExecutorService for improved throughput” [Performance QA]
(CASSANDRA-4718)

• ”Job state needs to be persisted (RM restarts should not cause jobs to die)”
[Availability QA] (HADOOP-3421)

• ”This the top jira for webapp security. A design doc/notes of threat-modeling
and counter measures will be posted on the wiki.” [Security QA] (MAPREDUCE-
2858)

37

A useful indicator of where such quality attributes may appear is sections of the
issue description discussing the rationale/pros/cons of the changes.

Another way a property decision might be inferred is when the discussion point is
correlated with an obvious modification to a quality attribute, but such properties
aren’t explicitly mentioned. Examples:

• ”We will implement a common token based authentication framework” [Secu-
rity QA] (HADOOP-9392)

• ”we need a cache implementation that uses an eviction algorithm that can bet-
ter handle non-recurring accesses.” [Performance QA] (CASSANDRA-11452)

A.4 Executive Decisions (Pericrises)

Executive decisions involve dealing with issues at the business/enterprise level.
Things like process decisions relating to meeting requirements or the addition of
libraries/frameworks. Executive decisions are originally split into three further sub-
categories: process, tool, technology. But we don’t find it necessary to distinguish
between these, as we have found that there aren’t many Executive decisions anyway,
and including further resolution in the definition does not help the research process
significantly. Examples:

• ”The resulting implementation should be able to be used in compliance with
different regulation requirements.” (HDFS-6134)

• ”This JIRA is to include a library in common which adds a o.a.h.net.unix
package based on the code from Android (apache 2 license)” (HADOOP-6311)

38

Appendix B

Search Queries

B.1 Decision Factors

ac to r ∗ ava i l ab ∗ budget∗ bus in e s s case ∗ c l i e n t ∗ concern ∗
conform∗ c o n s i s t e n ∗ c o n s t r a i n t ∗ context ∗ co s t ∗ coupl ∗
customer∗ domain∗ d r i v e r ∗ e f f o r t ∗ e n t e r p r i s e ∗ environment
∗ expe r i ence ∗ f a c t o r ∗ f o r c e ∗ f unc t i on ∗ goa l ∗ i n t e g r i t y
in t e rop ∗ i s s u e ∗ l a t e n c ∗ maintain ∗ manage∗ market∗
modif iab ∗ o b j e c t i v e ∗ o r ga n i z a t i on ∗ performance ∗ portab ∗
problem∗ purpose ∗ q u a l i t ∗ r e l i a b ∗ requirement ∗ reus ∗ s a f e
∗ s c a l ∗ s c e n a r i o ∗ s ecur ∗ s t akeho lde r ∗ t e s tab ∗ throughput∗

usab∗ user ∗ v a r i a b i l i t y l i m i t ∗ time cohes ion e f f i c i e n ∗
bandwidth speed ∗ need∗ compat∗ complex∗ cond i t i on ∗
c r i t e r i a ∗ r e s ou r c e ∗ accura ∗ complet∗ su i t ab ∗ complianc ∗
operab l ∗ employabl∗ modular∗ analyz ∗ readab∗ chang∗
encapsu la t ∗ t r anspo r t ∗ t r a n s f e r ∗ migrat ∗ mova∗ r e p l a c ∗
adapt∗ r e s i l i e n c ∗ i r r e s p o n s i b ∗ stab ∗ t o l e r a n ∗ r e spons ib ∗
matur∗ accountab∗ vulnerab ∗ t rustworth ∗ v e r i f ∗ pro t e c t ∗
c e r t i f i c a t ∗ law∗ f l e x i b ∗ c o n f i g u r ∗ convent∗ a c c e s s i b ∗
u s e f u l ∗ l e a rn ∗ understand ∗

B.2 Reusable Solutions

ac t i on ∗ adapt∗ a l l o c ∗ a l t e r n a t i v ∗ approach∗ asynch∗ audit ∗
authent i c ∗ author i z ∗ balanc ∗ b a l l o t ∗ beat br idg ∗ broker ∗
cach∗ c a p a b i l i t ∗ c e r t i f i c a t ∗ chain ∗ cha l l eng ∗
c h a r a c t e r i s t i c ∗ checkpoint ∗ cho i c e ∗ c loud composite
conc r e t e concurren ∗ con f i d en t ∗ connect ∗ c r e d e n t i a l ∗
decorat ∗ d e l i v e r ∗ det ec t ∗ dual ∗ echo encapsu la t ∗ encrypt ∗

esb event ∗ expos∗ f acade f a c t o r ∗ FIFO f i l t e r ∗ f l y w e i g h t ∗
framework∗ f unc t i on ∗ handl∗ heartbeat ∗ intermedia ∗ l a y e r

∗ l a y o f f ∗ l a zy load lock ∗ mandator∗ measure∗ mechanism∗
memento middleware minut∗ monitor∗ mvc observ ∗ o f f e r ∗
op in ion ∗ opt ion ∗ o r c h e s t r a t ∗ outbound∗ p a r a l l e l passwords

pattern ∗ peer ∗ per iod ∗ piggybacking ping pipe ∗ plat form ∗

39

point ∗ pool p r i n c i p l e ∗ p r i o r i t ∗ proc e s s o r ∗ p r o f i l ∗
pro t e c t ∗ pro to co l ∗ prototyp ∗ provid ∗ proxy pub l i sh ∗
r e cove r ∗ redundan∗ r e f a c t o r ∗ removal r e p l i c a t ∗ r e s i s t ∗
r e s t a r t r e s t r a i n t ∗ revok ∗ r o l l b a c k ∗ r ou t in e ∗ runtime
san i ty ∗ schedul ∗ s enso r ∗ s eparat ∗ s e s s i o n ∗ shadow∗
s i n g l e t o n soa s o l u t i o n ∗ spare ∗ sparrow∗ s p e c i f i c a t i o n ∗
stamp∗ standard ∗ s t a t e s t o r ∗ s t rap s t r a t e g ∗ sub s c r i b ∗
suppl ∗ support ∗ synch∗ t a c t i c ∗ task ∗ techn ique ∗ techno log
∗ t i e r ∗ t imer ∗ timestamp∗ t o o l ∗ t r a i l t r a n s a c t i o n ∗ uml
unoccupied ∗ view∗ v i s i t ∗ vot∗ wizard ∗ worker∗

B.3 Components and Connectors

a c c e s s ∗ a l l o c a t ∗ a p p l i c a t i o n ∗ a r c h i t e c t u r e ∗ a r t i f a c t ∗
a t t r i b u t e ∗ behav∗ broker ∗ c a l l ∗ c l u s t e r ∗ communicat∗
component∗ compos∗ concept ∗ connect ∗ c o n s i s t ∗ cons t ruc t ∗
consum∗ conta in ∗ c o n t r o l ∗ coord inat ∗ core c r i t e r i a ∗ data
database ∗ decompos∗ depend∗ des ign ∗ diagram∗ dynamic
element ∗ eng ine ∗ e n t i t ∗ event ∗ exchang∗ e x i s t ∗ e x t e r n a l
f i l t e r ∗ f unc t i on ∗ hardware∗ independ∗ i n fo rmat ion
i n f r a s t r u c t u r e input ∗ i n s t ance ∗ i n t e g r ∗ i n t e r a c ∗ i n t e r n a l
item∗ job ∗ l a y e r ∗ l i n k ∗ load ∗ l o g i c ∗ machin∗ memor∗

messag∗ model∗ modul∗ node∗ operat ∗ outcom∗ output∗ part ∗
peer ∗ plat form ∗ port ∗ proce s s ∗ produc∗ program∗ p r o j e c t ∗
propert ∗ provid ∗ pub l i sh ∗ read ∗ r e l a t ∗ r eque s t ∗ r e sou r c ∗
respon ∗ scope separa t e s e r v e r ∗ s e r v i c e ∗ shar ∗ source ∗

s t o r ∗ s t r u c t u r ∗ sub s c r i b ∗ support ∗ system∗ t a r g e t ∗
t r a n s a c t i o n ∗ t r i g g e r ∗ runtime r ea l t ime network∗ thread ∗
p a r a l l e l n o t i f ∗ d i s t r i b u t ∗ backend∗ f rontend ∗ c e n t r a l ∗
p e r s i s t ∗ queue∗ concurren ∗ middleware∗ provid ∗ suppl ∗

B.4 Rationale

advantag∗ a l t e r n a t i v ∗ appropr ia t e assum∗ b e n e f i t ∗ b e t t e r
bes t caus ∗ cho i c ∗ choos ∗ complex∗ cond i t i on ∗ c r i t i c a l
dec id ∗ d e c i s i o n ∗ eas ∗ eva luat ∗ hard∗ quick ∗ r a t i o n a l ∗
reason ∗ r i s k ∗ s impl ∗ s t rong ∗ t r a d e o f f weak∗ r a t i o n a l ∗
disadvantag ∗ comparison∗ pros cons good d i f f e r e n ∗ s low ∗
l i g h t w e i g h t o v e r k i l l ∗ recommend∗ sugges t ∗ propos ∗
outperform ∗ important ∗ ver sus vs con t ra s t ∗ d i s t i n c t ∗ f a s t
∗ heav∗ boost ∗ drawback∗ opt ion ∗

40

