
An agent-based model of the game "The Mind"

Bachelor’s Project Thesis

Daan Windt, s3486427, d.windt@student.rug.nl

Supervisor: Dr H.A. de Weerd

Abstract: People cooperate in many ways, often without communicating beforehand. When we
pass each other on a sidewalk, we do not have to talk to do so. This is an example of a game
theory concept called a coordination game, where two or more agents have to coordinate their
choices to cooperate on a shared task. “The Mind”, a game released by White Goblin Games,
transfers this concept into a game that a group of two to four people can play. Unique numbered
cards are divided between the players, those that are not dealt are discarded. The players have
to put down the cards in order from lowest to highest as a team, without communicating. They
can put down a card at any time. A model was created of a society of agents forming groups
to play “The Mind”, where each agent has an initially random “response time” variable that
determines how long they wait to play a card, based on the card’s value. It is adjusted when the
wrong card is played. The society as a whole becomes better at cooperating and wins more the
longer the model is run, and the response times converge, though not completely.

1 Introduction

Societies all over the world can exist thanks to
agreed-upon rules. One familiar kind of societal rule
are laws, which are imposed upon society by a se-
lect group of individuals and enforced by certain
assigned individuals. Another kind of societal rule
are social norms, which are set and enforced by
society at large, without the need for a central au-
thority (Axelrod (1986)). We all learn that it is not
polite to stare at people, that we should not skip
the line when we are in a queue, and that we should
stay on the right when passing each other on the
sidewalk.

In the last example, there is no practical differ-
ence between everyone passing each other on the
left or the right: when countries change the side of
the road they drive on, economic concerns and the
way vehicles are built weigh heavier than the inher-
ent safety of one side over the other (Bari (2014)).
What matters is that everyone follows the same
rule. This is so important when it comes to motor
vehicles, that governments pass laws that mandate
driving on a certain side of the road, even though
they disagree on which side of the road it should
be. This is an example of a coordination game,
which has a payoff matrix like table 1.1. Coordina-
tion games have been used before to identify where
social norms lie (Krupka and Weber (2013)).

Table 1.1: Payoff matrix for which side of the
road to drive on

r l
r 1, 1 0, 0
l 0, 0 1, 1

However, there are also coordination games
where not all Nash equilibria are Pareto efficient: on
a busy road, any speed that drivers can agree upon
would technically be a Nash equilibrium, but the
Pareto efficient speed would be the fastest speed
that the drivers can safely drive. This situation
is also more complicated because the drivers’ re-
sponses are continuous variables, and the payoff for
every driver is continuous as well: if one driver goes
79 kph while everyone else drives 80 kph, the effect
is minimal and increases the more different drivers’
speeds are.

The Mind is a card game published by White
Goblin Games, which has all the aforementioned
characteristics. In a simplified form, it consists of
a group of players being dealt cards from a shuf-
fled deck of the numbers 1-100 all appearing once.
Each player gets the same amount of unique cards,
and the cards that are not dealt are set aside. The
players then have to put down their cards in order
from lowest to highest, without being allowed to

1



communicate or see each other’s cards. Players do
not take turns, therefore they have to be able to
estimate whether they have the lowest card in the
game. To do this, they have to synchronise the time
they take to play a card with a specific number, by
adjusting to their teammates’ response times. If a
player puts their card down too quickly, everyone
discards all cards lower than the one played and the
game continues. If this happens during a game, for
the purposes of this paper the game is considered
lost, while the game is won if everyone manages to
put down their cards.

This paper presents a model of a community of
agents playing this simplified version of The Mind.
Agents form teams that play the game, adjusting
to their teammates’ response times and afterwards
forming different teams where they adjust to those
teammates’ response times, and so on. The players
need to adjust their response times, a continuous
variable, to be as similar to each other as possible,
just like drivers need to coordinate their speed on
a road. The amount of players can vary like in the
other example. The payoff of a single game is either
a win or a loss, but over multiple games a partic-
ular response time will result in a continuous win
percentage, just like the payoff of the driving speed
on a road. However, since The Mind has very sim-
ple rules, any results of studies are clearer than in a
real world scenario, thus being on a convenient level
of complexity between a payoff matrix and real life
situations.

2 System description

2.1 General model description

The model was made in Netlogo, using the x64
OpenJDK binaries bundled with the program on
Windows 8.1 and Windows 10 2004. Versions 6.1.1,
6.2.0 and 6.2.1 were used for building the model
and version 6.2.1 for testing, which was done on
Windows 10 2004. Netlogo allows for an interface
of the model consisting of parameters that can be
adjusted with sliders and buttons, and graphs that
are automatically generated to show the values of
useful variables.

The model world itself consists entirely of agents,
of which there are two types: patches, which are
stationary agents that form the background and

have no impact on this model other that visibility
for the user, and turtles, which are agents that can
move around freely. For the rest of this paper, the
word ”agent” is used to refer to turtles specifically.
The model is updated every tick: the tick speed of
the model can be adjusted as a standard feature of
Netlogo.

The agents in the model world form groups to
play a game. This is more similar to real life, where
people do not always play in the same group. There
is a set amount of cards each player can get, which
is a parameter that can be adjusted, because there
could be differences in the behavior of the model
based on the amount of cards that are dealt: the
more cards are divided, the longer the game will
go on for, and the more chances there will be for
players to adjust their response times to each other.
This may lead to more regional variation and more
extreme fluctuations around a stable response time
when it is reached. Groups have to be small enough
to give every player that amount of cards, which is
enforced by the model.

Once a group is formed and the cards are dealt,
each player starts a countdown of a whole number
of ticks, based on their response time and the value
of their lowest card. If multiple agents’ countdowns
end at the same time, the tie is broken randomly.
The agents could have also just compared each oth-
ers response times and have the player with the
lowest response time play their card. While this
would have sped up the model considerably, this
would eliminate the factor that games with more
cards in play, due to a different amount of players,
may last a different amount of time, which would
impact the formation of groups that play the next
game, etc. This would also be less realistic, since
this would technically require the agents to com-
municate, even though this would not change the
outcome of one single game. The current model im-
plements a strategy that a group of human players
might implement.

When one of the players’ countdown reaches zero,
it plays its lowest card, according to the rules of The
Mind. All other players discard any cards that are
of a lower value: in case this happens, the game is
considered lost, but is still played to the end. This is
a simplification of how the real game handles losses,
but the simulated version does not need to be fun to
play like the original. A more simple fail condition
is easier to compute and still preserves the behavior

2



of players adjusting to each others’ response times.

All players that should have played their card
earlier lower their response times, while the player
that played its card too early raises its response
time. The amounts by which these values are ad-
justed are parameters. These parameters need care-
ful adjustment: the model might have a tendency
for response times to move upwards or downwards
if one of those events happens more frequently. The
more these parameters are adjusted by though, the
more the players’ response times will fluctuate.

Then all players reset their timer, again based
on their response time and their lowest card, sub-
tracted by the value of the card that was played
last. The game continues until all players have
played their cards. This is to keep the length of
games more consistent, so no one game has an out-
sized influence on the agents’ behavior.

When the game is over, the players set a random-
ized wait timer, during which they cannot start a
new group, but can still join one being formed by
another agent. This wait timer can be disabled, in
which case the agents have a tendency to immedi-
ately form the same group again, since all play-
ers around them will still be playing their own
game. Once this timer runs out, the agents can form
groups on their own again, and a new game starts
if they have not joined another group.

This concludes a general overview of the model.
The following subparagraphs will discuss all aspects
of the model in more detail.

2.2 Interface description

2.2.1 Left

The interface of the model consists of a left, middle
and right part. The left part consists of buttons
that control functions, and sliders and an input
field that control parameters: see figure 2.1. Click-
ing the ”randomize” button sets current-seed to a
new randomly generated seed. Clicking the ”setup”
button executes the function setup once. Clicking
the ”go” button executes the function go every tick
until the button is pressed again.

The parameter lower-when-too-late determines
how much an agent lowers its response time when
it is too late to prevent another agent playing a
card higher than its lowest card. It can be any in-
teger between and including 0 to 10. Negative val-

Figure 2.1: The left side of the model interface,
containing the function and parameter controls.

ues would cause agents to double down when they
make a mistake, and higher values than 10 were not
practically necessary for studying the agents’ be-
haviour, though there is no theoretical reason why
it could not be higher.

higher-when-too-early determines how much the
agents raise their response times when they play
their card too early, and is also limited between
and including 0 and 10 for the same reason.

view-distance determines from how far a game
leader can see other agents to form its group with.
It can be between 0 and 100, since any number
below 0 would be the same as 0. The maximum
value of 50 was chosen because the model world has
a size of 32 by 32 patches. The maximum distance
an agent could see would be

√
(322 + 322) ≈ 45.25

patches, so 50 is a convenient round number to use.

waiting-period determines the amount of ticks
that agents wait after a game is finished until they
try to start another one. This is done to prevent the
same group of agents playing over and over again
because all agents around them are already in a
different game. The minimum value is 0 because
values below 0 would not make a difference, the
maximum value of 1000 has no specific reason.

3



number-of-players determines the number of
players that is created by the setup function. It
has a minimum of 0 and a maximum of 100, since
with that many agents the model world is already
covered by them.

max-starting-response-time determines agents’
maximum response time when they are created. It
ranges between and including 1 and 100. For the
model to work, larger values than 100 are unneces-
sary, but there is no reason that they could not be
used. Values lower than 1 cause the model to crash,
so 1 is the minimum.

cards-to-deal determines the amount of cards
dealt to each player in a game. The minimum is
1, which is always needed to play the game, and
the maximum is 10. A larger maximum would the-
oretically be possible.

players-move? is a Boolean that determines
whether the players always move forward.

current-seed is a built-in variable of Netlogo that
contains the seed for the random number generator.

stop-after is the number of ticks after which the
model stops automatically.

2.2.2 Middle

The middle part of the interface only contains the
model world and the output field, see figure 2.2.
The model world consists of a background made
out of patches and agents that can have various
shapes and colors. The agents can have any default
Netlogo shape, which indicates which group they
are playing in. Shape 0 in the built-in list shapes is
only used by agents that are not part of a group.

Agents’ color is determined by the function set-
color. The higher an agent’s response time is com-
pared to max-starting-response-time, the brighter
the agent’s color is.

As a standard Netlogo feature, the world can
be set to wrap around, so agents that exit on the
left enter again on the right, etc. This also results
in distance functions returning the smallest pos-
sible travel distance between two agents, account-
ing of the ability for agents to wrap around the
world. This setting is recommended to be turned
on for both horizontal and vertical movement when
players-move is set to true, since this causes the
agents to move in a straight line and would cause
agents to get stuck on the borders of the world oth-
erwise.

Figure 2.2: The middle of the interface, contain-
ing the model world and output field.

The output field outputs the view distance, wait-
ing period, number of players, the delta between
the highest and lowest response times, and the win
percentage in a way that is easy to copy.

2.2.3 Right

The right side of the model interface contains mon-
itors for various variables. The ”player response
times” windows displays the range between the
highest and lowest values of the response-time vari-
able of all players. Each tick the response-time vari-
able of a random agent is plotted, and since there
are many ticks per second, all agents end up hav-
ing their response-time variable plotted eventually,
resulting in this graph. The axes are initially set to
0-10 for the x-axis and 0-5 for the y-axis, but these
default values are only seen before the start of the
model since the axes are automatically scaled.

The ”win%” plot tracks the percentage of games
that has been won during this run of the model.
The formula used to calculate it is wins/(wins +
losses) ∗ 100, where wins and losses are both vari-
ables of the model. The y-axis is always between

4



Figure 2.3: The right side of the model interface,
displaying the values of various variables.

0 and 100 and the x-axis starts between 0 and 10.
Both scale automatically, but since the win percent-
age is never above 100 the y-axis does not change.

The ”games played” monitor displays the value
of wins+ losses, the ”win%” monitor presents the
value used in the ”win%” plot numerically and the
”wins” and ”losses” monitors show the values of
their respective variables.

2.3 Variable descriptions

This section will describe all variables that are used
in this model, starting with the global variables:

wins contains a count of all games that have been
played by any agents in the model that resulted in
a win.

losses contains a count of all games that have
been played by any agents in the model that re-
sulted in a loss.

current-shape contains the index in the built-in
shapes list of the shape that the next group of
agents that will play a game will take.

players is a list of all agents in the model.

The following variables are agent-specific:
cards is a list of all cards that this agent is cur-

rently holding.
response-time contains this agent’s current re-

sponse time, which is multiplied by its lowest card
subtracted by the highest card played to result in
the time this player will wait to play its lowest card.

time-left contains the amount of ticks that this
agent will still wait to play its current lowest card.

is-winning? is a Boolean that contains whether
the team playing the game is currently winning,
meaning that no agent has played a card it should
not have played.

card-played contains the last card that has been
played by an agent in this group. This variable is
only used by the game leader.

game-leader contains the current game leader for
this group.

in-game? is a Boolean that contains whether this
agent is currently in a game.

team is a list that contains all members of the
team this agent is in, including the agent itself.

time-to-wait contains the amount of ticks left for
this agent to wait to try to form a new team, when
the agent is not currently in a game.

All other variables are local to the function they
are declared in.

2.4 Function descriptions

To run the model, the first step is to set the ran-
dom seed. This can be done either by filling in the
”current-seed” field or by clicking the ”randomize”
button, which uses the new-seed function built
into Netlogo. The next step is to click the ”setup”
button, which executes the function with the same
name. After this function has set up the game, the
”go” button can be clicked, which executes the go
function every tick. For all loops are used for sets
of agents. In this case variables mentioned in that
loop are presumed to belong to agents from the set,
except when the variable has been mentioned be-
fore in that function. Cases where this is ambiguous
are clarified.

The pseudocode for setup is contained in algo-
rithm 2.1. Lines 1 and 2 ensure that remnants of
previous runs of the model are removed. Lines 8-14
make the background, which is the only purpose
patches are used for in this model. Lines 15-24 cre-
ate the agents: these lines would be combined in

5



Algorithm 2.1 setup

Require: current-seed is set.
Ensure: Model is set up for go to run.
1: Reset the model.
2: Reset the tick counter.
3: set-seed
4: wins⇐ 0
5: losses⇐ 0
6: current-shape⇐ 1
7: wins⇐ 0
8: for all patches do
9: if pxcor%2 = pycor%2 then

10: Color the patch dark grey.
11: else
12: Color the patch light grey.
13: end if
14: end for
15: Create number-of-players players.
16: for all players do
17: Randomize position.
18: shape⇐ 0th item of shapes
19: response-time ⇐ Random number between 5

and max-starting-response-time
20: in-game? ⇐ false
21: set-color
22: cards⇐ ∅
23: time-to-wait ⇐ 0
24: end for
25: for all players do
26: create-game
27: end for

one function call in Netlogo. Lines 25-27 make all
players attempt to start a game with their neigh-
bors. pxcor and pycor are the x and y coordinates
of a patch.

go is performed every tick if the ”go” button is
pressed. It updates all agents, then ends the current
tick. The next tick starts based on the model speed.
See algorithm 2.2.

tick-player checks if the agent is currently in a
game. If not, it moves if it is supposed to, then tries
to form a team if it is allowed to. See algorithm 2.3.

When create-game is called, the agent looks
for nearby agents who are not already in a game,
then starts a game if teammates are available. See
algorithm 2.4.

When find-teammates is called, the agent

Algorithm 2.2 go

Require: setup has been executed at least once.
Ensure: Update the model each tick.
1: if ticks = stop-after then
2: Clear the output window.
3: Print view-distance.
4: Print waiting-period.
5: Print number-of-players.
6: Print difference between maximum and min-

imum response-time of agents.
7: Print wins/(wins + losses) ∗ 100
8: Stop the model.
9: end if

10: for all players do
11: tick-player
12: end for
13: End the tick.

Algorithm 2.3 tick-player

Require: setup has been executed at least once.
Ensure: Agent takes appropriate action based on

its current status.
1: if in-game? then
2: play-game
3: else
4: time-to-wait ⇐ time-to-wait−1
5: if players-move? then
6: Move forward one patch in the agent’s cur-

rent direction.
7: end if
8: if time-to-wait<= 0 then
9: create-game

10: end if
11: end if

Algorithm 2.4 create-game

Require: setup has been executed at least once.
Ensure: Agent starts a game if it is able to.
1: if !in-game? then
2: find-teammates
3: if form-team then
4: setup-game
5: play-game
6: end if
7: end if

6



Algorithm 2.5 find-teammates

Require: setup has been executed at least once.
Agent is not in a game.

Ensure: Agent finds potential teammates if avail-
able.

1: team ⇐ all players within view-distance that
are not in a game

2: team-size ⇐ size of team
3: maximum-team-size ⇐ b100/cards-to-dealc
4: team⇐ maximum-team-size members of team

Algorithm 2.6 form-team

Require: setup has been executed at least once.
Agent is not in a game.

Ensure: Agent forms a team if it has found poten-
tial teammates. Return whether or not it suc-
ceeded.

1: if size of team > 1 then
2: temp-shape ⇐ current-shape
3: current-shape ⇐ current-shape+1
4: if current-shape = size of shapes then
5: current-shape ⇐ 1
6: end if
7: for all agents in team do
8: in-game? ⇐ true
9: game-leader ⇐ this agent

10: team ⇐ team of this agent
11: shape ⇐ temp-shapeth item of shapes
12: end for
13: return true
14: end if
15: return false

looks for all agents within view-distance that are
not in a game, then creates as big a team as it
can. The maximum team size is determined by the
amount of cards each player is dealt, since each
player needs exactly that amount. See algorithm
2.5.

When form-team is called, the agent picks a
shape for the team, then makes sure all members
of the team share the variables they need for the
game to start. See algorithm 2.6

setup-game shuffles the virtual deck of cards
and deals cards-to-deal cards to each agent. It also
initializes the agent’s timer and allows it to keep
track of whether the team is winning. See algorithm
2.7.

Algorithm 2.7 setup-game

Require: This agent is a team leader.
Ensure: The game is ready to be played.
1: card-played ⇐ 0
2: shuffled-list ⇐ shuffled list of cards between

and including 1-100
3: for all agents in team do
4: cards ⇐ sorted list of cards-to-deal cards

from shuffled-list
5: shuffled-list ⇐ shuffled-list\cards
6: set-time-left
7: is-winning? ⇐ true
8: end for

Algorithm 2.8 set-time-left

Require: This agent is in a game.
Ensure: The agent’s timer is set correctly.
1: if length of cards = 0 then
2: time-left ⇐ −1
3: else
4: time-left ⇐ (lowest card value - card-played

of game-leader) * response-time)
5: end if

set-time-left sets the timer of this agent to -1
if it has no cards and to the correct value based on
its response time and the lowest card it has other-
wise. See algorithm 2.8.

When play-game is called, the agent first de-
termines whether its timer for playing its lowest
card is equal to 0. If so, it plays its card, on line 3.
On lines 4-5, it checks if any other agents had to
discard any cards, in which case it adjusts its re-
sponse time appropriately. On lines 9-13, the agent
checks if it should stop the game. On lines 14-16,
if the game has not been stopped, the agent asks
all team members to reset their timers based on
the new highest card played and their new lowest
cards. See algorithm 2.9.

count-down decrements an agent’s timer and
returns whether it has reached 0. See algorithm
2.10.

When discard-cards is executed, the agent
checks whether any other agents in this game have
cards that they should have played earlier. If they
do, they throw away those cards and adjust their re-
sponse time. The function returns whether the card
the agent played was the lowest one, so whether

7



Algorithm 2.9 play-game

Require: The game is set up completely.
Ensure: The agent plays the game.
1: if count-down and agent has cards left then
2: card⇐ lowest card in cards
3: card-played of game-leader ⇐ card
4: if discard-cards then
5: response-time ⇐ response-time + higher-

when-too-early
6: set-color
7: end if
8: remove card from cards
9: if cards = ∅ then

10: if stop-game then
11: return
12: end if
13: end if
14: for all agents in team do
15: set-time-left
16: end for
17: end if

Algorithm 2.10 count-down

Require: Agent is playing a game.
Ensure: Agent’s timer is decremented and its sta-

tus returned.
1: if time-left < 0 then
2: time-left ⇐ time-left−1
3: end if
4: return time-left = 0

Algorithm 2.11 discard-cards

Require: Agent is playing a game.
Ensure: Agent discards its card and updates its

response time if necessary.
1: is-lowest? ⇐ true
2: for all agents in team do
3: lowered? ⇐ false
4: while agent has cards left and agent has a

lower card than the one played do
5: for all agents in team do
6: is-winning? ⇐ false
7: end for
8: is-lowest? ⇐ false
9: remove lowest card from cards

10: if !lowered? then
11: response-time ⇐ max(response-time -

lower-when-too-late)
12: set-color
13: lowered? ⇐ true
14: end if
15: end while
16: end for
17: return !is-lowest?

none of the other agents threw away any cards. See
algorithm 2.11

stop-game checks if the game should be stopped
and does so if required, making sure that all agents
are no longer in this game. The variable should-
stop? is not strictly necessary in pseudocode form,
since returns can be used to exit the for loop, but
this is not possible in Netlogo. See algorithm 2.12.

set-color sets the color of an agent to a shade
of red, with black being color 10 in Netlogo and
bright red color 19. See algorithm 2.13.

set-seed only sets the seed used by the ran-
dom number generator to current-seed. Since the
specifics depend on the programming language for
the only line in this function, pseudocode is omit-
ted.

8



Algorithm 2.12 stop-game

Require: Agent is playing a game.
Ensure: Agent stops the game if appropriate.
1: should-stop? ⇐ true
2: for all agents in team do
3: if agent has cards left then
4: should-stop? ⇐ false
5: end if
6: end for
7: if should-stop? then
8: if is-winning? then
9: wins⇐ wins + 1

10: else
11: losses⇐ losses + 1
12: end if
13: for all agents in team do
14: in-game? ⇐ false
15: time-to-wait ⇐ waiting-

period−5+random number between 0
and 10

16: shape⇐ 0th item of shapes
17: end for
18: return true
19: end if
20: return false

Algorithm 2.13 set-color

Ensure: Agent has the color appropriate for its
response time.

1: color ⇐ b10+response-time/max-starting-
response-time∗10c

Figure 3.1: The model world with 33 agents.

3 Results

To show the behavior of the model under different
circumstances, the view distance, waiting period
and number of players were manipulated as inde-
pendent variables, to show their effect on the delta
between the highest and lowest response times and
the win percentage. The view distance was set to 8,
25 or 42, the latter being so high that agents can see
almost all other agents. The waiting period was 0,
150 or 300. The number of players was 33, 66 or 99.
The model was run once with each configuration,
totaling 27 runs of 200 000 ticks. The seed was kept
the same at 1564099703, so the starting position of
the agents would be the same. lower-when-too-late
and higher-when-too-early were set to 1, the max-
imum starting response time to 50 ticks, 10 cards
were dealt to each agent every game and no agents
were able to move.

All experiments were run with the same seed, so
the starting position of agents was the same as long
as the amount of agents stayed the same: see figures
3.1, 3.2 and 3.3. The lower the amount of agents,
the more the agents are clustered and isolated.

The graphs show the impact of the distance
agents can view, the waiting period after each game
for agents to try to start a new group and the num-
ber of agents.

9



Figure 3.2: The model world with 66 agents.

Figure 3.3: The model world with 99 agents.

Figure 3.4: Graphs showing the win percentage
and delta between the lowest and highest re-
sponse times of agents. The left pair corresponds
to a viewing distance of 8 tiles, the middle 25,
the right 42.

Figure 3.5: Graphs showing the win percentage
and delta between the lowest and highest re-
sponse times of agents. The left pair corresponds
to a waiting period of 0 ticks, the middle 150,
the right 300.

The distance agents can view did not seem to
affect the percentage of games won. There was an
increase in the difference between the lowest and
highest response time for a high viewing distance.
See figure 3.4.

The waiting period seems like it decreased both
the percentage of games won and the difference be-
tween the lowest and highest response time, with
the difference between 0 and 150 being especially
big. See figure 3.5.

The amount of agents did not seem to affect the
difference between the lowest and highest response
time, but did increase the percentage of games won.
See figure 3.6.

10



Figure 3.6: Graphs showing the win percentage
and delta between the lowest and highest re-
sponse times of agents. The left pair corresponds
to 33 agents in the model, the middle 66, the
right 99.

4 Conclusion

The agents in the model described in this paper
are able to cooperate playing ”The Mind” without
being able to communicate with each other. How-
ever, the agents’ response times never became the
same across the board in any scenario, described
in this paper or during development. This prob-
ably happened because agents with very similar,
but not quite equal response times would almost
always complete the game fully, so the pressure to
change it was very low. The main reason however
is that when one agent increases its response time,
other agents decrease it et cetera. In a situation
where both agents are one tick apart, this would
lead them to still be one apart afterwards. This
does not take away from the general trend in all
runs of the model, which is that agents’ response
times get closer the longer the model is run.

An effect of a low number of agent can be that
there are clusters of agents with no way of com-
municating between each other. This can cause a
situation where the difference between the highest
and lowest response time is high, but the percent-
age of games won is also high. As more agents are
added, some can exist in between clusters, acting as
a bridge. In figure 3.5 the top left graph shows that
when the waiting period does not exist, the dif-
ference in response time between the slowest and
fastest agents is large. This happens because as
soon as a group is done playing the game, they in-
stantly start playing the same game again with the
same agents, because all other agents around are

still in a different game. This means that bridging
agents between clusters only play with one cluster.
As seen in figure 3.2, there are no agents without
a group, so there are hardly any opportunities for
a different group to form. When a waiting period
is instated, the difference between the slowest and
fastest agent decreases, as seen in the middle and
right graph in figure 3.5.

There are some parameters that could have been
added to the model that reflect the way humans
play this game: for example, agents’ change to
their reaction times could be randomized. These
could be explored in a more detailed version of this
model. The current model runs relatively slowly, so
a change to a different programming language or
optimizations to the code could help with collect-
ing data, as well as a more compact way of stor-
ing information from the graphs, which now store
one data point for all 200 000 ticks. These changes
would allow a more thorough study of the behavior
of this model, using many random seeds executed
in batch processes to gather data. This model could
also be applied to coordination games other than
The Mind, so a remade, more efficient model could
serve as a framework for studying thees games more
effectively as well.

References

Robert Axelrod. An evolutionary approach to
norms. The American Political Science Review,
80(4):1095–1111, 1986.

Md Mahabubul Bari. The study of the possibil-
ity of switching driving side in rwanda. Euro-
pean Transport Research Review, 6(4):439–453,
Dec 2014.

Erin L. Krupka and Roberto A. Weber. Identifying
Social Norms Using Coordination Games: Why
Does Dictator Game Sharing Vary? Journal of
the European Economic Association, 11(3):495–
524, Jan 2013.

11


