
The benefits of Credit Assignment in noisy video

game environments

Bachelor’s Project Thesis

Jacob Schoemaker, s3793435, j.t.schoemaker@student.rug.nl

Supervisor: Prof Karine Miras

Abstract: Both Evolutionary Algorithms (EAs) and Reinforcement Learning Algorithms
(RLAs) have proven successful in policy optimisation tasks, but there are very few compar-
isons of their relative strengths and weaknesses. This makes it difficult to determine which group
of algorithms is best suited for a task. This paper presents a comparison of two EAs and two
RLAs in Evoman, a new benchmark domain. It compares the algorithms both when there is no
variation between environments, and when noise is introduced in the initialisation of the envi-
ronment. We conclude that whilst EAs reach a similar performance to the RLAs in the static
environments, when noise is introduced the credit assignment done by RLAs gives them an edge
in modeling the underlying environment.

1 Introduction

Machine Learning has found some success in
video games with the goal of creating autonomous
agents to achieve a specific task, referred to
as Computational Intelligence in games (Lucas,
2008). Two prominent methods in this field have
been the application of evolutionary algorithms
(Ishikawa, Trovões, Carmo, França, & Fantinato,
2020; Hausknecht, Lehman, Miikkulainen, & Stone,
2014) and Reinforcement Learning (Crespo &
Wichert, 2020; Givigi, Schwartz, & Lu, 2010;
LeBlanc & Lee, 2021).

Creating an agent that can achieve human-level
performance in games has uses such as testing the
difficulty of (procedurally generated) opponents au-
tomatically (Promsutipong & Kotrajaras, 2017), or
creating a more interesting opponent for single-
player games (Moriyama et al., 2014). Furthermore,
the varied nature of games provides a great testbed
for the robustness of AI algorithms. They allow us
to test the performance and dynamics of an algo-
rithm in a variety of situations. If an algorithm
manages to reach robust performance in multiple
diverse game environments, it could be indicative
of performance in real-world scenarios with similar
properties.

Evolutionary Algorithms (EAs) evolve a pol-

icy through selection, mutations and crossover. A
group of individuals is generated and evaluated in
the environment by playing an entire episode and
getting assigned a fitness based on its performance.
The individuals with the best fitness are then se-
lected from the group, and their genomes are used
to generate more individuals for the next genera-
tion. Some individuals might be subjected to ran-
dom, small changes to their genomes, which al-
lows the population as a whole to explore the state
space.

Reinforcement Learning Algorithms (RLAs) on
the other hand function by training a single indi-
vidual to learn the task at hand by means of explo-
ration, and updating their policy through feedback
given by the environment. After every action, the
RLA agent gets the new state and some reward
value. The agent attempts to learn what action
gives the most (eventual) reward in a given state by
assigning credit to the state-action pairs that lead
to the largest amount of reward. For small prob-
lems, the entire state-action representation can be
stored, but for problems with a large state space, a
function approximator such as a neural network is
often used.

This paper will explore these different types of
algorithms in two dimensions: The nature of the
algorithm, and the complexity of the algorithm. To

1



achieve this, two algorithms of both classes will be
used, one simple one and one complex one. As the
testbed we have used Evoman, a clone of MegaMan
II created by da Silva Miras de Araújo & de França
(2016) to facilitate experimentation using compu-
tational optimisation techniques, such as evolution-
ary algorithms which have yielded some degrees of
success (da Silva Miras de Araujo & de Franca,
2016; Ishikawa et al., 2020).

The algorithms will all be trained/evolved for an
approximately equal amount of time in the envi-
ronment before evaluating their final performance.
The algorithms will be trained in each environment
twice: once with the initial position of the enemy
being the exact same between runs, and once with
the initial position being randomly offset by a cou-
ple of pixels, to test their robustness to noise in
the environment. The goal is to investigate whether
credit assignment, as seen in RLAs, leads to more
robust performance than algorithms which are in-
capable of assigning credit to actions, e.g., EAs.

The motivation for this comparison stems from
the differences between EAs and RLAs, and the
trade-offs and benefits that these approaches have.
Whilst there are quite some differences between
EAs and RLAs, in this paper we will be focusing
on credit assignment.

RLAs and EAs receive feedback at different
points in time. EAs receive eventual feedback at the
end of an episode, and thus receive feedback over
their entire performance. In contrast, RLAs receive
immediate feedback after every action, which al-
lows them to assign credit for rewards to specific
actions.

In Evoman, the only way to damage the enemy is
by shooting them, and as a projectile takes time to
travel, this will lead to delayed reward. Delayed re-
ward is a difficult problem for RLAs (Sutton, 1992),
as RLAs rely on assigning credit to the actions most
influential to the reward they gained. This is often
addressed using discounted rewards, where some
fraction of the total reward in the previous time
step is added to the reward of the current time
step.

To EAs delayed reward poses no problem as they
don’t receive their feedback until the end of an
episode, and as such always receive the total re-
ward gained during the episode, called their fitness.
However, this means that EAs are incapable of as-
signing credit to actions, which could mean they

evolve policies that are less robust to noise in the
environment.

This paper seeks to determine whether the ben-
efits gained from a a robustness against delayed re-
ward weighs out the benefits of assigning credit to
specific state-action pairs, and addresses the ques-
tion ”Does credit assignment result in better per-
formance in noisy video game environments?”. Fur-
thermore, it also contributes with an extension to
the Evoman testbed to facilitate the training of
RLAs, and provides a baseline for RLAs in the Evo-
man environment.

2 Related Work

Due to the usefulness of games as benchmarks for
understanding the behaviour of AI algorithms, they
have been used extensively in prior AI research.
The Arcade Learning Environment (ALE) has been
used as a benchmark for performance of Computa-
tional Intelligence since it were first introduced by
Bellemare, Naddaf, Veness, & Bowling (2013). It
consists of over 50 games originally designed for the
Atari 2600, each of which provide a setting inter-
esting enough to be representative of a real world
scenario, free from the experimenter’s bias as it has
been created by a third party. Atari games are also
simple enough that it is possible to emulate them
much faster than real time. With advances being
made toward beating the human benchmark perfor-
mance on the ALE, most notably by the AI agent
Agent57 by Badia et al. (2020), researchers have
been looking towards games from the next genera-
tion of consoles, the Nintendo Entertainment Sys-
tem (NES) (LeBlanc & Lee, 2021; Murphy, 2013).

One such game is Mega Man II, a challenging
platforming game developed by CapCom in the
1980s for the NES. This game includes several one
vs one combat scenarios with various mechanics.
These fights have been emulated in a public do-
main clone of the original game, Evoman, created
and described in da Silva Miras de Araújo & de
França (2016). This clone serves as a testbed for
one of these next-generation games. It is designed
to facilitate the easy learning using computational
optimisation techniques, such as evolutionary al-
gorithms which have yielded some degrees of suc-
cess (da Silva Miras de Araujo & de Franca, 2016;
Ishikawa et al., 2020).

2



EAs and RLAs have previously been compared
in Rieser, Robinson, Murray-Rust, & Rounsevell
(2011) and Taylor, Whiteson, & Stone (2006).

Rieser et al. (2011) compared SARSA (RLA)
and a simple, binary GA (EA), and found SARSA
to perform significantly better than the GA when
there was uncertainty in the environment. It also
found that the more uncertain the environment be-
came, the more of an advantage SARSA gained.

In contrast, Taylor et al. (2006) found NEAT
(EA) to perform better than SARSA in a par-
tially observable task with noisy sensors. When the
environment was made fully observable however,
SARSA outperformed NEAT.

Since the Evoman Environment is fully observ-
able, and the sensors have no noise, these results
indicate that we can expect RLAs to perform bet-
ter in the noisy environments. In addition, we can
expect EAs performing on-par or better than RLAs
in environments without noise.

3 Environment

The EvoMan environment is a reimplementation
of the boss fights of the game MegaMan II intro-
duced by da Silva Miras de Araújo & de França
(2016). It serves as a test ground for EAs and has
been adapted into an OpenAI Gym (Brockman et
al., 2016) environment for this paper to fascilitate
RLAs. The goal of the player is to deplete the en-
ergy of the enemy by shooting at it. Meanwhile the
player has to avoid the enemy and its projectiles
(up to 8 at a time), which will deplete the player’s
energy.

The player (or agent) can take 5 actions

• Move right

• Move left

• Jump

• Shoot

• Release∗

The environment returns 20 values every
timestep, representing the current state of the en-
vironment. These values consist of the following:

∗Release is equivalent to a human player letting go of the
jump button. This allows for an early cut-off to the upwards
momentum, resulting in a lower jump

• Enemy’s x position relative to the player

• Enemy’s y position relative to the player

• The direction the player is facing (represented
as 1 or 0)

• The direction the enemy is facing (represented
as 1 or 0)

• Hostile projectile’s x position relative to the
player (8×)

• Hostile projectile’s y position relative to the
player (8×)

3.1 Enemies

For this paper a subset of 4 enemies was used, as
they were deemed to be have the most diverse set of
game mechanics. All enemies deal a small amount
of damage to the player every timestep the player
is in contact with the enemy. A visual example of
each of the enemies is available here.

3.1.1 AirMan

AirMan was chosen because it is very easy to beat,
and thus makes for a good baseline benchmark.

AirMan starts off on the side of the arena op-
posite the player. He shoots out 6 projectiles in a
specific pattern around the arena, which hover for a
little bit, and then move away from AirMan. As the
projectiles move away from AirMan, the player is
moved in the same direction. AirMan repeats this
move 3 times, before moving to the other side of
the screen, and repeating the move 3 times, before
moving back to his original position. The projec-
tiles shot by AirMan block the player’s projectiles,
and damage the player a small amount when they
hit the player.

This makes for an easy enemy, as the target is
mostly static, and thus easy to aim at, and the
projectiles are always in the same location and thus
an easy avoidance move can be found.

3.1.2 BubbleMan

BubbleMan was chosen as it has a special pecu-
liarity in its arena which makes for an interesting
case.

3

https://www.youtube.com/watch?v=R0O2nKqupFI&list=PLk5xlvi9lNFKlS13xz9nNMFGuHCLhBp2d


BubbleMan starts at the opposite side of the
arena as the player. He shoots two bubbles that
move in a zig-zag motion towards the opposite side
of the screen, and 6 bullets that go just over the
player’s head if the player does not jump. Bubble-
Man then moves forward by around 70% of the
screen, and shoots another 6 projectiles. He then
moves the last 30% and turns around, after which
he repeats this same pattern, but mirrored. In Bub-
bleMan’s arena, gravity is reduced, making the
player jump much higher. The top of the arena is
lined with spikes which kill the player instantly on
touching them.

The difficulty of this environment is jumping over
the projectiles, whilst releasing the jump in time in
order to avoid the spikes which line the top of the
arena.

3.1.3 FlashMan

FlashMan was chosen as it is not particularly dif-
ficult to beat, but very difficult to get a high score
on.

FlashMan starts off at the opposite side to the
arena as the player, and gradually approaches the
player. Its arena is made of multiple platforms of
different heights, making it impossible to just walk
left or right. Every once in a while FlashMan will
completely freeze the player and his own move-
ments, and proceed to shoot a large amount of pro-
jectiles right in front of him. The player and enemy
stay frozen until the bullets have disappeared.

The difficulty in this enemy is making sure the
player is in the right place at the right time. The
player needs to line themselves up with the enemy
to be able to hit them with their projectile, but if
they are lined up with the enemy at the wrong time,
they could sustain a lot of damage whilst being
powerless to avoid the projectiles in real-time.

3.1.4 HeatMan

HeatMan was chosen as it has an interesting trait,
and was found to be difficult to optimise for by
da Silva Miras de Araujo & de Franca (2016).

HeatMan starts off at the opposite side of the
arena to the player. He shoots multiple projectiles
at the player which remain on the ground for a
small amount of time, damaging the player if they
step on them. When the player hits HeatMan, he

turns into a ball for a moment, during which they
can not be damaged by the player. Whilst in this
ball form, HeatMan rapidly moves to the other side
of the arena, damaging the player if they come in
contact with the player. HeatMan will then resume
his normal attacks from the other side of the screen,
mirrored.

The difficulty of this enemy comes from the fact
that the player needs to both jump over existing,
static particles, and needs to dodge an enemy that
is invulnerable during its time of movement.

3.2 Evaluation function

The evaluation function was chosen such that the
total reward gathered by an RLA over a single
episode would be equivalent to the fitness assigned
to an EA playing the exact same episode.

For the RLAs, the reward returned at each time
step is the damage done to the enemy multiplied
by a hyperparameter e weight×damageDone, mi-
nus the damage taken by the player, multiplied by
a hyperparameter p weight× damageTaken, lead-
ing to Equation 3.2. For the EAs, these rewards are
summed over the course of a full episode to deter-
mine the fitness of the individual (Equation 3.3).

During training, e weight and p weight were
both set to 0.5, as this was empirically found to
yield the best reward out of the tested values

[e weight, p weight] = [α, 1− α] (3.1)

where α = [0.0, 0.1, ..., 1.0].
This leads to the eventual equations

rewardn = 0.5×DDn − 0.5×DTn (3.2)

fitness =

N∑
n=0

0.5×DDn − 0.5×DTn (3.3)

Where DD = damage dealt to enemy, DT = dam-
age taken by player, n = the current timestep, and
N = length of the episode.

3.3 Noise

Noise can be introduced into the environment by
having the position of the enemy randomised at
the start of each episode. When noise is enabled,
the starting x position of each enemy takes one of
4 values, sampled from a uniform distribution. The

4



Enemy Default Noisy options
FlashMan 640 640, 500, 400, 300
AirMan 588 630, 610, 560, 530

HeatMan 588 640, 500, 400, 300
BubbleMan 635 640, 500, 400, 300

Table 3.1: Starting x positions for each enemy.
In a non-noisy the default position is always
used. In a noisy environment, the starting posi-
tion is one of the ’Noisy options’, sampled from
a uniform distribution.

random starting locations are displayed with the
default starting location in Table 3.1

4 Algorithms

In this paper we will compare four different algo-
rithms in different variations of the EvoMan envi-
ronment. We have chosen for 2 EAs and 2 RLAs,
a simple and an advanced one from each category
to see how they compare. All algorithms have been
trained for 2.5×106 ‘Timestep equivalents’. In pre-
liminary testing, it was found that in most envi-
ronments a player would either die or win within
about 250 timesteps. Thus, for the evolutionary al-
gorithms, which both used a population size of 100,
and both evolved for 100 generations, this came out
to about 100∗100∗250 = 2.5×106 timesteps, which
was taken as the amount of timesteps for the RLAs
to train for.

4.1 Evolutionary Algorithms

4.1.1 Genetic Algorithm

For the simple EA, we used a self-designed EA,
which we will refer to as ”Genetic Algorithm” (GA)
in this paper for simplicity sake. Our genetic algo-
rithm works by generating a population of Neural
Networks (NNs), and testing how well they per-
form in the environment you are trying to opti-
mise for. The first generation has the weights for
the NNs randomised, and each subsequent gener-
ation the population is composed of combinations
of the ’good’ genomes (determined by some selec-
tion function) from the previous generations, with
random mutations. In this way, they mirror how
evolution works in real life. The pseudocode used

for our algorithm can be found in algorithms A.1
and A.2. Some short descriptions for the functions
are given in Table A.1.

The initial population is generated with random
values for each of its weights, and during the mu-
tation each weight has a 20% chance of changed
by a value taken from a normal distribution with a
mean of 0 and a standard deviation of 1.

Our GA differs from ’simple genetic algorithms’
found in literature in that each neuron takes a
continuous input, and give a continuous output,
whereas the ones found in literature take in and
output binary values.

For this paper we used a genetic algorithm con-
sisting of 20 input neurons, a densely connected
layer of 50 hidden neurons, followed by a densely
connected layer of the 5 output neurons.

4.1.2 NeuroEvolution of Augmenting
Topologies

For the advanced EA, we used NeuroEvolution
of Augmenting Topologies (NEAT), introduced by
Stanley & Miikkulainen (2002). It is genetic algo-
rithm which evolves its own topology together with
the weights, with the goal of evolving the simplest
topology to solve the task at hand. To achieve this
goal, every individual starts off as a simple percep-
tron, and gains hidden neurons over time. In addi-
tion to the mutation, crossover and selection seen
in most genetic algorithms, NEAT also makes use
of speciation to protect topological innovation.

To evolve a topological structure, NEAT encodes
its genome as a list of connection genes and node
genes. The node genes encode the inputs, hidden
nodes and outputs, with the connection genes en-
coding the connections between nodes, and their
weights.

The weights of the connection genes mutate like
any other genetic algorithm, with each weight ei-
ther being randomly adjusted or not. It is also pos-
sible for a new connection to be added between two
unconnected nodes, which is initialised with a ran-
dom weight.

A node can be added by disabling an existing
connection, and replacing it with a new node with
two connections, connecting the originally two con-
nected nodes to the newly added node. The connec-
tion into the newly added node is given a weight
of 1, with the outgoing connection inheriting the

5



weight of the original connection. This serves to
minimise the initial effect of the mutation.

Any newly generated node or connection is
given an incrementally assigned innovation num-
ber, which serves as a historical marker used in
crossover and speciation.

During crossover, genes with the same innovation
number will be chosen randomly from either par-
ent. Genes that don’t appear in the other genome’s
genes are either disjoint, or excess. A gene is disjoint
if it does not appear in the other genome’s genes,
but its innovation number is within the range of
innovation numbers in the other genome. A gene is
excess if it does not appear in the range of innova-
tion numbers in the other genome. All disjoint and
excess genes of the parent with the higher fitness
are included in the offspring.

The genomes in a population are divided into
species based on the differences in network topolo-
gies and weights. The compatibility distance be-
tween two genomes is represented by their compat-
ibility distance δ, which is calculated as

δ =
c1E

N
+
c2D

N
+ c3W (4.1)

where E represents the number of excess genes,
D the number of disjoint genes, and W the average
weight differences of all matching genes. c1, c2, and
c3 are coefficients adjusting the importance of their
relevant factors. N is the total number of genes in
the largest genome, which normalises for genome
size.

A species is created by evaluating each genome
sequentially. Its compatibility distance to the first
member of a species is calculated. If it is beneath
a certain threshold, it is part of that species. If a
genome is not selected to be part of any existing
species, a new species is created with it as its first
member.

Selection is done mostly within a species. Each
individual i is assigned an adjusted fitness f ′i , cal-
culated as

f ′i =
fi
S

(4.2)

with S being the amount of individuals in the
species i belongs to. This penalises species that
grow too large, to make sure proper speciation can
occur.

Every species is assigned an amount of offspring
proportional to the sum of the adjusted fitness of

all individuals in the species. The worst individuals
of the species are then eliminated, and the remain-
ing individuals are used to generate the specified
amount of offspring. The next generation consists
purely off the generated offspring.

4.2 Reinforcement Learning Algo-
rithms

4.2.1 Deep Q-Networks

For the simple RLA, Deep Q-Networks (DQNs)
were used, introduced by Mnih et al. (2013). DQNs
are a Neural Network extension to Q-learning, with
the high level idea to make Q-Learning problem
look like a supervised learning problem. It employs
two important ideas for stabilising Q-learning.

• Use a replay buffer, which stores a large
amount of state transitions, which mini-
batches can be sampled from and trained on.

• A secondary copy of the NN is kept and up-
dated less frequently which is used to compute
the target values. This is to keep the target
function from changing too quickly, and avoid
chasing a moving target.

The algorithm used is described in Algorithm
A.3, with the topology of the used network consist-
ing of the 20 input neurons, followed by a densely
connected layer of 64 neurons, followed by a densely
connected layer of 32 (25) output neurons. All neu-
rons in the network use ReLU activation. Each out-
put neuron corresponds to a set of actions.

4.2.2 Proximal Policy Optimization

For the advanced RLA, we used Proximal Pol-
icy Optimization (PPO), introduced by Schulman,
Wolski, Dhariwal, Radford, & Klimov (2017). PPO
is similar to TRPO in that it uses a trust region
to avoid making too large of an update to the net-
work at any one update, to avoid taking a bad step,
which could ruin any further gathered data. It does
this by clipping the commonly used objective func-
tion

Êt
[
rt(θ)Ât

]
(4.3)

where rt(θ) = πθ(at|st)
πθold (at|st)

, such that

6



L(θ) = Êt
[
min(rt(θ)Ât, clip(rt(θ), t− ε, 1 + ε)Ât)

]
(4.4)

where ε is a hyperparameter. This removes the
incentive to move rt outside of the interval [1 −
ε, 1 + ε] (Schulman et al., 2017). The advantage Ât
is calculated as

Ât = δt + (γλ)δt+1 + ...+ (γλ)T−t+1δT−1 (4.5)

where δt = rt + γV (st+1)− V (st) (4.6)

Besides using this clipped objective function,
PPO also uses N (parallel) actors to gather data
and accumulated updates, as seen in A2C (Mnih
et al., 2016). This improves training stability by
exploring different parts of the environment at the
same time. This leads to the algorithm described in
Algorithm A.4. The optimisation of L is performed
using Adam, an algorithm for first-order gradient-
based optimization of stochastic objective functions
introduced in Kingma & Ba (2014)

The topology of the Actor network consists of the
20 input neurons, followed by a densely connected
layer of 64 neurons, which is densely connected to 5
output neurons, each controlling one of the 5 possi-
ble actions in the environment. The topology of the
Critic network mirrors that of the Actor network,
but it only has a single output neuron, which gives
the expected value of the current state. All neurons
in both networks use Tanh activation.

5 Methods

For collecting the data, each algorithm described
in Section 4 was trained on each environment de-
scribed in Section 3 twice, once with noise, and once
without noise. Every 2.5× 104 timesteps/1 genera-
tion, the progress was evaluated by stopping learn-
ing, and evaluating the agent for 25 episodes. For
the Evolutionary Algorithms (EAs), the best per-
forming individual from the population was used
to gather this data. These 25 results are then aver-
aged to get the performance of the agent for that
timestep. The training/evolution was repeated 50
times for each algorithm to account for variability,
and show the reliability of each algorithm.

Since the original Evoman framework as imple-
mented by da Silva Miras de Araújo & de França

(2016) is limited in scope, due to only being capable
of playing an entire episode before providing feed-
back, this paper introduces a re-implementation of
the Evoman framework as an OpenAI Gym envi-
ronment (Brockman et al., 2016). This allows us to
gather the rewards, and advance the environment,
one time step at a time, as is required for RLAs.

All the code used for all the experiments can be
found here.

6 Results

6.1 Static Initialisation

Looking at Figure 6.1, the first thing we see is that
DQN performs poorly in all environments. This
could be explained by the fact that DQN takes
long to converge, and in the ALE has shown to
require 1× 107 to 4× 107 timesteps to reach a pol-
icy that has better performance than random ac-
tions (Schulman, 2017). Due to universal poor per-
formance of DQN it will not be discussed in further
detail.

6.1.1 AirMan

As expected from the easy nature of the environ-
ment, all algorithms quickly learn how to beat Air-
Man consistently, as seen in the narrow bands of
the IQR in Figure 6.1a. NEAT consistently seems
to evolve a strong policy after around 20 genera-
tions. PPO steadily learns over time and manages
to beat the enemy consistently after approximately
2× 105 timesteps. After this it slowly improves its
score over time to approach the performance of GA-
50 and NEAT. GA-50 does extremely well right off
the bat, and we hypothesise this is because the best
individual is evaluated, and with how simple the
environment is, out of a hundred random initialisa-
tions for the first generation, it is likely that one of
them happens to start with good parameters right
from the start. This is unlikely to be the case for
PPO as it only generates a single individual per
run, and unlikely to be the case for NEAT as all
NEAT individuals start off as a single-layer percep-
tron, and hidden neurons are necessary for reaching
a decent score in the environment.

7

https://github.com/SlayerOfTheBad/evoman_framework/tree/paper-code


(a) AirMan (b) BubbleMan

(c) FlashMan (d) HeatMan

Figure 6.1: IQR of rewards gained by the algorithms over time in the environments with a consis-
tent initial position during 50 training/evolution sessions. Rewards over 0 indicates a win, rewards
lower than 0 indicate a loss.

6.1.2 BubbleMan

In the BubbleMan environment we consistently see
a steady increase of performance until leveling out
just under the max reward of 100 for PPO (Fig-
ure 6.1b). GA-50 once again starts off strong, but
levels out below the performance of PPO. It seems
to be incapable of evolving past this point, possi-
bly explained by the fewer hidden neurons it has
compared to PPO. NEAT performed the worst out
of these three algorithms during the time provided,
though it is clearly still improving at the time of
cut-off, so it likely would have reached a better
score if allowed to run until convergence. NEAT
is also by far the least consistent, which is likely
explained by its lack of a complex topology start-
ing out. Due to this is it reliant on chance to find

a decent topology before it is actually capable of
evolving good weights for the topologies it evolves.

6.1.3 FlashMan

In the FlashMan environment, PPO learns a bit
slower than in the AirMan and BubbleMan envi-
ronments, but ends up consistently learning a good
policy within 106 timesteps, as seen in Figure 6.1c.
It is also still improving at the cut-off time, so it is
likely it could achieve even higher scores if allowed
to run until convergence. GA-50 also manages to
consistently evolve a good policy. NEAT shows a
very large IQR, with the 50th percentile towards
the lower end. This seems to indicate an overall low
performance, but the violin plot in Figure 6.2c tells
a different story. 24 of the 50 runs actually reach a

8



(a) Airman (b) BubbleMan

(c) FlashMan (d) HeatMan

Figure 6.2: Rewards gained by 50 runs the algorithms in the environments with a consistent
initial position after 100 generations/2.5× 106 timesteps. The plots are annotated with significance
markers calculated according to a Wilcoxon Rank-Sums test. N.S. = Not significant, ∗ = p < 0.05,
∗∗ = p < 0.01, ∗ ∗ ∗ = p < 0.001. Unlabeled means p < 10−15.

final score of 90. This seems to indicate that there
is a single connection that is essential to reaching a
good score, and unless that connection is evolved, a
good score can not be achieved in this environment.
GA-50 and PPO don’t suffer from this limitation
as they start off with the necessary hidden neurons,
and only have to find the correct weights for reach-
ing a good score.

6.1.4 HeatMan

In HeatMan we observe a very clear difference be-
tween the different algorithms (Figure 6.1d). We
can see that PPO very easily and consistently
learns an almost ideal policy, and seems to reach
convergence at approximately 106 timesteps. GA-

50 steadily evolves over time, and whilst consis-
tently beating HeatMan, it does not seem to reach
convergence within 100 generations. HeatMan is
the only environment where DQN actually seems
to improve over time, but after 1.1× 106 timesteps
it seems to regress in performance again. We are not
sure why this happens. NEAT seems to evolve to a
reward of 0 and seems to get stuck here. After look-
ing at the amount of time the evaluated episodes
ran for, we see all of them ran until the environment
stopped for lasting too long (1500 timesteps). This
indicates that NEAT consistently evolved avoid-
ance behaviour and got stuck in this policy.

9



6.2 Random Initialisation

As we look at Figures 6.3 and 6.4, we once again
see DQN failing to make any meaningful process
towards solving any of the environments. We chalk
this up to the same explanation given in Section
6.1.

6.2.1 AirMan

In the environment with random initial positions
for AirMan, the 3 AIs manage to consistently reach
a policy that beats AirMan, however they are less
consistent with their score than in the case of static
initial positions, as see in Figure 6.2a. GA-50 man-
ages to find a good policy from the start, but does
not seem to improve much thereafter. NEAT man-
aged to find a policy to beat AirMan consistently
after approximately 30 generations, but seems to
mostly stagnate after this, and does not reliably
find a policy where it rains a reward higher than 20.
PPO improves steadily during training and whilst
seemingly still improving at the cut-off point, gains
significantly better rewards after the allotted time-
frame, as seen in Figure 6.4a.

6.2.2 BubbleMan

Against BubbleMan, NEAT fails to find a policy
sufficient for winning. This could be explained by
a lack of neurons evolving to be able to determine
when the agent should interrupt the jump. GA-50
seems just about able to evolve a policy that wins
from BubbleMan most of the time. This could be
explained in two ways. Either GA-50 takes most
of its damage from the projectiles shot by, or con-
tact with, BubbleMan, or GA-50 manages to avoid
the spikes a bit over half the time, and jumps into
the spikes during the other evaluations. PPO once
again steadily and reliably improves over time, and
nearing the end of the training period finds a policy
that seems to be capable of defeating BubbleMan
consistently.

6.2.3 FlashMan

In the FlashMan environment, it seems PPO is the
only agent making any progress on learning the en-
vironment. NEAT evolves a little between 20 and
40 generations, but this seems to more be learn-
ing to shoot in the right direction, than actually

avoiding and attacking the enemy. GA-50 does not
make any progress whatsoever, and seems to just
be stuck with policies that are about as effective as
random button pressing.

6.2.4 HeatMan

PPO managed to quickly and reliably find an al-
most optimal policy against HeatMan. Besides that
the story is very similar to that of BubbleMan (see
Section 6.2.2).

7 Discussion

Whilst random initialisation had very little nega-
tive effect on either of the reinforcement learning
algorithms, it clearly had a large influence on the
evolutionary algorithms, which performed signifi-
cantly worse in the noisy environments.

This could indicate that the EAs evolution led to
over-fitting for the environment they were evolving
for. This is not unexpected in environments where
the only variation is caused by the actions of the
agent. In the environments with noise, each indi-
vidual only ever encountered one of the initial po-
sitions during the evaluation step, which likely con-
tributed to the incapability of the EAs to general-
ize.

PPO on the other hand seems to be able to learn
effective policies whether the initial conditions are
are noisy or not (DQN did not generate any ef-
fective policies, though it’s learning did not seem
affected by the switch to noisy environments). This
suggests that credit assignment leads to a more gen-
eralized understanding of the underlying mechanics
of the environment by the agent. Thus we conclude
that credit assignment does result in better perfor-
mance in noisy video game environments.

This could be due to the fact that credit assign-
ment leads to learning what actions work well in
what states. Since the initial state does not matter
to the individual states, it could be that credit as-
signment more effectively filters out the influences
of the initial states. This could also be caused by the
fact that in the RLAs, a single individual encoun-
ters all different starting positions, and can learn
from all of them, whereas each EA individual only
ever encounters one starting position.

It is noteworthy that despite all the algorithms

10



(a) AirMan (b) BubbleMan

(c) FlashMan (d) HeatMan

Figure 6.3: IQR of rewards gained by the algorithms over time in the environments with a consis-
tent initial position during 50 training/evolution sessions. Rewards over 0 indicates a win, rewards
lower than 0 indicate a loss.

being trained on the same amount of data, both
EAs trained in much less time than the RLAs. The
RLAs needed about 10× the amount of time to
train despite training on the same amount of data.
This indicates that the evolution step of the EAs
used in this paper is much cheaper than the learn-
ing of the RLAs used in this paper. This means it
could be beneficial for the EAs to be evaluated for
multiple episodes to give them an opportunity to be
evaluated against multiple initial positions, whilst
still taking a similar amount of time to train as the
RLAs.

8 Conclusion

In this paper we have shown that RLAs are less
strongly influenced by noise being introduced into
their environment than EAs are. This indicates
that, in 2D videogames, credit assignment leads
to more general policies. This aligns with what
was found in Rieser et al. (2011) and Taylor et al.
(2006), and indicates that with a limited amount
of data, RLAs are likely to achieve higher perfor-
mance in noisy environments than EAs.

11



(a) Airman (b) BubbleMan

(c) FlashMan (d) HeatMan

Figure 6.4: Rewards gained by 50 runs the algorithms in the environments with a consistent
initial position after 100 generations/2.5× 106 timesteps. The plots are annotated with significance
markers calculated according to a Wilcoxon Rank-Sums test. N.S. = Not significant, ∗ = p < 0.05,
∗∗ = p < 0.01, ∗ ∗ ∗ = p < 0.001. Unlabeled means p < 10−15.

9 Future Work

9.1 Convergence

Due to time restrictions, the algorithms in this pa-
per were only ran for a set amount of time. Some
algorithms did not reach convergence in the time
given by this paper. It would be interesting to see
the difference in performance if the algorithms are
allowed to run to convergence, rather than with a
comparable amount of data. This would also allow
a comparison of the convergence time to be drawn,
and see if the conclusions from this paper also apply
to simpler RLAs, such as DQN.

9.2 More games

As mentioned in Section 1, games make for a great
test-bed due to their varied nature. Whilst this pa-
per has laid a baseline for one game, a comparison
for multiple games should be performed to gain fur-
ther information about how this performance gen-
eralises for the presented algorithms as a whole.

9.3 Other types of noise

This paper has only explored noisy initialisation
of the environment, with an otherwise determin-
istic environment with flawless sensors. It would
be interesting to see this experiment performed in
non-deterministic environments, or an environment

12



with noisy sensors. This could make it harder for
RLAs to assign credit to the appropriate actions.

References

Badia, A. P., Piot, B., Kapturowski, S., Sprech-
mann, P., Vitvitskyi, A., Guo, Z. D., & Blundell,
C. (2020). Agent57: Outperforming the atari
human benchmark. CoRR, abs/2003.13350 .
Retrieved from https://arxiv.org/abs/2003

.13350

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowl-
ing, M. (2013). The arcade learning environ-
ment: An evaluation platform for general agents.
Journal of Artificial Intelligence Research, 47 ,
253–279.

Brockman, G., Cheung, V., Pettersson, L., Schnei-
der, J., Schulman, J., Tang, J., & Zaremba,
W. (2016). Openai gym. arXiv preprint
arXiv:1606.01540 .

Crespo, J., & Wichert, A. (2020, Apr 06). Rein-
forcement learning applied to games. SN Applied
Sciences, 2 (5), 824. Retrieved from https://

doi.org/10.1007/s42452-020-2560-3 doi: 10
.1007/s42452-020-2560-3

da Silva Miras de Araújo, K., & de França,
F. O. (2016). An electronic-game framework
for evaluating coevolutionary algorithms. CoRR,
abs/1604.00644 . Retrieved from http://arxiv

.org/abs/1604.00644

da Silva Miras de Araujo, K., & de Franca, F. O.
(2016). Evolving a generalized strategy for an
action-platformer video game framework. In
2016 ieee congress on evolutionary computation
(cec) (pp. 1303–1310). doi: 10.1109/CEC.2016
.7743938

Givigi, S. N., Schwartz, H. M., & Lu, X. (2010,
Jul 01). A reinforcement learning adaptive
fuzzy controller for differential games. Journal
of Intelligent and Robotic Systems, 59 (1), 3–
30. Retrieved from https://doi.org/10.1007/

s10846-009-9380-4 doi: 10.1007/s10846-009
-9380-4

Hausknecht, M., Lehman, J., Miikkulainen, R., &
Stone, P. (2014). A neuroevolution approach

to general atari game playing. IEEE Transac-
tions on Computational Intelligence and AI in
Games, 6 (4), 355-366. doi: 10.1109/TCIAIG
.2013.2294713

Ishikawa, F., Trovões, L. Z., Carmo, L., França,
F. O. d., & Fantinato, D. G. (2020). Play-
ing mega man ii with neuroevolution. In 2020
ieee symposium series on computational intel-
ligence (ssci) (pp. 2359–2364). doi: 10.1109/
SSCI47803.2020.9308303

Kingma, D. P., & Ba, J. (2014). Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

LeBlanc, D. G., & Lee, G. (2021). General deep
reinforcement learning in nes games.

Lucas, S. M. (2008). Computational intelligence
and games: Challenges and opportunities. Inter-
national Journal of Automation and Computing ,
5 (1), 45–57.

Mnih, V., Badia, A. P., Mirza, M., Graves, A.,
Lillicrap, T. P., Harley, T., . . . Kavukcuoglu,
K. (2016). Asynchronous methods for deep re-
inforcement learning. CoRR, abs/1602.01783 .
Retrieved from http://arxiv.org/abs/1602

.01783

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., & Riedmiller, M.
(2013). Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602 .

Moriyama, K., Branco, S. E. O., Matsumoto,
M., Fukui, K.-i., Kurihara, S., & Numao, M.
(2014). An intelligent fighting videogame oppo-
nent adapting to behavior patterns of the user.
IEICE TRANSACTIONS on Information and
Systems, 97 (4), 842–851.

Murphy, T. (2013). The first level of super mario
bros. is easy with lexicographic orderings and
time travel... after that it gets a little tricky.

Promsutipong, P., & Kotrajaras, V. (2017). Enemy
evaluation ai for 2d action-platform game. In
2017 14th international joint conference on com-
puter science and software engineering (jcsse)
(pp. 1–6). doi: 10.1109/JCSSE.2017.8025906

13

https://arxiv.org/abs/2003.13350
https://arxiv.org/abs/2003.13350
https://doi.org/10.1007/s42452-020-2560-3
https://doi.org/10.1007/s42452-020-2560-3
http://arxiv.org/abs/1604.00644
http://arxiv.org/abs/1604.00644
https://doi.org/10.1007/s10846-009-9380-4
https://doi.org/10.1007/s10846-009-9380-4
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783


Rieser, V., Robinson, D. T., Murray-Rust, D., &
Rounsevell, M. (2011). A comparison of genetic
algorithms and reinforcement learning for opti-
mising sustainable forest management. In Proc.
11th int. conf. geocomput. (pp. 20–24).

Schulman, J. (2017). Deep reinforcement learn-
ing bootcamp lecture 6: Nuts and bolts of deep
rl experimentation. AI Prism. Retrieved from
https://youtu.be/8EcdaCk9KaQ

Schulman, J., Wolski, F., Dhariwal, P., Rad-
ford, A., & Klimov, O. (2017). Proxi-
mal policy optimization algorithms. CoRR,
abs/1707.06347 . Retrieved from http://arxiv

.org/abs/1707.06347

Stanley, K. O., & Miikkulainen, R. (2002). Evolv-
ing neural networks through augmenting topolo-
gies. Evolutionary Computation, 10 (2), 99-127.
doi: 10.1162/106365602320169811

Sutton, R. S. (1992). Introduction: The challenge
of reinforcement learning. In R. S. Sutton (Ed.),
Reinforcement learning (pp. 1–3). Boston, MA:
Springer US. Retrieved from https://doi.org/

10.1007/978-1-4615-3618-5 1 doi: 10.1007/
978-1-4615-3618-5 1

Taylor, M. E., Whiteson, S., & Stone, P. (2006).
Comparing evolutionary and temporal difference
methods in a reinforcement learning domain. In
Proceedings of the 8th annual conference on ge-
netic and evolutionary computation (pp. 1321–
1328).

14

https://youtu.be/8EcdaCk9KaQ
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1007/978-1-4615-3618-5_1
https://doi.org/10.1007/978-1-4615-3618-5_1


A Algorithm Details

A.1 Genetic Algorithm

Function Description

GenPop() Generate a population of
neural networks with all
weights set to a random
value, return the population

Eval(pop) Evaluate each individual in
pop, return the fitnesses

Crossover(pop,fit) See Algorithm A.2
Mutate(pop) Mutate each individual in

the population, return the
mutated population

Select(pop,fit) Select X-1 individuals from
pop with the chance for
each individual being pro-
portional to their fit, return
selected individuals

Best(pop,fit) Select and return the high-
est fitness individual in the
population.

Doomsday(pop,fit) Get rid of the worst 25%
and replace them with a
50/50 mix off fresh genomes
and copies of the best
genome, return the new
population

Tour(pop,fit,N,T) Select T random individuals
from pop, take the one with
the highest fitness. Repeat
N times. Return the individ-
uals

Table A.1: Function Descriptions

Hyperparameter value
Population size 100
Crossover Prob. 100%
Mutation Prob. 20%

Table A.2: Hyperparameters for the Genetic Al-
gorithm

Algorithm A.1 Genetic Algorithm

Require: N > 0 ∧G > 0 ∧ I > 0
pop← GenPop()
pop fit← Eval(Pop)
while G > 0 do
next pop← Crossover(pop, pop fit)
next pop←Mutate(next pop)
next pop fit← Eval(next pop)
pop← pop+ next pop
pop fit← pop fit+ next pop fit
pop, pop fit ← Select(pop, pop fit) +
Best(pop, fit)
if No improvement for I generations then
pop, pop fit = Doomsday(pop, pop fit)

end if
G← G− 1

end while

Algorithm A.2 Crossover(pop,fit)

Require: pop is an array, T ≥ 2, N ≥ 1
new pop← []
while new pop.length < pop.length do
parent1, parent2← Tour(pop, fit, 2, T )
for N times do
α← Uniform(0, 1)
offspring ← α∗parent1+(1−α)∗parent2

new pop← new pop+ offspring
end for

end while
return new pop

15



A.2 Deep Q-Networks

Hyperparameter value
N 6× 106

ε †

γ 0.99
Learning Rate 3× 10−4

Mini-batch size 32

Table A.3: Hyperparameters used for DQN

Algorithm A.3 Deep Q-Learning, where
θ and θ− describe some neural network;
φ() is a function that pre-processes the frame;

Initialize replay memory D with capacity N
Initialize Q with random weights θ
Initialise Q̂ with weights θ− = θ
for episode = 1, ..., M do

Get initial state s1
φ1 ← φ(s1)
for t = 1, ..., T do

With prob. ε select a random action at
otherwise select at = argmax

a
Qθ(, a)

Execute at, observe rt and st+1

φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
Sample a random mini-batch of transitions
(φj , aj , rj , φj+1) from D
if episode terminates at step j + 1 then
yj ← rj

else
yj ← rj + γmax

a′
Q̂θ−(φj+1, a

′)

end if
Perform a gradient descent step on
(yj −Qθ(φj , aj))2 with respect to θ
Every C steps, reset θ− ← θ

end for
end for

†ε is linearly reduced from 1 to 0.05 over the first 10% of
learning, and kept at 0.05 afterwards

A.3 Proximal Policy Optimisation

Hyperparameter value
M 64
T 2048
N 1
K 10
ε 0.2
γ 0.99

Learning Rate 3× 10−4

Table A.4: Hyperparameters used for PPO

Algorithm A.4 Proximal Policy Optimisation

for iteration = 1, 2, ... do
for actor = 1, 2, ..., N do

Run policy πθold in env N for T timesteps

Compute advantage estimates Â1, ..., ÂT
end for
Optimise L wrt θ, with K epochs using a mini-
batch of size M ≤ NT
θold ← θ

end for

A.4 NEAT

Hyperparameter value
Population Size 100

Compatibility Threshold 3
Excess coefficient 1

Disjoints coefficient 1
Weights Coefficient 0.5
Link Insertion Prob. 0.5
Link Removal Prob. 0.5
Node Insertion Prob. 0.2
Node Removal Prob. 0.2

Weight Mutation Prob. 0.8

Table A.5: Hyperparameters used for NEAT

16


	Introduction
	Related Work
	Environment
	Enemies
	AirMan
	BubbleMan
	FlashMan
	HeatMan

	Evaluation function
	Noise

	Algorithms
	Evolutionary Algorithms
	Genetic Algorithm
	NeuroEvolution of Augmenting Topologies

	Reinforcement Learning Algorithms
	Deep Q-Networks
	Proximal Policy Optimization


	Methods
	Results
	Static Initialisation
	AirMan
	BubbleMan
	FlashMan
	HeatMan

	Random Initialisation
	AirMan
	BubbleMan
	FlashMan
	HeatMan


	Discussion
	Conclusion
	Future Work
	Convergence
	More games
	Other types of noise

	Algorithm Details
	Genetic Algorithm
	Deep Q-Networks
	Proximal Policy Optimisation
	NEAT


