
Transfer of Experience Replay in Deep

Reinforcement Learning

Bachelor’s Project Thesis

Luca Mueller, s3745503, d.l.mueller@student.rug.nl,

Supervisor: Matthia Sabatelli, m.sabatelli@rug.nl

Abstract: Transfer Learning (TL) is an area of machine learning concerned with adjusting
existing models to fit new data. Deep Reinforcement Learning (DRL) combines Reinforcement
Learning (RL) and Deep Learning to solve games and real world problems that can be modeled as
Markov Decision Processes (MDP). Since training of DRL algorithms is expensive and often not
possible due to limited availability of data, this area would greatly benefit from TL. Attempts to
transfer model parameters have not been successful. A possible solution is transferring trajectories
stored in an experience replay buffer to provide training data from a different task, provided
that both source and target task are similar in nature. Two environments from the OpenAI gym
were chosen in combination with three DRL algorithms. Agents were trained on the provided
environments as well as a slightly modified version of each environment. Transfer was tested from
standard to modified environments and vice versa. For reference a transfer of model parameters
and a transfer of both experience replay buffer and model parameters was included. The results
show an improvement in one of the tasks, regardless of transfer method, and no significant
difference in the second.

1 Introduction

Over the last decade Deep Reinforcement Learn-
ing (DRL) has been established as an advancement
of Reinforcement Learning (RL). It builds on the
same principles but uses Deep Learning (DL) to
increase the capabilities of RL algorithms. This
makes it possible to train agents in increasingly
complex environments such as the Atari Learning
Environment (ALE) (Bellemare, Naddaf, Veness,
and Bowling, 2013) or the game StarCraft (Shantia,
Begue, and Wiering, 2011; Vinyals, Babuschkin,
Czarnecki, Mathieu, Dudzik, Chung, Choi, Powell,
Ewalds, Georgiev, Oh, Horgan, Kroiss, Danihelka,
Huang, Sifre, Cai, Agapiou, Jaderberg, and Silver,
2019).
One popular variant of RL is Q-learning

(Watkins, 1989, as cited in Sutton and Barto,
1998). It is an off-policy temporal difference (TD)
learning algorithm that learns a function for all
state-action pairs based on the reward the agent
receives. The resulting values, called Q-values, are
used to determine an optimal policy for the agent.
For discrete state-action spaces it is possible to

store these Q-values in a lookup table. However,
this becomes difficult or even impossible when deal-
ing with sufficiently large state-action spaces or
continuous state spaces.

This is where the power of artificial neural net-
works (ANNs) comes into play. ANNs can be used
as function approximators, in this case approximat-
ing the state-action value function. The input is
a state (collected from the environment) and the
outputs are the Q-values for each action. Instead
of updating values in a table, a loss function is
used to determine the error between the model out-
put and the updated Q-value. Using backpropaga-
tion an ANN can thus approximate the state-action
value function.

Another feature of DRL agents is experience re-
play (ER). In online TD learning an agent performs
an action in the environment, resulting in a reward
and a new state. After each action the correspond-
ing Q-value is updated. However, this method is not
suitable for training an ANN (Lin, 1993, as cited
in Mnih, Kavukcuoglu, Silver, Graves, Antonoglou,
Wierstra, and Riedmiller, 2013). Instead, the agent

1

stores this data in a buffer. At each step, a batch
of transitions is sampled from the buffer. Then the
loss is calculated for the entire batch, followed by
backpropagation.
One proplem with DRL, and DL in general, is

that it takes enormous amounts of data, time and
computing power to train a model. This problem
is adderssed by transfer learning (TL), which has
been shown to aid training of models in different
areas of DL, most prominently computer vision
(Razavian, Azizpour, Sullivan, and Carlsson, 2014;
Yosinski, Clune, Bengio, and Lipson, 2014). The
idea is to make use of parameters optimized for a
different but similar task. Using them as a starting
point can significantly speed up training times.
These findings indicate that DRL, too, might

benefit from TL. There has been success with TL
for model-based RL (Sasso, Sabatelli, and Wiering,
2021) and actor-critic algorithms (Parisotto, Ba,
and Salakhutdinov, 2015). However, in model-free
settigns a transfer of model parameters between
various ALE environments has not been proven to
work (Sabatelli and Geurts, 2021). Another possi-
ble method to transfer knowledge from a source to
a target domain is the transfer of an ER buffer.
Transitions are collected by a trained agent in the
source domain and subsequently transferred to a
different (untrained) agent in the target domain.
Ideally this would lead the agent in the target do-
main to converge faster and/or to a better solution
than an agent starting with an empty buffer.
In the following sections we will investigate

whether the transfer of an ER buffer can improve
training of an agent in a similar environment. To
test this, three DRL algorithms will be trained in
four different environments. The first two environ-
ments are taken directly from the OpenAI gym
(Brockman, Cheung, Pettersson, Schneider, Schul-
man, Tang, and Zaremba, 2016), the other two are
slight modifications of the former two. In both cases
the transfer happens from standard to modified en-
vironment and vice versa. For each DRL algorithm
and source-target pair four agents are trained. The
first learns without any transfer and is used as a
baseline while the second receives a full ER buffer
with data from the source domain. A third agent
receives the model parameters of an agent trained
in the source domain and a fourth receives both
buffer and parameters.
Scores are recorded in between training steps and

plotted for visual analysis. In addition the area ra-
tio scores are calculated.

2 Background

2.1 Reinforcement Learning

RL tasks feature an agent and an environment. A
state is observed by the agent, based on which it
chooses and executes an action. That action results
in a reward and a new state. The agent’s task is to
achieve some goal and in order to do so it has to
learn a policy that guides its actions.

Figure 2.1: Reinforcement Learning cycle as
shown in Sutton and Barto (1998)

Interactions take place in a sequence of discrete
time steps, t, each of which has a state st, an action
at and a reward rt associated with it. At time step
t the agent is in state st ∈ S, where S is the state
space. It performs an action, at ∈ A(s), leading to
a new state st+1 drawn from a probability distribu-
tion p(st+1|st, at) and a reward rt ∈ R. From this
the agent learns a policy, π(s), which determines
the probability of selecting an action based on the
observed state.

This cycle repeats until the goal is reached or the
process is interrupted, e.g. after a number of time
steps. A series of time steps starting at t and end-
ing at the final time step T is called an episode.
After an episode is finished, the cumulative reward
(also called return) is calculated by summing the re-
wards {rt, rt+1, rt+2, ..., rT−1} received during the
entire episode. The goal of the agent is to learn the
optimal policy π∗(s) that maximizes cumulative re-
ward.

Shown below are the probabilities of observing
a state st+1 and receiving a reward rt based on a
history s0, a0, r0, st−1, at−1, rt−1, ..., st, at.

2

Pr{rt = r, st+1 = s′|s0, a0, r0, st−1, at−1, rt−1,

..., st, at}
(2.1)

Pr{rt = r, st+1 = s′|st, at} (2.2)

If (2.1) is equal to (2.2) for all s′, r and his-
tories s0, a0, r0, st−1, at−1, rt−1, ..., st, at, then the
task has the Markov property and can be modeled
as a Markov Decision Process (MPD) (Puterman,
2014). More specifically, if the state space S and
action space A(s) are finite it is a finite MDP. All
tasks considered in this work are (finite) MDPs and
can therefore be abbreviatedM.

Moving forward, the state space A(s) will be ab-
breviated A since for the environmets used the ac-
tions available in any given state are identical and
therefore do not depend on the state s.
In order to determine which states are beneficial

to the agent, state values can be calculated. They
depend on the agent’s policy π and the expected
cumulative reward when follwing that policy from
the given state. This state-value function can be
formalized as

V π(s) = E

[∞∑
k=0

γkrt+k

∣∣∣∣st = s, π

]
(2.3)

where E[.] is the expected discounted return
when following policy π starting from state s and
γ is the discount factor. The discount factor is a
number in the range [0, 1) where low values mean
recent rewards are prioritized and high values mean
distant rewards have more impact.
Likewise, an action-value function evaluating ex-

pected return of state-action pairs is described by

Qπ(s, a) = E

[∞∑
k=0

γkrt+k

∣∣∣∣st = s, at = a, π

]
(2.4)

The optimal state value function V ∗(s) and opti-
mal state-action value function Q∗(s, a) return the
respective values under the optimal policy. In other
terms, these are the functions that are approxi-
mated by equations (2.3) and (2.4).
One of the most famous algorithms in RL is Q-

learning (Watkins, 1989, as cited in Sutton and

Barto, 1998). It is a TD learning algorithm, which
means that it learns by bootstrapping from exist-
ing estimates. The update equation for Q-values is
given by

Q(st, at)← Q(st, at)− α[rt+γmax
a∈A

Q(st+1, a)

−Q(st, at)]

(2.5)

where α is the learning rate and the part after it
is the TD error.

This has the advantage of allowing updates to
the value function without knowing the cumulative
reward of an episode. Q-learning is also character-
ized as an online method, meaning that updates to
the Q-value function happen immediately after the
agent takes a step in the environment. The sim-
plest method to implement a Q-value function is
to use a lookup table that stores the Q-values for
all state-action pairs. Updates and predictions are
quick, however memory requirements make this a
poor choice for larger MDPs. Other ways of ap-
proximating Q∗(s, a) are linear function approxi-
mation and DL. Another category that Q-learning
is a part of is model-free RL. It learns values re-
lating to states or state-action pairs by interact-
ing with the environment to determine its policy.
Model-based RL, on the other hand, uses an es-
timated model of the underlying MDP and learns
from interacting with that model in addition to in-
teractions with the environment.

Finally, an exploration policy is needed to ensure
that the agent learns from what it has seen while
also exploring new actions and states. The most
common exploration policy is the ε-greedy policy,
where ε denotes the probability of selecting a ran-
dom action and greedy simply means choosing the
best action according to the learned policy. Usually,
ε is very high (close to 1) at the start of training
and decays over time. This ensures that the agent
tries out many possible actions while it has little
training data and gradually chooses more actions
based on its policy π.

2.2 Transfer Learning

Transfer Learning aims to make training of machine
learning (ML) models more efficient. The idea is
to use knowledge gained from one task to improve

3

learning performance in a different but similar task.
This technique has been shown to be very suc-
cessful in computer vision tasks (Razavian et al.,
2014; Yosinski et al., 2014) where convolutional
neural networks learn to extract features from im-
age data which are also useful for tasks using dif-
ferent training data. Some examples of success-
ful TL are pavement distress detection (Gopalakr-
ishnan, Khaitan, Choudhary, and Agrawal, 2017)
and monocular depth estimation (Alhashim and
Wonka, 2018). Other fields of DL such as natural
language processing also make use of TL (Ruder,
Peters, Swayamdipta, and Wolf, 2019). DRL is an-
other area of ML which could benefit from TL
(Lazaric, 2012) as it often proves to be difficult and
time consuming.

3 Methods

3.1 Agents

Three model free DRL agents are used for the ex-
periments, namely DQN (Mnih et al., 2013), Dou-
ble DQN (Van Hasselt, Guez, and Silver, 2016)
and DQV (Sabatelli, Louppe, Geurts, and Wiering,
2018). All of them optimize an ANN with parame-
ters θ to approximate the optimal Q-value function
Q∗(s, a). In addition to the policy model with pa-
rameters θ there is also a target model with param-
eters θ−. It is used to calculate the future Q-values
used by the loss function and synchronizes its pa-
rameters in a fixed interval with θ.
To train the model the quadratic loss of the TD

error δ is calculated for mini-batches of transitions
sampled uniformly from the ER buffer. The nota-
tion δθ means that the TD error is used to calculate
the loss Lθ.

Lθ = E(st,at,rt,st+1)∼U(D)[δ
2
θ] (3.1)

The ER buffer consists of a memory buffer D
of size N . It contains four-tuples of the shape
⟨st, at, rt, st+1⟩ which are called transitions. This
makes data usage more efficient as transitions can
be used multiple times. Additionally, they are
decorrelated due to uniform sampling. The size of
the buffer used for the experiments is 10,000 and
the size of the mini-batches sampled from it is 32.
Training for the baseline agents begins with an
empty buffer. Once the buffer is full, the oldest

transitions are discarded in favor of newly collected
ones.

Transfer happens between a source MDP MS

and a target MDP MT . For ER transfer, a buffer
is filled by a trained agent acting onMS . Then it is
transferred to an untrained agent that learnsMT .

Finally, the MLPs used to approximate Q∗(s, a)
(and V ∗(s) for DQV) are small networks with two
hidden layers of 32 nodes each.

3.1.1 DQN

DQN, first described by Mnih et al. (2013), was
a breakthrough in model-free DRL achieving some
of the best results int the Atari Learning Environ-
ment (ALE). Using a stack of four 84×84 greyscale
images as state representations, it trains a convolu-
tional neural network (CNN) that outputs Q-values
for all actions. The same principle can be used with
a multi layer perceptron (MLP) which is appropri-
ate for the two selected tasks since their states are
represented by four and six floating point numbers
respectively.

ER plays a central role in the success of DQN.
It allows the combination of supervised learning
methods and reward signals which lack the consis-
tency required of labels. Training ANNs with online
methods is problematic for a number of reasons. As
mentioned previously, online methods are not data
efficient because they only consider the latest tran-
sition(s) and thus learn from strongly correlated
transitions. Another problem is that samples col-
lected online are biased by the agent’s policy.

The TD error for DQN is calculated from the Q-
value predicted by θ, the associated reward and the
maximum Q-value for state st+1 predicted by θ−.

δθ = rt + γmax
a∈A

Q(st+1, a; θ
−)−Q(st, at; θ) (3.2)

3.1.2 Double DQN

Double DQN (Van Hasselt et al., 2016) is a slight
variation of DQN that uses a different calculation
for the future Q-value of the TD error. Where
DQN chooses the maximum Q-value for the next
state st+1 according to the target model θ−, Dou-
ble DQN uses the policy model θ to find the ac-
tion which maximizes the Q-value for state st+1

and uses it to calculate the future Q-value.

4

δθ = rt + γQ(st+1, argmax
a∈A

Q(st+1, a; θ); θ
−)

−Q(st, at; θ)
(3.3)

3.1.3 DQV

DQV, introduced by Sabatelli et al. (2018), is based
on QV(λ) (Wiering, 2005) and uses a state-value
function V (s) in addition to the action-value func-
tion Q(s, a). This means a second ANN with its
own set of parameters ϕ and loss function Lϕ has
to be trained.

Lϕ = E(st,rt,st+1)∼U(D)[δ
2
ϕ] (3.4)

Both ANNs have the same architecture with ex-
ception of the last layer, which has only one output
in the case of ϕ where θ has one output for every
action.
The TD error δϕ is calculated similar to δθ, re-

placing Q-values with V-values. This also elimi-
nates the need for max and argmax operators as
actions are not considered in the formula.

δϕ = rt + γV (st+1;ϕ
−)− V (st;ϕ) (3.5)

Finally, the TD error δθ is calculated using the
V-value V (st+1;ϕ

−) instead of a future Q-value.

δθ = rt + γV (st+1;ϕ
−)−Q(st, at; θ) (3.6)

The target model θ− is not used for this type of
agent, so the parameters needed are θ, ϕ and ϕ−.
While training two separate networks is more

computationally expensive, the function V (s) con-
verges faster than Q(s, a), resulting in an over-
all improvement (Sabatelli et al., 2018; Sabatelli,
Louppe, Geurts, and Wiering, 2020).

3.2 Environments

Experiments are carried out in two environments,
CartPole-v0 and Acrobot-v1, from the OpenAI
gym (Brockman et al., 2016). A modified version
of each environment is created, CartPole-mod and
Acrobot-mod, so that one can be used as the source
MDP MS while the other is used as target MDP
MT . There is no transfer between CartPole-v0

and Acrobot-v1 as their state representations and
action spaces differ. In both cases, transfer is con-
ducted from default to modified environment and
vice versa, resulting in four source-target pairs.

3.2.1 CartPole

In the CartPole environment a pole is balanced on
a cart that moves on a horizontal axis. If the pole
tips over too far or the cart moves out of bounds the
episode ends. An episode also ends if the maximum
number of time steps is reached, which is 200 for
CartPole-v0. Each time step gives a reward of +1,
so the cumulative reward (or score) is in the range
(0, 200]. A successful agent will get an average score
of ≥ 195 over the course of 100 episodes. States are
represented as a four-tuple containing position of
the cart, velocity of the cart, angle of the pole and
the pole’s velocity at the tip. Available actions are
pushing the cart left or right.

3.2.2 Acrobot

Acrobot consists of two joints and two links. The
first joint is fixed in a central location and attaches
to the inner link. The second joint is actuated and
connects the inner and outer link. To reach the
goal the agent has to swing the tip of the outer
link above a threshold height by applying torque
to the actuated joint between the links. A reward
of -1 is given per time step and the maximum num-
ber of time steps is 500, so scores are in the range
[−500, 0). Counting as successful is an agent that
scores an average of ≥ −100 over 100 episodes.
States are six-tuples containing cosine, sine and
angular velocity of each joint’s angle. The three
actions from which an agent can pick are apply-
ing torque in either direction or simply applying no
torque.

3.3 Experiment Setup

3.3.1 Hardware

The machine used for the experiments uses an
AMD Ryzen 3700x CPU, Nvidia RTX 2060 Super
(8 GB) GPU and 16 GB of RAM (2666 MHz). All
computations were done by CPU as the small net-
works used do not benefit from parallel processing.

5

(a) CartPole-v0 (b) CartPole-mod

(c) Acrobot-v1 (d) Acrobot-mod

Figure 3.1: Gym Environments

3.3.2 Preparation

First, a modified version of each environment is cre-
ated, CartPole-mod and Acrobot-mod respectively.

CartPole-mod uses a pole length of 0.8 instead
of the default 0.5. For Acrobot-mod the length of
both links is modified: The inner link changes from
1.0 to 0.8 and the outer link changes from 1.0 to
1.2.

An untrained agent of each type is trained in each
of the four tasks until it is successful according to
the aforementioned criteria and its model parame-
ters are saved. Next, the trained agents collect tran-
sitions in the same environments (Ms), using the
learned Q-policy, and save the ER buffer.

3.3.3 Training procedure

With everything set up, four variants of each agent
in each environment (Mt) are trained. The first
agent does not make use of TL and simply serves as
a baseline. One agent receives a full buffer fromMs

(buffer transfer), a second agent uses the model pa-
rameters θ of an agent trained inMs (model trans-
fer) and the third agents uses both forms of transfer
(double transfer). In the case of buffer and double
transfer the last layer (i.e. the head) of the model is
reinitialized. Scores are recorded in between train-
ing steps (every two steps for CartPole and every
20 steps for Acrobot) and use the learned policy
Qπ(st, at) instead of the ε-greedy policy used for
training. The procedure is repeated five times for
each agent to generate an average.

6

(a) DQN (b) Double DQN (c) DQV

Figure 3.2: Results CartPole (Ms = mod, Mt = v0)

(a) DQN (b) Double DQN (c) DQV

Figure 3.3: Results CartPole (Ms = v0, Mt = mod)

(a) DQN (b) Double DQN (c) DQV

Figure 3.4: Results Acrobot (Ms = mod, Mt = v1)

(a) DQN (b) Double DQN (c) DQV

Figure 3.5: Results Acrobot (Ms = v1, Mt = mod)

7

Table 3.1: Area Ratio Scores CartPole

Transfer
DQN Double DQN DQV

mod → v0 v0 → mod mod → v0 v0 → mod mod → v0 v0 → mod

Buffer 0.21 0 0.10 0.13 0.26 0.30

Parameters 0.36 0.23 0.11 0.19 0.26 0.22

Double 0.28 0.24 0.13 0.12 0.17 0.29

Table 3.2: Area Ratio Scores Acrobot

Transfer
DQN Double DQN DQV

mod → v0 v0 → mod mod → v0 v0 → mod mod → v0 v0 → mod

Buffer 0 0.17 0.04 -0.14 -0.19 0.04

Parameters 0.19 -0.10 -0.08 -0.58 -0.37 -0.17

Double 0.05 -0.21 -0.08 0.01 -0.04 0.11

3.4 Analysis

Scores (i.e. cumulative reward) are plotted, one plot
per ⟨Ms,Mt, agent⟩ triple, resulting in 12 plots.
These are analyzed according to the criteria out-
lined in Lazaric (2012). Visually, the criteria are (1)
learning speed, (2) asymptotic and (3) jumpstart
improvement. To quantify the success of transfer,
the area ratio (AR) scores are calculated.

R =
area with transfer− area without transfer

area without transfer
(3.7)

4 Results

The learning curves for all experiments can be seen
in Fig. 3.2 to 3.5. Curves represent an average over
five training cycles and the shaded areas show the
standard deviation. Colors are blue for a default
agent with no transfer, orange for buffer transfer,
green for model transfer and red for double transfer.
Area ratio scores corresponding to the same plots
are found in tables 3.1 and 3.2.

4.1 CartPole

CartPole experiments show learning speed im-
provement for buffer transfer in three cases (Fig.

3.2a, 3.2c, 3.3c) and impairment in one case (Fig.
3.3a). Asymptotic imporovement can be observed
to some extent in all cases while jumpstart improve-
ment is absent in all cases.

Parameter transfer leads to learning speed im-
provement in all CartPole experiments and the
same is true for double transfer. In all cases ex-
cept for Fig. 3.2b there is some asymptotic im-
provement though not very distinctive except for
Fig. 3.3c. Again, jumpstart improvement is absent
in all experiments. Area ratio scores are positive
for all transfer variants in all experiments, so TL
for all CartPole experiments was successful. An
interesting observation is that the addition of ER
buffer transfer to parameter transfer does not seem
to have a significant effect when compared to only
parameter transfer.

4.2 Acrobot

For Acrobot experiments the situation is very dif-
ferent. Training curves are overlapping for the most
part and do not show much of an effect of either
transfer method. Exceptions are asymptotic im-
provement with ER buffer transfer seen in Fig. 3.5a
and sudden deterioration with parameter transfer
as seen in Fig. 3.5b. The area ratio scores in table
3.2 confirm these findings as they are not conclusive
but show a trend towards negative transfer.

8

5 Discussion

5.1 Findings

For two environments from the OpenAI gym
(Brockman et al., 2016), CartPole-v0 and
Acrobot-v1, modified environments were created
to study TL between two similar tasks. Experi-
ments were run with three agents, DQN (Mnih
et al., 2013), Double DQN (Van Hasselt et al.,
2016) and DQV (Sabatelli et al., 2018). Three types
of knowledge transfer were studied, (1) ER buffer
transfer, (2) model transfer and (3) double transfeer
(ER buffer + model), by comparing their learning
curves visually and numerically.

Results of the CartPole experiments are dis-
tinctly positive for all types of transfer, showing
learning speed improvements as well as convergence
to a higher cumulative reward. Area ratio scores
comparing the area under the curve between an
agent trained from scratch and a transfer agent are
all positive, further substantiating these findings.

In the case of the Acrobot environment results
are less impressive and not indicative of any partic-
ular trend. Visually, only two scenarios show a clear
difference in learning success, one of them positive
and one negative. Area ratio scores show mixed re-
sults but tend towards negative impact of knowl-
edge transfer on learning performance.

Overall the results are not conclusive as they
differ enormously between tasks. The findings in
the Acrobot environment are in line with those of
Sabatelli and Geurts (2021) which stated no pos-
itive knowledge transfer between tasks. However,
the results produced in the CartPole environment
are pointing towards a different conclusion as both
types of transfer, model and ER buffer, had a pos-
itive impact.

A notable difference between this research and
that of Sabatelli and Geurts (2021) is in the us-
age of state features. Both environments provide
numerical values representing perfect sensor data.
On top of that, the features are identical between
source and target task. In the case of ALE en-
vironments, CNNs have to learn to extract use-
ful features from a series of greyscale images and
these features also differ between tasks. Due to
hardware and time constraints it was not possi-
ble to gather meaningful data for such tasks. A
first attempt of transferring knowledge between the

ALE environments PongDeterministic-v4 and
EnduroDeterministic-v0 is shown in Figures 5.1
and 5.2.

Figure 5.1: Transfer Enduro → Pong

Figure 5.2: Transfer Pong → Enduro

Transferring ER from Enduro to Pong lead to
the agent being unable to learn, but a transfer of
ER from Pong to Enduro seems to work. A pos-
sible explanation is that the (visual) features of
Pong are less complex than those of Enduro, which
would be in line with the hypothesis of Farebrother,
Machado, and Bowling (2018) (as cited in Sabatelli
and Geurts (2021)), who suggest that transfer from
an easier to a more difficult task are more likely to
result in positive transfer.

9

5.2 DQV2

DQV2 is an agent concept that was developed as
part of this research and is based on the DQV ar-
chitecture. The motivation was to reduce the num-
ber of model parameters to decrease the amount of
required memory and computational cost. Under-
lying is the assumption that both the value func-
tion V (s) and the Q-value function Q(s, a) learn
from similar information extracted from states by
an ANN. If this assumption holds, then a trained
Q-value model should provide enough information
to a V-value model, so that only the last layer has
to be replaced and trained. The general idea is out-
lined below

Figure 5.3: DQV2 network architecture

with black connections showing weights adjusted
with the loss function Lθ of the Q-value model and
green connections showing weights trained with the
V-model’s loss functions Lϕ.

Results for this agent can be found below in Fig-
ures 5.4 and 5.5.

Figure 5.4: CartPole-v0 (DQV2)

Figure 5.5: CartPole-mod (DQV2)

Clearly, the agent is able to learn the CartPole

tasks. However, it is not obvious how it compares
to other types of agents, especially DQV. It is also
unknown if the agent is able to learn other, more
challenging tasks such as ALE games. Therefore, a
comparison of DQV and DQV2 across various tasks
is required to investigate its usefulness.

6 Conclusion

In this work we investigated the effectiveness of
transferring ER in model-free DRL settings. Agents
were trained in a source task, collected ER data
and transferred it to an agent learning a slightly
modified version of the task. Learning performance
was compared between regular agents without TL
and three types of TL: (1) ER buffer transfer, (2)
model transfer and (3) double transfeer (ER buffer
+ model). All types of TL were succesful for the
first type of task, while for the second type the re-
sults were mixed. Since the source and target tasks
were very simple and almost identical, it has to
be shown how ER transfer performs in tasks with
fewer similarities. A logical next step would be a
series of similar experiments using different ALE
environments. Another limitation is that only full
ER buffers were transferred. It seems possible that
too much ER data from a source task is detrimen-
tal to learning performance, so comparing transfer
of different amounts of ER data seems worthwhile.

10

References

Ibraheem Alhashim and Peter Wonka. High qual-
ity monocular depth estimation via transfer
learning. CoRR, abs/1812.11941, 2018. URL
http://arxiv.org/abs/1812.11941.

M. G. Bellemare, Y. Naddaf, J. Veness, and
M. Bowling. The arcade learning environment:
An evaluation platform for general agents. Jour-
nal of Artificial Intelligence Research, 47:253–
279, jun 2013.

Greg Brockman, Vicki Cheung, Ludwig Pettersson,
Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Jesse Farebrother, Marlos C. Machado, and
Michael Bowling. Generalization and regulariza-
tion in DQN. CoRR, abs/1810.00123, 2018. URL
http://arxiv.org/abs/1810.00123.

Kasthurirangan Gopalakrishnan, Siddhartha K.
Khaitan, Alok Choudhary, and Ankit Agrawal.
Deep convolutional neural networks with
transfer learning for computer vision-based
data-driven pavement distress detection.
Construction and Building Materials, 157:
322–330, 2017. ISSN 0950-0618. doi:
https://doi.org/10.1016/j.conbuildmat.2017.09.
110. URL https://www.sciencedirect.com/

science/article/pii/S0950061817319335.

Alessandro Lazaric. Transfer in Reinforce-
ment Learning: a Framework and a Sur-
vey. In Martijn van Otterlo Marco Wier-
ing, editor, Reinforcement Learning - State of
the art, volume 12, pages 143–173. Springer,
2012. doi: 10.1007/978-3-642-27645-3 5. URL
https://hal.inria.fr/hal-00772626.

Long-Ji Lin. Reinforcement learning for robots us-
ing neural networks, 1993.

Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari
with deep reinforcement learning, 2013.

Emilio Parisotto, Jimmy Lei Ba, and Rus-
lan Salakhutdinov. Actor-mimic: Deep mul-
titask and transfer reinforcement learning.

arXiv preprint arXiv:1511.06342, 2015. URL
https://arxiv.org/abs/1511.06342.

Martin L Puterman. Markov decision processes:
discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Ali Sharif Razavian, Hossein Azizpour, Josephine
Sullivan, and Stefan Carlsson. CNN features
off-the-shelf: an astounding baseline for recog-
nition. CoRR, abs/1403.6382, 2014. URL
http://arxiv.org/abs/1403.6382.

Sebastian Ruder, Matthew E. Peters, Swabha
Swayamdipta, and Thomas Wolf. Trans-
fer learning in natural language processing.
In Proceedings of the 2019 Conference of
the North American Chapter of the Asso-
ciation for Computational Linguistics: Tuto-
rials, pages 15–18, Minneapolis, Minnesota,
June 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-5004. URL
https://aclanthology.org/N19-5004.

Matthia Sabatelli and Pierre Geurts. On
the transferability of deep-q networks.
CoRR, abs/2110.02639, 2021. URL
https://arxiv.org/abs/2110.02639.

Matthia Sabatelli, Gilles Louppe, Pierre Geurts,
and Marco A Wiering. Deep quality-value (dqv)
learning. arXiv preprint arXiv:1810.00368, 2018.
URL https://arxiv.org/abs/1810.00368.

Matthia Sabatelli, Gilles Louppe, Pierre Geurts,
and Marco A Wiering. The deep quality-value
family of deep reinforcement learning algorithms.
In 2020 International Joint Conference on Neu-
ral Networks (IJCNN), pages 1–8. IEEE, 2020.

Remo Sasso, Matthia Sabatelli, and Marco A.
Wiering. Fractional transfer learning for
deep model-based reinforcement learn-
ing. CoRR, abs/2108.06526, 2021. URL
https://arxiv.org/abs/2108.06526.

Amirhosein Shantia, Eric Begue, and Marco Wier-
ing. Connectionist reinforcement learning for
intelligent unit micro management in starcraft.
In The 2011 International Joint Conference on
Neural Networks, pages 1794–1801, 2011. doi:
10.1109/IJCNN.2011.6033442.

11

Richard S. Sutton and Andrew G. Barto. Reinforce-
ment Learning I: Introduction. The MIT Press,
1998.

Hado Van Hasselt, Arthur Guez, and David Sil-
ver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference
on artificial intelligence, volume 30, 2016.

Oriol Vinyals, Igor Babuschkin, Wojciech Czar-
necki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David Choi, Richard Powell, Timo
Ewalds, Petko Georgiev, Junhyuk Oh, Dan Hor-
gan, Manuel Kroiss, Ivo Danihelka, Aja Huang,
Laurent Sifre, Trevor Cai, John Agapiou, Max
Jaderberg, and David Silver. Grandmaster
level in starcraft ii using multi-agent reinforce-
ment learning. Nature, 575, 11 2019. doi:
10.1038/s41586-019-1724-z.

Christopher Watkins. Learning from delayed re-
wards. 01 1989.

Marco A Wiering. QV(λ)-learning: A new on-
policy reinforcement learning algrithm. In Pro-
ceedings of the 7th european workshop on rein-
forcement learning, pages 17–18. Citeseer, 2005.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and
Hod Lipson. How transferable are features
in deep neural networks? In Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Infor-
mation Processing Systems, volume 27. Curran
Associates, Inc., 2014.

12

