
Per-patch noise functions

Bachelor’s Project Thesis

Tom Apol
Supervisors: Jǐŕı Kosinka & Gerben J. Hettinga

Normal map of a tubular mesh, displaced by patch-based Bézier noise.

Abstract

In this thesis, I will be discussing new advancements in the area of patch-based noise,
in the context of displacement mapping: altering existing noise functions to make them
patch-based, and continuous to a certain degree. This patch-based approach allows us to
manipulate the generated noise values by changing attributes of the patch vertices. These
attributes will be interpolated over the patch, and can be used in the noise computation
itself.

This has been successful for several lattice-based noise functions (Value-, 2D Perlin-,
and our new Bézier noise), for quadrilateral patches. The continuity of these altered
functions should be the same as their original forms, being C1 in the regular case. When
applied to a mesh, it is bound by the continuity of said mesh, and further influenced by the
regularity of patch-lattices over the mesh. Using the ACC2 framework (which approximates
Catmull-Clark subdivision), this results in the following continuity: Patch-edge continuity
can range from C0 to C1, while vertex continuity ranges from G1 to C1.

I will discuss how the continuity over patch edges, using local, edge-based coordinate
systems, is maintained, and will demonstrate it with examples of these altered noise
functions applied to displacement mapping.

2

Contents

1 Introduction 4

2 Background information 5
2.1 ACC2 framework . 5
2.2 Geometric & Parametric Continuity . 5
2.3 UV-coordinates . 6
2.4 Displacement mapping . 7
2.5 Half-edges . 7
2.6 Noise functions . 7
2.7 Spatial variation of noise through interpolation of parameters 8

3 Per-patch noise 10
3.1 Continuous mesh-wide domain and hash-vectors 10
3.2 Edge-based coordinate system . 11
3.3 Static hash-vector for patch vertices . 11
3.4 Value noise adaptation . 12
3.5 Bézier noise . 12
3.6 2D Perlin- and Bézier noise adaptation . 14
3.7 Adapted noise function continuity . 15

4 Results 17
4.1 Implemented for Value-, 2D Perlin-, and Bézier noise 17
4.2 Examples of noise applied to different objects/meshes 17
4.3 Example of patch-orientation independence along patch edges 17
4.4 Examples of vertex-based persistence variation regarding fractal noise . . . 22
4.5 Continuity and graphical artefacts around patch vertices 22

5 Discussion 24
5.1 Comparison with other approaches . 24
5.2 Up- and downsides of our method . 24

6 Conclusions 25

7 Future work 26

Bibliography 27

A Appendix 28
A.1 Complete adapted Value noise algorithm 28
A.2 Complete adapted 2D Perlin noise algorithm 28
A.3 Complete adapted Bézier noise algorithm 29

3

1 Introduction

What is displacement mapping?
Displacement mapping is the act of displacing the vertices of a mesh, according to a

given height-function or texture map. This displacement is generally performed along the
vertex normal. Displacement mapping is used to modify the mesh itself, which contrasts
to, say, bump-mapping, which only changes the normals of the surface, such that during
lighting calculations it seems like the surface is displaced.

Why use noise?
Sometimes it is advantageous to use procedurally generated noise as a height-function

when displacement mapping. For example, when the displacement needs to look organic.
Examples of this would be procedurally generated terrain, or irregular organic surfaces
such as human skin.

How are noise functions used at the moment?
Currently, in the context of displacement mapping, noise functions are used primarily

in the following two ways:

• Generate a global texture map beforehand using the noise function (which requires
the mesh to be unfolded and flattened), and then apply the displacement to the
mesh.

• Solid noise: Generate a 3D noise field (i.e. a cube containing scalar values) using the
noise function, large enough to envelop the mesh. The noise is mapped to the mesh
by intersecting the mesh with the cube. Finally, apply the displacement as usual.

How does our project change this?
This project applies noise functions in a different way: instead of using a globally

generated texture map or noise field, we use per-patch texture coordinates to locally define
procedural noise fields per patch. This has the advantage of not having to send a lot of
texture data to the GPU, nor having to flatten the mesh beforehand. Furthermore, due to
being patch-based, our approach also allows us to easily vary noise parameters on a local
level. (see section 2.7 for theory and 4.4 for visual examples of this)

The goal of this project is as follows: Apply displacement mapping with patch-based
noise-functions on an ACC2 surface, whilst maintaining continuity over patch-edges.

4

2 Background information

2.1 ACC2 framework

The provided ACC2 framework approximates Catmull-Clark subdivision surfaces using
bicubic Bézier patches. This framework is based on the paper by Loop et al. [1]. Important
to note is that in the regular case, the patch surface is equivalent to the usual Catmull-
Clark surface (C2 continuity, see section 2.2). However, in the irregular case, where at
least one of the patch vertices has a valency other than 4, the resulting patch surface is
tangent-plane continuous along its edges (G1 continuity, see section 2.2). This guarantees
that its C1 normal-field is continuous as well . This means that both the surface and its
existing normals can be used in further surface normal computations, should the mesh be
deformed from this point on.

The mesh (or rather, a series of quadrilateral patches) is implemented using a half-edge
data structure. (See section 2.5.) In terms of data structure, a patch is simply a linked
list of half-edges, paired with additional relevant patch-wide data/properties. In the
ACC2 framework, the base mesh is comprised of quadrilateral patches, where each patch
corresponds to a face of the mesh. After subdivision, each patch is still projected on the
refined mesh, and is now itself comprised of smaller quadrilateral faces.

2.2 Geometric & Parametric Continuity

When discussing continuity on curves, we can think of it as a point t ∈ [0, 1] ⊂ R on
the curve where the curve is split into two sub-curves (e.g. curve A and B). First it
is important to distinguish two types of continuity: geometric (G) and parametric (C).
These continuities can be ranked in terms of how continuous they are (i.e. Gn or Cn with
n ∈ N).
For this thesis, we will only cover G0 to C1:

• G0/C0: A curve is G0 or C0 at point t, when evaluating the curve at t from either
sub-curve (the curves resulting from splitting the initial curve at point t) results in
the same value. Another way of phrasing it is that both sub-curves geometrically
line up at point t.

In figure 2.1(a) and (b), we can see the difference between non-continuous and
continuous curves.

• G1: A curve is G1 continuous at point t, when it is G0 continuous, and when
evaluating its first derivative (i.e. its tangent vector) from either sub-curve results in
a vector in the same direction.

In figure 2.1(b) and (c), we can see the difference between G0 and G1 continuity:
both tangent vectors are aligned (as in our example, both of the control points
surrounding t and t itself are all collinear). Note, however, that the curve of (d) is
also G1 continuous.

• C1: Similarly to G1 continuity, a curve is C1 continuous at point t, when it is C0

continuous, and the tangent vector at point t is the same when evaluated from both
subcurves, both in direction and magnitude.

5

We can see this in 2.1(d), where the control points surrounding t and t itself are
collinear, with an equal distance between each of these control points and t.

A

B

tA

tB

A

B

t

(a) Non-continuous (b) G0/C0

A

B

t

A

B

t

(c) G1 (d) C1

Figure 2.1: Examples of non-continuous to C1 continuous Bézier curves at point t.
Each curve is split into subcurves A (red) and B (blue). The white nodes are start-
or endpoints of a subcurve, while the grey nodes are the other control points. The
control polygon is displayed using dashed lines between each control point.
Note that a dashed line between a control point and a start-/endpoint, in the order
of the control polygon, corresponds with the tangent vector at that point on the
curve, from the direction of the corresponding subcurve.

Continuity on surfaces is in essence the same as continuity on curves, but with two
degrees of freedom rather than one (so a point is defined by two coordinates, e.g. u and
v). We can simply see a point on a surface as a combination of two curves: one defined
solely in terms u and one solely in terms of v. Now it is just the case of checking the
continuity of our point on both of these curves. The final level of continuity is then bound
by the least continuous part (e.g. C1 with respect to u and C0 with respect to v results in
a surface continuity of C0).

2.3 UV-coordinates

A UV-coordinate system is a 2D coordinate system where UV ∈ [0, 1]2 ⊂ R2.
In our application, the original mesh is made up out of quads. When applying ACC2

to this mesh, these quads remain projected onto the mesh. We will call these projected
quads ‘patches’. These patches have their own local UV-coordinate system associated to
them, similar to how an entire mesh might be flattened and assigned texture coordinates.
This way points on a patch can be identified, on every patch, rather than using global
coordinates of the entire mesh, without the issue of cutting and flattening the mesh itself.

6

Globally, we use a combination of uv-coordinates together with the corresponding patch-ID
to identify a point on the mesh. Note that for a point on a patch edge, there may exist a
multiple of these tuples, as multiple patches may border such a point. Furthermore, this
is the case for all points along any patch edge of a closed mesh.

2.4 Displacement mapping

Displacement mapping is similar to texture mapping: texture mapping assigns colour values
to vertices, which get interpolated when evaluating pixels. Displacement mapping assigns
displacement values (∈ R) to vertices, which will get displaced along its normal vector.
This way, a mesh can be altered at run-time. When combined with ACC2 subdivision,
we can start with a coarse mesh, and subdivide it to generate new vertices on the fly,
which we can then displace using displacement mapping. This way a detailed mesh can be
generated without sending as much data to the GPU.

2.5 Half-edges

Our quad implementation is based on the half-edge data structure. Where a standard
quad is implemented using bi-directional edges, our quads are defined as a linked list of
single-directional edges, in a counter-clockwise manner.

Figure 2.2 shows a diagram for an example half-edge e (blue). Each half-edge contains a
reference to:

• Its target vertex. (purple)

• The next half-edge in the list. (red)

• The previous half-edge in the list. (green)

• Its twin. (orange)
The twin of a half-edge is its counterpart, starting from the target vertex to the
vertex it originated from. This twin lies on the adjacent quad, and thus may not
even exist at all if the mesh is not completely closed.

The benefit of using half-edges is that you can easily traverse the quad, as well as easily
traverse adjacent quads, using the half-edge’s twin reference.

2.6 Noise functions

The noise functions that are used and discussed in this thesis are the following: Value
noise, Perlin noise and our newly constructed Bézier noise. In this section, only the already
established Value- and Perlin noise functions will be described. See section 3.5 for an
explanation of Bézier noise.

The first thing to note is that both Value- and Perlin noise are lattice-based noise
functions: the feature points (or control points if you will) all lie on the vertices of a
lattice-structure. This is in contrast to a point-based noise function like Worley noise,
where the feature points are randomly distributed within the cells of a grid-structure.

Perlin noise is a basic and widely known lattice-based gradient noise function.
Its 2D version is constructed as follows:

7

e

twin(e)

next(e)prev(e)

target(e)

Figure 2.2: Half-edge structure, centered around the half-edge e. Note that twin(e),
just like all the other black twin half-edges, is part of some adjacent quad.

1. Create a gradient field, using randomly-generated gradients on grid-vertices.

2. For each point on the noise field (on which the gradient field is projected):

(a) For each of the 4 nearest grid vertices, compute dot product between gradient
vector assigned to this grid vertex and the corresponding offset vector (from
the grid vertex to the point in the cell).

(b) Interpolate these four resulting scalar values, weighted by the point’s proximity
to each corresponding vertex.

Value noise is a simple noise function, which is conceptually different from Perlin noise,
but very similar in its construction. A 2D value noise field is constructed as follows:

1. Assign a scalar value (usually in the range of [−1.0, 1.0] ⊂ R) to each vertex of the
grid.

2. For each point on the noise field: interpolate the values assigned to the four nearest
grid vertices.

Examples of Value- and 2D Perlin- noise are shown in figure 2.3.
Note that for both Value- and Perlin noise, the function with which these last scalar

values are interpolated determines the maximum possible ’smoothness’ or continuity of
such a noise function when tiled. The GLSL smoothstep function is one such a function,
which uses cubic Hermite interpolation after clamping. The resulting continuity is C1,
since at its endpoints both its 0th- and 1st-derivatives are 0. Of course, this assumes a
regular grid, such that the tangents along the edge of each tile line up.

2.7 Spatial variation of noise through interpolation of parame-
ters

The noise generation can further be influenced by using parameters whose values, instead
of being static, are interpolated over the entire patch.

8

Value noise 2D Perlin noise

Figure 2.3: Examples of Value- and 2D Perlin noise. Both results used the same
seed for their hash functions. Note that the Perlin noise here is rescaled to fit the
standard [-1, 1] range.

An example of this would be the use of interpolated persistence in fractal noise. Fractal
noise is a more complex noise function, which essentially layers low and high frequency
noise on top of each other to create a more varied noise pattern. The amplitude of
the generated noise decreases exponentially the higher its frequency. The persistence

parameter (between 0 and 1), dictates how quickly this occurs.
Or, as described by a formula:

fractal F (x) =
N∑
i=0

(persistencei · F (2i · x))/normK

=
N∑
i=0

(persistencei · F (freqi · x))/normK

with normK =
∑N

i=0 persistence
i, F being the base noise function, x being the point’s

coordinates on the patch, freqi being that iteration’s noise frequency, and N being the
maximum number of iterations. Note that normK merely serves to normalise the resulting
noise (to a range of [−1.0, 1.0] ⊂ R). Furthermore, normK is a constant, since persistence
is a constant as well.

By varying the persistence between vertices, we can generate smooth differences in
detail within the noise field.

In conclusion

Using these techniques and theory, notably: the ACC2 framework, surface continuity,
displacement mapping, and noise functions, section 3 will describe how they will be used
for generating continuous patch-based noise.
Note that the theory on half-edges is included mainly to understand the ACC2 framework
better. Additionally, the theory on ‘spatial variation of noise through interpolation of
parameters’ is mainly used in section 4.4, where results are shown featuring continuous
fractal noise with interpolated values for persistence.

(Since the domain for parameters like persistence is continuous over the mesh already,
as they are only tied to mesh vertices, we do not need to concern ourselves with a different
implementation to account for continuity over patch edges.)

9

3 Per-patch noise

When creating continuous, lattice-based per-patch noise, assuming that our noise functions
are continuous to begin with, there are several main issues that need to be addressed:

First of all, we have to ensure that neighbouring patches agree on the final noise value
along shared patch edges. This will make the surface along patch edges C0. Additionally,
we will have to ensure that neighbouring patches agree on the tangent vectors of the noise
along shared patch edges, making them either G1 or C1.

Furthermore, we work under two main assumptions. Our first assumption is that the
lattice-based noise functions make use of a hash function based on uv-coordinates. This
hash function returns a (potentially 1D) vector. (We will call this a ‘hash-vector’ in the
rest of this thesis.) Furthermore, we assume that the feature points of these noise functions
lie on the vertices of the lattice. Finally, we assume is that the mesh the noise function is
applied to is locally (roughly) coplanar along patch edges.

To address these issues, we have opted to implement these strategies:
First of all, we create a continuous mesh-wide domain to replace the functionality of a

global uv-coordinate system. We will use this as the input of our hash function, instead of
using patch-based uv-coordinates. (see section 3.1)

Next, we restrict our feature points to the vertices of an NxN grid, where N is integer,
such that it is symmetrical. This will keep the lattice continuous over patch edges, as
differing patch-orientations with a non-symmetrical lattice could cause misaligned feature
points along patch edges.

Furthermore, we implement a patch-edge based coordinate system for maintaining
independence of the neighbouring patches’ uv-coordinate system’s orientation. This is in
conjunction with the aforementioned constructed domain. (see section 3.2)

The next strategy is to use static hash-vectors for patch vertices, in order to deal with
the fact that valency can vary for patch vertices. (see section 3.3)

Last but not least, to satisfy our ‘locally coplanar’ assumption: we apply our func-
tion to densely tessellated meshes, such that locally the resulting faces are roughly coplanar.

In section 3.5 we will explain our newly created Bézier noise function. In section 3.4
we will explain how we adapted the standard Value noise, while we do the same in 3.6 for
2D Perlin- and Bézier noise.

3.1 Continuous mesh-wide domain and hash-vectors

For our domain, we opted to include the patch’s vertex indices into the hash function.
(I.e. hash(uv, index). This way, when computing the hash-vector of a grid-vertex on the
patch, we simply bilinearly interpolate between the four hash-vectors of the patch vertices.

However, the uv-coordinates of a point on a patch-edge will most likely differ depending
on the patch the point is viewed from, given that they may differ in orientation. Therefore,
along patch edges we have opted to switch from patch-based uv-coordinates to edge-based
coordinates along patch edges, when computing hash-vectors.

With these changes, we can implement continuous noise for Value noise, as well as
more complicated noise functions, such as Perlin- and Bézier noise.

10

3.2 Edge-based coordinate system

Our edge-based coordinate system is very similar to the definition of a point on a line
(i.e. only using a single parameter t). However, in our case we also need to indicate the
direction of t along the edge, and thus create an agreed-upon secondary y-axis, even if the
y value of points along the edge are always 0. To this end, we use one of the two vertices
as origin point of the coordinate system. In our implementation, we simply chose the
smallest of the two vertex indices. Finally, we also use the origin-point vertex index as
the second part of our hash-function input. See figure 3.1 for a visual example of such a
coordinate system.

When using this coordinate system as input for our hash function, both patches use
the same input, and thus agree on the resulting output. Note however, that the direction
of this output vector is based on the basis vectors of this coordinate system, and not of
the patches themselves.

Furthermore, note that the resulting hash vectors along such an edge may not be
unique within the patch. For example, the hash vectors generated along the edge BC are
the same as the hash vectors generated along the edge BF , as both have vertex B as their
origin.

A:1 B:2

C:3D:4 E:5

F:6

t = 0.0

t = 1.0

+y -y

Figure 3.1: An example the directions of the edge-based coordinate systems of two
adjacent patches, with the vertex indices shown next to their name. Highlighted
is the edge BC, where the t-axis is highlighted in blue, and the direction of the
hypothetical y-axis is highlighted in red.

3.3 Static hash-vector for patch vertices

As stated earlier, in the case of patch vertices, their valency may vary. This in turn makes it
rather difficult, if not impossible, to create a (simple) solution to ensure that all connected
patches agree on the objective hash-vector of the vertex. Therefore, for simplicity’s sake,
we opted to use the static 0-vector for patch vertices. This way all connected patches do
agree on the hash-vector, and the noise value on that point on the mesh will be 0 as well.
This in turn guarantees C0 continuity at patch vertices.

11

3.4 Value noise adaptation

The value noise adaptation for ensuring continuity over patch edges is relatively trivial.
The only thing we change is how the scalar hashes on each grid vertex are computed:

• On a patch vertex: Return 0. Note that, because of this, if N = 1, the noise for the
entire patch will be 0 as well.

• Inside the patch: Interpolate between the hashes that the patch vertices normally
would get. We ignore the 0-override here, since otherwise this would only result in
a noise of 0. The continuity of the noise remains guaranteed, since we bilinearly
interpolate over the local grid-cell.

• On a patch edge: Transform the uv-coordinates from patch-space to edge-space
and compute the hash from there. Since this hash is a scalar, and therefore has no
direction, we don’t need to worry about our change of basis vectors.

See the appendix (section A.1) for the full adapted version.

3.5 Bézier noise

Bézier noise is a noise function we designed with the express purpose of being C1 continuous
along the edges of its lattice, in the hopes that this would be easier to ensure C1 over
patch edges. The unmodified Bézier noise function essentially creates a 2D Bézier-spline
surface, creating a bicubic patch inside each grid-cell. The control points for these bicubic
patches are determined by the hash-vectors of the grid-cell’s four vertices.

Of interest is an example of how a curve of this surface is defined along the lattice, in
the u direction, over two edges:

We denote our main controls points on the lattice vertices as A, B and C, which in
turn form two continuous curves AB (red) and BC (blue), see figure 3.2. Each main
control point is used to generate two other child-control points, e.g. for point P this would
be the points P+ and P−. Furthermore, we denote the hash vector of a grid-cell vertex
P as Phash. Finally, we denote the u or v component of a point vector V as V.u and V.v
respectively.

The child-control points of control point B would then be computed as such:

B+ = B + [
1

3
(C −B).u, Bhash.u]

B− = B − [
1

3
(B − A).u,−Bhash.u]

In the case of figure 3.2, Bhash.u would be −0.8. This definition of the child-control points
ensures that the tangent vector at B in the u direction is the same for both curves AB
and BC, and therefore the entire curve AC is C1 continuous at point B.

This same technique is applied for Bézier-splines in the v-direction. The final Bézier-
spline surface is obtained as the tensor product between these two Bézier-splines. See
figure 3.3 for a schematic of how these control points lie within a single grid-cell.

Such a Bézier-spline surface lends itself for C1 continuity when tiling, using a regular
grid. This property naturally extends to C1 continuity over patch edges, as long as both
patches use the same basis vectors for their coordinate system (i.e. they are oriented in

12

Figure 3.2: A Bézier-spline, together with its control polygon. It is constructed
such that the spline is C1 continuous at control point B.

A B

CD

A.x

A.y A.x+y

B.-x

B.yB.-x+y

C.-x

C.-yC.-x-y

D.x

D.-y D.x-y

Figure 3.3: A schematic for how the control points of our Bézier surface lie within
a single grid cell. The control points are colour coded to show which parent-control
point controls which child-control point.

13

the same direction).

An example of the resulting Bézier noise can be seen in figure 3.4. Note the similarities
between Bézier noise and Perlin noise. However, note that the 2D Perlin noise has been
scaled to fit the standard [−1, 1] range, since its normal range is [−

√
2,
√

2]. [2] From this
we can see that Bézier noise seems to have more energy than Perlin noise, and that both
noise functions seem to generate an almost identical looking pattern. Furthermore, upon
closer inspection, the lattice edges are more visible with Bézier noise. This may be due to
Bézier noise’s internal C2 continuity, while on the edge of its tile it is only guaranteed to
be C1 continuous.

Bézier noise 2D Perlin noise

Figure 3.4: A comparison between Bézier- and 2D Perlin noise with the same seed
for their hash functions. The used grid is 4x4 cells. Note that the Perlin noise has
ben rescaled to fit the standard [-1, 1] range.

3.6 2D Perlin- and Bézier noise adaptation

The changes to 2D Perlin- and Bézier noise are virtually the same as the ones applied to
Value noise. However, these noise functions have the added complication that the return
value of their hash function is a proper vector, instead of a scalar. This re-introduces the
direction of the hash-vector into the equation: if implemented in the same way as Value
noise, then patches with differing orientations will use the same vector as if this vector is
computed using their own coordinate-system’s basis. Evidently, this is not the case, and
as such, discrepancies between the two patches along the edge will occur.

The answer to this is simple: transform the hash-vector back from the edge-coordinate
system’s basis to the patch-coordinate system’s basis.

Thus, we use the following decision scheme when computing the hash vectors in both
noise functions:

• On a patch vertex: Return a 0-vector. Note that, because of this, if N = 1, the
noise for the entire patch will be 0 as well. This applies to both 2D Perlin noise and
Bézier noise.

• Inside the patch: Interpolate between the hashes that the patch vertices normally
would get. We ignore the 0-vector override here, since otherwise this would only
result in a noise of 0. The continuity of the noise remains guaranteed, since we
bilinearly interpolate over the local grid-cell.

14

• On a patch edge: Transform the uv-coordinates from patch-space to edge-space and
compute the hash-vector from there. Since our hash-vector is oriented with respect
to our edge-space, we will need to transform it back to its respective patch-space in
order for it to be interpreted correctly.

Note that, while Bézier noise does not generate a gradient-vector like Perlin noise
does, it does generate two patch-orientation dependent values which it uses to generate
its child-control points. Since these two values depend on the orientation of the patch,
together they function like a vector, which is why we can apply the same procedure to
both types of noise functions.

For the full description of the adapted 2D Perlin- and Bézier noise algorithms, see
appendix A.2 and A.3 respectively.

3.7 Adapted noise function continuity

The adaptations to Value-, 2D Perlin-, and Bézier noise have interesting repercussions for
the continuity along patch borders. Here we have two possible scenarios to inspect. The
first one is the ‘regular’ case, where the lattice on the patch edge is continuous. The other
one is the ‘irregular’ case, where the lattice on the patch edge is C0 continuous, but not
C1 (i.e. the tangents of the first patch do not line up with the tangents of the second
patch, see figure 3.5).

A B

DC

FE

A B

DC

FE

(a) (b)

Figure 3.5: Examples of a regular lattice (a) and an irregular lattice (b) along the
patch edge CD.

Regular case
For all three noise functions, the continuity is the same as their original versions: C1

continuity along both patch vertices and patch edges. First of all, C0 continuity is achieved
by making both patches agree on the hash-vectors: the use of the static 0-hash vector on
patch vertices and an edge-based coordinate system ensures this. While Bézier noise has
C1 edge (and vertex) continuity built in (when applied to this regular case, see section 3.5),
Value- and Perlin noise rely on the GLSL smoothstep function to ensure C1 continuity
(see section 2.6).

Irregular case
Like in the regular case, the patch vertices remain C1, since the tangent vectors there have

15

a magnitude of 0, stripping them of direction. Patch edges, however, are diminished to C0

continuity, approaching C1, since the magnitude of the tangent vectors of both adjacent
patches remain equivalent, while their direction varies.

16

4 Results

We implemented patch-based versions of these lattice-based noise functions: Value-, 2D
Perlin- and Bézier noise. Note that our interface allows for the adjustment of several global
noise parameters (located to the left of the viewing window):

• Noise factor: A floating point multiplier that serves to reduce the raw output
noise value, since a displacement of 1 can be far too much for certain fine meshes.
Noise factor ∈ [0, 1] ⊂ R.

• Scale (noise frequency): An integer multiplier that influences the noise frequency of
both u and v coordinates of the patch. (e.g. with a scale of 2, UV ∈ [0, 2]2 ⊂ R2)
The reason why it govern both is because our method requires a symmetrical square
lattice.

• Noise type: A set of buttons to choose the type of noise to be applied.

• Fractal noise: A checkbox for applying fractal noise with the currently selected
noise type. Max Octaves governs the amount of octaves (or ‘noise layers’/iterations)
that will be used in the fractal noise algorithm.

Furthermore, we also allow for the manipulation of vertex-based parameters (located
on the right side of the viewing window). For now, the only noise-based parameter is
Persistence, which is used for fractal noise computations.

See figure 4.1 for an example of this GUI. Note that the GUI has many other (for
this thesis) relatively irrelevant parts, since this prototype was built on top of an existing,
trimmed down, renderer.

Finally, note that our renderings of 2D Perlin noise are scaled to fit the standard [−1, 1]
range, to be able to aptly compare the three implemented noise functions, since the range

of N-dimensional Perlin noise is [−
√

N
4
,
√

N
4

].[2] 2D Perlin noise thus normally has the

range of [−
√

1
2
,
√

1
2
] or roughly [−0.707, 0.707].

4.1 Implemented for Value-, 2D Perlin-, and Bézier noise

As stated before, we implemented patch-based versions of Value-, Perlin- and Bézier noise.
Examples of this, applied to a simple, completely coplanar ‘2quad’ mesh, are shown in
figure 4.2 This once again shows us how similar 2D Perlin noise and Bézier noise are, as
noted in section 3.5.

4.2 Examples of noise applied to different objects/meshes

These noise functions can be applied to non-coplanar meshes as well. Examples can be
seen in figure 4.3. From the lighting in 4.3.(c) we can clearly see that, while patch edges
certainly are not C1, the surface is at the very least C0.

4.3 Example of patch-orientation independence along patch edges

Along patch edges, our method is patch-orientation independent, which means that the
resulting noise values do not depend on the patch’s orientation. With patch-orientation,
we mean the orientation of the uv-coordinate system within the patch. Our orientation

17

Figure 4.1: A screenshot of our application, showing the user interface. Global
tessellation and noise parameters are located left of the viewing window, while
vertex based parameters are located to its right.

18

Value noise:

2D Perlin noise:

Bézier noise:
scale = 2 scale = 3

Figure 4.2: Noise functions applied to two adjacent patches and differing noise
frequency (scale), including the control mesh. Note that these patches are irregular,
since no patch vertex has a valency of 4.

19

(a)

(b)

(c)

Figure 4.3: 2D Perlin noise applied to a spherical mesh (a), a tubular mesh (b), and
a cross-esque mesh made of cubes (c).

20

independence stems from the fact that we use the (readjusted) hash-vectors obtained
from edge-coordinate space instead of patch-coordinate space. (It goes without saying,
of course, that the internal hash-vectors of a patch do rely on patch-coordinates rather
than edge-coordinates. This, combined with the fact that the internal grid of a patch with
scale > 2 is not symmetrical, means that the internal noise of said patch is very much
patch-orientation dependent.)
Patch-orientation independence is important, as it is required for a smooth transition
between patches in closed meshes, since closed meshes require some patches to have
different orientations. (For example, imagine a cube whose front, side and back faces all
have the same orientation. In this setup, the top and bottom face will be misaligned for 3
out of 4 of these aforementioned faces.)
Next are some example screenshots from the application: Figure 4.4 shows several examples
of the patch-orientations by displaying the uv-coordinates with colour gradients (u = red,
v = blue). From this, we can see that when changing the orientation of one of the patches,
the resulting displacement and normal vectors remain continuous along the patch edge.

(a) UV-grid orientation (b) Normal field

Figure 4.4: Bézier noise applied to two adjacent patches, shaded by its local patch
uv-coordinates (a) and its normal field (b). The patches of the top mesh have the
same orientation, while the right patch of the bottom mesh is turned 90 degrees
counterclockwise.

21

4.4 Examples of vertex-based persistence variation regarding
fractal noise

Using persistence values as vertex attributes, we can interpolate over each patch to create
a ‘persistence field’. This allows us to smoothly vary persistence over the patch, to be used
in the fractal noise function. Figure 4.5 shows the impact of this on spherical mesh, where
the persistence attribute of the frontal middle vertex varies between 0 (which essentially is
equivalent to using the non-fractal variant of the noise function), and 0.99.

(a) (b) (c)

Figure 4.5: An illustration of fractal Value noise applied to a spherical mesh, with
varying values for the persistence attribute of the frontal middle vertex.
These values are as follows: (a) = 0, (b) = 0.5, (c) = 0.99. The rest of the vertices
have a standard persistence value of 0.5.

4.5 Continuity and graphical artefacts around patch vertices

One of the main properties of the ACC2 framework is that the resulting base surface is G1

along patch edges of a patch that has at least one irregular vertex (i.e. a vertex with a
valency not equal to 4). However, note that this only applies to surface continuity, and to
tangent-planes, rather than vectors, since we are working with surfaces. As such, the G1

base surface continuity does not guarantee a regular lattice over a patch edge. However,
since regular patch edges have C2 surface continuity, the normal field is guaranteed to
be C1 continuous, and thus we are guaranteed to have regular lattices along these patch
edges.

When applying our noise functions to this base mesh, the noise function continuities
described in section 3.7 (C1 continuity for regular lattices, C0 to C1 continuity for irregular
lattices) are then bound by the surface continuity of said base mesh, which leads to
graphical artefacts along patch edges. Furthermore, since our ACC2 framework does not
guarantee lattice continuity along irregular/extraordinary patch edges, we will have to
assume the ‘irregular lattice’ case for these patch edges.

Therefore, along regular patch edges, the applied surface continuity will be C1. Along
irregular/extraordinary patch edges the applied surface continuity will be C0, approaching
C1, and G1 on patch vertices, since it is bound by the G1 base surface.

Figure 4.6 shows one such aforementioned artefact along a patch edge. The spherical
mesh here only contains these irregular patches, since it is derived from a cube, making

22

the base surface continuity along patch edges G1. What is clear to see is that the edges
are distinctly visible in that area, owing mostly to the irregular lattice. Furthermore, we
can see that the lattice over the edge becomes less regular the closer it gets to a patch
vertex. Finally, we can see that very close to the patch vertex itself, the normal colours
blend together rather than staying in high contrast to one another. This signifies that the
continuity on the patch vertex is indeed G1.

(a) Lattice (b) Normals

Figure 4.6: A zoomed in view on both a patch edge and patch vertex of a sphere
mesh on which 2D Perlin noise is applied. (a) uses the uv-map to show a rough
estimate of each patch’s lattice, while (b) shows the normal map across the mesh.

23

5 Discussion

5.1 Comparison with other approaches

First of all we will compare our approach to two other ways of generating noise:
‘Standard’ surface noise: Computing a noise map using global uv-coordinates. The

positive side of this method is that it is conceptually simple and easy to implement. One
of the downsides, however, is that it is set-up noise: the global uv-coordinates will have to
be precomputed. Furthermore, the surface will have to be flattened in order to map it
to the standard [0, 1]2 ∈ R range. For closed meshes, this requires tears/cuts to be made
along the surface, which can result in irregularities around those areas.

Solid noise: Computing a global noise map using 3d mesh coordinates. We create
a continuous 3D-noise field (e.g. a cube) around the mesh and map each point on the
mesh to a point in that noise field. The upsides to this method is that there are no tears
or irregularities within the map, with guaranteed smooth transitions between patches.
Lagae et al. [3] show that this can be achieved without any setup procedure. However,
one important downside is that it does not offer the same level of control on a local
vertex/patch level as patch-based noise does, as the noise field is not inherently linked to
the surface of the mesh.

5.2 Up- and downsides of our method

Upsides:
Our method has several upsides as well.

For one, we perform noise and uv-coordinate computation on the fly: since our method
is designed to be applied to tessellated patches, we can recompute our uv-coordinates at
run-time, and thus our noise as well. This can be rather useful for applications where the
mesh itself changes shape during run-time, such as animations or mesh-design programs.

Furthermore, our method only uses local patch data. This mainly is influenced by
our choice for using tessellated base meshes. Furthermore, the extra patch data that we
use is stored on a patch-vertex basis, which being sparse in and of itself is also shared by
multiple patches, resulting in a low memory cost.

Along regular patch edges, our method results in at least C1 continuity.

Downsides:
Of course, our method has several downsides and caveats too.

First of all, we are limited to using symmetrical square lattices. This restricts the
scaling factors of both our u- and v coordinates to integers of the same value.

Furthermore, we have created this method for lattice-based noise functions with feature
points on lattice vertices. It is doubtful that this method works in its entirety for other
kinds of noise functions, especially ones that require access to feature points outside of the
inspected grid-cell.

As for continuity, while C0 continuity along extraordinary patch edges could be
considered acceptable, these patch edges are practically unavoidable when dealing with
closed quad-meshes. This in turn will result in visible irregularities in the normal field
along these edges.

Finally, this method has only been implemented for quadrilateral patches, while more
complex meshes may use triangular patches as well.

24

6 Conclusions

We were able to implement continuous patch-based noise functions for quad meshes. This
includes Value noise, 2D Perlin noise, and our new Bézier noise.

Along patch edges with a regular lattice/grid, these patch-based noise functions should
have the same continuity as their non patch-based counterparts. However, in the case of
an irregular lattice/grid, this continuity drops to C0, while approaching C1.

These implementations use both the guaranteed tangent-plane continuous tessellated
mesh provided by the ACC2 framework, as well as the GLSL smoothstep interpolation
function with Value- and Perlin noise. In this setup, the earlier noted continuity is bounded
by the base surface’s continuity, resulting in C1 continuity for regular patch-edges and C0

to G1 (approaching C1) continuity for irregular patch-edges.

However, there remain some caveats to this:
We have applied this method only to lattice-based noise functions with feature points

on lattice vertices, and it is doubtful that this method works for other noise functions that
require access to feature points outside of the inspected patch.

Furthermore, our method assumes a densely tessellated (at least G1) mesh as base.
The less co-planar the faces are along the patch edges, the more our method will approach
C0 continuity along patch edges.

Our method works only with symmetrical, square lattices. This in turn restricts our
uv-scale factor to integer values.

Finally, our method has been designed for quadrilateral patches.

25

7 Future work

The results of this research allow for a number of avenues to explore.
One such avenue would be to look into noise functions that do not restrict their feature

points to the vertices of a lattice, and whether our edge-based coordinate system would
be useful in those scenarios. An example of such a noise function would be Worley noise.
Worley noise randomly distributes its feature points within the cells of a grid-structure.
Furthermore, it allows the use of feature points outside of the current cell. This gives rise
to the edge case where feature points are checked that lie completely on an adjacent patch.
This conflicts with our (self-imposed) limitation of only being able to access the data of
the current patch.

Another possible, though admittedly strange, avenue is to explore the possibility of
continuous patch-bound noise functions: noise functions whose domain is only a single
patch, or in general a limited number of patches, but remain continuous over all patch
edges.

A final possible avenue is to implement this method for triangular patches, rather
than quadrilateral patches. While the shape of the patch’s lattice may differ, the general
approach regarding patch orientation and edge-coordinates should still hold.

26

Bibliography

[1] C. Loop, S. Schaefer, T. Ni, and I. Castano, “Approximating subdivision surfaces with
gregory patches for hardware tessellation,” in ACM SIGGRAPH Asia 2009 papers,
pp. 1–9, 2009.

[2] R. Chen, “Perlin noise range.” Weblog, June 2017. (accessed: 7 Februari 2022).
Available: https://digitalfreepen.com/2017/06/20/range-perlin-noise.html.

[3] A. Lagae, S. Lefebvre, G. Drettakis, and Ph. Dutré, “Procedural noise using sparse
gabor convolution,” ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH
2009), vol. 28, pp. 54–64, July 2009.

27

A Appendix

A.1 Complete adapted Value noise algorithm

The entire adapted form of the Value noise algorithm:

1. Generate a grid consisting of NxN grid cells, where N is integer and equal to the
noise frequency (or scale in our GUI).

2. When computing the scalar hash for each grid vertex:

• On a patch vertex: Return 0. Note that, because of this, if N = 1, the noise
for the entire patch will be 0 as well.

• Inside the patch: Interpolate between the hashes that the patch vertices normally
would get. We ignore the 0-override here, since otherwise this would only result
in a noise of 0. The continuity of the noise remains guaranteed, since we
bilinearly interpolate over the local grid-cell.

• On a patch edge: Transform the uv-coordinates from patch-space to edge-space
and compute the hash-vector from here. Since this vector is a scalar, and
therefore has no direction, we don’t need to worry about our change of basis
vectors.

3. Interpolate between the hash-vectors of each vertex of the local grid cell. The
interpolation function used here determines the resulting continuity.

A.2 Complete adapted 2D Perlin noise algorithm

The entire adapted form of the 2D Perlin noise algorithm:

1. Create an NxN grid, where N is an integer and equal to the noise frequency.

2. For each vertex on the grid, create a 2D gradient hash-vector in the following way:

• On a patch vertex: Return a 0-vector. Note that, because of this, if N = 1, the
noise for the entire patch will be 0 as well.

• Inside the patch: Interpolate between the hashes that the patch vertices normally
would get. We ignore the 0-vector override here, since otherwise this would only
result in a noise of 0. The continuity of the noise remains guaranteed, since we
bilinearly interpolate over the local grid-cell.

• On a patch edge: Transform the uv-coordinates from patch-space to edge-space
and compute the hash-vector from there. Since our hash-vector is oriented with
respect to our edge-space, we will need to transform it back to its respective
patch-space in order for it to be interpreted correctly.

3. For each point on the noise field (on which the gradient field is projected):

(a) For each of the 4 nearest grid vertices, compute dot product between gradient
vector assigned to this grid vertex and the corresponding offset vector (from
the grid vertex to the point in the cell).

(b) Interpolate these four resulting scalar values, weighted by the point’s proximity
to each corresponding vertex.

28

A.3 Complete adapted Bézier noise algorithm

The entire adapted form of the Bézier noise algorithm:

1. Create an NxN grid, where N is an integer and equal to the noise frequency.

2. For each vertex on the grid, create a 2D hash-vector in the following way:

• On a patch vertex: Return a 0-vector. Note that, because of this, if N = 1, the
noise for the entire patch will be 0 as well.

• Inside the patch: Interpolate between the hashes that the patch vertices normally
would get. We ignore the 0-vector override here, since otherwise this would only
result in a noise of 0. The continuity of the noise remains guaranteed, since we
bilinearly interpolate over the local grid-cell.

• On a patch edge: Transform the uv-coordinates from patch-space to edge-space
and compute the hash-vector from there. Since our hash-vector is oriented with
respect to our edge-space, we will need to transform it back to its respective
patch-space in order for it to be interpreted correctly.

3. For each point on the noise field:

(a) For each of the 4 nearest grid vertices, using each grid vertex’s associated hash
vector, create the 3 child-control points that lie on the edges of this grid-cell.
(see figure 3.3)

(b) Using the Bernstein basis functions, compute the tensor product of the grid
cell for this point.

29

	Introduction
	Background information
	ACC2 framework
	Geometric & Parametric Continuity
	UV-coordinates
	Displacement mapping
	Half-edges
	Noise functions
	Spatial variation of noise through interpolation of parameters

	Per-patch noise
	Continuous mesh-wide domain and hash-vectors
	Edge-based coordinate system
	Static hash-vector for patch vertices
	Value noise adaptation
	Bézier noise
	2D Perlin- and Bézier noise adaptation
	Adapted noise function continuity

	Results
	Implemented for Value-, 2D Perlin-, and Bézier noise
	Examples of noise applied to different objects/meshes
	Example of patch-orientation independence along patch edges
	Examples of vertex-based persistence variation regarding fractal noise
	Continuity and graphical artefacts around patch vertices

	Discussion
	Comparison with other approaches
	Up- and downsides of our method

	Conclusions
	Future work
	Bibliography
	Appendix
	Complete adapted Value noise algorithm
	Complete adapted 2D Perlin noise algorithm
	Complete adapted Bézier noise algorithm

