
!  

faculty of science 
and engineering

mathematics and applied 
mathematics

Studying the Nature of the 
Hopf Bifurcation of the 
Lorenz-96 Model 

Bachelor’s Project Mathematics 
March 2022 

Student: M.M. Pete    
First supervisor: Dr. A.E. Sterk 

Second assessor: Dr. R. Luppes 



Abstract

In this thesis, we study theory on the Hopf bifurcation, and apply this theory to

the Lorenz-96 model. We consider the system in four dimensions, and determine

whether the bifurcation is supercritical or subcritical using center manifold re-

duction and normal form analysis. We compute the first Lyapunov coefficient to

be negative, meaning that the Hopf bifurcation is supercritical, and results in a

stable limit cycle.
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1 Introduction and Historical Context

Given the incredibly dynamic world we live in, it is difficult to believe that there was

a time when people only possessed the mathematical tools to describe it in terms of

static qualities. For scientists to make predictions, they often needed to assume linear-

ity of variables, which impacted the accuracy of their work in such a nonlinear world.

It was only in the last 400 years when scientists and mathematicians seriously began

studying the world with respect to time. Fermat, Descartes, and most notably Newton

and Leibniz were among them, and together their contributions pioneered the field of

Calculus. This major breakthrough in mathematics paved the way for a number of

new fields and discoveries.

Dynamical systems evolved from Calculus in order to study the evolution of systems

in time. The field originated during Poincaré’s study of the well-known ’three body

problem’ in the field of Celestial Mechanics, and since then, it has been used to help

make sense the complex world around us. Dynamical systems can be seen everywhere

on chemical, biological, physical and social levels, and this is largely our motivation

in analysing these systems. When a dynamical system undergoes a large qualitative

change as its parameter value is varied, this is known as a bifurcation. A particular

bifurcation which results in the birth or death of a limit cycle is known as a Hopf

bifurcation. When the Hopf bifurcation of a system results in a stable limit cycle we

call the bifurcation supercritical, and subcritical otherwise. Stable limit cycles cause

self-sustained oscillations, and small perturbations from their trajectory do not affect

their long term behaviour. Hopf bifurcations are present in many physical systems

including the firing of neurons in nervous systems, oscillations in autocatalytic chem-

ical reactions, oscillations in fish populations and epidemic models of disease, and so

studying them is of both theoretical and practical importance [2].

A particular dynamical system of interest is the Lorenz-96 Model, which was used by

American Mathematician and Meteorologist Edward Lorenz to study weather predic-

tion. This system provides a simplified model to understand challenges in long term

weather forecasting, and is still used today in testing data assimilation techniques [3].

The goal of this thesis is to analyse this model by ultimately determining whether the

bifurcation is supercritical or subcritical, in order to determine whether or not the limit

cycle is be stable. In two dimensions, normal form analysis can be used. However, in
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higher dimensions, it will be necessary to first restrict the system to a family of smooth

two-dimensional invariant manifolds near the origin, as prescribed by the Center Man-

ifold Theorem. We will consider the system in four dimensions, and use the theory

from the main reference for this thesis ”Elements of Applied Bifurcation Theory” by

Kuznetsov [4], to compute the center manifold of the system, in order to determine

the nature of the bifurcation. Our purpose in doing so is not only to understand this

particular system better, but also to develop general methods which in turn be used

to examine other dynamical systems.

2 Preliminaries

Firstly, we will begin by reminding the reader of the basic definitions of ’dynamical

system’ and ’orbit’. As previously noted, the majority of definitions and theorems in

the paper come from the main reference [4].

Definition 2.1. A dynamical system is a triple {T,X, φt} where T is a time set,

X is a state space and φt : X → X is a family of evolution operators parametrised by

t ∈ T and satisfying φ0 = id and φt+s = φt ◦ φs.

Definition 2.2. An orbit starting at x0 is a subset of the state space X, Orb(x0) =

{x ∈ X : x = φtx0, ∀t ∈ T where φtx0 is defined}.

Now, in order to study compare dynamical systems, we will need to introduce some

terminology. Recall that a homeomorphism is a continuous, invertible map between

topological spaces where the inverse is also continuous. With this said, we can now

define topologically equivalent dynamical systems.

Definition 2.3. Dynamical systems {T,Rn, φt} and {T,Rn, ψt} are called topologi-

cally equivalent if there exists a homeomorphism h : Rn → Rn which maps the orbits

of the first system to the orbits of the second system, and preserves the direction of

time.

Often dynamical systems are not topologically equivalent, however they could be equiv-

alent near an equilibrium. Hence, we give the following definition.

Definition 2.4. A dynamical system {T,Rn, φt} is locally topologically equivalent

to a dynamical system {T,Rn, ψt} near an equilibrium y0 if there exists a homeomor-

phism h : Rn → Rn that is
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1. defined in a small neighbourhood U ⊂ Rn of x0;

2. satisfies y0 = h(x0)

3. maps orbits of the first system in U to orbits of the second system in V = f(U) ⊂
Rn, preserving the direction of time.

This leads to the concept of a bifurcation, which we will study throughout this thesis.

It is clear that when we vary the parameters of a system, the phase portrait will change.

The extent to which the phase portrait changes determines whether a bifurcation is

present.

Definition 2.5. A bifurcation is the appearance of a topologically nonequivalent

phase portrait under variation of a parameters.

The particular bifurcation that we will focus on is a Hopf bifurcation. An important

concept in its definition is a limit cycle.

Definition 2.6. A limit cycle is a periodic solution of a system of differential equa-

tions which has the additional property that at least one other trajectory spirals into

it.

Now that we have understood the important foundational concepts, we can move on

to studying the particular bifurcation of interest, the ”Andronov-Hopf bifurcation”.

3 The Hopf Bifurcation

We begin by developing theory about 2-dimensional systems, and later we will extend

this to include higher-dimensional systems. One instance of a bifurcation occurring is

when when the stability of an equilibrium point changes. The stability of the equilib-

rium point depends on the eigenvalues of the Jacobian of the linerised system evaluated

at the equilibrium point. When Re(λ1,2) < 0, the equilibrium is said to be stable, and

unstable otherwise. Qualitatively, this means that the solutions near the point either

converge toward it or diverge away from it. There are a number of types of bifurcations,

but here we define our particular bifurcation of interest.

Definition 3.1. AHopf bifurcation refers to a limit cycle surrounding an equilibrium

point either arising or disappearing as a parameter crosses a critical value.
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Definition 3.2. We call a Hopf bifurcation supercritical if the system changes from

having a stable equilibrium point to having an unstable equilibrium point along with a

stable limit cycle, or vice versa. We call a Hopf bifurcation subcritical if the system

goes from having an unstable equilibrium point to having a stable equilibrium point

along with an unstable limit cycle, or vice versa.

In order to identify Hopf bifurcations within systems, we need to define the following

terminology about equilibrium points.

Definition 3.3. We call a equilibrium point hyperbolic when both eigenvalues of

the Jacobian matrix (of the system evaluated at the point) have non-zero real parts.

A hyperbolic equilibrium is referred to as a focus if both eigenvalues are complex

(conjugates) [1].

Remark 3.1. We can characterise Hopf bifurcations by an equilibrium point switching

from a stable to an unstable focus (or vice versa) as the parameter value changes - In

other words, when the parameter value is such that the eigenvalues of the Jacobian

matrix evaluated at the equilibrium are purely imaginary.

This is a local bifurcation, meaning that the bifurcation can be detected in arbitrarily

small neighbourhoods of the bifurcating equilibrium. We will illustrate this theory on

the Hopf bifurcation in the following example.

Example 3.1. Consider the following system

{
x = ax− y − x(x2 + y2)

y = x+ ay − y(x2 + y2)
(1)

for some parameter a ∈ R.

We can see that at (x, y) = (0, 0) we have ẋ = ẏ = 0 and hence this is an equilibrium

point. We can put the system into polar coordinates, by introducing the complex
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variable z = x+ iy. Using (1), we can compute

ż = ẋ+ iẏ

= ax− y − x(x2 + y2) + i[x+ ay − y(x2 + y2)]

= a(x+ iy) + i(x+ iy)− (x+ iy)(x2 + y2)

= (a+ i)(x+ iy)− (x+ iy)(x2 + y2)

= (a+ i)z − z|z|2. (2)

Let z = reiθ. Using this substitution, along with the chain rule and (2) we get the

equations

ż = ṙeiθ + irθ̇eiθ

= (a+ i)reiθ − r3eiθṙeiθ

= reiθ(a+ i− r2) (3)

If we equate the real and imaginary parts of (3) we get the polar form of (1) to be

{
r = ar − r3

θ̇ = 1
(4)

This form is much easier to analyse. We can see that the origin is the only equilibrium

point for the system, since this is the only point for which it is possible that ṙ = 0 and

θ̇ ̸= 0. Using the definition of Hopf bifurcation, we would like to find the parameter

value at which a limit cycle either appears or disappears, and the stability conditions

are satisfied.

(i) For a ≤ 0, we have ṙ < 0, ∀r > 0, and so the origin is a stable equilibrium as the

solutions will spiral towards it.

(ii) For a > 0, we can describe the phase portrait by considering different values of r.

When 0 < r <
√
a, we get ṙ > 0 and so the origin is an unstable equilibrium. When

r =
√
a, we get ṙ = 0 and hence the circle r =

√
a is a solution. This solution has

period 2π since we have that the angular frequency is one radian per second, and hence

after 2π units of time the solutions will repeat. Finally, when r >
√
a we get that ṙ < 0

and hence solutions will spiral toward the circular solution. We therefore call this a
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(a) a < 0 (b) a > 0

Figure 1: Supercritical Hopf Bifurcation [4].

stable limit cycle.

We have noticed that the system goes from having a stable equilibrium, to having an

unstable equilibrium along with a stable limit cycle. Hence, this is a supercritical Hopf

bifurcation. This is shown in figure 1.

We could also use our characterisation of a Hopf bifurcation using eigenvalues. We can

linearise the original system around the equilibrium point as

Ẋ =

(
a −1

1 a

)
X,

and then calculate the eigenvalues to be a ± i. From this we can easily see that the

bifurcation should be at a = 0 as the eigenvalues go from being a stable focus to an

unstable focus as a passes through zero.

Example 3.2. We can modify example (3.1) to become a subcritical Hopf bifurcation.

Consider the system with a difference in signs

{
ẋ = ax− y + x(x2 + y2)

ẏ = x+ ay + y(x2 + y2).
(5)

Similarly to the first example, we compute the polar form of (5) to be
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(a) a > 0 (b) a < 0

Figure 2: Subcritical Hopf Bifurcation [4].

{
ṙ = a+ r3

θ̇ = 1.
(6)

In this case, we see that

(i) For a ≥ 0 we have that ṙ > 0 and so the origin is an unstable equilibrium.

(ii) For a < 0, we get ṙ < 0 for 0 < r < 3
√
a, meaning the origin is a stable equilibrium.

Moreover, ṙ = 0 for r = 3
√
a and ṙ > 0 for r > 3

√
a. This represents an unstable limit

cycle with radius r = 3
√
a and period 2π.

Clearly this satisfies the definition of a subcritical Hopf bifurcation as the equilibrium

point changes from being unstable to being stable, and an unstable limit cycle emerges.

4 The Normal Form of the Hopf Bifurcation in Two

Dimensions

In example 3.1 and 3.2, it was the case that converting the systems into polar coor-

dinates simplified them significantly to the point where they were easy to analyse for

different parameter values. This is not always possible to do, and so we would like to

find a way of determining the nature of systems in a methodical way.

Example 3.1 and 3.2 (continued). We can write system (1) and (5) in matrix-
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vector form as (
ẋ

ẏ

)
=

(
a −1

1 a

)(
x

y

)
± (x2 + y2)

(
x

y

)
. (7)

These systems take on a very particular form, which is important for studying Hopf

bifurcations. We say that they are normal forms. For many purposes, higher order

systems can also be viewed in this form, as we have the following lemma.

Lemma 4.1. The system(
ẋ

ẏ

)
=

(
a −1

1 a

)(
x

y

)
± (x2 + y2)

(
x

y

)
+O(||x||4) (8)

is locally topologically equivalent near the origin to system (7).

This means that we are often able to work with simplified systems and disregard the

higher order terms. The normal form is useful in determining the nature of Hopf bi-

furcations. Notice that the only difference between the two formulas in (7) is the sign

before the nonlinear terms. Recall that changing this sign changed the Hopf bifurca-

tion from being supercritical to subcritical. In general, this coefficient does determine

whether the system is supercritical or subcritical. Moreover, it is true that, under

certain conditions, all systems with a Hopf bifurcation are topologically equivalent to

a normal form. We will spend this section proving the following theorem.

Theorem 4.2 (Topological normal form for the Hopf bifurcation). Any generic two-

dimensional, one-parameter system

ẋ = f(x, a),

having at a = 0 the equilibrium x = 0 with eigenvalues

λ1,2(0) = ±iω0, ω0 > 0,

is locally topologically equivalent near the origin to one of the following normal forms:(
ẏ1

ẏ2

)
=

(
a −1

1 a

)(
y1

y2

)
± (y21 + y22)

(
y1

y2

)
.
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Notice that if we can show that any two-dimensional system undergoing a Hopf bifur-

cation can be transformed into either the form (7), with the addition of higher order

terms (degree four or more), then we can use theorem (4.2) to remove the higher order

terms. It is therefore sufficient to prove the following theorem.

Theorem 4.3. Suppose we have a two-dimensional system

ẋ = f(x, a), x ∈ R2, a ∈ R, (9)

where f is smooth, and for sufficiently small |a|, there is an equilibrium x = 0 with

eigenvalues

λ1,2(a) = µ(a)± iω(a),

where λ(0), ω(0) = ω0 > 0.

If the following conditions are met

(A.1) The first Lyapunov coefficient (to be defined in the proof) satisfies l1(0) ̸= 0;

(A.2) µ̇(0) ̸= 0,

then, there are invertible coordinate and parameter changes and a time reparameteri-

sation which transforms (8) into(
ẏ1

ẏ2

)
=

(
a −1

1 a

)(
y1

y2

)
± (y21 + y22)

(
y1

y2

)
+O(||y||4). (10)

Since the proof is too long, we will include a sketch of it.

Sketch of proof :

Consider the system

ẋ = f(x, a), x = (x1, x2)
T ∈ R2, a ∈ R,

where f is smooth and has a = 0 at the equilibrium x = 0 and the eigenvalues of

the Jacobian are λ1,2 = ±iω0, for ω0 > 0. The Implicit Function Theorem guarantees
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that the system has a unique equilibrium x0(a) in a neighbourhood of the origin for

sufficiently small |a| as λ ̸= 0. We can perform a coordinate shift which places the

equilibrium at the origin, and hence we can assume that when |a| is sufficiently small,

that x = 0 is the corresponding equilibrium point. Therefore, we can write the system

as

ẋ = A(a)x+ F (x, a), (11)

where F is a smooth vector function whose components have Taylor expansions in x

starting with at least quadratic terms. The eigenvalues of the Jacobian, A(a), will be

λ1,2(a) =
1

2

(
TrA(a)±

√
Tr2A(a)− 4 detA(a)

)
, TrA(0) = 0, detA(0) = ω2

0 > 0

This can be written as

λ1,2(a) = µ(a)± iω(a), µ(0) = 0, ω(0) = ω0 > 0.

for small |a|.

Lemma 4.4. System (11) can be written for sufficiently small |a| as

ż = λ(a)z + g(z, z, a), (12)

where z is a complex variable and g = O(|z|2) is a smooth function of (z, z, a).

Proof. Let q(a) ∈ C2 be an eigenvector of A(a) corresponding to λ(a) and let p(a) ∈ C2

be an eigenvector of A(a)T corresponding to its eigenvalue λ(a). Choose the eigenvec-

tors p and q such that ⟨p, q⟩ = p1q1+p2q2 = 1. Note that if the eigenvalues are specified,

any vector x ∈ R2 can be uniquely represented as

x = zq(a) + zq(a) (13)

for small a, for some complex variable z. We can calculate that ⟨p(a), q(a)⟩ = 0, where

⟨·, ·⟩ is the complex inner product in C2 satisfying ⟨p, q⟩ = p1q1 + p2q2. Therefore
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z = ⟨p(a), x⟩. This variable satisfies

ż = λ(a)z + ⟨p(a), F (zq(a) + z̄q̄(a), a)⟩,

which clearly is of the form (12).

Remark: We can write g as a formal Taylor series in two complex variables z and z̄

as follows

g(z, z̄, a) =
∑
2≤k+l

1

k!l!
gkl(a)z

kz̄l

∣∣∣∣∣
z=0

,

for 2 ≤ k + l k, l = 0, 1, . . . ,

where

gkl(a) =
∂k+l

∂zk∂z̄l
⟨p(a), F (zq(a) + z̄q̄(a), a)⟩

Now suppose that at a = 0 the function F from equation (11) can be written as

F (x, 0) =
1

2
B(x, x) +

1

6
C(x, x, x) +O(||x||4),

where B(x, y) and C(x, y, u) are symmetric multilinear vector functions of x, y, u ∈ R2.

We can write the coordinates as

Bi(x, y) =
2∑

j,k=1

∂2Fi(ξ, 0)

∂ξj∂ξk

∣∣∣∣∣
ξ=0

xjyk, i = 1, 2, . . . ,

Ci(x, y, u) =
2∑

i,j,k=1

∂2Fi(ξ, 0)

∂ξj∂ξk∂ξl

∣∣∣∣∣
ξ=0

xjykul i = 1, 2, . . . .

The Taylor coefficients gkl are then given by

g20 = ⟨p,B(q, q)⟩, g11 = ⟨p,B(q, q̄)⟩, g02 = ⟨p,B(q̄, q̄)⟩, g21 = ⟨p, C(q, q, q̄)⟩.

Using this notation along with two transformations, we can write equation (12) as

follows:
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Lemma 4.5 (Poincaré normal form for the Hopf bifurcation). The equation

ż = λz +
∑

2≤k+l≤3

1

k!l!
gklz

kz̄l +O(|z|4), (14)

where λ and g are defined as before, can be transformed by an invertible parameter-

dependent change of complex coordinate, smoothly depending on the parameter,

z = w +
h20
2
w2 + h11ww̄ +

h02
2
w̄2 +

h30
6
w3 +

h12
2
ww̄2 +

h03
6
w̄3

for all sufficiently small |a|, into an equation with only the resonant cubic term:

ẇ = λw + c1w
2w̄ +O(|w|4).

Sketch of proof. First, we can perform the transformation

z = w +
h20
3
w2 + h11ww̄ +

h02
2
w̄2, (15)

with

h20 =
g20
λ
, h11 =

g11
λ̄
, h02 =

g02
2λ̄− λ

(16)

This will annihilate all the quadratic terms and changes the coefficients of the cubic

terms. Then, we can perform the transformation

z = w +
h30
6
w3 +

h21
2
w2w̄ +

h12
2
ww̄2 +

h03
6
w̄3 (17)

which annihilates all of the cubic terms except for the resonant cubic term. We are

therefore left with the equation

ẇ = λw + c1w
2w̄ +O(|w|4).

We can then transform the Poincaré normal form to the normal forms in equation (7).

Lemma 4.6. Consider the equation

dw

dt
= (µ(a) + iω(a))w + c1(a)w|w|2 +O(|w|4),
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where µ(0) = 0 and ω(0) = ω0 > 0.

Suppose µ′(0) ̸= 0 and Re(c1) ̸= 0. Then, the equation can be transformed by a

parameter-dependent linear coordinate transformation, a time rescaling, and a nonlin-

ear time reparametrisation into an equation of the form

du

dθ
= (β + i)u+ su|u|2 +O(|u|4) (18)

where u is a new complex coordinate, and θ, β are the new time and parameter, and

s =sign Re(c1(0)) = ±1.

Sketch of proof. Firstly, we can scale time linearly by introducing the new time τ =

ω(a)t. Then our equation is transformed to

dw

dτ
= (β + i)w + d1(β)w|w|2 +O(|w|4),

where

β = β(a) =
µ(a)

ω(a)
, d1(β) =

c1(a(β))

ω(a(β))
.

We then perform nonlinear time reparametrisation by introducing the new time θ =

θ(τ, β), where dθ = (1 + e1(β)|w|2)dτ with e1(β) = Im(d1(β)) We obtain

dw

dθ
= (β + i)w + l1(β)w|w|2 +O(|w|4),

where l1(β) = Re(d1(β)) − βe1(β) is called the first Lyapunov coefficient. Note

that

l1(0) =
Re(c1(0))

ω(0)
(19)

=
1

2ω2
0

Re(ig20g11 + ω0g21). (20)

Finally, we can introduce a new complex variable u by the formula

w =
u√

|l1(β)|
,

and so the equation takes the required form
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du

dθ
= (β + i)u+

l1(β)

|l1(β)|
u|u|2 +O(|u|4) (21)

= (β + i)u+ su|u|2 +O(|u|4), (22)

with s = sign(l1(0)) = Re(c1(0)).

Now, finally, we notice that if we write equation (18) in real form with s = −1 then

we get the desired equation (9), and hence the proof is complete.

■

As mentioned at the beginning of the section, the reason that the normal form is

important is because it determines the nature of the bifurcation. Now that we have

developed the necessary terminology, we can state the following theorem.

Theorem 4.7. Consider the normal form of a dynamical system given by(
ẏ1

ẏ2

)
=

(
a −1

1 a

)(
y1

y2

)
+ σ(y21 + y22)

(
y1

y2

)
,

where σ = sign l1(0) = ±1. If σ = 1, then the Hopf bifurcation is subcritical, and if

σ = −1, then the Hopf bifurcation is supercritical. □

Using the theorems in this section, we now know how to determine the nature of the

Hopf bifurcation of any continuous-time dynamical system in two dimensions. Let’s

apply this to an example.

Example 4.1. Consider the following system

{
u̇ = (v − 1)− (u− 1)3 + a(u− 1)

v̇ = −(u− 1),
(23)

for a ∈ R a parameter. By setting the left hand sides of the equations equal to zero,

we calculate that the only equilibrium point of the system lies at (u, v) = (1, 1). The

Jacobian of the system evaluated at the equilibrium is
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A(a)|(1,1) =

(
a 1

−1 0

)
,

and hence we can calculate the eigenvalues to be

λ1,2(a) =
1

2
TrA(a)± 1

2

√
TrA(a)− 4 detA(a)

=
1

2
TrA(a)± 1

2

√
4 detA(a)− TrA(a) i

= µ(a)± iω(a).

In order for a Hopf bifurcation to take place the eigenvalues need to be purely imaginary

as a passes a critical value, a0. Notice that

µ(a0) = 0 =⇒ a0 = 0;

ω(a0) =
√

4 detA(a) = 1.

Therefore at the critical value a0 = 0, the equilibrium (1, 1) has eigenvalues

λ1,2(a0) = ±i.

Now we apply theorem (4.3) to check whether it is possible to write the system in

normal form. To check (A2) we calculate µ(a) = a
2

=⇒ µ̇(a0) = 1
2
̸= 0. Next, we

need to check condition (A1), which is that l1(0) ̸= 0. We will therefore compute the

first Lyapunov coefficient. First, we need to perform a coordinate shift so that the

equilibrium lies at the origin. Use the change of variables

x = u− 1, y = v − 1.

Then we can convert equation (23) to{
ẋ = y − x3 + ax

ẏ = −x.
(24)

By grouping the terms of the same degree together, we can write this in matrix form
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as (
ẋ

ẏ

)
=

(
y + ax

−x

)
+

(
−x3

0

)

=

(
a 1

−1 0

)(
x

y

)
+

1

6
C

((
x

y

)
,

(
x

y

)
,

(
x

y

))

= A(a)

(
x

y

)
+

1

6
C

((
x

y

)
,

(
x

y

)
,

(
x

y

))
,

where C is a multilinear function satisfying C(ξ, η, ζ) =

(
−6ξ1η1ζ1

0

)
.

We now calculate

A(a0) =

(
0 1

−1 0

)
, AT =

(
0 −1

1 0

)
.

We would like to choose eigenvectors p and q that correspond to

Aq = iωq = iq, ATp = −iωp = −ip.

In other words, q is the eigenvector of A corresponding to eigenvalue i and p is the eigen-

vector of AT corresponding to the eigenvalue −i. We need to choose the eigenvectors

such that ⟨p, q⟩ = 1. Therefore, we have

q = p =
1√
2

(
−i
1

)
.

Now we are able to calculate the coefficients. Note that since there are no quadratic

terms in our system, g11 = g20 = 0. On the other hand,

g21 = ⟨p, C(q, q, q̄)⟩ =
〈

1√
2

(
−i
1

)
,
1√
2

(
−6(−i)(−i)(i)

0

)〉
= −3

2
.

Finally we can calculate
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(a) System (23). (b) System (24).

Figure 3: The phase portraits of the system and transformed system.

l1(a0) =
1

2ω2
0

Re(ig20g11 + ω0g21) = −3

4
.

Therefore (A1) is satisfied as l1(0) ̸= 0. Therefore, system (23) is locally topologically

equivalent to a normal form. Moreover, by theorem (4.7), since sign(l1(0)) = −1, the

Hopf bifurcation is supercritical which results in a stable limit cycle.

The phase portraits of equations (23) and (24) are given in figure 3. These portraits

agree with our result, as we can see the stable equilibrium points with stable limit

cycles surrounding them.

5 Hopf Bifurcations in n-dimensions

We have developed theory to determine the nature of Hopf bifurcations in two-dimen-

sional systems. In particular, this method involves using the two-dimensional normal

form, and so it is not possible to simply extend the theorems to higher dimensions.

However, in this section we will lay out how to restrict the system to a family of

smooth two-dimensional invariant manifolds near the origin. The system restricted

to the manifold is two dimensional, and hence we can compute the normal form in

the usual manner. We will formulate the theorems that allow us to do so, but we

will not prove them as they are too lengthy. We consider the critical case, where

the parameters of the system are fixed at their bifurcation values. Arguably the most
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important theorem is as follows.

Theorem 5.1 (The Center Manifold Theorem). Consider a continuous-time dy-

namical system

ẋ = f(x), x ∈ Rn, (25)

where f is sufficiently smooth and f(0) = 0. Assume that the equilibrium of the system

is not hyperbolic, and denote the number of eigenvalues of the Jacobian matrix evaluated

at the equilibrium with Re(λ) = 0, counting multiplicities, as n0. Let T c denote the

generalised eigenspace of A corresponding to the union of the n0 eigenvalues on the

imaginary axis (i.e. T c is the direct sum of each individual eigenspace). Let φt be the

flow associated with (25).

Then, there is a locally defined smooth n0-dimensional invariant manifold W c
loc(0) of

(25) that is tangent to T c at x = 0.

Moreover, there is a neighbourhood U of x0 = 0 such that if φtx ∈ U for all t ≥ 0

(t ≤ 0), then φtx→ W c
loc(0) for t→ +∞ (t→ −∞). □

Definition 5.1. The manifold W c
loc(0) is called the center manifold.

The eigenvalues with Re(λ) = 0 as well as the generalised eigenspace, T c are often

called critical. We denote the number of eigenvalues (including multiplicities) with

Re(λ) > 0 as n+ and the number of eigenvalues with Re(λ) < 0 as n−.

Remark 5.1. The second statement in the theorem implies that orbits near the equi-

librium for t ≥ 0 or t ≤ 0 tend to W c in the corresponding time direction. Moreover

W c is not necessarily unique, which does not matter for applications.

Now that we have set out theorems verifying the existence of a center manifold of

n-dimensional systems, we will now lay out a method for computing it, along with

the subsequent first Lyapunov coefficient computation. We will use eigenvectors cor-

responding to the critical values of A and AT to project the system into the critical

eigenspace and its complement. Suppose that (25) can be written as

ẋ = Ax+ F (x), x ∈ Rn, (26)

where F (x) = O(||x||2) is a smooth function.
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Assume that the system undergoes a Hopf bifurcation, and A has a pair of complex

eigenvalues, λ1,2 = ±iω0, ω0 > 0, which are the only eigenvalues with Re(λ) = 0. Let

q ∈ Cn be the eigenvector corresponding to λ1. We therefore have

Aq = iω0q, Aq̄ = −iω0q̄.

Let p ∈ Cn be the adjoint eigenvector such that

ATp = −iω0p, AT p̄ = iω0p̄, ⟨p, q⟩ = 1.

The critical real eigenspace T c corresponding to ±iw0 is real and two-dimensional,

and it is spanned by {Re(q), Im(q)}. The eigenspace T su corresponding to all other

eigenvalues of A, is real and (n− 2)-dimensional. To determine whether a vector is in

T su we can use the following lemma.

Lemma 5.2. A vector y ∈ Rn is in T su if and only if ⟨p, y⟩ = 0. □

We can therefore decompose any x ∈ Rn as

x = zq + z̄q̄ + y, for z ∈ C, zq + z̄q̄ ∈ T c, y ∈ T su.

The complex variable z is a coordinate on T c, and therefore we have{
z = ⟨p, x⟩,
y = x− ⟨p, x⟩ − ⟨p̄, x⟩q̄.

(27)

with ⟨p, q̄⟩ = 0. In these coordinates, (26) takes on the form

{
ż = iω0z + ⟨p, F (zq + z̄q̄ + y)⟩,
ẏ = Ay + F (zq + z̄q̄ + y)− ⟨p, F (zq, z̄q̄ + y)⟩q − ⟨p̄, F (zq + z̄q̄ + y)⟩q̄.

(28)

Although this system is (n+2)-dimensional, there are two real constraints imposed on

y. We can use the Taylor expansions of z, z̄ and y to convert this system to the form

{
ż = iω0z +

1
2
G20z

2 +G11zz̄ +
1
2
G02z̄

2 + 1
2
G21z

2z̄ + ⟨G10, y⟩z + ⟨G01, y⟩z̄ + . . . ,

ẏ = Ay + 1
2
H20z

2 +H11zz̄ +
1
2
H02z̄

2 + . . . ,

(29)
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where G20, G11, G02, G21 ∈ C and G01, G10, Hij ∈ Cn can be computed as

Gij =
∂i+j

∂zi∂z̄j
⟨p, F (zq + z̄q̄)⟩

∣∣∣∣
z=0

, i+ j ≥ 2,

G10,i =
∂2

∂yi∂z
⟨p, F (zq + z̄q̄ + y)⟩

∣∣∣∣
z=0, y=0

, i = 1, 2, . . . n,

G01,i =
∂2

∂yi∂z̄
⟨p, F (zq + z̄q̄ + y)⟩

∣∣∣∣
z=0, y=0

, i = 1, 2, . . . n,

Hij =
∂i+j

∂zi∂z̄j
F (zq + z̄q̄)

∣∣∣∣
z=0

−Gijq −Gjiq̄, i+ j = 2.

The center manifold now has the representation

y = V (z, z̄) =
1

2
w20z

2 + w11zz̄ +
1

2
w02z̄

2 +O(|z|3),

where ⟨p, wij⟩ = 0. The vectors wij ∈ Cn can be found from the following equations


(2iω0I − A)w20 = H20,

−Aw11 = H11,

(−2iω0I − A)w02 = H02.

The matrices on the left hand sides of the equations are invertible because 0 and ±2iω0

are not eigenvalues of A, and so we get


w20 = (2iω0I − A)−1H20,

w11 = (−A)−1H11,

w02 = (−2iω0I − A)−1H02.

and so the equations have unique solutions. We can therefore write the restriction of

(28) to its center manifold up to cubic terms as

ż = iω0z +
1

2
G20z

2 +G11zz̄ +
1

2
G02z̄

2+

1

2
(G21 − 2⟨G10, A

−1H11⟩+ ⟨G01, (2iw0I − A)−1H20⟩)z2z̄ + . . . . (30)
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This gives the restricted system directly in the complex form suitable for the Lyapunov

coefficient computations.

An easier method for computations is by writing F (x) in terms of multilinear functions

B(x, y) and C(x, y, z)

F (x) =
1

2
B(x, x) +

1

6
C(x, x, x) +O(||x||4). (31)

We can write

⟨G10, y⟩ = ⟨p,B(q, y)⟩, ⟨G01, y⟩ = ⟨p,B(q̄, y)⟩,

and then the restricted equation (30) takes the form

ż = iω0z +
1

2
G20z

2 +G11zz̄ +
1

2
G02z̄

2

+
1

2
(G21 − 2⟨p,B(q, A−1H11)⟩+ ⟨p,B(q̄, (2iw0I − A)−1H20)⟩)z2z̄ + . . . . (32)

with

G20 = ⟨p,B(q, q)⟩

G11 = ⟨p,B(q, q̄)⟩

G02 = ⟨p,B(q̄, q̄)⟩

G21 = ⟨p, C(q, q, q̄)⟩, (33)

and

{
H20 = B(q, q)− ⟨p,B(q, q)⟩q − ⟨p̄, B(q, q)⟩q̄,
H11 = B(q, q̄)− ⟨p,B(q, q̄)⟩q − ⟨q̄, B(q, q̄)⟩q̄.

(34)

We can then substitute (44) and (34) into (32) and use the identities

A−1q =
1

iω0

q, A−1q̄ = − 1

iω0

q̄, (2iω0I − A)−1q =
1

iω0

q, (2iω0I − A)−1q̄ =
1

3iω0

q̄.
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Then equation (32) becomes

ż = iω0z +
1

2
g20z

2 + g11zz̄ +
1

2
g02z̄

2 +
1

2
g21z

2z̄ + . . .

where

g20 = ⟨p,B(q, q)⟩, g11 = ⟨p,B(q, q̄)⟩,

and

g21 = ⟨p, C(q, q, q̄)⟩ (35)

− 2⟨p,B(q, A−1B(q, q̄)))⟩+ ⟨p,B(q̄, (2iω0I − A)−1B(q, q))⟩ (36)

+
1

iω0

⟨p,B(q, q)⟩⟨p,B(q, q̄)⟩ (37)

− 2

iω0

|⟨p,B(q, q̄)⟩|2 − 1

3iω0

|⟨p,B(q̄, q̄)⟩|2 (38)

Since the terms in the fourth line are purely imaginary and the third line contains the

same scalar products as in the product g20g11, we can use formula (20) from section 4,

l1(0) =
1

2ω2
0

Re(ig20g11 + ω0g21),

to calculate the invariant expression

l1(0) =
1

2w0

Re[⟨p, C(q, q, q̄⟩ − 2⟨p,B(q, A−1B(q, q̄))⟩

+ ⟨p,B(q̄, (2iω0I − A)−1B(q, q))⟩]. (39)

6 Center Manifold Reduction of the Lorenz-96 Model

We will now implement the method in the previous section to determine the nature of

the Hopf bifurcation of the Lorenz-96 model.

Definition 6.1. The Lorenz-96 model is governed by the equation

ẏi = yi−1(yi+1 − yi−2)− yi + α,

for i ∈ {0, ..., n− 1}, n ∈ N and α ∈ R. We take the indices modulo n, (i.e) yi+n = yi,
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and we call n the dimension of the system. The variable α is the forcing parameter.

Both of these variables are free parameters [5].

To use the theory from the previous section, we will apply a coordinate transformation

xi = yi − α. We then get the equation

ẋi = (xi−1 − α)(xi+1 − xi−2)− xi.

We aim to analytically determine whether there Hopf bifurcation in this system is

supercritical or subcritical. We will consider the system in four dimensions, and so we

can write it as 
ẋ0 = (x3 − α)(x1 − x2)− x0

ẋ1 = (x0 − α)(x2 − x3)− x1

ẋ2 = (x1 − α)(x3 − x0)− x2

ẋ3 = (x2 − α)(x0 − x1)− x3.

(40)

The Jacobian, A(α) of the system is

A(α) =


−1 x3 − α −x3 + α x1 − x2

x2 − x3 −1 x0 − α −x0 + α

−x1 + α x3 − x0 −1 x1 − α

x2 − α −x2 + α x0 − x1 −1

 ,

and so we can evaluate the Jacobian at the equilibrium (0, 0, 0, 0), and write the system

in the form 
ẋ0

ẋ1

ẋ2

ẋ3

 =


−1 −α α 0

0 −1 −α α

α 0 −1 −α
−α α 0 −1



x0

x1

x2

x3

+


x3x1 − x3x2

x0x2 − x0x3

x1x3 − x1x0

x2x0 − x2x1

 (41)

=⇒ ẋ = A(α)|(0,0,0,0)x+ F (x),

where F (x) = O(||x||2) is a smooth function.

Now notice that at α = −1, the Jacobian has eigenvalues
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λ1,2 = ±i, λ3,4 = −1,−3.

Since the system has one pair of purely imaginary eigenvalues, we can conclude that it

undergoes a Hopf bifurcation at α = −1. Note that if we did not apply the transfor-

mation initially, the value at which the system undergoes the bifurcation would be at

α = 1. Similarly to example (4.1), we would like to find p, q ∈ Cn such that

Aq = iq, ATp = −ip, ⟨p, q⟩ = 1.

So q is the eigenvector of A corresponding to λ1 = i, and p is the eigenvector of AT

corresponding to −λ1. We can calculate that

q = p =
1

2


i

−1

−i
1

 .

Recall that T c is the real generalised linear eigenspace, spanned by {Re(q), Im(q)}, and
made up of vectors of the form zq + z̄q̄, z ∈ C. Due to lemma (5.2), we can write any

x ∈ Rn as x = zq+ z̄q̄+ y, for y ∈ T su, since T c and T su are orthogonal. As mentioned

in the previous section, we introduce the coordinates{
z = ⟨p, x⟩,
y = x− ⟨p, x⟩ − ⟨p̄, x⟩q̄.

(42)

We can now write F (x) in terms of multilinear functions B(x, y) and C(x, y, z): F (x) =
1
2
B(x, x) + 1

6
C(x, x, x) with

B



x0

x1

x2

x3

 ,


y0

y1

y2

y3


 =


x3y1 − x3y2 + y3x1 − y3x2

x0y2 − x0y3 + y0x2 − y0x3

x1y3 − x1y0 + y1x3 − y1x0

x2y0 − x2y1 + y2x0 − y2


and C(x, y, z) = 0.
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The equation restricted to the center manifold then takes the form

ż = iz +
1

2
G20z

2 +G11zz̄ +
1

2
G02z̄

2 (43)

+
1

2
(G21 − 2⟨p,B(q, A−1H11)⟩+ ⟨p,B(q̄, (2iI − A)−1H20)⟩)z2z̄ + . . . .

with

G20 = ⟨p,B(q, q)⟩ = 0

G11 = ⟨p,B(q, q̄)⟩ = 0

G02 = ⟨p,B(q̄, q̄)⟩ = 0

G21 = ⟨p, C(q, q, q̄)⟩ = 0, (44)

and

H20 = B(q, q)− ⟨p,B(q, q)⟩q − ⟨p̄, B(q, q)⟩q̄,
H11 = B(q, q̄)− ⟨p,B(q, q̄)⟩q − ⟨q̄, B(q, q̄)⟩q̄

=⇒ H20 =
1
2


−1 + i

1− i

−1 + i

1− i

 , H11 = −1
2


1

1

1

1

 .

Then equation (43) becomes

ż = iz +
1

2
g20z

2 + g11zz̄ +
1

2
g02z̄

2 +
1

2
g21z

2z̄ + . . .

where

g20 = ⟨p,B(q, q)⟩ = 0, g11 = ⟨p,B(q, q̄)⟩ = 0, g02 = ⟨p,B(q̄, q̄)⟩ = 0,
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and

g21 = ⟨p, C(q, q, q̄)⟩ (45)

− 2⟨p,B(q, A−1B(q, q̄)))⟩+ ⟨p,B(q̄, (2iI − A)−1B(q, q))⟩ (46)

+
1

i
⟨p,B(q, q)⟩⟨p,B(q, q̄)⟩ (47)

− 2

i
|⟨p,B(q, q̄)⟩|2 − 1

3i
|⟨p,B(q̄, q̄)⟩|2 (48)

= −16

13
− 11

13
i. (49)

Hence, (43) takes the form

ż = iz − (
8

13
+

11

26
i)z2z̄. (50)

Finally, we compute the first Lyapunov coefficient to be

l1(0) =
1

2
Re(ig20g11 + g21) =

1

2
Re(g21) = −0.6154.

Since the l1(0) < 0 we know that the Hopf bifurcation in the Lorenz-96 model is su-

percritical, and results in a stable limit cycle.

Now that we have determined the nature of the Hopf bifurcation, we can demonstrate

our findings by qualitatively analysing the system. We can convert equation (50) back

to Cartesian coordinates in order to plot a phase portrait and time series. We get{
ẋ = 1

13

(
11x2y − 8x(x2 − y2)− 11

2
y(x2 − y2)− 16xy2 − 1

13
y
)

ẏ = 1
13

(
13x− 11

2
x(x2 − y2) + 8y(x2 − y2)− 11xy2 − 16x2y

)
.

(51)

Figure 4 shows the phase portrait and time series plots of (51). Moving through the

initial conditions in anticlockwise order, we see from the time series that each successive

trajectory is 1
2
π out of phase with the previous trajectory. This suggests a radial

symmetry, with each of these trajectories (equidistant from the origin), approaching

the origin at the same rate. We can clearly see from the phase portrait that we

have a stable limit cycle, which confirms our result from the first Lyapunov coefficient

calculation.
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Figure 4: The phase portrait and time series of equation (51) plotted for the
following initial conditions:

■ (x0, y0) = (−2, 2)
■ (x0, y0) = (2, 2)
■ (x0, y0) = (2,−2)
■ (x0, y0) = (−2,−2)

7 Conclusion

Since dynamical systems are such an integral part of the world on chemical, biologi-

cal, physical and social levels, it is important to develop general methods that work

to analyse a range of these systems. In this thesis, we focused primarily on Hopf bi-

furcations, which are commonly observed in various physical and biological systems.

We aimed to find a method to determine whether a Hopf bifurcation of a dynamical

system is supercritical or subcritical, resulting in a stable or unstable limit cycle re-

spectively. We used the main reference [4], along with other material to do so. We

started off in two dimensions, and proved that any two-dimensional dynamical system

with a Hopf bifurcation is topologically equivalent to a normal form, which can then be

easily categorised as supercritical or subcritical, using the first Lyapunov coefficient.

We illustrated this by transforming a system into its normal form. Next, we developed

a method for n-dimensional systems, by using center manifold reduction to restrict the

system to a family of smooth two-dimensional invariant manifolds near the origin, and

then computing the first Lyapunov coefficient to determine the nature of the bifurca-
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tion. We illustrated this method by using the four-dimensional Lorenz-96 model as an

example. We computed the first Lyapunov coefficient to be negative, meaning that

it has a supercritical Hopf bifurcation, and hence a stable limit cycle. The methods

outlined in this thesis can easily be applied to other systems with a Hopf bifurcation.
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A Matlab Code

1. Inner product

% Computes complex inner product

function z = ip(p,q)

z = p’ * q;

end

2. Bilinear function

% The bilinear function B(x,y)

function z = bilinear(x,y,n)

z = zeros(n,1);

for j=0:n-1

a = mod(j+3,n)+1;

b = mod(j+1,n)+1;

c = mod(j+2,n)+1;

z(j+1) = x(a)*(y(b)-y(c)) + y(a)*(x(b)-x(c));
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end

end

3. Coefficients

% This code computes the relevant coefficients and equations in Section 6

A = [-1 1 -1 0 ; 0 -1 1 -1 ; -1 0 -1 1 ; 1 -1 0 -1 ];

q = 0.5*[1i ; -1 ; -1i ; 1 ]; % Eigenvector corresponding to eigenvalue i

syms z;

% G_20, G_11, G_02

G_20 = ip(q,bilinear(q,q,4))

G_11 = ip(q,bilinear(q,conj(q),4))

G_02 = ip(q,bilinear(conj(q),conj(q),4))

% H_20, H_11

H_20 = bilinear(q,q,4) - ip(q,bilinear(q,q,4))*q

- ip(conj(q),bilinear(q,q,4))*conj(q)

H_11 = bilinear(q,conj(q),4) - ip(q,bilinear(q,conj(q),4))*q -

ip(conj(q),bilinear(q,conj(q),4))*conj(q)

% g_20

g_20 = ip(q,bilinear(q,q,4))

% g_11

g_11 = ip(q,bilinear(q,conj(q),4))

% g_02

g_02 = ip(q,bilinear(conj(q),conj(q),4))

% g_21

a = -2*ip(q,bilinear(q,inv(A)*bilinear(q,conj(q),4),4));

b = ip(q,bilinear(conj(q),inv(2*1i*eye(4)-A)*bilinear(q,q,4),4));

c = 1/(1i) * ip(q,bilinear(q,q,4)) * ip(q,bilinear(q,conj(q),4));
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d = -2/(1i) * (ip(q,bilinear(q,conj(q),4)))^2

- 1/(3i) * (ip(q,bilinear(conj(q),conj(q),4)))^2;

g_21 = a + b + c + d

% Compute restricted equations

restricted1 = 1i*z + 0.5*g_20*z^2 + g_11*z*conj(z) +

0.5*g_02*(conj(z))^2 + 0.5*g_21*z^2*(conj(z))

syms x y real

g = x+1i*y;

restricted2 = subs(restricted1,z,g);

xdot = real(restricted2)

ydot = imag(restricted2)

% l1(0)

l = 0.5 * real(1i*g_20*g_11 + g_21)

% check l1(0)

x = inv(A)*bilinear(q, conj(q), 4);

l1 = -2*ip(q,bilinear(q, x, 4))

y = inv(2*1i*eye(4)-A)*bilinear(q, q, 4);

l2 = ip(q,bilinear(conj(q), y, 4))

lcheck = real(l1+l2) / (2)
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