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Abstract: The effective use of deep neural networks often requires time consuming and expertise-
reliant manual design decisions. Existing meta-learning methods have come a long way toward
alleviating these requirements and enabling end-to-end learning. However, one important yet of-
ten overlooked facet is the selection of activation functions. Although methods exist to optimize
this process, the vast majority are only concerned with homogeneous networks. That is, opti-
mizing a single activation function for all hidden units in a network. Conversely, heterogeneous
networks employ a variety of activation functions throughout. In this work, an evolutionary
search method for discovering well-performing homogeneous and heterogeneous activation func-
tion setups is presented. Using random search for baseline comparison, experiments show that
the developed directed search method is well-suited for the task. Indeed, hand-engineered deep
CNNs tested on CIFAR-10 using ReLU and Swish are outperformed by those using discovered
solutions. Furthermore, the explored heterogeneous setups result in better performance than
their homogeneous counterparts. Lastly, novel solutions of both types are shown to generalize
to CIFAR-100. However, transfer to an up-scaled architecture is relatively less successful. The
presented methods offer a promising new approach to meta-learning in the space of deep hetero-
geneous neural networks.

1 Introduction

Over the last decade, Convolutional Neural Net-
works (CNNs) have become one of the most estab-
lished learning models in the field of deep learning
[Li et al., 2021, Abiodun et al., 2018, Yamashita
et al., 2018]. This rise in popularity has come in
response to impressive achievements in many ar-
eas of research - especially that of computer vision.
Specifically, CNNs have demonstrated near human-
level and sometimes superhuman performance in
many vision tasks, for example in object recogni-
tion [He et al., 2015b, Taigman et al., 2014], im-
age segmentation [Zeng et al., 2017], and pose es-
timation [Groos et al., 2022]. In fact, much of the
success of NNs, in general, can be attributed to
the increased availability of computation and data.
However, a few developments in the field were key
to making efficient use of these resources. Effec-
tively, allowing complex (deep and wide) NNs to
be trained effectively [Manessi and Rozza, 2018,

He et al., 2015b]. These include, among oth-
ers, advances in regularization techniques [Laurent
et al., 2016], well-designed initialization schemes
[Sutskever et al., 2013], extensive data augmenta-
tion [Howard, 2014, Krizhevsky et al., 2012], and
innovative layer designs [Szegedy et al., 2015, He
et al., 2015a].

Another breakthrough that contributed to the
resurgence in interest of the scientific community
in deep neural networks (DNNs) is the introduc-
tion of new activation functions (AFs) [He et al.,
2015b, Apicella et al., 2021]. Indeed, the influ-
ence of activation functions on the performance of
NNs has now been well established [Hagg et al.,
2017]. Specifically, studies have shown that differ-
ent choices of activation functions can result in sig-
nificant differences in convergence speed and result-
ing network errors [Kamruzzaman and Aziz, 2002,
Efe, 2008].

For clarity, following the definition of Goodfellow
et al. [2016], AFs can be described as fixed non-
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linear functions, g(z), through which the weighted
linear combination of a neuron’s input values, z =
W ⊺x + b (where W is the weight matrix, b is the
bias, and x is the input vector), is passed before be-
ing outputted for use by neurons in subsequent lay-
ers. The non-linearity property is a requirement to
ensure the universal approximator property of the
network, as shown by Cybenko [1989] and Hornik
et al. [1989]. Initially, bounded continuous function,
or so-called squashing functions, such as the logis-
tic sigmoid function, g(z) = σ(z), and the hyper-
bolic tangent function, g(z) = tanh(z), were used
to reach excellent results in shallow NNs [Goodfel-
low et al., 2016]. However, due to the saturating
across most of their domain, they suffered from the
vanishing gradient problem when training DNNs
with gradient-based learning [Manessi and Rozza,
2018, Apicella et al., 2021]. That is, in some cases,
the partial derivatives of weights with respect to
the loss function used for weight updates would
become vanishingly small [Bengio et al., 1994]. At
worst, this could severely slow down or even halt
NN training. As a response, an active area of re-
search aimed at creating novel activation functions
was born [Manessi and Rozza, 2018].
One of the first and most notable function to

arise from this effort is the Rectified Linear Unit
(ReLU) [Glorot et al., 2011],

ReLU(z) = max{z, 0}. (1.1)

Due to the simplicity of this non-squashing AF and
its effectiveness in training DNNs, it inspired many
future variants. These were based on the same ba-
sic shape but alleviate some know disadvantages of
the ReLU function through slight variations. For
example, Leaky ReLU (LReLU). It introduced a
non-zero gradient when z < 0 to alleviate the “dy-
ing” ReLU problem, where the output of a neuron is
always zero when large negative biases are learned
[Maas et al., 2013]. Or, Softplus,

softplus(z) = log(1 + exp(z)), (1.2)

which can be interpreted as a smoothed version of
the ReLU function - it solves the problem of non-
differentiability at z = 0 [Dugas et al., 2001]. Be-
yond these strictly unparameterized examples, a set
of tunable activation functions also garnered inter-
est. These permit users to alter the shape of activa-
tion functions using parameters. For instance, the

exponential linear unit (ELU),

ELU(z) =

{
z if z > 0

α ∗ (exp(z)− 1) otherwise,
(1.3)

an AF that keeps the identity for positive argu-
ments but otherwise returns a bounded exponen-
tial value, is adjustable by the parameter α [Clevert
et al., 2015]. Indeed, as with all of the approaches
mentioned above, the onus is on the neural network
designer to create, select, and set appropriate AFs
for the learning task. Thereby, heavily relying on
the expertise of the designers as well as widely used
hyperparameter optimization strategies such as a
grid search and manual search. [Bergstra and Ben-
gio, 2012] However, manual design of this sort can
be tedious, computationally expensive, and unap-
proachable for the inexperienced [Abreu, 2019]. As
such, the stage is set for the automation of this pro-
cess by incorporating it into the learning paradigm.

A survey on trainable AFs, by Apicella et al.
[2021], reveals that the idea has been explored in
various forms since the 1990s but that recently,
with the resurgence of interest in DNNs, there has
been an influx of studies on the topic. Broadly, the
authors characterize efforts to this end in one of two
ways, methods optimizing parameterized activation
functions and those based on ensemble methods.
The former refer to the automatic tuning of func-
tion shape parameters, whereas the latter refer to
approaches that merge different functions. Para-
metric ReLU,

PReLU(z) =

{
z if z > 0

α× z otherwise,
(1.4)

is a well-known example of a trainable parame-
terized activation function [He et al., 2015b]. Its
learning parameter α, which sets the negative slope
of the ReLU function, is learned jointly with the
weights and biases during backpropagation. On one
hand, these methods introduce a negligible number
of tuning parameters, which is positive for minimiz-
ing training cost, but on the other, their expressive-
ness is limited. After all, even an AF with many
parameters is substantially bounded to the basic
function shape on which it is built. Conversely, en-
semble methods combine a set of basis functions
(which can themselves be parametrized) to create
AFs that are far more expressive. Examples of these
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vary, however many rely on linear combinations of
one-to-one basis functions [Agostinelli et al., 2014,
Sütfeld et al., 2020, Piazza et al., 1992], whilst oth-
ers include many-to-one functions with set ways
to combine the two [Ramachandran et al., 2017,
Basirat and Roth, 2018].
Considering the optimization of AFs, it can be

done directly during the learning phase [He et al.,
2015b, Sütfeld et al., 2020]. However, for methods
that are non-differentiable, meta-learning schemes
can be employed. That is, an additional optimiza-
tion loop is added on top of the existing training
loop, making meta-learning a nested optimization
task. As such, the space of activation functions can
be searched through in the same manner as dif-
ferent network topologies [?] and hyperparameters
[Bergstra et al., 2013] have been traditionally ex-
plored. Meta-learning can be achieved using dif-
ferent learning paradigms, including Bayesian opti-
mization [Kandasamy et al., 2018], meta-heuristic
searches [Basirat and Roth, 2021, Elsken et al.,
2017], reinforcement learning (RL) [Ramachandran
et al., 2017] and evolutionary algorithms (EA)
[Stanley and Miikkulainen, 2002]. Lately, the latter
two methods have been gaining a lot of momen-
tum for impressive results in automatic NN archi-
tecture design [Galván and Mooney, 2021]. Indeed,
EA methods implemented for this purpose are part
of a broader sub-field called neuroevolution (NE).
It concerns itself with levering evolutionary mech-
anisms for a variety of NN related tasks. These
include, updating connection weights, architecture
design, learning rules, input feature selection, and
much more Galván and Mooney [2021]. Indeed,
their applicability to many facets of the learning
and meta-learning process makes them ideal can-
didates for enabling end-to-end learning. As a con-
sequence of its versatility with respect to several
aspects of NN design and overall promise, NE is a
central theme in this work.
Lastly, there is one more important aspect of AFs

that must be accounted for, namely their configu-
ration in the NN architecture. In a homogeneous
setup, every hidden neuron in a NN uses the same
activation function. In contrast, a heterogeneous
NN is one where the AFs used by different hid-
den neurons may vary. In fact, they need not be
optimized per neuron, as per layer [Manessi and
Rozza, 2018] and per channel [He et al., 2015b] ex-
amples also exist. Overall, the increased expressive-

ness of heterogeneous setups lends itself to perfor-
mance gains without changing the topology of the
network, thus allowing for the development of more
compact networks [Hagg et al., 2017, Turner and
Miller, 2014]. Indeed, smaller networks are more
parsimonious as they require fewer data samples
and are simpler to train [Orr, 1993]. An impressive
example of a heterogeneous DNN is the one de-
veloped in the original PReLU paper by He et al.
[2015b], where they optimized the AFs of a CNN
architecture in a channel-wise manner. They were
the first to surpass human-level performance on the
ImageNet 2012 classification dataset.

The goal of this paper is to further investigate
deep heterogeneous networks through neuroevolu-
tion. More precisely, an attempt is made to opti-
mize AFs and their configuration in a DNN simul-
taneously through genetic programming. To the au-
thor’s best knowledge, the work is unique in ap-
plying this approach to DNNs. As such, a novel
methodology for finding well-performing deep het-
erogeneous networks is presented and investigated.
Moreover, the transferability of the discovered can-
didate solutions, with respect to a larger network
architecture and a different dataset, is also con-
sidered. Lastly, this exercise offers an opportunity
for new qualitative insights into effective activation
function shapes for heterogeneous network setups.

2 Related Work

Neuroevolution (NE) has historically been a popu-
lar approach for neural architecture search [Elsken
et al., 2019, Wistuba et al., 2019]. Indeed, a large
number of methods have been developed to auto-
matically create suitable network topologies - these
often simultaneously evolve connection weights.
That said, the majority of NE implementations
evolve homogeneous networks, where the AFs of
the hidden neurons are all identical. Generally, the
methods that do allow for the evolution of hetero-
geneous networks work in one of two ways.

The first method involves optimizing the selec-
tion of the AF of each neuron from a predeter-
mined list of functions. These are usually made
up of basic functions, for example, the logistic sig-
moid, Gaussian, and hyperbolic tangent function.
Typically, as part of a broader NE procedure, the
AF used by each neuron is encoded in a genetic
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sequence. Then in each generation, through de-
fined genetic operations, e.g. selection, crossover,
and mutation, ineffective heterogeneous configura-
tions are eliminated and more competitive ones are
generated. NE methods capable of creating het-
erogeneous networks in this manner include Gen-
eral Neural Networks (GNN) [Liu and Yao, 1996],
Cartesian Genetic Programming of Artificial Neu-
ral Networks (CGPANN) [Turner and Miller, 2013],
a modified Hierarchical Co-evolutionary Genetic
Algorithm (HCGA 2) [Weingaertner et al., 2002],
and derivations of Neuroevolution of Augmenting
Topologies (NEAT) [Stanley et al., 2009, Hagg
et al., 2017]. To elaborate on the latter, NEAT is
a well-known algorithm for creating parsimonious
networks using a constructive approach, whereby a
minimal network is expanded slowly by systemati-
cally adding neurons and connections. For its over-
all success and use of “minimal initialization”, it
has inspired several extensions. One such derivative
method, HA-NEAT [Hagg et al., 2017], extends the
direct encoding scheme of NEAT to include AFs. As
a result, heterogeneous networks are evolved where
the AF of each neuron is set to either a step, ReLU,
sigmoid, or Gaussian function. These show conver-
gence speeds similar to the best homogeneous net-
works whilst being smaller and more sparsely con-
nected.
Another method to evolve heterogeneous net-

works is to use parameterized AFs. As such, the
learning task becomes optimizing tuning parame-
ters associated with each individual neuron. Turner
and Miller [2014] employed a version of this method
to optimize the shape of variable Gaussian and
logistic sigmoid functions. More precisely, a sin-
gle scaling parameter per neuron was addition-
ally encoded in the gene sequences defining the
NNs. Note, their work explored two NE strategies,
namely a conventional fixed-topology NE algorithm
and an extended version of CGPANN. The result-
ing evolved networks yielded superior performance
on several benchmark tasks compared to their ho-
mogeneous non-parameterized counterparts. More-
over, these experiments were part of a broader in-
vestigation into the effectiveness of evolved het-
erogeneous networks. They also implemented the
above described method, where the selection of the
AF from a predetermined list was optimized for
each neuron. Similarly, they found results in favor
of the heterogeneous solutions. To take it one step

further, the authors combined the two approaches.
That is, they allowed evolution to select both a
parametrized AF from a predetermined set and the
associated tuning parameter value for each individ-
ual neuron. However, the combination of the two
methods was found to be no more beneficial, on
average, than when they were used individually.
Two possible reasons for this finding were identi-
fied, namely an increase in search space dimension-
ality without an increase in the density of good so-
lutions and the need for more subtle evolutionary
algorithm parameter tuning.

A more complex version of the combined meth-
ods is put forth by Augusteijn and Harrington
[2004]. They allowed the AFs for the individ-
ual neurons themselves to be subject to evolution
through genetic programming. Indeed, by applying
standard genetic operators to function tree struc-
tures - a search space of highly expressive math-
ematical functions was explored. These trees were
made up of a rich set of nodes representing either
functions, variables, or constants. Despite only us-
ing a small network with few neurons, they reflect
that their largely unrestricted search space likely
explains their mixed results. That said, their work
formed an interesting challenge to the status quo of
the time - namely the ubiquitous use of sigmoidal
functions for hidden units. More recently, Bingham
et al. [2020] showed how complex AFs could be
evolved for deep learning purposes. In a similar
fashion, tree-based structures were used to repre-
sent the AFs. A set of unary and binary operators
were employed as the nodes. However, in contrast
to Augusteijn and Harrington [2004], the number
of operators available and the expressiveness of the
function trees was restricted significantly. In fact,
they used a slightly modified search space from the
well-known work of Ramachandran et al. [2017],
where novel AFs were discovered by a combina-
tion of exhaustive search and reinforcement learn-
ing. Their effectiveness was evaluated on several
datasets, tasks, and models. The overall best per-
forming evaluated candidate, g(z) = zsigmoid(z),
is now popularly known as Swish. Crucially how-
ever, in both works, the search space was restricted
to the discovery of AFs for homogeneous networks.

This paper builds on the research of Bingham
et al. [2020], and by extension Ramachandran et al.
[2017], to evolve heterogeneous networks. How-
ever, to cope with the explosion of the search

4



space, the AFs are not evolved per neuron as
done by Augusteijn and Harrington [2004]. In-
stead, AFs are optimized with respect to prede-
termined blocks (i.e. sections) of a DNN. Hereby,
the author hopes to demonstrate that it is possi-
ble to evolve well-performing deep heterogeneous
networks with reasonable computational resources.
Furthermore, despite not co-evolving topology or
connection weights, this idea can be made to fit
within existing holistic NE schemes. Lastly, the
model and dataset transferability of the evolved so-
lutions is evaluated following the experimental de-
sign of Bingham et al. [2020].

3 Methods

3.1 Search Space

Each activation function is represented as a func-
tion tree, where the nodes are either unary oper-
ators or binary operators. That is, functions that
take one variable or two variables, respectively.
Note, as an exception to this description, a unary
operator can also be a constant - either 0 or 1.
The function trees are structured such that two
unary operators always feed into one binary op-
erator. The set of operators used was taken from
Bingham et al. [2020], who modified it from the
work of Ramachandran et al. [2017] primarily by
removing operators/nodes with tuning parameters.
Ensuing is the full list of unary and binary func-
tions considered:

• Unary: 0, 1, x, x, |x|, x2, x3,
√
x, ex, e−x2

,
log (1 + ex), log (|x+ ϵ|), sin (x), sinh (x),
arcsinh (x), cos (x), cosh (x), tanh (x),
arctanh (x), max (x, 0), min (x, 0), σ(x),
erf (x), sinc (x)

• Binary: x1+x2, x1−x2, x1×x2, x1/(x2+ ϵ),
max (x1, x2), min (x1, x2)

Here, ϵ represents a small positive value to avoid
undefined operations, such as division by 0. Fur-
ther following their work, a “core unit” is defined as
core unit(x) = binary(unary1(x), unary2(x)). Note,
a core unit takes in two identical scalar inputs,
passes each one through a unary operator, and then
combines their results using a binary operator that
itself outputs a scalar. Hence, the aim of finding an
activation function that transforms a single scalar

input, x, into a single scalar output is achieved. Un-
like previous work however, the depth of the AFs
explored will be limited to 1. As such, structures of
greater depth, for example, depth-2 AFs in the form
of core unit(x) = binary(unary1(core unit1(x)),
unary2(core unit2(x))), will not be considered.
This design choice was made to restrict the size
of the search space, since multiple of these function
trees are considered in a heterogeneous set up.

Extending the work of Bingham et al. [2020],
let F be the set of all possible function trees that
can be created using the above-described nodes and
rules. The search space for function trees (AFs) of
depth d ∈ Z+, Sd, is described as follows,

Ss = {f ∈ F | depth(f) = d}. (3.1)

Consequently, an example of a (homogeneous) so-
lution of depth-1 is core unit1(x). Next, in the het-
erogeneous search space, solutions consist of several
core units in series. The degree of heterogeneity, h,
describes how many individual AFs are represented
by a solution. Then we can define a heterogeneous
search space, Sh

d , as the h-fold Cartesian product
of Sd. For example, the search space for heteroge-
neous solutions representing 3 AFs of depth-1, can
be described as S3

1 = S1 × S1 × S1. Thereby, it
can expressed in the general form: [core unit1(x);
core unit2(x); core unit3(x)]. Each core unit (ele-
ment in the solution) represents the AF used by
separate collections of hidden neurons in a NN.
More precisely, a neural network is segmented into
consecutive blocks (sections) of layers and the het-
erogeneous solutions are applied respectively. By
applying AFs per block, instead of per neuron or
per layer, the heterogeneous search space can be
significantly reduced. Note, following this new no-
tation, the homogeneous search space can be de-
scribed as S1

1 . More details regarding the applica-
tion of various AFs configurations to NNs is given
at the end of Section 3.3.2.

The research presented here exclusively concerns
itself with the search space of S1

1 for homogeneous
solutions and S3

1 for heterogeneous solutions.

3.2 Genetic Algorithm

Genetic algorithms (GAs), a subclass of evolution-
ary algorithms, are a collection of population-based
metaheuristics that can be used to solve stochastic
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optimization problems. Characteristically, the solu-
tion domain is encoded through genetic representa-
tion. In this case, each candidate solution is defined
as a sequence of genes describing the nodes of the
underlying AFs trees (see Figure 3.1). These “in-
dividuals” compete and exchange information with
one another to complete a given task. Effectively,
principles from natural evolution are used to search
through complex domains with many local optima.
In fact, an advantage over gradient descent meth-
ods is that the landscape describing the solution
space need not be differentiable [Yao, 1999]. Note,
GAs also have a number of known disadvantages
such as being slow (computationally expensive)
and difficult to implement effectively [Leoshchenko
et al., 2019]. Indeed, their performance is highly
dependent on various tuning parameters, how the
problem is encoded, and the design of the evolu-
tionary operators.

The basic idea behind genetic algorithms is that
a large set of candidate solutions, referred to as a
population, is evolved over many generations to se-
lect for better solutions. Typically, a population is
initially randomly generated. The candidate solu-
tions are then evaluated based on a fitness metric,
which determines their quality. According to their
relative fitness value, a new population is gener-
ated from the previous one. More specifically, three
different mechanisms are employed to create/select
the candidate solutions for the next generation: (a)
selection, (b) crossover, and (c) mutation. This pro-
cess is repeated successively over many generations
to converge towards optimal solutions.

The rest of this section will present the approach
to evolving activation functions for heterogeneous
and homogeneous networks alike. More precisely, it
will introduce the implementation details of the ge-
netic operators and overall algorithm used. Note,
these have been slightly modified from Bingham
et al. [2020] to accommodate for the different prob-
lem structure.

3.2.1 Selection

Selection is the predominant evolutionary proce-
dure for exploiting good solutions. In this work,
a predetermined number of the best-evaluated
(fittest) candidate solutions get passed on to the
next generation. They undergo no changes.

Figure 3.1: Diagram of a heterogeneous can-
didate solution containing two activation func-
tions (from S1,2), represented as (1) function
trees and (2) an genetic sequence, undergoing a
mutation operation. Specifically, a unary node
in the first activation function is changed from
−x to erf(x)

3.2.2 Mutation

Mutation drives the exploration of the solution
space by randomly changing one gene in a cho-
sen candidate solution. Note, all genes represent a
node in one of the underlying AF tree structures.
As such, after randomly selecting one gene/node,
it is replaced by another node of the same type
- binary or unary. A replacement is sampled us-
ing a uniform distribution over all the possibilities
of matching type. An example of this operation is
shown in Figure 3.1.

3.2.3 Crossover

In crossover, two selected parent candidate solu-
tions pass on a proportion of their genes to a single
offspring candidate solution. One-point crossover is
used for this purpose. Specifically, a single cut-off
point, deciding the proportion of genes from each
parent, is determined by sampling a discrete uni-
form distribution. Crucially, the genetic sequence
of the resulting offspring is always equal in length
to that of the parents. An example of crossover is
given in Figure 3.2.

3.2.4 Evolution

To begin the evolutionary process, a population of
N random candidate solutions is created. All can-
didates within this initial pool are unique to force
variety in the search. Next, a NN is configured for
each individual according to its specifications and
trained on a predefined dataset. More precisely,
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Figure 3.2: Diagram showing a crossover opera-
tion involving two homogeneous candidate solu-
tions. The orange line represents the randomly
selected crossover point. The offspring is the re-
sulting candidate solution

the AFs represented by the candidate solutions
are appropriately implemented in a fixed topol-
ogy NN and used to learn a classification task’s
input/output relationship from a training dataset.
After training, individuals are tested on a valida-
tion dataset and given an evaluation score. This
metric can be either validation accuracy or negative
validation loss. Once the effectiveness of all individ-
uals has been evaluated, the above evolutionary op-
erators are employed to create a new population for
the next generation. First, the top b candidate so-
lutions are selected, according to evaluation scores,
to be directly added to the new population. Next,
all candidate solutions, given index i, are assigned
a fitness score, pi, equal to the softmax of their
evaluation score, Li. As such,

pi =
eLi∑N
j=1 e

Lj

. (3.2)

The softmax operation is used to convert the
evaluation scores into a probability distribution,
such that all individual selection probabilities, pi,
add up to 1. Thus, candidate solutions can be se-
lected with a probability proportional to their rel-
ative effectiveness by sampling from the distribu-
tion. When evolving the population, (N − m − b)
pairs of candidate solutions are chosen in this man-
ner (with replacement) to act as parents for the
crossover operation. Then, the (N −m− b) result-
ing offspring undergo mutation as described above.
Note, m is the number of randomly generated can-

didate solutions added to the new population to
spur exploration. These are completely new candi-
date solutions that are generated by uniform sam-
pling the solution space. Finally, the size of the new
population matches that of the previous popula-
tion. This process is repeated for several genera-
tions, hereby leading to the discovery of increas-
ingly better performing AF configurations. The ge-
netic algorithm is run for a set number of iterations
(generations), after which the best-evaluated can-
didate solutions of the entire search are returned.
Note, this evolutionary search procedure is identi-
cal whether the search space contains homogeneous
or heterogeneous solutions.

3.3 Experiments and Setup

3.3.1 Datasets

The CIFAR-10 and CIFAR-100 image datasets are
used in the experiments. Note, only CIFAR-10 is
used for the searches. These are both balanced
datasets of 60000 labelled 32×32 3-channel (color)
images belonging to 10 and 100 classes, respec-
tively. All classes are mutually exclusive. In both
cases, 50000 image training sets and 10000 image
test sets are provided [Krizhevsky et al., 2009]. No
standard validation sets are given. However, for
the searches, an additional validation set is neces-
sary to prevent the reporting of overfitted results.
Hereby, the training set is used exclusively for train-
ing the models, the validation set is used for com-
puting fitness and selecting the best solutions, and
the test set is used to demonstrate the true qual-
ity of the discovered candidate solutions. As such,
a 5000 image validation set validation is created
from the training dataset. The latter is therefore
reduced to 45000 examples. Furthermore, a strati-
fied split is used in order to balance the number of
examples from each class. Since only the CIFAR-
10 dataset undergoes this procedure, the validation
set is formed by randomly taking 500 images per
class from the training set. No structural changes
are made to the test sets to allow for comparison
with future work. Lastly, all images are normal-
ized by dividing each pixel value by 255 and their
corresponding labels are one-hot-encoded. No data
augmentation procedures are employed.
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3.3.2 Architectures

In order to restrict the search space of candidate
solutions whilst not restricting the depth of the
networks which can be optimized - it is necessary
to move away from per neuron and per layer con-
ceptions of heterogeneous networks. However, it is
useful to utilize structural delimitations when ap-
plying several activation functions to a NN. As
such, this work concerns itself with block-based ar-
chitectures, inspired by the VGG networks of Si-
monyan and Zisserman [2014]. These deep convo-
lutional NN, named after the research group who
designed them, have exhibited impressive perfor-
mance by relying on structural units (blocks) of re-
peating patterns of small kernel-sized convolutional
layers [Khan et al., 2020]. Crucially, for use in this
work, those network designs only served as inspira-
tion and were not explicitly copied. Instead, man-
ual designs were conceived. Additionally, support-
ing the design process with hyperparameter opti-
mization schemes was avoided. The impetus is to
minimize the degree to which the fixed NN archi-
tectures are optimized for any one function. For ex-
ample, by avoiding network architectures that have
been optimized with ReLU in mind. Hereby, the
evaluation and comparison of the effectiveness of
various AF configurations can made fairer.

Accordingly, a 2-block 6-layer convolutional NN
(VGG-HE-2) and a 4-block 10-layer convolutional
NN (VGG-HE-4) were implemented in TensorFlow,
with the specifications detailed in Table 3.1 and
Table A.1, respectively. The VGG-inspired blocks
each contain two convolutional layers followed by
max pooling and dropout. After every convolu-
tional layer, batch normalization is performed. The
last block in the architecture propagates the activa-
tions to a fully connected layer. After which, again,
batch normalization and dropout are applied be-
fore finally reaching the output layer. The latter
is composed of 10 nodes and uses softmax acti-
vation for the class prediction. Categorical cross-
entropy is the loss function selected, as is common
in multi-class classification tasks. Furthermore, the
models are optimized using stochastic gradient de-
scent with an unchanging learning rate of 0.001
and momentum 0.9. Note, all convolutional layers
share the same kernel size of 3 × 3. Furthermore,
the He uniform kernel weight initialization scheme
is chosen as it offers more robust training for acti-

vation functions that involve non-linear properties
[He et al., 2015b]. However, the number of ker-
nels per convolutional layer increases with every
block, starting from 32. That is, layers in the first
block contain 32 filters, which is doubled to 64 fil-
ters in the following block, then again to 128 filters
for the following block, and so on. The number of
nodes in the first fully connected layer matches the
number of filters in the final block. For example,
256 in the case of the first fully connected layer
in VGG-HE-4. Similarly, the dropout rate starts
at 20% and increases by 10% with each additional
block. Namely, for VGG-HE-2, the dropout rate
in the first block is set to 20%, 30% in the sec-
ond, and the non-output fully connected layer is
followed by 40% dropout. To speed up computa-
tionally expensive experiments, the tensorflow dis-
tributed mirrored strategy was implemented on two
11GB Nvidia Geforce RTX 2080 Ti GPUs. Fur-
thermore, a large batch size of 256 per GPU unit
was used. Note, we are only interested in relative
and not absolute classification performance. Lastly,
for any network parameter not explicitly detailed
above, the default value provided by the Keras li-
brary was used (see Chollet et al. [2015]).

Concerning the activation functions used, in the
homogeneous experiments, they are all identical ex-
cept the one used by the output layer (which is
always softmax ). On the other hand, in the het-
erogeneous experiments, only convolutional layers
in the same block share the same activation func-
tions. The fully connected layer, before the output
layer, is also given a unique activation function (see
Table 3.1).

3.3.3 Searches

To compare homogeneous and heterogeneous net-
works, solutions of both kinds are implemented on
a fixed topology network. Searches are employed
to explore good candidate solutions in these do-
mains. Regardless of which is considered, either S1

1

for homogeneous solutions or S3
1 for heterogeneous

solutions, every candidate solution explored is im-
plemented on the VGG-HE-2 architecture. The end
of Section 3.3.2 describes how the candidate solu-
tions are applied to the architecture. Using CIFAR-
10, the resulting networks are trained for 50 epochs
and then evaluated on the validation set. An early
stoppage scheme is used to stop training in case of
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VGG-HE-2
Id Layers Properties

conv b1 l1 2D convolution 32× (3, 3)
Activation custom1
Batch normalization

conv b1 l2 2D convolution 32× (3, 3)
Activation custom1
Batch normalization
2D Max pooling (2, 2)
Dropout 20%

conv b2 l3 2D convolution 64× (3, 3)
Activation custom2
Batch normalization

conv b2 l4 2D convolution 64× (3, 3)
Activation custom2
Batch normalization
2D Max pooling (2, 2)
Dropout 30%

fc l5 Fully connected 64
Activation custom3
Batch normalization
2D Max pooling (2, 2)
Dropout 40%

fc l6 Fully connected 10
Activation softmax

Table 3.1: Description of the 2 block hetero-
geneous VGG-inspired architecture. The AFs
are depicted in generalized format, namely cus-
tom1, custom2, and custom3. These refer to the
AFs represented by individual candidate solu-
tions in S3

1 .

NaN loss.
To conduct the searches, two strategies are

employed, namely evolutionary search as described
above and random search as a baseline. Unlike
previous work, no exhaustive search was performed
in the homogeneous solution space, despite being
relatively small with 3,456 possible combinations.
The motivation is to mitigate a significant compu-
tational exercise that cannot feasibly be managed
in common practice. Instead, the genetic algorithm
from Bingham et al. [2020] was altered to evolve
solutions in this space. Note, the S3

1 heterogeneous
search space contains around 41 billion solutions.
To compare the directed search and random
search, both are performed in each domain. Every
one of these evaluate 750 candidate solutions
in total. In addition, a single 1500 candidate
solution evolutionary search in the heterogeneous
(S3

1) domain is performed - it is used to gauge
the outcome of longer searches. Following, the
implementation details of the searches are given.

Random search As performed by Bingham
et al. [2020], the random search is split up into
“generations” to offer an illustrative baseline to
the evolutionary search. Hereby, the 750 random
solutions evaluated are split up into 15 groups
of 50. Importantly, all evaluated candidates are
unique as any duplicates are replaced.

Evolutionary search Under the evolutionary
strategy, a population of 50 candidates is evolved
(N = 50) for either 15 generations (in the case of
the 750 candidate searches) or 30 generations (in
the case of the 1500 candidate search). Concern-
ing the underlying evolutionary mechanisms, the
top 5 solutions of each generation get passed on to
the following generation (b = 5). The remaining 35
(= N−m−b) candidates are generated by means of
crossover and mutation as described above. These
evolution parameter values, taken from Bingham
et al. [2020], were chosen because preliminary trials
showed positive results with respect to optimiza-
tion performance. Furthermore, only loss-based fit-
ness is employed as their findings suggest it has a
clear advantage over accuracy-based fitness. A con-
sequence of the latter being more lenient in terms
of selection. Briefly, this is explained by the fact
that loss, in comparison to accuracy, is not bounded
between 0 and 1. Remember, accuracy is the per-
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centage of correct classifications and loss indicates
the results of categorical cross-entropy with respect
to the entire validation set. Indeed, relative differ-
ences between the evaluation scores of candidate
solutions are significantly larger when the loss mea-
sure is used. As such, when considering the softmax
operation used to determine fitness (see Equation
3.2), a loss-based approach more sharply penalizes
poor solutions than its accuracy-based counterpart.
Note, the same settings and parameters were used
for all search spaces considered.

3.3.4 Dataset and Architecture Transfer

The transferability of the well-performing candi-
date solutions from all the searches with respect
to another dataset and architecture is also inves-
tigated. Specifically, the top candidates from the
CIFAR-10 searches are retrained and evaluated on
the CIFAR-100 test set. Note, the VGG-HE-2 ar-
chitecture remains unchanged. On the other hand,
in another experiment testing architecture transfer-
ability, these same top search candidates are evalu-
ated on a bigger neural network, namely VGG-HE-
4. This is a straightforward transfer exercise when
the considered solutions are homogeneous. For het-
erogeneous solutions, however, AFs are transferred
to pairs of blocks. For example, the AF used in the
first block of the small VGG-HE-2 architecture is
now transferred to the first and second blocks of
the VGG-HE-4 architecture. In contrast, the AF of
the penultimate fully connected layer is transferred
to the equivalent layer in the bigger network. Table
A.1 (see Appendix ??) shows a generalized version
of the AF configuration of the VGG-HE-4 archi-
tecture after having undergone the heterogeneous
transfer exercise.

3.3.5 Testing Strategy

To gauge their true performance, the overall top
three candidate solutions from each search undergo
a training/testing cycle. Namely, they are trained
from scratch for 200 epochs on CIFAR-10 (training
and validation dataset) using VGG-HE-2 and are
then evaluated on the corresponding unseen test
set. Note, all the same learning and architecture
parameter values as in the searches are used. Fol-
lowing previous work, this procedure is repeated
five times and the median test accuracy is reported

[Ramachandran et al., 2017].
The same testing procedure is used to evaluate

the transferability of each top candidate solution
yielded from the searches (performed exclusively
using CIFAR-10 and VGG-HE-2). That is, the
transfer methodology is tested using the different
architecture and dataset combinations described
above. Specifically, applying the training/testing
cycles to measure the transfer performance to the
different dataset, where the best search candidates
are retrained on CIFAR-100 with VGG-HE-2. And
to determine transfer performance to the larger NN
architecture, where the top search candidate solu-
tions are retrained on CIFAR-10 with VGG-HE-4.

Similar to Bingham et al. [2020], in order to eval-
uate the significance of the overall top search can-
didates’ test results, they are each retested 20 more
times. In addition, both benchmark activation func-
tions undergo the same procedure. As such, mean
test accuracies (and 95% confidence intervals) over
20 repeats of the 200 epoch training/testing cycle
are computed. In turn, these are used to deter-
mine whether there is a significant difference be-
tween the mean test accuracies coming from the
different AF configurations. Specifically, indepen-
dent two-sample heteroscedastic (Welch’s) t-tests
are performed. Unequal variance is assumed be-
cause of large differences in the resulting confidence
intervals.

Note, all accuracy measures are based on the out-
comes of multiple training/testing cycles to miti-
gate the effects of weight initialization.

4 Results

The purpose of the experiments is threefold. First,
to show that heterogeneous setups for deep NNs can
outperform their homogeneous counterparts and
baseline AFs such as ReLU and Swish. Secondly,
with respect to minimizing computational effort, to
showcase the benefit of using directed (evolution-
ary) search in this domain versus random search.
Lastly, to investigate the dataset and architecture
transferability of the top candidate solutions com-
ing from the searches.

To begin, the outcomes of the evolutionary
search method in the homogeneous (S1

1) and het-
erogeneous (S3

1) domains are considered. To evalu-
ate the effectiveness of these directed searches, they
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Figure 4.1: Plot of top validation accuracy
reached in each generation of two search strate-
gies in the homogeneous (S1

1) and heterogeneous
(S3

1) solution space. More precisely, both ran-
dom search and loss-based evolutionary search
were used. All solutions are trained with VGG-
HE-2 on CIFAR-10 for 50 epochs, then evalu-
ated based on a corresponding validation set.
The best validation accuracy reached by a solu-
tion in each epoch is plotted for every search.
Both evolutionary searches display clear im-
provement over the generations. Here, the ran-
dom searches offer an illustrative baseline. In-
deed, all randomly sampled homogeneous solu-
tions performed better than the randomly sam-
pled heterogeneous solutions. Note, both evolu-
tionary searches suffer from relatively poor first
generation performance, this is due to chance.
However, despite starting with the worst per-
forming pool of initial candidate solutions, evo-
lution in the heterogeneous search space yields
the overall best performing candidates.

are compared to random searches. Figure 4.1, shows
a plot of the top validation accuracy reached by
a candidate solutions in the population per gen-
eration. That is, the highest accuracy reached on
the validation set by any candidate solution in the
population after being trained with VGG-HE-2 on
CIFAR-10 for 50 epochs. Each line in the plot rep-
resents a different search and domain combination:
evolutionary search in S1

1 , random search in S1
1 ,

evolutionary search in S3
1 , and random search in S3

1 .
As the generations elapse, there is a clear increas-
ing monotonic trend for both evolutionary searches.
In fact, it appears that by the final generation,
the best candidate solutions discovered outperform
all previously found solutions including those eval-
uated in the corresponding random searches. As
such, these results indicate that our evolutionary
search method outperforms random search in both
the homogeneous and heterogeneous domain.

Additionally, to gauge whether the pattern of
optimization remains consistent, a single run of a
30 generation evolutionary search in the hetero-
geneous domain was performed. Again, CIFAR-10
and VGG-HE-2 was used to evaluate the candidate
solutions. Figure B.1 (see Appendix ??) shows a
plot of the results. Unfortunately, this search fails
to discover candidate solutions that clearly outper-
form the 15 generation evolutionary search in the
same domain - despite using identical parameter
values. In fact, in both searches, it appears that the
rate of optimization slows down significantly after
the first 10 generations. That said, although im-
provement over generations is sometimes slow and
inconsistent, a general upward trend is nevertheless
visible.

Moreover, returning to Figure 4.1, it is note-
worthy that compared to the top validation ac-
curacies reached per ”generation” in the random
searches, both evolutionary searches suffered from
relatively poor performing initial populations. This
is fully determined by chance, but may have im-
pacted the outcome of the searches significantly.
Another notable aspect of these findings is that
random search in the heterogeneous domain consis-
tently outperformed random search in the homoge-
neous domain across all generations. Although not
conclusive, this may suggest that there is a greater
proportion of well-performing solutions in the ho-
mogeneous search space.

Next, using the training/testing cycles described
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TOP 3 CANDIDATES FROM EACH CIFAR-10 SEARCH
MEDIAN TEST ACCURACY

AFTER 200 EPOCHS (5 REPEATS)

Heterogeneous Evolution (S3
1)

CIFAR-10
& VGG-HE-2

CIFAR-100
& VGG-HE-2

CIFAR-10
& VGG-HE-4

1. max (max (x, 0), |x|) arcsinh (x) + |x| max (erf (x), x) 80.44 51.02 76.29
2. max(max(x, 0), (−x)) log(1 + ex) + |x| x× 1 80.63 50.97 10.00
3. max(max(x, 0), (−x)) x+ |x| x/(tanh (x) + ϵ) 80.15 50.10 78.42

Heterogeneous Random Search (S3
1)

1. |x| − (−x) max (x,
√
x) x+min (x, 0) 78.78 50.01 79.15

2. |x| × sinc (x) x− tanh (x) (1/(1 + e−x))/(ex + ϵ) 78.10 45.73 61.74
3. log (1 + ex)× (1/(1 + e−x))) log (1 + ex)− cos (x) min(arcsinh (x), ex) 79.70 49.33 78.42

Homogeneous Evolution (S1
1)

1. |x| − arcsinh (x) 80.38 50.07 79.25
2. |x|+ arcsinh (x) 80.34 50.20 79.38
3. |x| − erf (x) 79.64 49.90 76.19

Homogeneous Random Search (S1
1)

1. min (|x|,max (x, 0)) 79.58 49.85 80.27
2. max ((−x), log (|x+ ϵ|)) 80.63 49.92 78.18
3. |x|+ arcsinh (x) 79.80 49.67 78.58

Baseline Activation Functions
ReLU 79.39 49.45 80.13
Swish 79.90 49.88 81.26

Table 4.1: Listed are the top 3 candidate solutions from each 15 generation search, along with
two benchmarks - ReLU and Swish. The best performing solutions are selected from the searches
according to their validation accuracy after training with VGG-HE-2 on CIFAR-10 for 50 epochs.
The final test accuracy displayed is determined by retraining with VGG-HE-2 on CIFAR-10 for
200 epochs and evaluating performance on an unseen test set. Furthermore, to evaluate transfer
performance to a different dataset, the best candidates from the CIFAR-10 searches are retrained
with VGG-HE-2 on CIFAR-100 for 200 epochs. Similarly, to determine transfer performance
to a larger NN architecture, these same candidate solutions are retrained with VGG-HE-4 on
CIFAR-10 for 200 epochs. Here again, classification performance is measured with respect to a
corresponding unseen test set. Note, all values listed are the median final test accuracies over
5 repeats. The values made bold represent the highest median final test accuracy reached by a
candidate solution for each experiment setup.

Candidate Mean Accuracy (95% C.I.)
Best of S1

1 80.17 (±0.19)
Best of S3

1 80.58 (±0.19)
Swish 79.88 (±0.18)
ReLU 79.31 (±0.39)

Candidate t-statistic; p-value
Best of S1

1 vs Swish 2.31; 2.62× 10−2 (*)
Best of S1

1 vs ReLU 4.13; 3.11× 10−4 (*)
Best of S3

1 vs Swish 5.65; 1.74× 10−6 (*)
Best of S3

1 vs ReLU 6.14; 1.45× 10−6 (*)
Best of S1

1 vs Best of S3
1 3.29; 2.19× 10−3 (*)

Table 4.2: Mean of final test accuracy (with 95% confidence intervals), evaluated after 200 epochs
of training with VGG-HE-2 on CIFAR-10, over 20 repeats. Performed for the best candidate
solutions yielding from the S1

1 (homogeneous) and S3
1 (heterogeneous) searches - as determined

by their median final test accuracy over 5 repeats (see 4.1). These are max((−x), log(|(x + ϵ)|))
and [max(max(x, 0), (−x)); log(1 + ex) + |x|;x × 1], respectively. Furthermore, ReLU and Swish are
also evaluated for comparison. Lastly, independent sample two-tailed heteroscedastic (Welch’s)
t-tests are performed to determine the significance of found differences between mean final test
accuracies. Given the cutoff p ≤ .05, the significant findings have been marked with (*).
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Candidate Mean Accuracy (95% C.I.)
Best of S1

1 50.08 (±0.28)
Best of S3

1 50.77 (±0.33)
Swish 50.14 (±0.28)
ReLU 49.54 (±0.27)

Candidate t-statistic; p-value
Best of S1

1 vs Swish 0.35; 7.30× 10−1

Best of S1
1 vs ReLU 2.93; 5.70× 10−3 (*)

Best of S3
1 vs Swish 3.01; 4.71× 10−3 (*)

Best of S3
1 vs ReLU 6.04; 5.91× 10−7 (*)

Best of S1
1 vs Best of S3

1 3.33; 1.96× 10−3 (*)

Table 4.3: Mean of final test accuracy (with 95% confidence intervals), evaluated post 200 epochs
of training with VGG-HE-2 on CIFAR-100, over 20 repeats. Performed for the best candidate
solutions yielding from the S1

1 (homogeneous) and S3
1 (heterogeneous) searches - as determined

by their median final test accuracy over 5 repeats (see 4.1). These are max((−x), log(|(x+ ϵ)|)) and
[max (max (x, 0), |x|); arcsinh (x) + |x|; max (erf (x), x)], respectively. Furthermore, ReLU and Swish are
also evaluated for comparison. Lastly, independent sample two-tailed heteroscedastic (Welch’s)
t-tests are performed to determine the significance of found differences between mean final test
accuracies. Given the cutoff p ≤ .05, the significant findings have been marked with (*).

in Section 4, the true performance of the overall
top 3 candidate solutions per search is approxi-
mated. Figure 4.1 shows these results - including
those gauging true transfer performance. Note, the
highest median testing accuracies achieved by the
various AF setups - per architecture and dataset
combination - have been made bold.

First, consider the non-transfer experiment re-
sults. These suggest that the best heteroge-
neous AF setup discovered, [max(max(x, 0), (−x));
log(1 + ex) + |x|; x × 1], comes from the evo-
lutionary search. However, a homogeneous solu-
tion, max ((−x), log (|x+ ϵ|)), performing equally
well was found through random search. Both can-
didate solutions outperform the baseline AFs -
ReLU and Swish. In the dataset transfer experi-
ment, the functions that performed well on CIFAR-
10 in the searches successfully generalize to CIFAR-
100. In fact, despite no search being performed on
CIFAR-100, most top search candidates, whether
homogeneous or heterogeneous, outperform the
baseline AFs. Specifically, [max (max (x, 0), |x|);
arcsinh (x) + |x|; max (erf (x), x)], one of the
top candidate solutions coming from evolution-
ary search in the S3

1 domain, claimed the highest
overall median test accuracy. In contrast, all top
search candidates showed relatively poor architec-
ture transfer performance. That is when the archi-
tecture was changed to VGG-HE-4. Indeed, not a
single tested top search candidate was able to out-
perform Swish and only one was able to surpass the
testing accuracy of ReLU - albeit marginally. Fur-
thermore, one of the evolved heterogeneous solu-
tions, [max(max(x, 0), (−x)); log(1+ex)+|x|; x×1],

failed to accommodate for any learning whatsoever.
To evaluate whether the accuracy differences be-

tween the best tested search candidates are sig-
nificant, the training/testing cycle is repeated 20
more times. Table 4.2 presents the results for the
CIFAR-10 and VGG-HE-2 combination. Note, this
is the same problem setup that was originally
used for the searches. Regarding mean test ac-
curacy, the best candidate solution found in S3

1

(M=80.58, SD=0.40) outperformed the best found
in S1

1 (M = 80.17, SD=0.40) and the best bench-
mark (M=79.88, SD=0.39) - Swish. The Welsh’s
t-tests between the best heterogeneous and best ho-
mogeneous solution (t(38) = 3.29, p = 2.19×10−3)
as well as that between the best heterogeneous
and best benchmark solution (t(38) = 3.01, p =
4.71×10−3) - confirm the significance of these find-
ings. Likewise, the best homogeneous solution out-
performs the best benchmark (t(38) = 5.65, p =
1.74 × 10−6). Note, unlike the best tested hetero-
geneous solution, the best tested homogeneous so-
lution was discovered through random search.

Similarly, to evaluate the significance of the
dataset transfer results, 20 repeats of 200 epoch
of training followed by testing was performed using
the top search candidates that performed best on
CIFAR-100 and VGG-HE-2 (see Table 4.1). Here
again, the best heterogeneous solution (M = 50.77,
SD = 0.71) outperformed the best homogeneous
solution (M = 50.08, SD = 0.59) - significantly
(t(37) = 3.33, p = 1.96 × 10−3). In addition, it
reached higher mean accuracy than Swish (M =
50.14, SD = 0.60), the best benchmark (t(37) =
3.01, p = 4.71×10−3). On the other hand, the best
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TOP 3 CANDIDATES FROM EACH CIFAR-10 SEARCH VISUALISED

Heterogeneous Evolution (S3
1)

max (max (x, 0), |x|) arcsinh (x) + |x| max (erf (x), x)

max(max(x, 0), (−x)) log(1 + ex) + |x| x× 1

max(max(x, 0), (−x)) x+ |x| x/(tanh (x) + ϵ)

Heterogeneous Random Search (S3
1)

|x| − (−x) max (x,
√
x) x+min (x, 0)

|x| × sinc (x) x− tanh (x) (1/(1 + e−x))/(ex + ϵ)

log (1 + ex)× (1/(1 + e−x))) log (1 + ex)− cos (x) min(arcsinh (x), ex)

Homogeneous Evolution (S1
1) Homogeneous Random Search (S1

1) Baseline AFs
|x| − arcsinh (x) min (|x|,max (x, 0)) ReLU

|x|+ arcsinh (x) max ((−x), log (|x+ ϵ|)) Swish

|x| − erf (x) |x|+ arcsinh (x)

Table 4.4: Top 3 candidate solutions from each 15 generation CIFAR-10 search and baseline AFs
visualized. Function plots have a domain of x ∈ (−5, 5), with varying ranges. The dotted lines in
each plot represent the axes.
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homogeneous solution performed on par with the
best benchmark (t(38) = 0.35, p = 7.30 × 10−1).
In this experiment, both the best homogeneous
and heterogeneous solutions came from evolution-
ary searches. Lastly, no further investigation into
architecture transfer was attempted due to the un-
favorable preliminary results.

Finally, using Table 4.4, several observations can
be made about the AF function shapes of the top
candidate solutions. Starting with the top homoge-
neous solutions, irrespective of the search method
used to discover them, they are generally analogous
- except for a ReLU equivalent. That is, they are
all similarly shaped non-monotonic functions which
render most of their domain positive. Note, the gra-
dient on either side of the y-axis differs. The simi-
larity between the top homogeneous candidate solu-
tions, independent of search strategy, may suggest
that the global optimum is being approximated.
Regarding min((|x|,max()(x, 0))), it is clearly a
needlessly complicated formulation of ReLU. As
such, this finding motivates the optimization of top
candidate solutions post-search to maximize their
efficiency.

Furthermore, the evolved heterogeneous solu-
tions are highly similar, it is clear that the di-
rected search is approximating a local optimum.
In fact, the first AF in all of these solutions are
functionally identical. On the other hand, the het-
erogeneous candidate solutions yielding from the
random search follow no clear pattern. In fact,
they are highly unintuitive. Notably, [|x| − (−x);
max (x,

√
x); x + min (x, 0)]. Whereby, the second

AF is undefined for negative values due to the
square root. The use of this AF is only possible
because the AF preceding it (which is functionally
identical to ReLU) that maps all of its negative
domain to zero. As such, these partially undefined
functions can only exist in heterogeneous configu-
rations. Whether these solutions are robust across
many trials requires further investigation.

5 Discussion & Future Work

The results presented above clearly show that there
exist heterogeneous AF configurations for DNNs
that outperform their homogeneous counterparts
- including ReLU and Swish. Specifically, hetero-
geneous solutions which involve applying multiple

AFs to a DNN in a block-wise manner. Likewise, in
line with the findings of Bingham et al. [2020], the
results suggest that it is possible to discover spe-
cialized AFs for a homogeneous setup that signif-
icantly outperform commonly used AFs. As far as
the search method used for doing so, the presented
evolutionary (genetic algorithm-based) approach is
successful. However, using random search as a point
of comparison, it appears that evolutionary search
may be better suited to the larger heterogeneous
search space with proportionally fewer good solu-
tions. Another noteworthy influence on the effec-
tiveness of evolutionary search is that of popula-
tion initialization. Indeed, an initial pool of poor
candidate solutions can misdirect and prolong the
search. Its effects may be tempered by increasing
exploration in favor of exploitation. In general, finer
tuning of the evolutionary search parameters, with
respect to the individual search spaces, is sure to
lead to the faster discovery of well-performing can-
didate solutions. Furthermore, the slowing speed of
optimization over the course of the longer evolu-
tionary search suggests that scheduling parameter
changes may be beneficial.

Unsurprisingly, AF configurations perform best
on the datasets and architectures used to discover
them. However, the transfer experiments performed
in this work present strong evidence for the gen-
eralizability of discovered solutions. Specifically, in
the near transfer task to CIFAR-100, the top can-
didate solutions from the CIFAR-10 searches per-
formed significantly better than ReLU and Swish.
This applies to both homogeneous and heteroge-
neous solutions. On the other hand, the transfer
task to a larger NN was comparatively unsuccess-
ful. Note, the method of transfer used is novel and
irregular. That said, despite not being able to out-
perform baseline AFs, most tested candidate solu-
tions still enabled learning and resulted in reason-
able performance. As such, there is reason to be-
lieve that more successful transfer methodologies
could be developed.

Future research may be able to push such gener-
alization much further by evaluating candidate so-
lutions across multiple datasets and architectures.
Indeed, a similar approach to the one Ramachan-
dran et al. [2017] used to discover the highly gen-
eralizable Swish AF could be employed to find a
widely applicable heterogeneous AF configuration.
Indeed, beyond reinforcement learning, evolution is
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well-positioned to combine the requirements of the
multiple tasks into one fitness function. In its sim-
plest form, a solution resulting from such a process
may be two AFs that, in combination, outperform
AFs used in a homogeneous fashion. For example,
by applying the discovered AFs to the hidden units
in the first half of a network and the second half,
respectively. Clearly, such a solution would be triv-
ial to apply in practice and could potentially offer
users an easy was to improve the performance of
their NN models. That said, to achieve this feat,
greater investigative care must be taken to identify
optimal architecture transfer strategies for hetero-
geneous AF configurations.

6 Conclusion

An evolutionary strategy for discovering homoge-
neous and heterogeneous AF configurations was
presented. It proved to be better performing than
random search - especially in the large heteroge-
neous search space. Indeed, the novel AF configura-
tions resulting from the searches outperform base-
line AFs - such as ReLU and Swish. Furthermore,
the best tested heterogeneous solutions outperform
the best tested homogeneous solutions - supporting
past research on the matter. Moreover, the top AF
configurations discovered in the searches success-
fully transfer from CIFAR-10 to CIFAR-100. How-
ever, they fail to transfer from VGG-HE-2 to VGG-
HE-4. In fact, the solutions tested in the dataset
near transfer task outperform ReLU and Swish.
Lastly, it has been successfully demonstrated that
heterogeneous AF configurations can be discovered
for deep neural networks with reasonable computa-
tional resources. Indeed, by leveraging the power of
evolutionary search in large search spaces, AF con-
figurations of various degrees of heterogeneity can
be discovered. Hereby, the scene is set for future
research seeking to discover generalizable heteroge-
neous AF configurations for deep neural networks.
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A Appendix

VGG-HE-4
Id Layers Properties

conv b1 l1 2D convolution 32× (3, 3)
Activation custom1
Batch normalization

conv b1 l2 2D convolution 32× (3, 3)
Activation custom1
Batch normalization
2D Max pooling (2, 2)
Dropout 20%

conv b2 l3 2D convolution 64× (3, 3)
Activation custom1
Batch normalization

conv b2 l4 2D convolution 64× (3, 3)
Activation custom1
Batch normalization
2D Max pooling (2, 2)
Dropout 30%

conv b3 l5 2D convolution 128× (3, 3)
Activation custom2
Batch normalization

conv b3 l6 2D convolution 128× (3, 3)
Activation custom2
Batch normalization
2D Max pooling (2, 2)
Dropout 40%

conv b4 l7 2D convolution 256× (3, 3)
Activation custom2
Batch normalization

conv b4 l8 2D convolution 256× (3, 3)
Activation custom2
Batch normalization
2D Max pooling (2, 2)
Dropout 50%

fc l9 Fully connected 256
Activation custom3
Batch normalization
2D Max pooling (2, 2)
Dropout 60%

fc l10 Fully connected 10
Activation softmax

Table A.1: Description of the 4 block heterogeneous VVG (VVG-HE-4) architecture. Note, it has
been set up according to the transfer task. That is, each two consecutive VGG blocks use the
same activation function, whilst the activation function of the penultimate fully connected layer
is the same as the equivalent layer in the smaller network. The AFs are depicted in generalized
format, namely custom1, custom2, and custom3. These refer to the AFs represented by individual
candidate solutions yielding from S1,3
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B Appendix

Figure B.1: Plot of top validation accuracy reached by a candidate solution per generation of an
evolutionary search in the heterogeneous domain. It was performed for 30 generations and uses
the same evolutionary search parameters as the 15 generation searches from Figure 4.1. Similarly,
50 epochs of training using VGG-HE-2 on CIFAR-10 followed by testing on a validation set was
used to evaluate the performance of the candidate solutions.
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