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Abstract

Wildfires can be devastating to forest ecosystems and human populations. If we
could predict the spread of these fires, they could be controlled more easily. One
way to achieve this is to build a simulation of wildfires that learns from real-
world data. This thesis describes the theory behind such simulations, a novel
simulation that aims to be accurate and fast, and a qualitative analysis of the novel
simulation. We hypothesise that the novel simulation could be computationally
faster than existing solutions to this problem, while retaining good accuracy. This
novel simulation was successfully implemented using real-world weather, land
cover, elevation, and burnt area data, with optimization being done using particle
swarm optimization. The simulation achieves an area under the curve (AUC)
value of 0.67 on test data when comparing simulated burnt area to real-world
burnt area data, which is on par with state of the art solutions in some cases or
slightly worse in others. This relatively low accuracy value could be due to a
local minimum, lack of data, low quality data, or insufficient configurability of
the simulation, causing poor generalisation performance. Besides reinforcement
learning, the simulation could be suitable for other applications, such as helping
firefighters predict the spread of wildfires.
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1 Introduction
Forest fires, also known as wildfires, are uncontrolled fires in wild areas. They can
cause massive damage to the forest ecosystem and to human populations living near
or in the forests. In some cases, fires are part of the forest ecosystem. However, in
most cases the damage caused by wildfires is much greater than the benefit they bring.
Forest fires have been increasingly causing damage in recent years [14].

Artificial intelligence can be used to help minimise the damage caused by forest
fires. By building an accurate and fast simulation of forest fires based on real-world
data, further methods can be developed to help prevent the spread of fires. One example
is using reinforcement learning [12] to learn optimal digging lines for bulldozers to
stop the spread of a fire. Such a method would require a fast and accurate simulation
of a forest fire. Another example would be to use a simulation to simply predict where
a fire will spread once you know where it has started. This information can be used to
evacuate certain areas, to more optimally direct where firefighters should go, or to help
decision support systems for the suppression of forest fires [24].

While prevention is an important part when minimising the damage caused by wild-
fires, this project will focus on predicting wildfire spread after the origin has been
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1.1 Purpose of the thesis 2 BACKGROUND

detected. There are existing simulations out there. One of such simulations is HI-
GRAD/FIRETEC [18]. This is a state of the art physics based fire simulation. This
simulation combines multiple models that represent adjustments to terrain, types of
fuel, combustion, heat transfer, and turbulence. However, this simulation comes with
two downsides.

First, it is currently only being used for research purposes, because of the large
amount of computational resources it requires to run. Second, because of its complex-
ity, it is not suited for simulating very large areas.

Other simulations sacrifice a lot of detail for performance increases, such as the
elliptical model by Glasa et al. [11], or the cellular automaton model by Zheng et
al. [29]. The aim of the simulation described in this thesis is to strike a balance
between computational performance and detail. We hope to accomplish this by taking
advantage of parallel computing on a GPU for the simulation.

1.1 Purpose of the thesis
This thesis examines a new method for simulating forest fires. This new method will be
expanding on existing research by striking a balance between the computational speed
and accuracy of the simulation. This will allow the simulation to be used for com-
putational learning methods such as reinforcement learning. We hypothesise that our
simulation will be as accurate as existing solutions with better computational speed,
due to the use of GPU accelerated computing. If this is achieved, besides its hypothet-
ical use for reinforcement learning, the method could be developed into a user-friendly
program to help predict forest fire spread in real life.

2 Background
This simulation will need to reflect the real world fire spread dynamics as accurately
as possible. In this section background theory for fires and simulations is explored.

2.1 Fire behaviour
On a basic level, a fire needs three elements: heat, fuel, and oxygen. Each of these
elements has their own effect on the spread of a fire. Once a fire starts, it will continue
to burn for as long as these three elements are present. Firefighting methods will try
to remove one of these elements from the equation to slow or stop a fire. By using
water, foam, dirt, or fire retardant the nearby fuels can be cooled below the combustion
temperature. These techniques can also help to cut off the oxygen supply to the fire.
Another common technique is to clear swaths of trees in the path of a forest fire to
remove its access to new fuels. This section explains some external variables that have
an effect on forest fire spread, which are used in the simulation built for this thesis.

2.1.1 Forest fire behaviour

There are three basic types of forest fires listed below. The effects of these types of
fires will not be explicitly programmed into the simulation mentioned in this paper, but

5



2.1 Fire behaviour 2 BACKGROUND

we hypothesise the simulation can learn about the effects itself by making use of the
land cover type, and other types of real-world data.

Crown fires The top of the tree, usually containing the foliage, is called the crown.
A crown fire burns the entire tree, including the crown of the tree. This type of fire
spreads fastest and more intensely than the other types listed. The dynamics of a crown
fire depend on the density of the suspended material, canopy height, canopy continuity,
vegetation moisture content, and weather conditions.

Surface fires A surface fire burns litter, duff, and low-lying vegetation. This type of
fire burns relatively slowly. Steep slopes and winds can accelerate the rate of spread.

Ground fires Dead vegetation, humus, peat, or other buried organic matter can be-
come dry enough to burn. Such fires are very difficult to put out, but move very slowly.
These fires can burn for months.

2.1.2 Topography

Another aspect important for predicting forest fire spread is the topography of the area.
Mainly the slope of wherever the fire occurs [4]. Fire moves faster up a hill than down a
hill, because the flames can reach more unburnt fuel. The heat from a fire also preheats
the vegetation above, drying it out and making it easier to ignite.

2.1.3 Weather effects on fire behaviour

The weather effects this simulation uses are listed below. These effects are built into
the simulation using real-world weather data. Specifics for the weather data used in
the simulation are discussed in section 2.2.3.

Temperature Forest fuels (vegetation) receive heat by radiation from the sun. Be-
cause of this, less heat is required by other sources for ignition to occur. Temperature
is one of the most important weather elements affecting fire behaviour. With a higher
temperature less heat is required for ignition, which means the spread rate of the fire is
higher. Fuels exposed to warmth are also dryer than other fuels, resulting in even more
fire spread.

Wind Wind also has a strong effect on fire behaviour due to the fanning effect on the
fire. Wind supplies oxygen to fires for the combustion process, it also helps in reducing
fuel moisture by increasing evaporation, and it physically moves the flames, sparks,
and firebrands towards new fuels. Firebrands are combusting pieces of vegetation that
release burning elements. Wind can cause a fire to jump barriers that would normally
stop its spread by carrying firebrands and sparks.
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Humidity Relative humidity is the ratio of water vapour in the air at the moment
of measurement compared to how much water vapour would fully saturate the air at
that temperature. With a lower relative humidity, a fire will ignite more easily, and
burn more vigorously. With a lower relative humidity, the moisture in fuels will easily
evaporate and escape into the air. While with a higher relative humidity, it’s more
difficult for the moisture of the fuel to escape into the air, therefore slowing down the
ignition of the fuel. If the relative humidity is at 100%, the fuel will not dry out due to
evaporation.

Precipitation Precipitation affects relative humidity and fuel moisture directly. Usu-
ally the temperature also drops during precipitation. There are different ways to get an
accurate model for fire spread dynamics. In the following sections two of these meth-
ods are described.

2.2 Simulations
In this section, the background theory about simulations relevant to this thesis is ex-
plained.

2.2.1 Existing simulations

Many existing solutions exist for simulation forest fires. This section discusses the two
main types these simulations fall into, and some more specific solutions.

Process-driven modelling The simulation method in this paper is partly process-
driven modelling. In process-driven modelling, the simulation is created by imple-
menting dynamics of fire spread based on current theory. For example, if the temper-
ature at a certain position is above a threshold, and there is fuel and oxygen, then fire
spreads to that position. Similar to that rule, there are many others, some general rules,
and some very specific to certain conditions, such as crown fires, bush fires, and more.
Assuming these rules are accurate, and they are implemented soundly and completely,
the simulation should accurately reflect real-world fire spread dynamics.

Forest fire behaviour is a complex result of topography, weather, and fuels. The
fuel found in a forest consists of different sizes of dead and alive vegetal matter. For
example ”duff” is a layer of decomposing organic material lying on the ground. ”Lit-
ter”, which are old leaves lying on the ground. And of course, there are shrubs, grass,
and trees, especially the crowns of trees, which also govern the spread of fire in a forest
[4].

A disadvantage for this method is that it is difficult to account for every situation
there is. There might be a situation where multiple effects combine to create a different
outcome. I.e., the combination of a sloped ground with wind in a certain direction
could negate the effects that the wind normally has there.

Data-driven modelling As mentioned before, the simulation method in this paper is
partly process-driven modelling, the other part is data-driven modelling. By creating
a model with parameters tuned based on real-world data, the need to have a great
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understanding of the underlying mechanics of the system that is being modelled is
reduced. This lowers the risk of mistakes in the model, or edge cases being missed.

In the past, data was scarce and frequently had to be obtained by performing ex-
periments yourself. Today, data is abundantly available, making data-driven modelling
more feasible. For example, Google Earth Engine, which allows for programmatic
access to a large set of geographical information data. This data has been used for
mapping wildfire progression [6], this study uses Bayes theorem to synthesise a time
series that shows change and stability in the studied land area. Another study has
used Google Earth Engine to assess fire hazards by measuring land use and land cover
changes [22].

Something similar to this can be used to create our simulation. By using satellite
imagery in combination with machine learning algorithms, we can create a data-driven
model for wildfire spread dynamics [10].

A disadvantage to this method could be insufficient training data. When something
happens that the model has not occurred in the training data, the model might pre-
dict incorrectly. This might be an issue when fire spread control measures are to be
implemented, for example digging a path using a bulldozer.

HIGRAD / FIRETEC FIRETEC is a physics-based, 3D wildfire simulation, tak-
ing into account the interaction between fire, fuels, atmosphere, and topography on a
1000 metre scale. FIRETEC is used in combination with HIGRAD, a fluid-dynamics
model for airflow in combination with fires [18]. FIRETEC takes large computational
resources to run, therefore it is not well suited for reinforcement learning.

The simulation is 3D in the sense that smoke and heat can travel in three dimen-
sions, and there can be multiple layers of fuel. For example, the bottom layer could be
tall grass, and a layer above that could be tree crowns, as shown in Figure 1. Both fuel
layers would impact the spread of the fire, in a strictly 2D implementation multiple
layers would not be supported.

While this exact implementation is too computationally intensive for our purposes,
the paper does describe formulas for moisture conservation, fuel volume conservation,
temperature, oxygen, gas density, and the evolution of gas temperature. These can
be helpful when implementing a process-driven simulation, or a mixed process/data-
driven simulation like the one described in this paper. We can also quantitatively com-
pare the results of our simulation with this one.

Cellular automaton Wiering [28] uses a stochastic cellular automaton to create a
wildfire simulation, named Bushfire in his paper on evolving neural networks. Single
cells may contain different kinds of trees, grass, water, and digged paths, as well as
information about whether that cell is on fire or not. The fire spreads according to wind
strength, direction, humidity, and cell type. Cells ignite when a certain fire activity
threshold is met, which is defined per cell type. After a cell has burned for a certain
time the fuel runs out and the cell stops burning.

This simulation also supports bulldozers digging paths to try to control the spread
of the fire. The bulldozers have a parameter stating how fast they can move.

A cellular automaton simulation can be computed extremely quickly, and is there-
fore practical in reinforcement learning situations. Since the evolution of each cell is
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Figure 1: An oblique view of a crown fire, showing three dimensional smoke and
ground layers.

only dependent on the state of the cells in the previous time step, the computation for
each cell can be done in parallel. This performance is something our simulation also
aims to achieve, therefore a cellular automaton similar to the one described above is a
good starting point for our simulation.

Genetic algorithm A genetic algorithm can be used to automatically tune a highly
configurable model for forest fire spread. By creating a fitness function based on real-
world data, the model can be tuned to become better and better. Denham et al. [8]
use a genetic algorithm to simulate forest fire spread and get positive results. Such an
algorithm can be used to optimise the parameters used in our simulation by comparing
it to real-world data.

Neural Networks Zheng, et al. [29] use an extreme learning machine to optimise a
cellular automaton based simulation. An extreme learning machine is a type of feed-
forward neural network. In this cellular automaton, each cell has a set of driving factors
for what the next state of the cell will be, these are fed into the extreme learning ma-
chine to get the next state.

Spatial reinforcement learning Ganapathi, et al. [10] use spatial reinforcement
learning to build forest wildfire dynamics models from satellite images. Wild fire
dynamics can be characterised as a spatially spreading process (SSP), which requires
many parameters to be set precisely to properly model the dynamics. They introduce a
novel approach for learning SSP domains using reinforcement learning where the fire
is the agent at any cell in the landscape. The set of actions the fire can take includes
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spreading in any of the cardinal directions, or not spreading. Rewards are provided
when the fire spreads correctly according to satellite data.

This paper compares five RL algorithms for this problem, value iteration, policy
iteration, Q-learning, Monte Carlo Tree Search (MCTS), and A3C. It is found that
A3C has the best performance for predicting spread dynamics at intermediate time
steps, whereas MCTS performs better while predicting future spread.

2.2.2 Evolutionary Algorithms

Section 2.2.1 shows an example of a genetic algorithm being used as a possible optimi-
sation method for simulations. A genetic algorithm is a type of evolutionary algorithm,
evolutionary algorithms are a form of optimization algorithm using biological evolu-
tion mechanisms, such as reproduction, mutation, recombination, and selection. The
simulation used in this paper will also use an evolutionary algorithm for optimization,
and this section explores some of these algorithms to show which would be a good fit
for our problem.

Genetic algorithm Genetic algorithms are a common evolutionary algorithm [20].
A population of individuals, each representing a possible solution, is created. Each
candidate has some properties which can be altered or mutated during the evolution
process. The population is usually initialised randomly, the fitness for each individual
is calculated, and the most fit individuals are selected to base new individuals off of.
A few random low fitness individuals are also selected to make it through to increase
diversity of the population. The algorithm terminates after a set number of generations,
or after a desired fitness is reached. This algorithm can be used to optimise the fire
simulation by encoding the parameters of the simulation as solutions, such as a string
of 0s and 1s that can be mutated.

Gaussian adaptation In Gaussian adaptation [17], a multivariate Gaussian distribu-
tion is used to produce a number of n-dimensional vectors. These samples are tested to
pass or fail, the probability of a pass is determined by the fitness function, which pro-
duces a value between 0 and 1. The set of samples that pass are used to produce a new
Gaussian distribution, completing one generation. This algorithm can be used to opti-
mise the fire simulation by simply using each parameter as a value of the n-dimensional
vector, and creating a fitness function that produces value from 0 to 1.

Particle swarm optimization In particle swarm optimization (PSO) [16], a swarm
of particles are placed evenly on a multidimensional search space where some optimal
solution needs to be found. The particles each calculate the value of their position
using the fitness function, and report the value to all other particles. Every particle
is guided by the knowledge of their own best-known position in the search space, as
well as the entire swarms position. As better solutions are being discovered, the swarm
as a whole can move toward them and hypothetically reach a global maximum. This
algorithm can be used to optimise the fire simulation by using each parameter as a
dimension in the search space, and a fitness function could be used to determine the
solution quality.
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2.2.3 Simulation data

The data that we will implement for our simulation is as follows:

Land cover type This would indicate what the cell type is. It could be infrastructure,
a body of water, a specific type of forest, or another type of vegetation.

Elevation map The elevation of each cell. Knowing the elevation is important for
modelling fire spread dynamics, fire is more likely to spread uphill than downhill [4].

Weather data Weather is an important factor for modelling the spread of wildfires.
Wind, temperature, and rain are some of the most important meteorological events
that affect the spread. Getting accurate data is paramount for creating an accurate
simulation.

While training and testing the simulation will be able to use past weather infor-
mation, however, if the simulation is to be used for predicting the spread of a current
forest fire, it will also require future weather data.

For future weather data, we either simulate the weather ourselves or use existing
forecasts for the given region and period. Simulating the weather ourselves is possible
using existing simulators, however weather forecasting data is abundantly available,
accurate, and has nearly no computational costs, therefore this is a better option.

2.2.4 Evaluating a fire simulation

Since the accuracy of the simulation is crucial in creating a good method for forest fire
control, we need to be able to evaluate the simulation based on empirical data. [29]
propose an objective evaluation for forest fire models by comparing predicted spread
to satellite imagery of real-world fires.

Their method uses the area under the receiver operating characteristic curve (AUC)
and seven other metrics to determine the performance of a simulation. The AUC was
calculated plotting the true positive rate against the false positive rate, and measuring
the area under that curve.

2.2.5 Temporal scale and resolution

For the reinforcement learning method we will need a simulation to model the wildfire
spread dynamics. Before 1986, a wildfire was contained on average in less than eight
days. In 2003, a wildfire burned for 37 days on average [27].

Due to the need for relatively long time frame support, changing weather should be
supported in the simulation. Because of the complexity of weather models, it is best
to use an existing weather simulation, or to use existing weather predictions for the
simulated time period. In section 2.2.3 we explore some possibilities for integrating
changing weather over time into the simulation. As for resolution, to accurately sim-
ulate firefighting efforts, one simulated tick should be at most 30 minutes to allow the
simulation to react to state changes properly.
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2.2.6 Spatial scale and resolution

The median wildfire in 2001-2019 burned an area of 210,000m2(±1,400,000m2) [7],
this gives an idea as to the scale that should be supported in our simulation. The res-
olution should preferably be as high as possible, however this is not feasible when
considering limited computing power. Other wildfire simulators seem to use a resolu-
tion of about 1m2 per cell, as discussed in 2.2.1. Using this resolution, grid dimensions
of 840 by 840 should be possible to support the average wildfire mentioned above.

The simulation can be two- or three-dimensional. A two-dimensional simulation
would be less complex to implement and it would be much faster to simulate one
tick. A three-dimensional simulation could introduce support for some extra simulated
features, such as heat rising up or different wind speeds depending on height. More on
these differences are discussed in 2.2.1.

2.2.7 Technical considerations

This section will give information about some of the technical choices made for the
implementation of our simulation.

Performance requirements As mentioned before, one of the goals for this simu-
lation is to be fast enough for reinforcement learning applications to use. A typical
reinforcement learning setup lets an agent perform one of a few actions in an environ-
ment, then lets the environment react to the state change, and after a time step the new
state of the environment is used to calculate how good the action by the agent was.
In a forest fire scenario using a temporal scale of 30 minutes, the average wildfire of
37 days takes 1776 simulated ticks for just 1 epoch on a single type of environment.
For learning to occur many epochs have to be performed on many fires, and for it to
generalise well, it must train on many types of environment. Taking this into account
it is clear that some types of simulation will not be feasible to use in a reinforcement
learning scenario.

To give an idea of the magnitude of the simulated ticks required, consider this
hypothetical fire-fighting reinforcement learning scenario. Assuming each epoch takes
on average 1776 ticks, 50 environment types, and 1000 epochs per environment, there
would be 1776 ∗ 50 ∗ 1000 = 88800000 simulated ticks required to train the agent.
Computationally heavy simulations are impractical to use in such scenarios.

Parallel computing The simulation in this paper is implemented as a cellular au-
tomaton. This means that the state of each cell is not dependent on the state of other
cells during the same time step, only the state of the neighbouring cells from the pre-
vious time step, as mentioned in section 3.2.2. This allows for the state of each cell to
be computed concurrently.

A graphical processing unit (GPU) was originally built for video processing on
computers, calculating the next colour for each pixel in a display. Because of this,
GPUs can calculate many tiny computations concurrently, which fits well with our
simulation needs.
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CUDA The GPU portion of the simulation in this paper is implemented using Nvidia’s
Compute Unified Device Architecture (CUDA) [5] platform. This architecture allows
software to use certain types of GPU for general purpose programming. CUDA gives
access to the virtual instruction set and parallel computational elements of the GPU.

CUDA works with existing programming languages such as C [23], C++ [25], and
Fortran [3]. For our implementation, C++ is used for its modern feature set and the
ability to interface with Python [26] through the Boost C++ library.

In CUDA, one can create compute kernels to enable general purpose programming.
These kernels are the part of the code that runs on the GPU hardware.

2.3 Requirements
The goal for the simulation built for this thesis can be described by the following
requirements based on the theory presented in this section.

1. The base simulation should be based on real-life fire spread dynamics, which are
mentioned in section 2.1.

2. The simulation should take into account the real-world data mentioned in sec-
tion 2.2.3.

• Elevation

• Weather (wind/humidity/temperature)

• Land cover type

3. The simulation should be initialised using real-world wildfire data, as mentioned
in section 2.2.4.

4. The simulation should run on a grid where the size is determined by the affected
area and the spatial resolution, mentioned in section 2.2.6.

5. A fitness function should be included which can determine how close the simu-
lated fire is to the real-world wildfire data, as mentioned in section 2.2.1.

6. The simulation should use cellular automatons as a technical framework to sup-
port parallelization on the GPU, mentioned in section 2.2.1.

7. The simulation should accept a number of tunable parameters, as mentioned in
section 2.2.1, which can influence the spread dynamics in different ways:

• Rate of burning

• Height effect, up and down

• Ignition threshold

• Spread speed

• Fire death rate

• Fire death threshold

• Spread rate per land cover type

13
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• Wind effect

8. A type of evolutionary algorithm should be used to optimise the parameters given
above using the fitness function. Options are mentioned in section 2.2.1.

9. The time frame that the simulation should be able to predict has to be around
20-50 days, which is the duration of real-life fires, mentioned in section 2.2.5.

10. One simulated tick should cover at most 30 minutes to allow the simulation to ac-
curately reflect data changes, such as the weather, as mentioned in section 2.2.5.

11. Support simulation scale of at least 1000 by 1000 metres to allow simulation of
real-life sized wildfires and above, as mentioned in section 2.2.6

3 Methods
The simulation created for this thesis uses a mix of process- and data-driven simulation
design. First, a cellular automaton simulation is created using some of the formulas
from the referenced papers in the background section. A cellular automaton is a grid of
cells, each having a certain state. The next state of each cell is determined by a set of
rules and the state of its direct neighbours. By repeatedly applying these rules, patterns
can occur, or in our case, a configurable forest fire simulation is made.

Many configurable parameters are built into this simulation, such as spread speed,
how strong the simulation should respond to wind, or how it should respond to different
types of land cover. Real-world data is used to impact the simulation, such as height
data, land cover type, and weather data. These configurable parameters are configured
using particle swarm optimization. The simulation is given an initial burning area and
will simulate for a given number of hours or days. The resulting burnt area from the
simulation is compared to the real-world burnt area after the given duration, using this,
a performance metric is calculated.

3.1 Data
This section describes the real-world data used by the simulation as well as how the
data is parsed. There is a distinction to be made about the fire data and the other data,
the fire data is used to set up the initial state of the simulation grid, and to check the
fitness of the eventual simulated grid. The other data (weather, elevation, land cover)
are used during the simulation and have an effect on the spread dynamics. The data
sources used are summarily described in Table 1.

3.1.1 Data boundaries

Data comes in many forms, the data used for this simulation all came from different
sources, with different resolutions and boundaries. The weather and burnt area data
require a time component, and each have different start and end dates for data avail-
ability. Also the temporal resolutions are different. Furthermore, the ground type and
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Variable Source Scale Data Range Date

Elevation ASTGTM 1 x 1 arc second South Europe 2000-2013
Land cover Corine Land Cover 25 x 25 ha Europe 2017-2018
Temperature ERA5-Land 0.1° x 0.1° Europe 1950-2022
Wind ERA5-Land 0.1° x 0.1° Europe 1950-2022
Moisture content ERA5-Land 0.1° x 0.1° Europe 1950-2022
Precipitation ERA5-Land 0.1° x 0.1° Europe 1950-2022
Burnt area GlobFire 1 x 1 km Global 2001-2020

Table 1: Explanatory variables used in this study. ASTGTM: ASTER Global Digi-
tal Elevation Model, ERA5: European Centre for Medium-Range Weather Forecasts
Reanalysis

elevation data have different spatial resolutions to the other types of data, and the ele-
vation data and burnt area data is only available from a limited region.

All data is standardised by parsing it into a grid using a set width, height, and
duration, which are calculated based on the set spatial- and temporal resolution and
the area and duration of whichever fire is being simulated. This requires interpolation
in cases where the spatial resolution of the grid is higher than the source data, or data
compression when the source data has a higher spatial resolution. Also, a maximum
safe boundary must be calculated to know where simulations can occur based on the
data availability. For example, the provider of height data only supplies a few million
km2 per request, so only a relatively small part of the world can be used at once as
a source for wildfires for training. A similar issue exists with the burnt area data
provider, however, a much larger area is allowed per download request, an example
of the scale of these download requests can be seen in Figure 2. The maximum safe
boundary calculation takes the largest polygon for which all data sources can provide
information.

A similar solution is needed for data sources with temporal variables, such as
weather and burnt area. These sources’ first and last data records are from different
dates, so a maximum safe date range is calculated, and only fires from within this
range are used to train the PSO.

3.1.2 Corine Land Cover - Land cover types

The Corine Land Cover 2018 dataset [15], provided by the Copernicus Land Moni-
toring Service, is used to get information about ground types across the world. Only
Europe is covered in this dataset, the spatial resolution is 500 metres. 47 separate types
of land cover are specified in the dataset, ranging from ‘Continuous urban fabric’, ‘Rice
fields’, and ‘Sclerophyllous vegetation’ to ‘Coniferous forest’, ‘Glaciers and perpetual
snow’, and ‘Peat bogs’. A visualisation of this data is shown in Figure 3. This figure
shows the land cover types of Cyprus, in this visualisation the large green area in the
north east is coniferous forest, the red area in the centre is a continuous urban fabric,
i.e. buildings and infrastructure. Such information can be used by the PSO to adjust
the spread rate depending on the land cover type.
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Figure 2: Data boundaries for available elevation data (orange) and weather data (red).
The orange area is used for the train and test fires.

Figure 3: Example visualisation of land cover data for Cyprus.

All types of land cover distinguished by the Corine Land Cover data listed in sec-
tion A.2.

3.1.3 Globfire

The Globfire database [2] combines wildfire data from multiple sources. Data is stored
as a list of fire events, fire events contain multiple steps each representing one day of
the given fire event. Each of these steps includes an indicator describing the stage of
the fire (active or final), the perimeter, and the date. This dataset covers the entire
world, starting at January 1 2001, ranging until December 2020, with more data being
added as it becomes available. Figure 4 shows example data from Globfire. In this
example four fire events are shown during 14 days, each image representing one day.
The final perimeters of the fires are shown in every image that the fire is present in, the
filled-in area is the area burned by the fire at that given day.

3.1.4 ERA5-Land - Weather data

The ERA5-Land dataset [21] gives weather data covering the entire world with a 0.1
degree spatial resolution and hourly temporal resolution. This dataset contains wind
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Figure 4: Example of Globfire data. Active fire perimeters shown at different dates [2].
Filled area in colour represents the burned area. Each colour represents a different fire
event.
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Figure 5: Example elevation data for Cyprus. Purple is lower, yellow is higher.

direction and speed, relative humidity, temperature, precipitation, and many more
weather data points. The spatial resolution of 0.1 degrees is not very precise, this
isn’t an issue considering the weather does not change much across a few kilometres
(0.1 degrees is about 8 kilometres).

3.1.5 ASTGTM - Elevation data

The Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
Global Digital Elevation Model (GDEM) dataset (ASTGTM) [1] provides global cov-
erage for elevation data with a spatial resolution of 0.0003 degrees. Figure 5 shows an
example visualisation of this data. This information allows the simulation to increase
the rate of spread uphill, and decrease it downhill.

3.1.6 Data grid implementation

A single run of the particle swarm optimization works as follows: first a fire is picked
from the burned area dataset which occurs within the region and time frame for which
other data is available. The maximum boundary this fire occupies throughout its life
is calculated and turned into a square by extending either the height or width to match
the other. The simulation will only use the area within those bounds. The data used
during the simulation (wind, elevation, etc.) is then cropped from their respective data
sources using the square bounds.

The dimensions of the grid are then calculated using the real-world dimensions of
the affected area and a set spatial resolution. The spatial resolution used for gathering
results for this thesis is 0.001 degrees (world coordinates), which equates to about 100
by 100 metres per cell depending on the latitude of the affected area (longitudinal de-
grees are 110,000 metres at the equator, 40,000 metres on the Arctic circle). Similarly,
the size of the temporal dimension is calculated using a set temporal resolution and the
duration of the simulated fire. The chosen temporal resolution used for gathering the
results is 1 hour per timestep. Therefore if we take, for example, a fire affecting an area
of 0.5 by 0.5 degrees, which lasts 8 days, the simulation grid will be 0.5/0.001 = 500
wide and high, and have (8 days∗24)/1 = 192 time steps.

All datasets (fire, weather, elevation, etc.) are then parsed into a grid using the
dimensions calculated above. It is very uncommon for the spatial or temporal resolu-
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tion of any dataset to match the resolutions of the grid, therefore the data needs to be
reshaped using interpolation to fit the grid. The fire grid, other data grids, and values
for the tunable parameters determined by the PSO are sent to the GPU to simulate for
the given number of time steps (ticks). After these ticks, the fitness value is calculated
and sent back to the particle swarm optimization.

3.2 Simulation
This section describes the simulation built for this thesis, the data used in the simula-
tion, and the experimental setup used for testing. A summary of the entire process is
as follows:

1. In Python, get a list of all fires within the available data regions, more on these
regions in section 3.1.1.

2. Use 5-fold cross-validation to split the dataset into train and test sets, each set
containing a list of fires.

3. For each fire in the train set:

(a) Load the relevant data (land cover, elevation, weather, burnt area).

(b) For the first fire, initialise parameter values from file, on subsequent fires
use values from previous run.

(c) Send all PSO generated possible solutions (sets of parameters), initial fire
data, and simulation data to the GPU.

(d) The GPU simulates each possible solution using the given data and param-
eters, and returns the resulting simulated burnt area to Python.

(e) Calculate fitness by comparing simulated burnt area to actual burnt area.

(f) Generate new possible solutions based on fitness results and iterate again
from step 2b, until the iteration limit is reached.

4. Test the final parameters on the test set, for each fire in the test set:

(a) Load the relevant data (land cover, elevation, weather, burnt area).

(b) Send final parameters, fire data, and simulation data to the GPU.

(c) GPU simulates using the given parameters using the given data and returns
the resulting simulated burnt area to Python.

(d) Calculate fitness.

5. The final performance metric is the average of all fitness values calculated from
the test set.
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3.2.1 Particle swarm optimization

The evolutionary algorithm chosen to optimise the parameters for this simulation is
particle swarm optimization. This particular algorithm was a good fit for our problem
because it makes few assumptions about the problem space and it can search large
spaces relatively quickly for candidate solutions. Many other optimization algorithms
may require a gradient to be known for candidate solutions, this is not possible for our
problem since it is not differentiable.

The particle swarm optimization process tries to find the global best fitness value.
The optimization algorithm takes a set of configurations for the simulation, known as
the candidate solutions, and tries to find the best configuration using a position-velocity
update method. Every particle in the swarm represents a solution, all of which are
attracted to the best performing particle. The position of each particle in the solution
space is updated as follows:

xi(t +1) = xi(t)+ vi(t +1)

Therefore, the position in the next step is equal to the sum of the current position
and the computed velocity in the next step. This velocity is calculated as follows:

vi j(t +1) = w∗ vi j(t)+ c1r1 j(t)[yi j(t)− xi j(t)]+ c2r2 j(t)[ŷ j(t)− xi j(t)]

Where c1 is the cognitive coefficient, which models the tendency of a particle to
return to its own best found solution. c2 represents the social coefficient, which de-
termines how much each particle is attracted to the globally found best solution. w
controls the inertia of the swarm [9].

As for the other variables, i is the particle, j is the dimension, yi j is the best known
position for that particle, ŷ j is the position of the best overall particle, and r1 j and r2 j
are random numbers picked from a uniform distribution U(0,1).

The implementation of the global best particle swarm optimization is achieved us-
ing the PySwarms [19] Python package.

Tunable parameters As stated before, the simulation uses a number of tunable pa-
rameters. Each parameter changes some part of the behaviour of the simulation, for
example, the wind effect parameter is multiplied with the effect of the wind in the
simulation. Because of this the PSO should be able to find an optimal value for this
parameter, and we do not have to make assumptions about how this should be imple-
mented in the simulation.

The goal of the PSO is to find a set of parameters that makes the simulation reflect
as many real-world fires as possible. This section will explain what parameters are
used. The parameters are chosen to allow the simulation to reflect many types of fires.
Many parameters exist to allow the PSO to influence how the simulation reacts to the
real-world data described in section 3.1. The optimizer searches for optimal values for
these parameters within the range 0−5.

• Burn rate: determines how fast fuel is consumed by an active fire.
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• Ignition threshold: when the mean neighbour activity exceeds this value, a fire
ignites in a given cell.

• Spread speed: multiplier to the neighbourhood activity calculation. Effectively
increases spread speed, as the name suggests.

• Fire death threshold: When the fire activity of a given cell is below this value,
the fire activity will start to decrease.

• Fire death rate: rate at which fire activity in a cell decreases when the fire death
threshold is reached.

• Height effect multiplier: consists of two separate tunable values for height effect
up and down. As stated in the background section, fire spreads faster upwards
than it does downwards. This effect is multiplied by the height effect multiplier.
This parameter can allow the PSO to adjust how the wildfire should react to
elevation changes from the real-world data.

• Wind effect multiplier: determines wind effect strength. This allows the PSO to
adjust to the wind data.

• Spread rate per land cover type: this represents 47 parameters, each indicating
the spread rate for a type of land cover. For example, the spread rate on water
could be 0, the spread rate for a coniferous forest 1, and the spread rate of fire on
an inland marsh might be 0.3. These parameters allow the PSO to take advantage
of the land cover data used in the simulation.

These parameters are learned by the optimizer, at the first training step the pa-
rameters are loaded from a file. These initial parameters are given in Table 4 in the
Appendix, the initial values are set by intuition, for example: a spread rate of 0 on wa-
ter, and 1 in a forest. The burn rate is initialised to 0.3, the height effect multiplier both
up and down is initialised to 0.1, the wind effect multiplier is 2, the activity threshold is
0.1, the spread speed is 2, the death rate is 0.2, and the fire death threshold is 0.2. These
values were set to numbers that intuitively make sense, they are completely changed
by the PSO. They are not set to all zero, because that would slow down the learning
rate, as it would initially not spread at all. The optimizer would slowly change this, but
the learning speed of the PSO would be affected negatively.

Fitness function The fitness function guides the particle swarm optimization, which
tries to minimise this function. The fitness is calculated by comparing the simulated
final burnt area, and the real-world final burnt area. A receiver operating characteristic
(ROC) curve is created showing the true positives (cells where the burnt area matches
up with the real-world data) on one axis, and the false positives (cells showing burnt
area, which is not burned on the real-world data) on the other axis. 1−AUC, where
AUC is the area under the ROC curve, is used as the value returned by the fitness
function, since the particle swarm optimization aims to minimise the fitness function.
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3.2.2 Simulation

The base simulation is the part of the simulation that occurs on the GPU, this is a
cellular automaton based on earlier fire simulation cellular automatons. This section
describes what happens to a single cell during one simulation tick.

First, the fuel of the cell is updated using the fire activity in that given cell. The fire
activity value represents the intensity of the fire in that cell. The fuel of a cell always
decreases, the size of the change is proportional to the fire activity. After this the 8
neighbouring cells are considered. The activity for each neighbouring cell is taken
and multiplied by a number of factors. Height difference can increase or decrease the
activity of a neighbouring cell in relation to the current cell, similarly wind direction
and speed are considered. Thus, for example, if the cell to the right has a fire activity
value of 0.5, but is higher than the current cell, the activity value will be adjusted to a
lower value. If the wind comes from the right, then the adjusted activation is increased
a bit.

The adjusted activity matrix is calculated as follows:

A = l ∗ activityneighbours ◦ (1+(heightcell −heightneighbours)∗mheight)◦ (1+W ∗mwind)

A Adjusted activity matrix (3x3 grid of neighbours).
activityneighbours Fire activity matrix of each neighbour.
heightcell Elevation value for the current cell.
heightneighbours Elevation matrix for the neighbouring cells.
l Land cover spread rate multiplier for cell.
m Multiplier for height and wind, these values are determined by the PSO.
W Wind matrix, retrieved from real-world wind data.

Table 2: Variables used in the adjusted activity matrix formula.

The mean adjusted activity values for all neighbours are calculated as shown above
and multiplied by the spread rate multiplier for the type of land cover on the cell. If the
resulting value is higher than the ignition threshold, the cell will ignite. This is done by
setting the activity of the cell proportional to the available fuel and the mean adjusted
activity of the neighbours.

3.3 Optimization
Each fire in the train set is given sequentially to the PSO, which then runs for a set
number of iterations trying to find the optimal parameters for the given fire. In each
iteration, a number (swarm size) of parameter sets are created, which are each used to
simulate the fire. For each of these simulations, an AUC score is calculated to indicate
how accurately the simulated burnt area reflects the real burnt area of the given fire.

After all iterations are completed for a fire, the previous parameter list is updated
by adding the newly optimised parameters multiplied with a learning rate: P(t +1) =
P(t)+∆P ∗η where P is a vector of the parameters, η is the learning rate, and ∆P is
the optimised parameters for the last fire.
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3.4 Experimental setup
To test the generalizability of the PSO, k-fold cross-validation is used. For this, the
data needs to be split into k parts. Each part contains 1/k part of the total amount of
fires, k−1 of those parts will be used for training, then the remaining part will be used
for testing. This is repeated k times, each time using a different part for testing. The
mean fitness score is used as the testing performance measure.

For this experiment k = 5 is used for the cross-validation. This value was chosen
because a higher value leads to longer training times, which is not desirable. Using
k = 5 takes around 20 hours to complete the entire 5-fold cross-validation. The dataset
contains 315 separate fire events, each event containing a number of time steps, each
having a polygon for the burnt area at that time step. This dataset is large enough for
5-fold cross-validation to be reliable, as a single fold still has enough data.

Seven experiments are performed using 5-fold cross-validation, each using differ-
ent hyperparameters, to find the effect these hyperparameters have on the outcome.

3.5 Technical Implementation
The majority of the logic for the simulation is implemented in Python [26] using the
NumPy library [13] to speed up array programming.

As mentioned before, the base simulation, that is, the cellular automaton, is imple-
mented on the GPU to speed up computations. When programming compute kernels
in CUDA, a number of threads must be chosen. To find the optimal number of threads,
a small experiment was performed running the simulation for 50 ticks and measuring
the time taken for a given thread count. Each measurement is repeated 10 times to get
a more stable average duration for the run. The range of thread counts tested starts
at 12 and ends at 512, with a step of 12. The measurements are taken using the high
resolution clock included in the C++ standard library.

The simulation also has a CPU implementation in C++, the performance results
for this implementation compared to the GPU implementation are also measured. This
experiment tests the mean time the CPU and the GPU take to run the simulation for a
given grid size. The grid size is varied from 1 by 1 to 140 by 140.

An overview of the different components used in the simulation can be seen in
Figure 6. This figure is meant to give an idea of the architecture of the training and
testing, and of the different platforms used in the implementation.

3.6 Reproducibility
To ensure the results of this paper are reproducible, all random generation is fixed by
using a seed. The code for this project is stored on GitHub1. To compile and run
the C++ part of the project, the Nvidia CUDA Toolkit is required. The C++ Boost
library must also be compiled with support for Python bindings. The Python part
of the project requires a set of libraries, which are listed in the GitHub repository.
The experimental results used to create the plots shown in the results section are also
available for download on the same repository.

1https://github.com/RuurdBijlsma/WildfireSimulator
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4 Results
This section shows the results from testing our simulation using K-fold cross valida-
tion. Table 3 show the mean AUC for different sets of hyperparameters using the test
set. The training performance for a random set of 30 fires is 0.772 (σ = 0.117).

Experiment Swarm size Iterations Learning rate c1 c2 w Mean AUC

1 10 10 .2 0.5 0.3 0.9 0.6256
2 30 30 .1 0.5 0.3 0.9 0.6643
3 30 30 .2 0.5 0.5 0.9 0.6683
4 20 20 .2 0.2 0.5 0.9 0.6625
5 20 20 .2 0.5 0.5 2.0 0.6502
6 20 20 .2 0.5 .5 0.5 0.6542
7 50 30 .2 0.5 0.5 0.9 0.6617

Table 3: 5-fold cross validation results for different experiments, tested and trained on
200 fires from southern Europe. The green row represents the experiment with the best
performance, orange cells are changes from the optimal configuration.

4.1 Spread of optimised parameters
The variation in parameters after optimization is shown in Figure 7 and Figure 8. Each
dot represents a value after optimization is done for a given fold in the k-fold cross
validation process.

4.2 Computational performance
The performance results shown in Figure 10 and Figure 9 were gathered on a personal
computer (Nvidia RTX 2080ti, AMD Ryzen 2600, 16 GB ram). Figure 9 shows the
optimal thread count for our CUDA application, which is 156 threads.

4.3 Encountered situations
Figure 11, Figure 12, Figure 13, and Figure 14 show a number of burnt area compar-
isons are shown between the simulation and the real-world data, including the ROC
curve for that given comparison.

5 Discussion
The technical specifications described in section 2.3 have been met for the newly cre-
ated simulation. A cellular automaton was created using real-life fire spread dynam-
ics to model fire spread. The simulation takes multiple types of real-world data into
account and can be configured using many tunable parameters. A particle swarm op-
timization is used to minimise the fitness function by adjusting these parameters. The
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simulation runs on the GPU and therefore supports the specified large scale fires while
staying fast.

5.1 Computational performance
The computational performance shown in Figure 10 and Figure 9 is good. When look-
ing back at the hypothetical proposed in section 2.2.7, it was stated that a reinforcement
learning application for controlling fires could require somewhere in the magnitude of
88800000 simulated ticks to train the agent. Using the optimal thread count from Fig-
ure 9, a mean duration of 3200 microseconds is required to simulate 50 ticks. With this
computational speed, simulating 88800000 ticks would take 88800000/50∗3200µs ≈
1 hour and 35 minutes, which is a reasonable time for such an application. The sim-
ulation also scales well as the grid becomes larger, because the main bottleneck is the
transfer of data from the CPU memory (random access memory) to the GPU mem-
ory. This is shown in Figure 10, the CPU time scales quadratically as the map size
increases, while the time taken for the GPU implementation is nearly constant.

5.2 Accuracy
The purpose of this thesis was to develop a new method for simulating forest fires that
strikes a balance between performance and accuracy. The performance angle certainly
worked, however the accuracy is slightly lower than the existing solutions. However,
the other solutions use slightly different methodologies, training and testing on only
one to five fires, each having similar characteristics. Our solution trains and tests on
every fire in southern Europe from 2001 to 2020, making

As mentioned in the background section, Zheng, et al. [29] use the area under
the receiver operating characteristic curve (AUC) to evaluate a wildfire simulation.
This evaluation method is also the method used in this thesis, so we can compare
results. They trained on five different fires, getting an average AUC of 0.73 using an
Extreme Learning Machine. However, with their methodology, training and testing
was performed on different samples of the same fire event, which could inflate the
testing scores. As shown in Table 3, experiment 3 is the best performing experiment
using the method described in this paper. The model from this experiment achieves an
AUC of 0.67 for the test set and an AUC of 0.77 for the training set. A testing AUC of
over 0.7 is generally considered reasonable, therefore our testing results are not up to
par.

Ganapathi, et al. [10] do not use the AUC method for determining the quality of
their reinforcement learning based simulation, they measure the accuracy percentage
instead. They also test on a different fire than they train on, however they train on a
single fire and test on one that occurred in a nearby area, whereas our simulation trains
on many fires spread across southern Europe. Moreover, they calculate their accuracy
values after 16 days, 32 days, 48 days, and 64 days, whereas with our method this
calculation occurs at whichever date the data for the given fire ends. Because of these
changes in methodology it is difficult to accurately compare results, however AUC
ranges from 0 to 1, and percentages range from 0 to 100, so keeping in mind the dif-
ferences between AUC and accuracy we can still compare results. They tested several
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reinforcement learning methods, including Gaussian processes, value iteration, policy
iteration, Q-learning, Monte Carlo tree search, and A3C. The best performing method
is A3C, with an accuracy of 90.1% after 16 weeks, 81.8% after 32 weeks, 50.8% after
48 weeks, and 13.4% after 64 weeks. There is a steep drop in accuracy after 48 weeks.
Assuming no major class imbalance impacting the comparison between AUC and ac-
curacy, the accuracy values after 16 and 32 weeks are better than our solution, but the
accuracy values after this are worse.

5.2.1 Reasons for our results

Our results are slightly worse than existing solutions, although when accounting for
the differences in methodology this is not so bad. Forest fires might also only be
predictable to a certain point, limiting the accuracy we can really achieve with any
simulation. However, assuming we are not at the limit of forest fire predictability, this
section explores some possible reasons for our lower accuracy results.

Table 3 shows experimental changes in the PSO hyperparameters in an attempt to
minimise the 5-fold average AUC score. The best configuration found is highlighted
in green, any changes from this configuration are highlighted orange. From the AUC
scores we can see that there is not much variance in the scores between the experiments
(µ = 0.655,σ = 0.014), implying that the problem may not lie with the hyperparame-
ters, but with something else. One possibility is that the search space is too complex for
the PSO, since there are over 50 dimensions in the search space, causing the optimizer
to quickly converge to a local minimum and get stuck there.

Figure 7 shows the spread of each simulation parameter across the 5 folds. The
values are mostly grouped together, implying each value did converge to approximately
the same place each time, even after using a different dataset. This could mean they all
converged to the same local minimum, however it is more likely they found a global
minimum. This would indicate that the accuracy problem does not stem from a local
minimum problem, at least not for the simulation parameters. Figure 8 shows the same
information, but for each value of the spread rate of different types of land cover. Most
of these values are much more spread out, indicating the PSO had more trouble finding
a global minimum consistently for these parameters, or even at all.

Another explanation for the inaccuracy could be that the simulation is not config-
urable enough to generalise to all fires. If changing the parameters does not sufficiently
change the outcome of the simulation, the PSO will not be able to optimise to an ac-
curate solution. Similarly, a lack of data provided to the simulation could reduce the
generalisation performance. For example, if wind data was not included and a training
fire is moving eastward, the PSO could find a way to make the simulated fire also more
eastward, but it would not have learned that wind causes the fire to move. If a fire is
encountered during testing that spreads westward due to wind, it would not simulate it
properly. Of course our simulation does consider wind, and the PSO can optimise this
parameter, however it is possible that there are weather elements or other types of data
that could improve the accuracy of our solution.

Zheng, et al. [29], use similar explanatory variables, such as temperature, elevation,
and land cover. Additionally, they used aspect and slope. Aspect is the direction
a structure or geographical formation is facing, so in mountainous regions it could
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indicate which part is in the sun during the day, the slope describes the angle of the
land. This information is contained in the elevation data, but it is not explicitly part of
the data embedded in each cell of the simulation grid.

The mean training AUC for the optimal configuration found is 0.772 (±0.117).
Since the training AUC is significantly larger than the testing AUC, this indicates that
the simulation is able to fit the fires well, however the solution found by the optimizer
does not generalise to fires outside of the training dataset as well as it possibly could.
This low generalizability could be a result of missing data types for the simulation, as
explained before.

Another detriment to the scores could be the quality of the data, specifically the
resolution of the fire data. The resolution of the fire data is quite low compared to
the elevation and land cover data. Because all data is scaled to the same resolution,
the resolution of the fire data is artificially increased, which ends up with very square
edges which are not naturally modelled with our simulation. Firefighting efforts are
also missing from the data, in real life firefighters try to control forest fires, which
affects their spread. The data of when and where firefighting efforts are performed is
not available on the scale our simulation needs. This is an explanatory variable that
is not taken into account in the simulation, and will therefore reduce the performance
of the optimizer. Furthermore, some of the fires in the dataset have an empty starting
state, which are impossible to simulate correctly, these instances also drag down the
AUC.

Figure 11 to Figure 14 show the starting point, simulated burnt area, and the actual
burnt area. Here the resolution problem is shown to an extent. The simulation works on
a higher resolution than the fire data, because the fire data is lower resolution than the
minimum spatial resolution specified for this simulation. Figure 11 and Figure 12 are
two examples of fires that are are modelled fairly accurately (AUC = 0.86 & AUC =
0.95), but even these high AUC scores are reduced because of the higher resolution.
The newly added simulated burnt area from the starting point matches well with the
newly added actual burnt area.

Figure 13 shows an example of a badly modelled fire. The simulation seems to have
spread too quickly in this case, or some other parameter could be wrong. Figure 14
shows a situation that also happens, albeit rarely. The dataset shows there is not a
starting fire, however the last stage of the data shows an actual burnt area. If no starting
fire is supplied to the simulation, nothing will happen, so these situations always result
in an AUC of 0.5, i.e., completely wrong.

Figure 15 shows a part of the data used when simulating a fire, in each of these plots
yellow is used for low values, and purple for low values. These grids all represent the
same area, the bounds of which are determined by the fire shown in Figure 16. The
land cover grid plot shows how easy the fire can spread on that type of land cover,
with yellow being more and purple being less. The wind is shown in 2 plots, one
showing the eastward wind component, the other showing the northwards component.
The spatial resolution of the wind data is quite low, so there is only one data point
on the x-axis being stretched out. This is not a problem, since the weather does not
change that much over relatively small areas (the resolution of the weather dataset is
0.1 degrees, or about 9 kilometres).

Figure 16 shows that the fire starts in the north-east part of the map, it then spreads
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southwards. This makes sense given the land cover grid and elevation data we see in
Figure 15. The fire starts at a low point in the north and moves to a more elevated
position south. The fire does not move west as much, because there is low-lying land
there, and fires do not like to spread downwards. Moreover, the land cover data shows
the east and south parts of the map are covered in more burnable land.

The result of our simulation in this environment is also shown in Figure 17. Each
one of the four images represents a snap-shot in time during the simulation showing
the state of the grid. In these figures the black area represents the burned area, the red
area indicates burning area, and the green area indicates the unburned area. The same
behaviour explained above is seen in this simulated fire. It moves mostly south and a
little east, which again aligns with the available data.

5.3 Optimised simulation parameters
Simulation parameters The simulation parameters from the different folds are closely
grouped together, as shown in Figure 7. The resulting values intuitively make sense,
the activity threshold is low, meaning fire spreads to other cells easily. The height ef-
fect multipliers for uphill and downhill are above and below 1 respectively, because
fire travels up a slope more easily.

Land cover parameters The land cover parameters shown in Figure 8 are more
spread out. This makes sense, because there are more parameters to optimise, and
they can only be meaningfully optimised if the fire occurs near that given land cover.
Because of this, the land cover types that were encountered most often are more likely
to be less spread out. From the figure we can see that continuous urban fabric is the
parameter with the least variance between the folds. This makes sense because most
fires occur near some human settlement, where such a land cover type exists, thus
making the parameter correctly optimised. To further show this effect, we can look at
the most varied parameter values, which are for peat bogs. This land cover type does
not occur often, and even if it does it is only a small part of the grid, likely having very
little influence on the spread of the fire, making it nearly impossible to optimise.

Sea and ocean, traditional woodland-shrub, natural grasslands, and broad-leaved
forest also have little varying in their optimised values. Such land cover types have a
large effect on the spread of fire, and they occur often in the datasets, so they are likely
to be properly optimised by the PSO.

5.4 The optimizer of choice
Section 2.2.2 explains why the particle swarm optimization was chosen for this project.
The PSO algorithm works well on a high-dimensional search space, and it does not
require a gradient from the fitness function, which many other optimization algorithms
do. As partly explained above, changing out the optimizer is not likely to improve the
resulting accuracy. Our most important parameters, the simulation parameters, seem
to land in a global minimum. Our main accuracy loss seems to come from the lack of
resolution in our data, or the lack of other data types.
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Over the course of this project the source of burnt area data was already switched
out for a higher resolution one, however the resolution is still only 1 km by 1 km. Had
we not looked for a global dataset, but rather looked for a more localised dataset, the
spatial resolution might have been greater. However, our aim was to train on as many
fires as possible, which led us to the global GlobFire dataset. For example, Zheng,
et al. [29] trained and tested on only 5 fires, however, these fires had a much greater
spatial resolution than what is available in GlobFire.

6 Conclusion
We asked whether it is possible to keep current state-of-the-art accuracy levels while
creating a more computationally fast simulation. While this might be possible, the
method used in this paper did not achieve the desired accuracy results. Our simulation
does achieve similar, but slightly worse performance to existing solutions, even when
the methodology used is more ambitious. A good use for this simulation could be
a type of problem that requires a roughly accurate simulation, but needs to support a
relatively large scale area with good computational performance, such as reinforcement
learning.

There might be multiple reasons this simulation was not as accurate as expected.
It might be impossible to predict forest fires with 100% accuracy. However, assum-
ing we are not limited by the inherent unpredictability of forest fires, it could be the
simulation not being configurable enough, resulting in the changes the PSO makes on
the parameters not having enough effect on the outcome of the simulated fire. Another
option could be that the search space is too complex. There are many parameters to be
optimised, resulting in a 47 dimensional search space. The AUC scores could also be
negatively impacted by the low resolution of the fire data.

6.1 Further development options
The simulation could be expanded with a friendly interface to simulate fires. This
might be useful for just exploring what the simulation is capable of, or if implemented
correctly, could be used by firefighters to help determine how to best control a wildfire
by predicting its spread. The simulation can quite easily be extended to support a
probability map for where the fire will spread, similar to how hurricane prediction
maps are visualised. This could be accomplished by running many simulations with
the same initial parameters and fire start area, but different seeds for the stochastic
part of the simulation. Then visually overlap the predicted spread behaviours showing
overlapping cells as more opaque.

Furthermore, it could be beneficial to remove the least impactful variables from the
optimization process, especially some of the land cover types. With fewer dimensions,
the search for an optimal solution should be easier for the particle swarm optimiza-
tion. One could also take this a step further, and remove all land cover types from the
optimization process that do not occur in the area of the fire that is currently being
optimised.
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6.2 Further research
Testing out different options for the evolutionary algorithm could be interesting, espe-
cially the Gaussian adaptation algorithm, since it is an evolutionary algorithm that fits
for the same reasons as the PSO does. Furthermore, implementing this simulation in
existing reinforcement learning wildfire applications could be a good test of the overall
performance of the simulation, i.e., the computational speed benefits, and accuracy.

The generalisation ability of the simulation might also be improved by using more
real-world data, such as the weather data available in the ERA5 dataset. This dataset
contains many variables, such as the leaf area index, which represents the amount
of vegetation in the area. The more relevant data the simulation has, the better it
should generalise to new fires, since the optimizer should learn how to correct for
every variable.
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A Appendix

A.1 Initial parameters
Table 4 shows the initial spread rates for each type of land cover.

A.2 Land cover types
• Continuous urban fabric

• Discontinuous urban fabric

• Industrial or commercial units

• Road and rail networks and associated land

• Port areas

• Airports

• Mineral extraction sites

• Dump sites

• Construction sites

• Green urban areas

• Sport and leisure facilities

• Non-irrigated arable land

• Permanently irrigated land

• Rice fields

• Vineyards

• Fruit trees and berry plantations
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• Olive groves

• Pastures

• Annual crops associated with permanent crops

• Complex cultivation patterns

• Land principally occupied by agriculture, with significant areas of natural vege-
tation

• Agro-forestry areas

• Broad-leaved forest

• Coniferous forest

• Mixed forest

• Natural grasslands

• Moors and heathland

• Sclerophyllous vegetation

• Transitional woodland-shrub

• Beaches, dunes, sands

• Bare rocks

• Sparsely vegetated areas

• Burnt areas

• Glaciers and perpetual snow

• Inland marshes

• Peat bogs

• Salt marshes

• Salines

• Intertidal flats

• Water courses

• Water bodies

• Coastal lagoons

• Estuaries

• Sea and ocean
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Figure 6: Flowchart for the implementation of the simulation.
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Figure 7: Values of simulation parameters after each fold.

Figure 8: Values of land cover rate parameters after each fold.
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Figure 9: GPU time taken when using different thread counts.

Figure 10: Mean CPU & GPU time taken for simulation running for 100 ticks on grids
with increasing resolutions.

36



A.2 Land cover types A APPENDIX

Figure 11: Visualisation of burnt area with good match between simulated and real
burnt area.

Figure 12: Visualisation of burnt area with good match between simulated and real
burnt area.
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Figure 13: Visualisation of burnt area with poor match between simulated and real
burnt area.

Figure 14: Visualisation of burnt area with no match between simulated and real burnt
area.
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Figure 15: Visualisation part of the real-world data used for a simulated fire. Yellow
for high values, purple for low values. The land cover grid shows spread rates from the
type of land cover.

Figure 16: Visualising the burnt area for the fire mentioned in Figure 15.
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(a) Start (b) Intermediate step (c) Intermediate step (d) End

Figure 17: Snapshots of the simulated grid during a simulation of the fire from Fig-
ure 16.
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Label Spread rate

Continuous urban fabric 0.1
Discontinuous urban fabric 0.1
Industrial or commercial units 0.1
Road and rail networks and associated land 0.2
Port areas 0.2
Airports 0.1
Mineral extraction sites 0.1
Dump sites 0.5
Construction sites 0.2
Green urban areas 0.5
Sport and leisure facilities 0.2
Non-irrigated arable land 0.6
Permanently irrigated land 0.5
Rice fields 0.9
Vineyards 0.9
Fruit trees and berry plantations 1
Olive groves 1.2
Pastures 0.6
Annual crops associated with permanent crops 0.7
Complex cultivation patterns 0.6
Land principally occupied by agriculture, with significant areas of natural vegetation 0.8
Agro-forestry areas 1
Broad-leaved forest 1
Coniferous forest 1
Mixed forest 1
Natural grasslands 0.6
Moors and heathland 0.7
Sclerophyllous vegetation 1
Transitional woodland-shrub 0.8
Beaches, dunes, sands 0.1
Bare rocks 0.1
Sparsely vegetated areas 0.3
Burnt areas 0.5
Glaciers and perpetual snow 0.1
Inland marshes 0.4
Peat bogs 0.5
Salt marshes 0.5
Salines 0
Intertidal flats 0
Water courses 0
Water bodies 0
Coastal lagoons 0
Estuaries 0.1
Sea and ocean 0
NODATA 0.3
UNCLASSIFIED LAND SURFACE 0.3

Table 4: Initial spread rates before any optimization happens to adjust them.
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