
Feature relevance bounds
in classification problems

Rogchert Zijlstra



University of Groningen

Feature relevance bounds
in classification problems

Master’s Thesis

To fulfil the requirements for the degree of
Master of Science in Computing Science

at University of Groningen under the supervision of
Prof. dr. M. Biehl,
Prof. dr. K. Bunte

and
A.F. Nolte

Rogchert Zijlstra

March 25, 2022



CONTENTS iii

Contents
Page

Acknowledgements v

Abstract vi

Glossary vii

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 4
2.1 LVQ and variants . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Previous work on relevance bounds . . . . . . . . . . . . . . . . . 5

3 Methods 7
3.1 LVQ and LVQ variants . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 LVQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Generalized LVQ . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Generalized Relevance LVQ . . . . . . . . . . . . . . . . 8
3.1.4 Generalized Matrix LVQ . . . . . . . . . . . . . . . . . . 9
3.1.5 Constrained GMLVQ . . . . . . . . . . . . . . . . . . . . 9

3.2 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . 10
3.2.1 Principal Component Analysis . . . . . . . . . . . . . . . 10
3.2.2 Λ-transformation . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Relevance bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Optimization method . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Null space correction . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Implementation 21
4.1 Changes to sklvq . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Experimental Setup 23
5.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 Simple data set . . . . . . . . . . . . . . . . . . . . . . . 23



CONTENTS iv

5.1.2 Sklearn blobs . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.3 Blob variations . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.4 KiDS-GAMA . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Experimental Configurations . . . . . . . . . . . . . . . . . . . . 28
5.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Bounds without dimensionality reduction 30
6.1 Simple data set . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Blob data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Transformed blob data set . . . . . . . . . . . . . . . . . . . . . . 33
6.4 KiDS-GAMA data set . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Comparing dimensionality reduction 35
7.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . 35
7.2 Λ-transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8 Properties of the Λ-transformation 38
8.1 Λ matrix after transformation . . . . . . . . . . . . . . . . . . . . 38
8.2 Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . 41

8.2.1 Fixed space . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.3 Correlated features . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.4 Null space correction . . . . . . . . . . . . . . . . . . . . . . . . 44

9 Experiments after Λ-transformation 47
9.1 Simple data set . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.2 Transformed Blob data set . . . . . . . . . . . . . . . . . . . . . 48
9.3 KiDS-GAMA data set . . . . . . . . . . . . . . . . . . . . . . . . 48
9.4 Correlations within KiDS-GAMA data set . . . . . . . . . . . . . 51
9.5 Removing sersic rhalf . . . . . . . . . . . . . . . . . . . . . . . . 54

10 Conclusion 56
10.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography 57

Appendix 60
A Principle Components of transformed blob data set . . . . . . . . 60



v

Acknowledgments
Firstly, I want to thank Michael Biehl and Aleke Nolte. Their supervision was
vital for this thesis. With the help of their expertise and suggestions, we were able
to push this thesis in the right direction.
Secondly, I want to thank Rick van Veen. His help was very useful for implement-
ing the method in SKLVQ. He helped a lot when we were starting to use SKLVQ

and gave helpful advice on the inner workings of SKLVQ and how to adapt them
to our needs.
Thirdly, I want to thank William Pearson and Lingyu Wang. They were able to
shine some light on the GAMA-KiDS data set. They helped us put the results into
context and gave us guidance on topics within the data set that are interesting.
Lastly, I want to thank both KiDS and GAMA. Their data set gave us the ability
to test our method on a data set which was not artificially generated.



vi

Abstract
Generalized Matrix Learning Vector Quantization is a powerful tool for prototype-
based classification. The results can also be interpreted relatively easily through
the relevances obtained. The relevances obtained from GMLVQ do not show the
full picture. Correlated features can greatly affect results between different train-
ings and ambiguous relevances can appear, which limits the reliability of the inter-
pretation. In this thesis, we look at the interpretation of relevances. We introduce
a method which allows us to look at the relevance bounds, which show the range
of values a relevance can take while still retaining classification accuracy.In ad-
dition, we introduce a new dimensionality reduction technique which is able to
significantly reduce the number of features during training. This allows us to cal-
culate the relevance bounds for bigger, more complicated data sets. We apply our
methods to several data sets. A set of mock data sets is used to examine the ad-
vantages and challenges of this method. Finally, we apply the method to a real
world data set which classifies merger and non-merger galaxies. This data set is
big enough to require the use of dimensionality reduction. The results show us
that this method can effectively improve the interpretability or the relevances.



Glossary vii

Glossary
AUROC Area Under the Receiver Operating Characteristics 28

LVQ Learning Vector Quantization 2, 21

GMLVQ Generalized Matrix Learning Vector Quantization 2, 21

PCA Principal Component Analysis 3, 10

N Number of features 7

P number of datapoints 7

C Number of classes 7

K Number of prototypes 7

X The data set 5, 7

X j The j’th feature of of the data set 5

ξi Sample i from the data set 7

ω A prototype of the classifier 7

Λ The relevance matrix of the classifier 9

Ω Alternate representation of the relevance matrix 9

·∗ Any element after the dimensionality reducing transformation 10



viii

List of Figures
1 PCA transformation of a dataset generated by a multivariate normal. 11
2 A data set before and after Λ-transformation. The first three eigen-

vectors of Λ have eigenvalues of 0.49, 0.22 and 0.11 . . . . . . . . 13
3 Example of an error curve where the second feature, X2 has its

relevance fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Error curves derived from constraining X∗

1 in the transformed space. 16
5 Relevance bounds in the transformed space. . . . . . . . . . . . . 17
6 First two features of the simple data set . . . . . . . . . . . . . . 24
7 Pair plot of the X1,X2 and X3 off a data set generated from sklearn

blobs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8 Pair plot of the first three features off a data set generated from

sklearn blobs that are transformed. . . . . . . . . . . . . . . . . . 26
9 Example of an ROC-curve. . . . . . . . . . . . . . . . . . . . . . 29
10 Relevance bounds of the full simple data set. . . . . . . . . . . . . 30
11 Relevance bounds of the blob data set. . . . . . . . . . . . . . . . 31
12 Error curves for the first 2 relevant features, 1 and 2 . . . . . . . . 32
13 Error curves for 2 irrelevant features, 9 and 10 . . . . . . . . . . . 32
14 Relevance bounds of the transformed blob data set. . . . . . . . . 33
15 Example of two different PCs . . . . . . . . . . . . . . . . . . . . 36
16 Relevance matrix after training the transformed data set. . . . . . 38
17 Relevance matrix after training the transformed data set with 5

features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
18 Relevance matrix after training the transformed-blob data set. . . . 39
19 Relevance matrix with different number of Λ-components for the

transformed-blob data set. . . . . . . . . . . . . . . . . . . . . . 40
20 Relevance bounds of the transformed-blob data set using 5 Λ-

components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
21 Transformed-blob data set with 5 Λ-components. . . . . . . . . . 43
22 Eigenvalues of XX⊤ used to determine the null space. . . . . . . . 45
23 Null space correction matrix of the blob data set with added copies

of the first feature. . . . . . . . . . . . . . . . . . . . . . . . . . . 46
24 The relevance bounds and the first two Λ-component . . . . . . . 47
25 features, X∗

1 ,X
∗
2 and X∗

3 of the KiDS-GAMA set after the Λ-transformation. 49
26 KiDS-GAMA data set with 8 Λ-components. . . . . . . . . . . . 50
27 Correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 51
28 Absolute value of the correlation matrix > 0.8 . . . . . . . . . . . 52
29 Effect of correlated features in the data set . . . . . . . . . . . . . 53
30 Null space correction matrix for the KiDS-GAMA dataset. . . . . 53
31 Relevance bounds using the null space correction with t = 10−4 . 54



LIST OF FIGURES ix

32 Relevance bounds for null space correction with t = 10−4 without
sersic rhalf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

33 All principal components of the transformed blob data set . . . . . 61



x

List of Tables
1 The accuracy when changing the number of PCA components

used during training of the simple data set. . . . . . . . . . . . . . 35
2 The accuracy when changing the number of PCA components

used during training of the blob data set. . . . . . . . . . . . . . . 35
3 The accuracy when using the PCA components with highest ex-

plained variance during training of the transformed blob data set. . 36
4 The accuracy when changing the number of Λ-components used

during training of the simple data set. . . . . . . . . . . . . . . . 37
5 The accuracy when changing the number of Λ-components used

during training of the blob data set. . . . . . . . . . . . . . . . . . 37
6 The accuracy when changing the number of Λ-components used

during training of the transformed blob data set. . . . . . . . . . . 37
7 The accuracy when changing the number of Λ-components used

during training of the transformed blob data set with correspond-
ing eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8 Relevances when training with and without null space correction . 44



Chapter 1 INTRODUCTION 1

1 Introduction
Problems involving classification have always been important to humans. Whether
it is identifying if food is spoiled or determining if wild animals are dangerous
predators. We have always used patterns to recognize these classes. For example,
if bread turns green, it is spoiled. These kinds of classification problems are very
relevant to our survival. We have learned from our experiences and are able to do
these classifications without too much trouble.

One important thing to note is that in many cases we do not know how we rec-
ognize these classes. Asking a person how they differentiate hundreds of different
people or how they read different handwritings will only give us some vague an-
swers, but no definitive methods. These are cases where a human can classify
something but do not have the details of the process for doing so.

There are many more patterns which humans cannot identify. Some are sim-
ply too big in scope for humans, for some we lack the senses to properly measure
them, or we are simply too slow at them. This is where machine learning classifi-
cation algorithms come into the picture. Detecting illnesses from a large amount
of medical data can be highly beneficial. Digitizing large numbers of documents
can be done a lot faster by machines than humans once a machine is trained to do
so.

There are several methods to train a classifier. The simplest method can only
be used when we know explicitly how to classify something. If we know by which
rules to identify something, we can simply implement the rules and let the ma-
chine take it from there. However, in many cases we do not know how to classify
something. In this case, we need to rely on the machine to learn the way to classify
an object. This is primarily done in one of two ways, supervised and unsupervised
learning. Supervised learning method involves learning from examples. We take
many examples of our problem for which we know the classification. Each exam-
ple has several features that could be relevant for the classification. The machine
then uses this information to learn which of these features is important for clas-
sification and how they can be used. For unsupervised learning, these examples
are not present. In this case, we often employ a function whose value can tell us
how well our machine is performing. The machine can then try to optimize that
value. In both cases the machine will be able to classify new data that it has not
seen before using the lessons learned from training.

A very intuitive idea for classification is Prototype-based classification. It re-
lies on the idea that each class can be represented by a small number of prototypes.
For each class we want to identify, we can look for prototypes that represent these
classes. For example, when you think of a banana certain features might spring
to mind. It is a slim, elongated fruit, often slightly curved with a yellow or green
colour. It should be about 15 to 20 cm in length and around 120 grams. We can



Chapter 1 INTRODUCTION 2

compare other fruits to this prototype of a banana to see if it is also a banana. A
lemon might agree on the colour, but the other features all do not match up enough
for us to say that it is not a banana. When we have prototypes for all classes, we
can classify an example simply by looking at which prototype is the closest given
a predefined metric.

Some features can be more important than others. This importance, which we
will refer to as the relevance of a feature, is unknown unless we have prior infor-
mation. When training on the data you might expect there is a single combination
of relevances that represents how to properly classify a sample. In practice this is
not the case. Due to interplay between features or overlap of the classes different
sets of relevances might preform equally well. For this reason simply training a
model and extracting the relevances does not fully capture the importance of a
feature. The method employed in this thesis forces predetermined values for the
relevances. When we notice the forced relevance value decreases the performance
to a significant degree, we can conclude this relevance is outside the boundaries
we would call optimal.

1.1 Research Questions
This thesis focuses on Generalized Matrix Learning Vector Quantization (GM-
LVQ) [1]. GMLVQ is a prototype-based classification algorithm. We have altered
it in such a way that we can force the relevances to the wanted values. Using this,
we want to find the boundaries for the relevances of each feature. Using these
boundaries, we want to see if we can determine if features are redundant or not.
Furthermore, we want to investigate if these methods can be used in combination
with methods to reduce dimensionality. Our research questions are as follows:

• Can meaningful relevance bounds be determined by imposing constraints
on individual relevances and optimizing the remaining ones?

• Is it possible to extract relevance bounds in the original feature space from
classifiers trained in a space with reduced dimensions?

1.2 Thesis outline
The remainder of this thesis is organized as follows. In chapter 2 we provide the
background of GMLVQ. We look at the origins of Learning Vector Quantization
(LVQ) and the developments that lead to GMLVQ. Additionally, we look at the
existing methods which are used to compute the relevance bounds.
In chapter 3 we look at the mathematical basis of GMLVQ. We mathematically
define LVQ and the variants that emerged from it. We also define the tools we



Chapter 1 INTRODUCTION 3

need for computing the relevance bounds. For the dimensionality reduction, we
look at two methods. Firstly, we look at a common method for dimensionality
reduction, Principal Component Analysis (PCA). Then we also introduce the Λ-
transformation, which is a method of dimensionality reduction which uses infor-
mation of a prior GMLVQ classifier to reduce the dimensionality. We also define
the relevance bounds and introduce the concept of the null-space reduction.
Chapter 4 addresses the implementation of GMLVQ that was used and the alter-
ations made which allows us to compute the relevance bounds.
The experimental setup is elaborated on in chapter 5. We show all the data sets
used in out experimentation. This includes multiple mock data sets and a real
world data set. The settings used for GMLVQ in our experiments are also speci-
fied here. Lastly, this section defines the performance metrics used in the thesis.
Chapters 6-9 contains our experimentation. We start by looking at relevance
bounds for the data sets without dimensionality reduction. We then compare the
methods of dimensionality reduction and show why we prefer the Λ-transformation.
We investigate the effects of the Λ-transformation and look at the advantages and
problems with it. Then we apply the method to the data sets we have.



Chapter 2 BACKGROUND 4

2 Background
In this section we take a look at the background of the LVQ and the variants which
led to GMLVQ. We also look at the different techniques required for this. After
this, we look at previous attempts to obtain relevance bounds [2, 3].

2.1 LVQ and variants
Before we can look at GMLVQ, we need to understand the ideas behind LVQ.
LVQ is a prototype-based classification method which was introduces by Koho-
nen in 1986 [4]. LVQ uses a supervised learning process to create prototypes to
represent each class in the data set. During training, the prototypes are moved
towards the data with the same class that the prototypes represent. Novel data
can be compared to the prototypes and the class can be decided by looking at the
closest prototype. Unfortunately, the method is not without problems [1]. LVQ
does not have a strong mathematical rigour behind it. The main ideas behind LVQ
are based in heuristics. Slightly tweaking the methods can greatly influence the
results [5]. There is potential for slow convergence or highly unstable results. For
this reason, many variants have been created to alleviate these issues.

We look at the two big variants that lead to GMLVQ. the first variant is the
generalized LVQ (GLVQ) [6]. It changes the way the prototypes are updates. In
addition to this, it introduces a cost function to evaluate the prototypes. This cost
function can be minimized by using methods like gradient descent. The second
big variant was the introduction of the relevance matrix. The concept of using
relevance in LVQ was introduced in 2001 [7]. This method adds a relevance value
for each feature. These values can be varied during training, which is able to
increase or decrease the influence of features to improve performance. Both ideas
were brought together to form GRLVQ (Generalized Relevance LVQ) in which
the relevances was used for GLVQ [8]. The relevance allowed the method to give
a low relevance to features that are not relevant but it did not have tools to deal
with correlated features. For this, GMLVQ was introduced [1]. Instead of a single
relevance value for each feature, a full relevance matrix is used. The values on the
diagonals correspond to the relevances used in GRLVQ. On the off diagonal are
the relations between the features.

All of these variants tried to eliminate the limitations of the original LVQ
method, though they mostly reduce the downsides instead of fully eliminating
them. The method still has significant uncertainty and the results between separate
runs of the training process can differ due to factors such as correlation and local
minima. With the extra layers of complexity, it has also become more influence
by settings, randomized values or initialization methods.



Chapter 2 BACKGROUND 5

2.2 Previous work on relevance bounds
Previous attempts have been made to search for relevance bounds in GMLVQ.
In [2] a method was investigated to differentiate different types of relevant features
using relevance bounds. The different types of relevances introduced are:

• Highly relevant features: Features that can not be removed from the data set
without impacting classification accuracy.

• Weakly relevant features: Features that improve classification results but are
not strictly necessary due to overlapping information with other features.

• Irrelevant features: Features which hold no relevance and can be discarded
without impacting classification accuracy.

To achieve this, the idea of relevance bounds are introduced. For a data set X
the lower relevance bound of feature X j they look at the difference between the
relevance of a feature subset S with X j ∈ S and the relevance of S \ {X j}. The
difference between the two relevances is considered the minimum X j contributed
to the relevance. For the maximum, a greedy forward-backward search is used.
It looks for the subset of features which cause X j to have the highest relevance.
This method a few problems. Firstly, the lower bounds of many features tends to
go to zero due to overfitting. Secondly, the heuristic used in search of the upper
bound is not exhaustive and can leave a significant amount of feature groupings
unexplored.

A second method explored uses the concept of a null space. Consider a data
set with two features that are exactly the same, X1 = X2. For any c ∈ R we can
see that c ·X1 − c ·X2 equals 0. Adding this combination of features will have a
net zero influence on the classifier. Any combination of features that add up to
0 are considered to be in the null space. If we have a trained classifier which
performs well, we should be able to add or subtract features in the null space
without changing the performance.

To find the combinations of features in the null space features, we can use
the eigenvectors of the covariance matrix of the data, XX⊤ [9]. All eigenvectors
which have an eigenvalue of 0 are combinations of features that add up to 0. In
practice having features with an eigenvalue of 0 is rare and a minimum cut-off is
used. To find the upper and lower bounds can then be found by adding features
from the null space to a known configuration that performs well. For each added
combination, we can find the relevance of each feature and find the minimum and
maximum relevance that still performs within an error margin.

This approach got introduced to GMLVQ in [3]. While both papers were able
to compute relevance bounds that show which feature are relevant or irrelevant,
they were still struggling with proper identification of weakly relevant features.



Chapter 2 BACKGROUND 6

Furthermore, this method is unstable. Slight changes to error margins or how the
null space is determined have a very significant effect on the resulting relevance
bounds. In addition to this, the problem of the lower relevance bound tending to
0 still remained.



Chapter 3 METHODS 7

3 Methods
In this section, we go through the mathematical foundations of GMLVQ. Fur-
thermore, we be looking at the two methods used for dimensionality reduction.
We look at the relevance bounds before and after the dimensionality reduction.
An extension of the optimization method is introduced. Finally, we introduce the
null-space correction.

3.1 LVQ and LVQ variants
GMLVQ is an extension of LVQ. We build up towards GMLVQ by looking at
some of the variations which lead to GMLVQ. Afterwards, the constrained GM-
LVQ is introduced.

3.1.1 LVQ

The first description of LVQ was made in 1986 by Kohonen [4, 10]. We have a
data set with N dimensions and C classes. Each of the P samples is a combination
of the features and a single class, (ξi,yi) ∈ R×{1, . . . ,C}, i ∈ {1,2, . . . ,P}. The
dataset with only the features and not the classes is X . We want to create prototype
vectors ω that represent each class (They are called ”Codebook vectors” in [4,10]).
We create K prototypes with each class being represented by at least 1 prototype,
c(ωl) ∈ {1, . . . ,C}, l ∈ {1,2, . . . ,K}. We move the prototypes during the training
step such that each prototype ends up close the samples it represents. To train
the classifier you look at a sample and the closest prototype. If they have the
same class it pulls the prototype towards it, otherwise it pushes it away. Only
the Euclidean distance was used at first, but we can use a generalized distance
measure dλ where λ are the parameters used. λ does not have to be static and may
change during training as long as it is a valid distance metric.
In the original method, LVQ1, data point ξi is chosen at random. The random
sample is compared to every prototype. The closest prototype ωJ is then adjusted
using

ωJ(t +1) = ωJ(t)+α(t) · (ξi(t)−ωJ(t)) if c(ξi) = c(ωJ), (1)
ωJ(t +1) = ωJ(t)−α(t) · (ξi(t)−ωJ(t)) if c(ξi) ̸= c(ωJ), (2)

where the learning rate α is between 0 and 1, 0 < α(t) < 1. α(t) is frequently
decreased with time.
To classify a new data point ξ you compare it to all the prototypes and pick the
closest one,

c(ξ) = c(ωi) where dλ(ωl,ξ)≤ dλ(ωm,ξ) ∀l ̸= m. (3)



Chapter 3 METHODS 8

3.1.2 Generalized LVQ

The generalized LVQ method was introduced by Sato and Yamada [6] in 1996.
The aim of generalized LVQ is to add a cost function which can be used to measure
the quality of the prototypes. The classifier can then be trained by minimizing the
cost function:

∑
i

Φ(µi) where µi =
dλ(ωJ,ξi)−dλ(ωK,ξi)

dλ(ωJ,ξi)+dλ(ωK,ξi)
. (4)

Here Φ(x) is a monotonic function. ωJ is the closest prototype with the correct
class label, c(ωJ) = c(ξi). ωK is the closest prototype with a different class label,
c(ωK) ̸= c(ξi). µi can decrease in two ways, either dλ(ωJ,ξi) becomes smaller or
dλ(ωK,ξi) grows bigger. This means cost function decreases as a correct proto-
type get closer and all the wrong prototypes get further away from the data point.
The cost function becomes negative when the closest prototype to ξ has the right
class. If dλ(ωJ,ξi) < dλ(ωK,ξi) then the numerator of µi in Equation 4 becomes
negative. Minimizing the cost function can be done using an optimization method
like gradient descent.

3.1.3 Generalized Relevance LVQ

This thus far we used the euclidean distance which assumes every feature is
equally important. We can alter this distance measure by including a relevance
value to each feature. As the importance of features is not known beforehand, we
need to find the correct relevance during the training. This was implemented with
Generalized Relevance LVQ [8,11]. The metric dλ is altered such that a weight is
added to each dimension of the space:

dλ(ω,ξ) = ∑
j

λ j(ω j −ξ j)
2, (5)

∑
j

λ j = 1. (6)

Where λ j is the weight assigned to feature i, λi, also referred to as the relevance
and ω j is the j’th component of the prototype ω. In the previous variants nor-
malization could be used to improve performance, but for Generalized Relevance
LVQ it is necessary for relevances to make sense. Ideally, the relevance would
represent the importance of the feature, which is not always true without normal-
ization. If X j has a low relevance, it can still have an high influence if the scale
of X j is large. A feature could have a high relevance but be on a very small scale,
adding almost northing to the equation 5. We need the data to be on the same
scale. To achieve this we use z-scoring. With the z-score transformation we get



Chapter 3 METHODS 9

the same mean, 0, and standard deviation, 1, for each feature. This ensures all
features are roughly on the same scale.

3.1.4 Generalized Matrix LVQ

The concept of relevances can be expanded. In a paper published in 2009 GMLVQ
is introduced [1]. GMLVQ uses a N ×N matrix for the relevance, Λ, instead of
a single relevance per feature to account for correlations between features. With
this we define the following distance metric:

dΛ(ω,ξ) = (ξ−ω)⊤Λ(ξ−ω). (7)

dΛ is not guaranteed to be a valid distance measure. For it to become valid we
need two properties. Λ needs to be symmetric and non-negative. We can guarantee
these properties if

Λ = Ω
⊤

Ω (8)

is enforced with an arbitrary M ×N matrix Ω. Often M = N and Ω is a square
matrix, but there are cases where choosing M ≤ N to reduce the dimensions of
Ω is preferable [12]. For our experiments we have chosen M = N. We need to
enforce these conditions throughout training. This means Λ should not be changed
directly. Any time Λ needs to be altered the alterations are made to Ω instead. By
only changing Ω we guarantee dΛ stays a valid distance measure. The precise of
these alterations can be found in the original paper [1]. We still need the relevances
of the features to sum to one. These relevances are now on the diagonal of Λ.
Using the decomposition in equation 8 we can write this in terms of Ω:

∑
j

Λ j, j = ∑
k, j

Ωk, jΩk, j = ∑
k, j
(Ωk, j)

2 = 1. (9)

To achieve this we divide by the sum of squared roots: (∑k j(Ωk, j)
2)1/2. We need

to do this after every step to ensure valid relevances.

3.1.5 Constrained GMLVQ

For our methods, we want to fix the relevance of a single feature during the train-
ing. As the main diagonal hold the relevances we can normalize similarly to
GMLVQ (See equation 9). We need to split the normalization process into two
parts. The first step fixes the relevance of our fixed feature f to the fixed value
Y , Λ f , f = Y . Afterwards, the remaining feature are normalized to the remaining



Chapter 3 METHODS 10

relevance, 1−Y . This gives us the following normalization process:

∑
j, f
(Ω j, f )

2 = Y, (10)

∑
j,k ̸= f

(Ω j,k)
2 = 1−Y. (11)

As with GMLVQ we need to apply this after every learning step.

3.2 Dimensionality Reduction
We look at two different methods for dimensionality reduction. We start by
looking at the Principal Component Analysis (PCA). Then we look at the Λ-
transformation we developed for our specific application. To make the distinction
between elements before and after the transformation, we add an asterisk to any
element after the transformation, ·∗.

3.2.1 Principal Component Analysis

PCA is a method often used to reduce the dimensionality of a data set. The orig-
inal ideas behind PCA can be found in a paper by Pearson in 1901 [13]. The
modern name and formulation can be attributed to Hotelling [14].
The main idea behind PCA is to find the linear combinations of features with the
highest variances. These combinations of features, called Principal Components
(PC), are calculated such that they capture the highest variant while also being
uncorrelated to the other principal components. The first component is the com-
ponent with the biggest variance. The second component captures the biggest
amount of remaining variance while being orthogonal to the first one. This pro-
cess repeats until a predefined ending criterium is reached. An example of this can
be seen in Figure 1. Here, a dataset generated by a multivariate normal distribu-
tion is transformed using PCA. In figure 1a, we see the two features of the original
data set. In addition to this, the direction of the first two principal components is
show. Figure 1b shows the distribution after applying the PCA.



Chapter 3 METHODS 11

(a) X , the data set before PCA transformation (b) X∗, the data set after PCA transformation

Figure 1: PCA transformation of a dataset generated by a multivariate normal.

There are multiple ways to calculate the principal components. We used the
singular value decomposition to get our PCs [15]. The singular value decomposi-
tion separates the data matrix X into three separate matrices:

X =USV⊤. (12)

Our data set X is a P×N matrix. U is a P×P matrix, S is a P×N matrix and
V is a N ×N matrix. V contains all the linear combinations of features that make
up the PCs in the columns. The diagonal of S contains the part of variance that
is explained by each PC. To reduce the number of features, we transform the data
only using the PCs that explain the biggest part of the variation. To do this V
is shortened to Vr by removing all columns with small explained variance. The
transformed data set can be calculated using

X∗ = XVr. (13)

3.2.2 Λ-transformation

The PCA transformation prioritized variation in the data set to determine which
features are important so keep. However, there is little to guarantee us that fea-
tures with high variation are also important for classification. Ideally, we would
like to select the linear combination of features that are relevant to our classifi-
cation. After training a GMLVQ classifier, the information of the relevant linear
combinations is stored in the relevance matrix, Λ. The eigenvectors of Λ form
an orthogonal set of features whose relevance is equal to the eigenvalues of the
eigenvectors [1, 12]. Thus, the eigenvectors of Λ would make for a good basis for
a transformation to reduce the number of features.
To obtain Λ we need to train a classifier on the data set. Afterwards, we can then



Chapter 3 METHODS 12

use the Λ to reduce the number of features. If we only needed to train on the data
set once, this would be useless as the calculation for the reduction is the same
as just training on the full data set. However, in our case, this is less of an is-
sue. We are training a classifier for each combination of feature and fixed feature
value (see section 3.3). The extra computational cost of a single training process
is small compared to the large benefit we gain from reducing the number of fea-
tures in our data set. When using this transformation, which we will refer to as
the Λ-transformation, we need to change our methodology a bit. We need to train
once without fixing the relevance of any feature to be able to find Λ for the trans-
formation. The transformation matrix T can be found be looking at the canonical
form of Λ, ΛC, where the eigenvectors of Λ are the columns sorted by their eigen-
values. We reduce the number of columns by removing the eigenvectors of ΛC
with a low eigenvalue to make our transformation matrix T . T is a N ×M matrix
where M ≤ N. The transformation from the original data set and vice versa can
be calculated using

X∗ = X ·T, (14)

X = X∗ ·T⊤. (15)

This same process can be applied to the relevance matrix. Unlike our data set X ,
Λ is a square matrix where both the axis need to be transformed. To do this we
use

Λ
∗ = T ·Λ ·T⊤, (16)

Λ = T⊤ ·Λ∗ ·T. (17)

To see the effect of the Λ-transformation we can plot some features before and
after the transformation. In figure 2a we see the first 3 features of the original
data set that contains 5 features. More information on this data set can be found
in section 5.1.2. We can see an individual features alone are not enough as we
see a lot of overlap on the diagonal. The first feature has a significant overlap
between class 0 and 2 and the second feature has a lot of overlap between class 0
and 1. On the off-diagonal we see scatter plots of 2 features. In all the plots of the
original features we see a significant overlap between the classes. In the second
figure, 2b, we see the transformed features. As ΛC was sorted by their eigenvalues
we expect the first features to be the most significant. On the diagonal there is
still some overlap visible. These features alone would not be able to classify
very accurately. On the off-diagonal we can already see considerably improved
separation between the classes, especially between feature 1 and 2. This is exactly
what we want from the transformation. The first few features have become the
most important to distinguish the classes.



Chapter 3 METHODS 13

(a) X1,X2,X3 of the original data set
(b) X∗

1 ,X
∗
2 ,X

∗
3 The 3 features of the trans-

formed data set

Figure 2: A data set before and after Λ-transformation. The first three eigenvectors
of Λ have eigenvalues of 0.49, 0.22 and 0.11

3.3 Relevance bounds
Whether we use dimensionality reduction or not, we need to compute the rele-
vance bounds using all the results. To see how this is done we take a look at the
error curve. An error curve shows the error for a single fixed feature with different
fixed feature values. To get different relevances values for the curve we use the
constrained GMLVQ. An example of an error curve can be seen in figure 3. Here
we see a graph for the accuracy of a single feature. Each dot indicated a single run
with a fixed relevance on the x-axis and the accuracy on the y-axis. As the fixed
relevance value increases it reduces the relevance of other features as they still
add up to 1. In the extreme cases we have a fixed relevance of 0 which is equal to
removing the feature and a fixed relevance of 1 which considers only the feature
whose value was fixed. Each run below the horizontal line is within a predefined
margin of error. From the figure we would set the minimum relevance to 0.08 and
the maximum to 0.28. This process is repeated for each feature.



Chapter 3 METHODS 14

Figure 3: Example of an error curve where the second feature, X2 has its relevance
fixed.

When using dimensionality reduction, this becomes slightly more compli-
cated. Once we have our relevance matrices for each fixed feature we need to
go from the relevance of the fixed feature back to the original space. For this, we
can use equation 16. Because we only have full control over the fixed feature we
do not get sequential values on the x-axis going from 0 to 1 (See figure 4). In the
error graphs the colour indicates the fixed relevance value going from 0 (Purple)
to 1 (Yellow). The lines connecting the points are for visual aide. In figure 4a we
see a feature that is well represented by X∗

1 . The line does not start at 0 as other
features in the transformed space can also contribute to the relevance of X1. The
relevance increases to 0.6 as it does not folly represent X!. In figure 4b we see a
feature that is not well represented by X∗

1 . Here we see a narrow range of values
for X2 going from 0.08 to 0.13. As X2 is not well represented by X∗

1 the x-axis is
not increasing as the fixed feature value increases. For each original feature, we
get an error curve from each of the features in the dimensionally reduced space.
All of their error curves are considered when determining the minimum and max-
imum relevance of the features. For each original feature we look at all their error
curves and determine each minimum and maximum. We then take the lowest min-
imum and highest maximum relevance for that feature. For a single error margin
we can show the error bounds quite simple with a bar graph as seen in figure 5a.
We can also put more information into the graph. If we increase the error margin,



Chapter 3 METHODS 15

the range of valid relevances grows as well. This means we can see different error
margins as growing relevance ranges. Because the bounds only grow larger we
can overlay them without losing any information. This can be seen in 5b, where
we can see some additional context. Doing this reduces the chance we take wrong
conclusions simply due to an unfortunate choice of error margins.



Chapter 3 METHODS 16

(a) Error curve of X1, which is well represented by X∗
1 .

(b) Error curve of X2, which is badly represented by X∗
1 .

Figure 4: Error curves derived from constraining X∗
1 in the transformed space.



Chapter 3 METHODS 17

(a) Relevance bounds with a 0.01 error margin.

(b) Relevance bounds with multiple error margins.

Figure 5: Relevance bounds in the transformed space.



Chapter 3 METHODS 18

3.4 Optimization method
We replace gradient descent with a newer variant. This variant uses the averaging
of previous steps in the gradient descent to reduce the issues of oscillating conver-
gence [16]. The methods start the same as gradient descent. After a set number
of steps it starts averaging the latest results. This average is then compared to
a potential new step by looking at the objective function for both. If the aver-
age scores better than the ordinary gradient descent step, it is chosen instead, and
the step size of the gradient descent is reduced. This causes the steps to become
smaller if it is stuck oscillating and break the oscillating patterns.

3.5 Null space correction
Correlated features can have a very significant on the relevances in GMLVQ. The
correlated features can cause ambiguous relevances. To see this, we take a look
at an extreme example. Consider a data set X with two features that are entirely
identical, X1 = X2. Also consider that for all prototypes we have ∀ j,ω j,1 = ω j,2.
In other words, the first and second component of a prototype are the same for
each prototype. If X1 and X2 are completely irrelevant, then our relevance matrix
should represent this as a relevance of 0. For Λ = Ω⊤Ω this would mean

Λ1,1 = ∑
i

Ω
2
i,1 = 0, (18)

Λ2,2 = ∑
i

Ω
2
i,2 = 0. (19)

However, relevance matrices are not unique. We can generate an Ω̃ which makes
the same classifications as Ω but has non-zero relevances for X1 and X2. To do
this we simply a row to Ω with c in the first column and −c in the second column
for any c ∈ R,

Ω̃ = Ω+



0 0 0 · · · 0
...

...
...

...
...

c −c 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0


. (20)

Due to the first two features being exact copies of each other the classes given to
the samples or prototypes do not change

Ω̃ξi = Ωξi ∀i, (21)

Ω̃ω j = Ωω j ∀ j. (22)



Chapter 3 METHODS 19

If we look at the relevance matrix Λ̃ = Ω̃⊤Ω̃ we can calculate the relevance of the
first two features.

Λ̃1,1 = Λ1,1 + c2, (23)

Λ̃2,2 = Λ2,2 + c2. (24)

If the original Ω has a zero relevance, there are other relevance matrices that can
achieve the same results with different relevances. These additions of unnecessary
influences due to correlated features will be referred to as ambiguous relevances.
We want to eliminate the influence of these ambiguous relevances. In section 2.2
we mentioned the concept of a null space. These ambiguous relevances we have
seen are caused by combinations of features that are in the null space. There is
a method to limit reduce the effect of the null space [9]. The features in the null
space can be found by looking at the covariance matrix XX⊤. The eigenvectors of
the covariance matrix with an eigenvalue of 0 are the combinations of features that
comprise the null space. For XX⊤ we have the eigenvectors c j with corresponding
eigenvalues λ j where they are sorted by their eigenvalues. If there is a null space
then there will be a number of eigenvalues that are zero

λ1 ≥ λ2 · · · ≥ λJ = 0 = λJ+1 · · ·= λN . (25)

We can construct a matrix, Ψ, which is used to correct the influence of the null
space

Ψ = I −
N

∑
i=J+1

c j · c⊤j . (26)

With this matrix we can remove the influence of the null space on the relevance
matrix as follows

Ω̂ = Ω ·Ψ. (27)

Here Ω̂ does not have any contribution from the null space but still retains the
same classification as Ω. There are different ways to apply this. You could ap-
ply this technique every iteration while training, do it every P steps or only do it
after the training. We have opted to apply this method every iteration. It has not
been sufficiently explored whether doing it less often significantly impacts perfor-
mance.
In practice, the eigenvalues are rarely exactly 0. Instead of just selecting the eigen-
values that are 0, we look at the all eigenvalues below a certain threshold. While
these eigenvectors are not in the null space of X they do have a very small in-
fluence. For this threshold we use the contribution to the total eigenvalues. We



Chapter 3 METHODS 20

consider c j to be in the null space if

λ j

∑
N
i λ j

≤ t where t = 10−4. (28)

With this threshold we are able to reduce the influence of ambiguous relevances.



Chapter 4 IMPLEMENTATION 21

4 Implementation
The implementation of this method is done in python. We use an existing library
as a base. The SKLVQ library [17] already has implementations for several LVQ
variants including GMLVQ. It is scikit-learn [18] compatible and is made to be
expandable. Due to the modular nature of this library it is easy to implement the
constrained GMLVQ.

4.1 Changes to sklvq
For our methods we need to implement two additions. We need to implement the
ability to constrain the relevance matrix. For this, two variables are added to the
model. To indicate whether the constrained GMLVQ will be used a flag is added.
To keep track of what needs to be constrained, a tuple is added as well. This tuple
contains the index of the feature and the fixed relevance value. These values will
then be used in an alternative function for normalizing the Ω matrix.

1 def _constrained_normalise_omega(omega: np.ndarray,
relevance_fixed_value: tuple) -> None:↪→

2 selector = [x for x in range(omega.shape[1]) if x !=
relevance_fixed_value[0]]↪→

3 if relevance_fixed_value[1] == 0:
4 omega[:,relevance_fixed_value[0]] = 0
5 np.divide(omega, np.sqrt(np.einsum("ji, ji", omega,

omega)), out=omega)↪→

6 else:
7 np.multiply(omega,

np.sqrt((1-relevance_fixed_value[1])/np.einsum("ij,
ij", omega[:,selector], omega[:,selector])),
out=omega)

↪→

↪→

↪→

8 np.multiply(omega[:,relevance_fixed_value[0]],
np.sqrt(relevance_fixed_value[1]/np.einsum("i, i",
omega[:,relevance_fixed_value[0]],
omega[:,relevance_fixed_value[0]])),out =
omega[:,relevance_fixed_value[0]])

↪→

↪→

↪→

↪→

If the relevance is not fixed then the normalization of relevances happens as de-
scribed in section 3.1.4. If the flag for constraining the relevance matrix is set, we
will enter the alternative normalization function. This is split in two branches to
prevent division by zero. In the first branch we set the feature relevance of our
fixed relevance to 0. Then we normalize the matrix. For a non-zero fixed rel-
evance this process becomes a bit more involved. For fixed feature f and fixed



Chapter 4 IMPLEMENTATION 22

feature value Y we use

Ωi j(t +1) = Ωi j(t) · ((1−Y )/ ∑
i, j ̸= f

(Ωi j(t))2)1/2, (29)

Ωi f (t +1) = ΩiX(t +1) · (Y/∑
i
(Ωi f (t +1))2)1/2 (30)

to normalize the matrix. We normalize the matrix such that all the features except
f are normalized such that the summed squared is 1−Y . After this, we normalize
feature f such that the summed square is Y .
The second change is a small one. We need to be able to add a null-space cor-
rection matrix. As before, we add a flag to indicate if it is used. We also add a
variable for the correction matrix itself to the model. The application is done by
multiplying Ω with our correction matrix.

1 def _correct_null_space(omega: np.ndarray, correction_matrix:
np.ndarray) -> None:↪→

2 np.matmul(omega,correction_matrix,out=omega)



Chapter 5 EXPERIMENTAL SETUP 23

5 Experimental Setup
For our experimentation, we rely on four different data sets. Each of these data
sets is increasing in complexity. The first three data sets are artificially generated.
The fourth data set is an astronomy data set concerning merger and non-merger
galaxies. We also specify the parameters and metrics used for our experiments.

5.1 Data sets
In this section, we go over the data sets used in the experiments. For each data
set, we show how the data set is obtained and what we expect from it. We also
mention if any parameters are used to generate the data.

5.1.1 Simple data set

The first data set we use has 4 features. The class is based on the first two features.
The first two features are normally distributed. For the normal distribution, we
choose a parameter value c. X1 is normally distributed with a mean of c and a
standard deviation of 1. X2 has the same standard deviation but a mean of −c.
These two features are used to determine the class using

∀ξ ∈ X : c(ξ) = sign(X1 −X2).

The other two features add some complexity to the data set. X3 is a copy of X1
with some Gaussian noise added to it. This results in X3 to be highly correlated
to X1. The final feature X4 is a noise feature. This is done with a simple Gaussian
noise which is not related to the classification in any way. For a c,d ∈ R:

X1 ∼ N(c, 1),
X2 ∼ N(−c, 1),
X3 ∼ X1 +N(0, d),
X4 ∼ N(0, 1).

Here c determined how X1 and X2 are situated and thus how big both classes are.
d determines how much noise is added to X3. Examples of the first two features
can be seen in figure 6.



Chapter 5 EXPERIMENTAL SETUP 24

(a) Simple data set X1 and X2 with c = 0.3 (b) Simple data set X1 and X2 with c = 1

Figure 6: First two features of the simple data set

The theoretical best case scenario would be a relevance of 0.5 for X1 and X2,
as those two feature are the determining features for the classes. However, X3 is a
feature that is highly correlated to X1. If the influence of noise, d is small enough,
the relevance of X3 may take the same role and share the relevance with X1. This
data set is small and simple. Because of this simplicity, a high relevance for the
noise may be permissible to still gain a well performing classifier. So it is still
possible that X4 hold on to some relevance.

5.1.2 Sklearn blobs

Our second data set is generated using the MAKE BLOBS function in sklearn [18].
This function generated a number of cluster centres in a box. Around these centres
the data is generated from an isotropic Gaussian distribution (Covariance matrix
is σ2I). This function has several parameters we can configure. These parameters
are listed below with their default value that we used unless stated otherwise.

• Number of samples (Default: 800)

• Number of features (Default: 5)

• Number of classes (Default: 3)

• Standard deviation σ (Default: 0.2)

• Size of the box where the centres lie (Default: Hypercube with length 1)

This configuration gives us a data set that is less trivial than the simple data set.
In figure ?? we can see an example of a data set generated with this method.



Chapter 5 EXPERIMENTAL SETUP 25

Figure 7: Pair plot of the X1,X2 and X3 off a data set generated from sklearn blobs.

In figure 7 we can see the distribution of the individual features on the diag-
onal. We can clearly see there is overlap between the classes. For this reason, a
single feature is not enough to correctly classify all examples. In the plots in the
off-diagonal, we see that the blobs are already slightly separated.
To further complicate this data set, we also add noise features to this data set. The
noise features added to this data set are all independent Gaussian noise. By de-
fault, we also add 5 noise features. With these features added, we have a total of
10 features.
Theoretically, the relevances we expect for this data set are quite simple. Each of
the features used to generate the data set are about equally relevant. The actual
optimal values differ depending on the positioning of the blobs in respect to each
other. Theoretically, the noise feature should hold no relevance. In practice, this
might differ a bit. Noise features may get a small relevance if their influence stays
small enough to not disrupt the classification. There is also a chance that, by pure
luck, the noise helps slightly in classification.



Chapter 5 EXPERIMENTAL SETUP 26

5.1.3 Blob variations

There are two variations we use. The first variant reshapes each blob such that
they are not isotropic. This is done by generating a random transformation ma-
trix for each class and transforming all data points using their respective matrix.
This causes each blob to have a different shape and puts more emphasis on the
interaction between features. In figure 8 we see the same data set as before but
with the blobs transformed. We can see that the main axis of the blobs shifted to
combinations of features.

Figure 8: Pair plot of the first three features off a data set generated from sklearn
blobs that are transformed.

The second variation adds copies of the first feature to the data set. These
copies can be added with or without noise. This variation is used when we want
to test the effect of strongly correlated features.



Chapter 5 EXPERIMENTAL SETUP 27

5.1.4 KiDS-GAMA

Our final data set is a real world data set. This data set holds information for
classifying merger and non-merger galaxies. The data set is a combination of two
imaging surveys, KiDS [19] and GAMA [20]. The two data sets have previously
been combine in a single data set which has a label to distinguish mergers from
non-mergers [21]. The features of the data set are generated using statmorph
[22]. Statmorph is able to generate a large set of morphological data from images.
Before we can use this data, we need to filter some data from it.
We start by removing some features from the data set. Several features in the
data set are related to the position of the galaxy in the image. The position in
the image should not matter for the classification of the data set. The statmorph
documentation also suggests considering the removal of these features. For this
reason, we remove the following features:

• nx stamp: Number of pixels in the ‘postage stamp’ along the x direction.

• ny stamp: Number of pixels in the ‘postage stamp’ along the y direction.

• sky mean: Mean background value. Equal to -99.0 when there is no skybox.

• sky median: Median background value. Equal to -99.0 when there is no
skybox.

• sky sigma: Standard deviation of the background. Equal to -99.0 when
there is no skybox.

• xmax stamp: The maximum x position of the ‘postage stamp’.

• xmin stamp: The minimum x position of the ‘postage stamp’.

• xc centroid: The x-coordinate of the centroid, relative to the original image.

• yc centroid: The y-coordinate of the centroid, relative to the original image.

• ymax stamp: The maximum y position of the ‘postage stamp’.

• ymin stamp: The minimum y position of the ‘postage stamp’.

In addition to these feature we also need to remove two asymmetry features:
asymmetry, outer asymmetry. The calculation of these features uses the infor-
mation of the merger label. We also need to remove any data points that have
wrong or no information. The first step is using the flags from statmorph. Both
’flag’ and ’flag sersic’ can be used to determine if either the measurement or the
sersic calculation had problems. We remove all data points that have issues here.



Chapter 5 EXPERIMENTAL SETUP 28

Then we also remove all data points with ’NA’ values. This brings our data set
from 36753 to 3577 data points. From here we remove the outliers. We use in-
terquartile range (IQR) to remove the outliers from our data. This leaves us with
a data set with 2400 data points and 37 features. Of these 2400 data points, 962
are mergers and 1438 are non-merger.

5.2 Experimental Configurations
For GMLVQ the following settings are used by default. If different settings are
used for an experiment, it will be explicitly stated.

• 90 gradient steps.

• Z-score normalization.

• 1 initial prototype step size.

• 2 initial matrix step size.

• 5 waypoints stored during waypoint gradient descent.

• Initialized prototypes by class conditional mean.

• Fixed relevance values run from 0.00 to 0.98 with 0.02 between each point.

• 1 prototype per class.

We also use 10-fold cross validation for calculating the Λ-transformation and for
calculating the relevance bounds. For the computation of relevances we average
the relevance matrix resulting from each fold. For unbalanced data sets we use
undersampling of the majority classes to balance the classes.

5.3 Performance Metrics
For measuring performance, two different metrics are used. The first metric used
is the test accuracy/error. After testing on the training set, the resulting classifier
is used on the test set. The accuracy is then calculated by dividing the number of
correct classifications by the total number of samples is the test set. This is then
repeated for every fold and averaged. The error is simply 1 minus the accuracy.
The second metric is used for 2 class problems. The performance of 2 class
problems can be measured the Area Under the Receiver Operating Characteris-
tics (AUROC) [23]. The receiver operating characteristic curve (ROC-curve) is
the curve that plots the True Positive Rate (TPT) against the False Positive Rate
(FPR) for differing values of the decision function. An example of a ROC curve



Chapter 5 EXPERIMENTAL SETUP 29

can be seen in Figure 9. Here we see a ROC-curve and a diagonal line. The
diagonal line is the ROC-curve that corresponds to random guessing.

Figure 9: Example of an ROC-curve.

The AUROC is the area underneath the ROC-curve. A classifier with a higher
AUROC would be a better classifier, as it means a lower FPR and higher TPR.
The best case scenario is an AUROC of 1. The AUROC of random guessing is
0.5. To calculate the AUROC while using cross validation we require a process
called threshold averaging which is described in [23]. This method can be used to
average multiple ROC-curves. To achieve this average you look at a set number of
threshold values. For each of these thresholds you look at all the individual ROC-
curves. You then average out the TPR and FPR of the value of the ROC-curves
with a threshold closest to the current threshold value.



Chapter 6 BOUNDS WITHOUT DIMENSIONALITY REDUCTION 30

6 Bounds without dimensionality reduction
In this section, we look at the relevance bounds we get without reducing the di-
mensionality of the data sets. For each data set we discuss the error bounds.

6.1 Simple data set
First we look at the relevance bounds for the simple data set. In figure 10 we see
the relevance bounds for different error margins for the accuracy.

Figure 10: Relevance bounds of the full simple data set.

The intervals for the smaller error and quite thin. This is due to the low number
test that are within this error bound. Looking at the legend of figure 10 we see
there are only 3 (1.5%) are within 0.3% accuracy and 7 (3.5%) are within 0.5%.
We see the bounds of feature 1 and 2 are most relevant, which is what we expect.
When looking at the 1% error margin we see that the ranges of valid relevances
are roughly 0.3-0.7.
When looking at the minimal relevance of the noisy copy and the noise feature,
we see that both start at 0. This tells us that the relevance of these features can
be set to 0 without significantly impacting the performance. For the noise feature



Chapter 6 BOUNDS WITHOUT DIMENSIONALITY REDUCTION 31

this makes sense. Not including the noise feature should not impact performance.
When the noisy copy or the noise feature have a high relevance, we see a decrease
in accuracy. This tells us the classification is relatively fragile. If the noise gains
some relevancy, it immediately causes some additional misclassification. This can
be explained by the closeness of the 2 classes. Looking at the data set in figure 6
we see that there are a lot of points close to the boundary. Even if the boundaries
shift slightly, it already causes a significant number of misclassifications.

6.2 Blob data set
The blob data set has its classes more separated. If we look at the data set (Figure
7) we see some clear separation between the classes. The classes overlap near
the boundary, which makes a 100% classification accuracy near impossible to
achieve. The prototypes for this data set. We see the classes are not completely
separated. In figure 11 we see the relevance bounds of this data set.

Figure 11: Relevance bounds of the blob data set.

In these relevance bounds we see different behaviour. The first thing we see
here is that the minimum relevances are significantly lower, even for the features



Chapter 6 BOUNDS WITHOUT DIMENSIONALITY REDUCTION 32

that we expected to be relevant. An interesting effect can be seen in the noise,
where most of the interval is able to perform well. To explain this, we need to
look at the involved error curves. Below are 2 Figures 12,13 showing 2 relevant
and 2 noise features.

(a) Error curve of feature 1 (b) Error curve of feature 2

Figure 12: Error curves for the first 2 relevant features, 1 and 2

(a) Error curve of feature 9 (b) Error curve of feature 9

Figure 13: Error curves for 2 irrelevant features, 9 and 10

Here we see the error curves are almost entirely flat. For the relevant features,
we see mild dips for the lower values, increasing only once the relevance is forced
to high values. The irrelevant features are mostly flat. Most variance can be
explained with errors due to randomized effects. There are some conclusions we
can make from these graphs. Firstly, of all relevant features, it seems like feature 4



Chapter 6 BOUNDS WITHOUT DIMENSIONALITY REDUCTION 33

is the least useful. It has the lowest minimal relevance and performance decreases
once it becomes more relevant. Noise feature 6 seems, by pure luck, to be the most
harmful noise feature. In general, this problem is resilient to the noise features.
Performance barely drops even if the relevances of the noise becomes very high.

6.3 Transformed blob data set
The transformed blob data set is more complicated than the normal blob data set.
Each blob has a different shape. This means that the important features for each
class may differ. The bounds we find after training are shown in figure 14.

Figure 14: Relevance bounds of the transformed blob data set.

The 5 features that were used to generated blobs all have a higher minimal
relevance than the 5 noise features. Feature 1 and 5 seems to have the most impact
on the classification. We also see the error bounds for the noise features are very
different. While minor relevances in the noise are still tolerable, performance
quickly drops when the noise features are forced to be relevant.



Chapter 6 BOUNDS WITHOUT DIMENSIONALITY REDUCTION 34

6.4 KiDS-GAMA data set
With the KiDS-GAMA data set, the main disadvantage of this method becomes
very apparent. As the method brute forces all different combinations of features
and fixed values. This significantly increases the number of trainings that have to
be done if the number of features increase. The total number of trainings that have
to be done are

Features ·Number of fixed relevance values (31)

For the blob data set this is 10 ·50 = 500 total trainings. The KiDS-GAMA data
set increases this values to 37 · 50 = 1850, which is already 3.7 times as high.
GMLVQ itself is also affected by the dimensionality. Both the increased number
of features and the increased number of fixed values cause the time required to
increase. This causes the computational time to become too high for this data set.
For this reason, we investigate techniques to reduce the number of features we
need to train before we can find the relevance bounds.



Chapter 7 COMPARING DIMENSIONALITY REDUCTION 35

7 Comparing dimensionality reduction
For dimensionality reduction, two methods are compared. PCA is compared to
the Λ-transformation by looking at their performance using different numbers of
features in the reduced data set.

7.1 Principal Component Analysis
We are comparing the performance of GMLVQ classifier with different number
of PCA components. To do this, we measure the performance of the classifier for
different number of PCA components used. We first look at the simple data set.
For this data set we should be able to reduce the data set down to 2 features. In
table 1 we see the results of the tests. We see the best performance is achieved
when using all 4 PCs. When lowering it down to 2 PCs the accuracy also takes a
significant hit.

components 4 3 2
acc (%), PCA 99 96 92

Table 1: The accuracy when changing the number of PCA components used dur-
ing training of the simple data set.

The blob data set has 5 clearly relevant features and 5 noise features. We
would expect to still see a decent performance with 5 features. In table 2 we can
see the accuracies.

components 10 9 8 7 6 5 4 3 2
acc (%), PCA 88 87 88 88 83 82 83 83 80

Table 2: The accuracy when changing the number of PCA components used dur-
ing training of the blob data set.

For these two data sets the accuracy after the PCA drops, but the drop-off is not
very high. However, if we take a look at one of the Blob variants this changes. If
we take the transformed blobs we see a more significant impact as seen in table 3.
We see here that certain PCs contain important information. We see a drastic drop
between 8 and 9. A similar decrease can be seen between components 3 and 4.
This implies that PC 4 and 9 seem to hold significant information for classification
that is not held in the features with higher explained variance.



Chapter 7 COMPARING DIMENSIONALITY REDUCTION 36

components 10 9 8 7 6 5 4 3 2
acc (%), PCA 85 83 70 70 71 70 70 60 59

Table 3: The accuracy when using the PCA components with highest explained
variance during training of the transformed blob data set.

To show this is not the optimal way to choose our feature we can consider
the following. If this method results in the best feature to use, we should not
be able to find other combinations of features that perform better. To do this
we look at 3 features. In table 3 we see this gave us an accuracy of 60%. As
previously explained, feature 4 and 9 seem important. In addition to this, we add
feature 1 to get our three features. If we train strictly on these features we get
an accuracy of 77%. This significantly outperforms using the 8 features with the
highest explained variance. This shows the choice of PCs is not optimal. When
we look at the linear transformations of these PCs in figure 15, we see a feature
with a high explained variance but irrelevant information or vice versa. All other
PCs can be found in Appendix A.

(a) PC with high explained variance but little
relevant information

(b) PC with low explained variance but con-
tains relevant information

Figure 15: Example of two different PCs

7.2 Λ-transformation
We can apply the same method for the Λ-transformation. By training once before-
hand we can get Λ. We use it to reduce the number of features in the same way
as we did with PCA. For this, we use the exact same data sets. The results of this
for the simple data set can be found in table 4. Here we see that the performance
stays quite high. Staying near perfect even when reduced to 2 components.



Chapter 7 COMPARING DIMENSIONALITY REDUCTION 37

components 4 3 2
acc (%), Λ 99 99 98

Table 4: The accuracy when changing the number of Λ-components used during
training of the simple data set.

Now we look at the blob data set. PCA kept a decent performance when
lowering the number of features. In table 5 we can see the accuracies for the
Λ-transformation. Here we are starting to see a clear difference.

components 10 9 8 7 6 5 4 3 2
acc (%), Λ 88 88 88 88 87 88 88 89 89

Table 5: The accuracy when changing the number of Λ-components used during
training of the blob data set.

Our third data set, the transformed blobs, have a very significant change in
performance. In table 6 we see performance is maintained even when significantly
lowering the number of components. Unlike PCA, where the 9th component was
very relevant, the Λ-transformation find only 3 components that are very relevant.

components 10 9 8 7 6 5 4 3 2
acc (%), Λ 84 85 85 85 86 86 86 86 80

Table 6: The accuracy when changing the number of Λ-components used during
training of the transformed blob data set.

These test confirm our intuition. When we create a transformation for the data
set using the information gained from a prior training, we are able to reduce the
number of dimensions significantly better than we could when using PCA. From
now on, we use the Λ-transformation as our method to reduce dimensionality.



Chapter 8 PROPERTIES OF THE Λ-TRANSFORMATION 38

8 Properties of the Λ-transformation
In the previous section we have seen the performance of the Λ-transformation in
comparison to the PCA transformation. In this section we look further into effects
of the Λ-transformation on the calculation of the relevance bounds.

8.1 Λ matrix after transformation
One of the major differences of the Λ-transformation when comparing it to PCA is
that the Λ-components are chosen in such a way that they are the features that are
relevant. As these components are the components we got from training we think
of them as the optimal features to consider. If we use entire Λc to perform our
transformation, we see something interesting happen which confirms this idea.

When we perform the Λ-transformation of the transformed-blob data set and
train on the X∗ we see the relevance matrix turn into an almost diagon matrix (fig-
ure 16). As the Λ-components are all orthogonal and all original information is
still there, we expect there to be very little interplay between the features. On the
diagonal of this matrix are the eigenvalues that are associated with each eigenvec-
tor.

Figure 16: Relevance matrix after training the transformed data set.

We can repeat this process using fewer features. When we reduce the number



Chapter 8 PROPERTIES OF THE Λ-TRANSFORMATION 39

of features to the first 5 Λ-components we see more values appear on the off-
diagonal (Figure 17). While the main diagonal is still the most relevant, the effects
of the features on the main diagonal are compensated by the other features.

Figure 17: Relevance matrix after training the transformed data set with 5 features.

These matrices can be transformed back into the original space. Ideally, these
matrices are near identical to the Λ matrix that was obtained when training on the
original data set without any dimensionality reduction (Figure 18). This matrix is
very similar to the matrices obtained when inverting the Λ-transformations with
different number of features as seen in Figure 19.

Figure 18: Relevance matrix after training the transformed-blob data set.



Chapter 8 PROPERTIES OF THE Λ-TRANSFORMATION 40

(a) Λ∗ transformed back into the original
space of Λ-transformation (10 features).

(b) Λ∗ transformed back into the original
space of Λ-transformation (5 features).

Figure 19: Relevance matrix with different number of Λ-components for the
transformed-blob data set.

We can see that even with a reduced number of features our final result will
be the same relevance matrix. This tells us that the method is effective at reduc-
ing the dimensionality without significantly changing the results. Using this new
transformation we can also calculate the relevance bounds. To do this we take
the resulting relevance matrices we get from training after the transformation and
apply the inverse transformation to get the original relevance bounds which can
be seen in figure 20.



Chapter 8 PROPERTIES OF THE Λ-TRANSFORMATION 41

Figure 20: Relevance bounds of the transformed-blob data set using 5 Λ-
components.

8.2 Eigenvalues and eigenvectors
The choice of features in the Λ-transformation is dependent on the eigenvalues.
The eigenvalues correspond to the relevance of the feature created using the asso-
ciated eigenvector. In table 7 we see the accuracies of the transformed-blob data
set and the eigenvalues.

components 1 2 3 4 5 6 7 8 9 10
acc (%) - 80 86 86 86 86 85 85 85 84
eigenvalues 0.428 0.238 0.169 0.097 0.056 0.007 0.003 0.002 0.001 0
Σeigenvalues 0.428 0.665 0.835 0.932 0.987 0.994 0.997 0.999 1 1

Table 7: The accuracy when changing the number of Λ-components used during
training of the transformed blob data set with corresponding eigenvalues

Here we see the total eigenvalue needed for a good performance. We see that
once the sum of eigenvalues exceeded 0.8 we are able to get a decent accuracy.



Chapter 8 PROPERTIES OF THE Λ-TRANSFORMATION 42

We must consider that accuracy is not the only thing we are looking for. Our goal
is to find the relevance bounds.

8.2.1 Fixed space

We are not looking for just the best classifier, but at many configurations that have
differing performance. For this reason, it is important to consider enough features
which we can constrain. If we do not choose enough Λ-components then there will
not be enough diversity among the features when we fix the values. In addition to
this, if there are no Λ-components that significantly represent a feature from the
original space, then it will never be fixed to a higher relevance. This means that,
unlike the method without dimensionality reduction, not every original feature has
their relevance fixed to a large range of values. We can use two different graphs
to show the values that have been seen during the training. First, we can graph
the maximum value of that each feature will be set to with a fixed relevance. To
calculate this we simply take the maximal value for each of the original features
in the used Λ-components. The second graph we can view the range of values we
have attained after training. We can compare this to the relevance bounds to see if
we have a significant space where no good classifiers could be trained.
Below are these graphs for the transformed-blob data set (Figure 21). When we
compare these to figure 20 we see that there is a significant space that is covered
by the fixed relevances which is outside the relevance bounds.



Chapter 8 PROPERTIES OF THE Λ-TRANSFORMATION 43

(a) The maximum value each original feature is fixed to.

(b) All resulting relevances from the all tests.

Figure 21: Transformed-blob data set with 5 Λ-components.



Chapter 8 PROPERTIES OF THE Λ-TRANSFORMATION 44

This means that our choice of number of features has a significant effect on
the outcome. More features gives us a wider range of relevances that are explored
but comes at a great computational cost. To make this decision there are two main
methods. The first method is to discard ant Λ-components with an eigenvalue
below a certain threshold. The second method is to add Λ-components until the
sum of their eigenvalues exceeds a threshold. In our experiments, using the second
methods with a threshold of 0.95 both reduces our data sets enough to make this
method computationally viable but leave enough features to explore a significant
amount of the relevances.

8.3 Correlated features
If we want to explore a large range of values for the relevance of a feature we need
that feature to be represented significantly in a Λ-component. One of the proper-
ties of data sets that can complicate this is correlation. Correlated features tend
to go together in the Λ-matrix. For example, imagine a feature with a relevance
of 0.5. If we take that same data set and add 4 copies of that feature to it, they
will not all have a relevance of 0.5 as the total relevance would exceed 1. The
relevances of those features are roughly 0.1. The Λ-components that include one
of those features often also include the copies. This causes each individual feature
to be less represented in the Λ-component. Because of this, they are also be fixed
to a smaller range of values.

8.4 Null space correction
In section 3.5 we have seen an additional effect correlated features can have. The
null space correction can correct these false relevances. To see this we take a look
at the blob data set. To this data set we add 5 copies of the first feature with a
small noise added some Gaussian noise, N(0,0.02). We can train on this data set
and see the relevances with and without null space correction.

Feature Original Copy1 Copy2 Copy3 Copy4 Copy5

Without correction 0.012 0.027 0.021 0.009 0.015 0.017
With correction 0.011 0.011 0.012 0.012 0.011 0.010

Table 8: Relevances when training with and without null space correction

In table 8 we see the relevances change quite a bit. Without the correction the
relevances of the features span a range between 0.009 and 0.027. In contrast, when
applying the null space correction the relevances become very close to each other,



Chapter 8 PROPERTIES OF THE Λ-TRANSFORMATION 45

as we would expect. We can see the cause of this when looking at the eigenvalues
of XX⊤ and the correction matrix.

Figure 22: Eigenvalues of XX⊤ used to determine the null space.

In figure 22 we see the eigenvalues of XX⊤ divided by the total eigenvalues.
We see a clear difference between the first 5 and the others. 5 eigenvalues are
significantly lower then the rest. These 5 are small enough to consider inside the
null space. With these can compute the null space correction matrix (Figure 23).
Here we can clearly see how the null space is corrected. We see a 1 for each
feature which are not copied and roughly 1/6 for the copied features. This means
X1 and their copies get averaged at each step of the training.



Chapter 8 PROPERTIES OF THE Λ-TRANSFORMATION 46

Figure 23: Null space correction matrix of the blob data set with added copies of
the first feature.



Chapter 9 EXPERIMENTS AFTER Λ-TRANSFORMATION 47

9 Experiments after Λ-transformation

9.1 Simple data set
We look at the simple data set. As expected, this data set is mostly represented by
one Λ-feature that shows the relation between the first two features. This feature
has most of the relevance (0.94). The results can be seen in figure 24.

Figure 24: The relevance bounds and the first two Λ-component



Chapter 9 EXPERIMENTS AFTER Λ-TRANSFORMATION 48

We see the effect of a small number of Λ-components. There are just 2 compo-
nents used here. Because of this, there is not enough variation possible. The noise
feature is almost completely ignored as it is not represented in the Λ-components.

9.2 Transformed Blob data set
We have already seen the results of the transformed blob data set in figure 20.
Here we see some differences with the original relevance bounds in figure 14. We
see a slight increase for the best accuracy. This can be explained by two factors.
These results have gone through two separate trainings. We train to compute the
Λ-transformation and then we train in the transformed space. In total, it has had
more iterations to train. In addition to this, the second training is done in a smaller
space. This makes the space to traverse much smaller and can cause it to converge
more quickly. In addition to the accuracy, we also see wider optimal bounds (dark
blue) but smaller bounds overall. The wider optimal bounds are mostly due to the
first few Λ-components which have a wider range of optimal values.

9.3 KiDS-GAMA data set
With these new tools at our disposal, we can start experimenting on the KiDS-
GAMA data set. As mentioned previously, it is not feasible to calculate the rele-
vance bounds of the full data set. This means we are using the Λ-transformation
to reduce the dimensionality of the data set. The first three features of the data set
after the transformation can be seen in Figure 25.



Chapter 9 EXPERIMENTS AFTER Λ-TRANSFORMATION 49

Figure 25: features, X∗
1 ,X

∗
2 and X∗

3 of the KiDS-GAMA set after the Λ-
transformation.

Using a sum of eigenvalues of 0.95 we reduce our data set from 37 components
to 8 components. The eigenvalues of these components are: 0.715, 0.097, 0.055,
0.042, 0.022, 0.016, 0.006 and 0.006. Using the Λ-transformation, we can create
the relevance bounds for using the accuracy or the AUROC as metric. These can
be seen in figure 26a and 26b respectively.



Chapter 9 EXPERIMENTS AFTER Λ-TRANSFORMATION 50

(a) Relevance bound of the KiDS-GAMA data set using the accuracy.

(b) Relevance bound of the KiDS-GAMA data set using AUROC.

Figure 26: KiDS-GAMA data set with 8 Λ-components.



Chapter 9 EXPERIMENTS AFTER Λ-TRANSFORMATION 51

If we look at the eigenvalues one thing really stands out. There is one eigen-
value that is significantly higher than the rest. This implies that the data set can be
reduced to a very small number of features while still retaining a high accuracy.
When we reduce the number of features to 3 we see this effect. With 3 features
we are still able to achieve an 82% accuracy. For the reasons mentioned in section
8.2.1 we still use 8 features.

9.4 Correlations within KiDS-GAMA data set
Just like some of our artificial data sets, the KiDS-GAMA data set also has a
significant amount of correlations between features.

Figure 27: Correlation matrix



Chapter 9 EXPERIMENTS AFTER Λ-TRANSFORMATION 52

Figure 28: Absolute value of the correlation matrix > 0.8

In figure 27 and 28 we can see the different blocks of correlated features. We
see a few groupings with features that are highly correlated to each other. We
would expect these to influence our process. To see the effect this has on the re-
sulting relevance bounds we look at the first block of 4 features which involve the
ellipticity and elongation. These features are highly correlated. We compared the
relevance bounds of the normal method to training on the same data set, but with
3 of the 4 features removed. In figure 29 we see a big difference. Removing the
correlated features give us the knowledge that even with the elongation centroid
feature relevance at 0.10 we can still get respectable results. When using the full
data set this configuration was never attained as the Λ component which has the
elongation centroid in it also had the other 3. The only situations where this can
happen is when all 4 features have their relevance fixed to a high value or if a Λ

component is added which can differentiate them. Those Λ components have a
very low eigenvalue, and adding them would increase the computational effort.
This effect is less pronounced for the lower bounds, which is the strongest indica-
tor of e necessary feature.



Chapter 9 EXPERIMENTS AFTER Λ-TRANSFORMATION 53

Figure 29: Effect of correlated features in the data set

We can use null space reduction to reduce the influence of the correlated
features. For the null space correction matrix, we consider three thresholds:
10−4,10−3,10−2. Our first test shows that t = 10−2 reduces the accuracy to 0.75.
This means this threshold is too loose and considers relevant data is in the null
space. For the remaining thresholds, we can see the correction matrices in figure
30.

(a) Null space correction matrix for t = 10−3. (b) Null space correction matrix for t = 10−4.

Figure 30: Null space correction matrix for the KiDS-GAMA dataset.

These correction matrices have 2 interesting qualities. Firstly, there seem to
be several blocks of 2 features that are very related to each other. The second
are 2 bigger groups, one being 4 features and the other being 7 features, which
seem to be in the null space. The grouping of 2 features were already very visible



Chapter 9 EXPERIMENTS AFTER Λ-TRANSFORMATION 54

in the bounds we have previously seen and the feature names themselves. In the
relevance bounds we see little difference. For t = 10−4 we can see the relevance
bounds in figure 31. The main effect seems to be an equalization of the features
in the null space, which is expected. The relevant features also have a slightly
increased range.

Figure 31: Relevance bounds using the null space correction with t = 10−4

9.5 Removing sersic rhalf
In section 5.1.4 we have given a basic overview of which features we chose to
omit from the data set. The data set still hold a feature which may be trouble-
some. Sersic rhalf is a feature that holds a high relevance. The measurement
of Sersic rhalf may be inaccurate for mergers. For this reason, we want to look
at the same data set without Sersic rhalf. The relevance bounds obtained can be
seen in figure 32. The biggest difference can be seen in max ellip. In our previous
experiments this feature was quite relevant but did not stand out. After remov-
ing sersic rhalf the relevance of max ellip seems to have jumped up significantly,
becoming the feature with the lowest minimum relevance. In other words, this
feature has to be included in at least 0.05 relevance to get a within 1% of the best



Chapter 9 EXPERIMENTS AFTER Λ-TRANSFORMATION 55

case. The other features that seem to increase are all the other features that were
correlated to sersic rhalf.

Figure 32: Relevance bounds for null space correction with t = 10−4 without
sersic rhalf



Chapter 10 CONCLUSION 56

10 Conclusion
In this thesis we have looked at a use case for the fixed relevance. We used
fixed relevances to calculate relevance bounds in GMLVQ. With these relevance
bounds we were able to gain additional insight into the data sets which could not
be done using just GMLVQ. We have also investigated the main disadvantage of
our method, the computational time. To reduce the computational time, we used
two main methods to reduce the dimensionality. We compared PCA to the Λ-
transformation for several data sets and shown the Λ-transformation to be highly
efficient in reducing the number of features. Using this transformation, we were
able to reduce the number of features of our mock data sets.
For the Λ-transformation we have determined the main disadvantages: irrelevant
features and correlations. We have looked at null space reduction. Which is able
to regulate some of the problems that stem from correlated features but was not
able to fully eliminate the problems. Finally, we applied the method to a real-
world data set. This data set was too big to use without a form of dimensionality
reduction.
In this data set, we were able to significantly reduce the number of features. The
data set went from 37 dimensions to 8 or 9 depending on the null space reduction.

10.1 Future Work
While the results shown are promising, the method currently has a number of
problems that will need to be investigated. One of the primary hurdles for this
method is the existence of correlated features. Currently, the only mitigating fac-
tor for correlated features is in the null space reduction. Both method used to
reduce the dimensions have a tendency to group all correlated features together in
the post-transformation features. We think there is a lot to gain from eliminating
correlated features beforehand.
Currently, the method uses a grid search for our fixed feature values. While this
is very exhaustive, it is a significant waste of resources. Instead of using a static
grid of values for the fixed relevance we think there is much to gain by using a
dynamic range of relevances based on the fixed relevance values that you have
already tested. Using a dynamic range we can reduce the number of tests done for
fixed relevances outside our margin of error.
With the Λ-transformation we can not constrain the relevance of the original fea-
ture as it may be represented by multiple Λ-components. One way this may be
mitigated is by constraining multiple features at the same time. It may be possible
to more strongly control the relevance of the original features if multiple relevant
Λ-components are constrained at the same time.



BIBLIOGRAPHY 57

Bibliography
[1] P. Schneider, M. Biehl, and B. Hammer, “Adaptive Relevance Matrices in

Learning Vector Quantization,” Neural Comput., vol. 21, no. 12, pp. 3532–
3561, 2009.

[2] B. Frenay, D. Hofmann, A. Schulz, M. Biehl, and B. Hammer, “Valid inter-
pretation of feature relevance for linear data mappings,” in Computational
Intelligence and Data Mining (CIDM), 2014 IEEE Symposium on, pp. 149–
156, IEEE (The Institute of Electrical and Electronics Engineers), Dec. 2014.

[3] A. Schulz, B. Mokbel, M. Biehl, and B. Hammer, “Inferring Feature Rele-
vances From Metric Learning,” in 2015 IEEE Symposium Series on Compu-
tational Intelligence, pp. 1599–1606, IEEE, 2015.

[4] T. Kohonen, Learning Vector Quantization for Pattern Recognition. Report
TKK-F-A, Helsinki University of Technology, 1986.

[5] M. Biehl, A. Ghosh, and B. Hammer, “Learning vector quantization: The
dynamics of winner-takes-all algorithms,” Neurocomputing, vol. 69, no. 7,
pp. 660–670, 2006. New Issues in Neurocomputing: 13th European Sym-
posium on Artificial Neural Networks.

[6] A. Sato and K. Yamada, “Generalized Learning Vector Quantization,” in
Advances in Neural Information Processing Systems 8, NIPS, Denver, CO,
USA, November 27-30, 1995 (D. S. Touretzky, M. Mozer, and M. E. Has-
selmo, eds.), pp. 423–429, MIT Press, 1995.

[7] T. Bojer, B. Hammer, D. Schunk, and K. T. von Toschanowitz, “Relevance
determination in Learning Vector Quantization,” in ESANN 2001, 9th Eu-
ropean Symposium on Artificial Neural Networks, Bruges, Belgium, April
25-27, 2001, Proceedings, pp. 271–276, 2001.

[8] B. Hammer and T. Villmann, “Generalized Relevance Learning Vector
Quantization,” Neural Networks, vol. 15, no. 8-9, pp. 1059–1068, 2002.

[9] M. Strickert, B. Hammer, T. Villmann, and M. Biehl, “Regularization and
improved interpretation of linear data mappings and adaptive distance mea-
sures,” in 2013 IEEE symposium on computational intelligence and data
mining (CIDM), pp. 10–17, 2013.

[10] T. Kohonen, “Improved versions of learning vector quantization,” in 1990
IJCNN International Joint Conference on Neural Networks, pp. 545–550
vol.1.



BIBLIOGRAPHY 58

[11] B. Hammer, F.-M. Schleif, and T. Villmann, “On the generalization ability
of prototype-based classifiers with local relevance determination,” tech. rep.,
Clausthal University of Technology, 2005.

[12] K. Bunte, P. Schneider, B. Hammer, F.-M. Schleif, T. Villmann, and
M. Biehl, “Limited rank matrix learning - discriminative dimension reduc-
tion and visualization,” Neural Networks, pp. 159–173, 2012.

[13] K. Pearson, “Liii. on lines and planes of closest fit to systems of points in
space,” Nov. 1901.

[14] H. Hotelling, “Analysis of a complex of statistical variables into principal
components.,” Journal of educational psychology, vol. 24, no. 6, p. 417,
1933.

[15] V. Klema and A. Laub, “The singular value decomposition: Its computation
and some applications,” IEEE Transactions on Automatic Control, vol. 25,
no. 2, pp. 164–176, 1980.

[16] G. Papari, K. Bunte, and M. Biehl, “Waypoint averaging and step size con-
trol in learning by gradient descent,” Machine Learning Reports, vol. 6,
p. 16, 2011.

[17] R. van Veen, M. Biehl, and G.-J. de Vries, “sklvq: Scikit learning vec-
tor quantization,” Journal of Machine Learning Research, vol. 22, no. 231,
pp. 1–6, 2021.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-
learn: Machine learning in Python,” Journal of Machine Learning Research,
vol. 12, pp. 2825–2830, 2011.

[19] Kuijken, K., Heymans, C., Dvornik, A., Hildebrandt, H., de Jong, J. T. A.,
Wright, A. H., Erben, T., Bilicki, M., Giblin, B., Shan, H.-Y., Getman, F.,
Grado, A., Hoekstra, H., Miller, L., Napolitano, N., Paolilo, M., Radovich,
M., Schneider, P., Sutherland, W., Tewes, M., Tortora, C., Valentijn, E. A.,
and Verdoes Kleijn, G. A., “The fourth data release of the kilo-degree survey:
ugri imaging and nine-band optical-ir photometry over 1000 square degrees,”
A&A, vol. 625, p. A2, 2019.

[20] S. P. Driver, P. Norberg, I. K. Baldry, S. P. Bamford, A. M. Hopkins, J. Liske,
J. Loveday, J. A. Peacock, and G. T. (listed below), “GAMA: towards a phys-
ical understanding of galaxy formation,” Astronomy & Geophysics, vol. 50,
pp. 5.12–5.19, 10 2009.



BIBLIOGRAPHY 59

[21] W. J. Pearson, L. Wang, M. Alpaslan, I. Baldry, M. Bilicki, M. J. I. Brown,
M. W. Grootes, B. W. Holwerda, T. D. Kitching, S. Kruk, and F. F. S. van
der Tak, “Effect of galaxy mergers on star-formation rates,” aap, vol. 631,
p. A51, Nov. 2019.

[22] V. Rodriguez-Gomez, G. F. Snyder, J. M. Lotz, D. Nelson, A. Pillepich,
V. Springel, S. Genel, R. Weinberger, S. Tacchella, R. Pakmor, P. Torrey,
F. Marinacci, M. Vogelsberger, L. Hernquist, and D. A. Thilker, “The optical
morphologies of galaxies in the illustristng simulation: a comparison to pan-
starrs observations,” mnras, vol. 483, no. 3, pp. 4140–4159, 2019.

[23] T. Fawcett, “An introduction to roc analysis,” Pattern Recognition Letters,
vol. 27, no. 8, pp. 861–874, 2006. ROC Analysis in Pattern Recognition.



APPENDICES 60

Appendix

A Principle Components of transformed blob data set



APPENDICES 61

Figure 33: All principal components of the transformed blob data set


	Acknowledgements
	Abstract
	Glossary
	List of Figures
	List of Tables
	Introduction
	Research Questions
	Thesis outline

	Background
	LVQ and variants
	Previous work on relevance bounds

	Methods
	LVQ and LVQ variants
	LVQ
	Generalized LVQ
	Generalized Relevance LVQ
	Generalized Matrix LVQ
	Constrained GMLVQ

	Dimensionality Reduction
	Principal Component Analysis
	Lambda-transformation

	Relevance bounds
	Optimization method
	Null space correction

	Implementation
	Changes to sklvq

	Experimental Setup
	Data sets
	Simple data set
	Sklearn blobs
	Blob variations
	KiDS-GAMA

	Experimental Configurations
	Performance Metrics

	Bounds without dimensionality reduction
	Simple data set
	Blob data set
	Transformed blob data set
	KiDS-GAMA data set

	Comparing dimensionality reduction
	Principal Component Analysis
	Lambda-transformation

	Properties of the Lambda-transformation
	Lambda matrix after transformation
	Eigenvalues and eigenvectors
	Fixed space

	Correlated features
	Null space correction

	Experiments after Lambda-transformation
	Simple data set
	Transformed Blob data set
	KiDS-GAMA data set
	Correlations within KiDS-GAMA data set
	Removing sersic_rhalf

	Conclusion
	Future Work

	Bibliography
	Appendix
	Principle Components of transformed blob data set


