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Abstract

This report explores contract theory, which is used in product design to (mathematically)
specify and relate the requirements of multi-component products. The aim is to provide a
thorough and comprehensible study on assume-guarantee contracts and what it means for
systems to satisfy them. In particular, the aim is to study how contracts of subsystems
(components) relate to the contract of the overall system (final product). Several key aspects of
this research are defining the notions of simulation and contracts, and to analyze the properties
of these notions and how they relate to one another. From our analysis we were able to
formulate what it means for a system to satisfy a contract and how this can be checked.
Furthermore, we were able to relate contracts of subsystems to the contract of the overall
interconnected system, in case of series interconnection of the subsystems.
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1 Introduction and Problem Description

In this section, the use of contracts in product design will be motivated, after which previous
research on the topic will be presented. With this background information, the research goals and
objectives can be stated. Thereafter, the structure of the remainder of this report will be given.

1.1 Motivation

"Design is everything. Everything!", Paul Rand.
Nowadays, the products that are being designed and manufactured are more and more complex.
These products often consist of many components which are manufactured in bulk in different parts
of a factory or even across multiple factories. Think for example of cars: they consist of multiple
components such as an engine, a battery and a braking system. These, and other components, are
manufactured separately and then put together to make a car. In order for the resulting product to
be a functioning car, however, all individual components must not only do their job properly, but
also must work together nicely with the other components. This is where the notion of contracts
comes in.

Contracts are (mathematical) specifications of what is required from (the interconnection of) com-
ponents, i.e. it specifies the properties that the (interconnected) components are expected to have.
This allows for the individual components of a multi-component product to be designed separately
from one another, according to their respective contracts. Here, correct design of all the local
contracts guarantees the desired global behaviour. This means that, if all designed components
satisfy the requirements in their associated contracts, then the overall interconnection of these
components results in a functioning product. To get back to the car example, this can be thought
of as follows: if the engine, battery, braking system and all other components satisfy their re-
spective contracts, then the overall car, resulting from interconnecting these components, should
be a functioning and safe car. From this, it is easily understood that, using contracts, complex
multi-component products such as cars can be analyzed by analyzing each of its components with
their associated contract. That is, analyzing whether or not individual components meet the re-
quirements as stated in their associated contracts, can simplify analysis of the product resulting
from the interconnection of all these components. This will make it easier to analyze complex,
multi-component products which would otherwise be nearly impossible to analyze.

In addition, using contracts to specify the properties of each component in a complex product not
only simplifies the analysis done on the final product, it also allows for easy substitution of one
component by an improved version of that component as long as both satisfy the same associated
contract. To get back to the car example, this means that, once we have a functioning car, we
can improve its design by merely replacing one component by another (with the same associated
contract) instead of redesigning the entire car from scratch. One could, for example, replace only
one component, such as a diesel engine, by another component, such as a hybrid or electric engine.
Hence, it is clear that making use of contracts may allow for faster development and improvement
of products.

Therefore, it goes without saying that it is of great importance to study contracts. In particular,
there is a need for a better understanding in the construction of contracts with regards to the
mathematical systems underlying complex multi-component products. More specifically, there
is a need to study the properties of contracts, in order to gain knowledge on how contracts of
subsystems (components) relate to the contract of the overall system (product).
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1.2 Previous Research

"To understand a science, it is necessary to know its history.", Auguste Comte.
Existing methods for expressing specifications on control systems are dissipativity, as discussed by
Willems (1972), and set-invariance, as introduced by Blanchini (1999). The contracts introduced in
this paper provide an alternative method to represent specifications. In other studies, such as that
of Benveniste et al. (2018), contracts have already been studied for discrete systems: researching
if and how contracts of the overall system relate to contracts of the components (i.e. subsystem)
of such a system. Inspired by this research, we define assume-guarantee contracts for continuous
dynamical systems. Here, the assumptions and guarantees respectively represent the expected
input and desired output behaviour of such systems. In other words, the contracts introduced in
this paper specify the external behaviour.

In particular, when dealing with contracts, we are interested in comparing the input-output behav-
ior of two systems and, with that, talk about equivalence of the systems. The field of Computer
Science has presented powerful methods for analyzing when different systems are, in one way or
another, equivalent to each other. The paper by Pappas (2003) is an example of this, in which the
notion of (bi)simulation is introduced when talking about equivalence. In addition, also the field
of systems and control theory has presented methods for analysis of equivalence of systems. An
example of such a study can be found in the paper by van der Schaft (2004). Here, the notion of
(bi)simulation is worked out for continuous dynamical systems and its properties are explored.

In this paper, we will define and use simulation as a tool for system comparison, which will allow
us to investigate contracts and to define what it means for systems to satisfy a contract. Here,
the emphasis will be on continuous dynamical systems, to be formalized later in Chapter 2, and
comparing them to each other using contracts.

1.3 Research Goals and Objective

"Design is a funny word. Some people think design means how it looks. But of course, if you dig
deeper, it’s really how it works.", Steve Jobs.
In order to gain knowledge on contacts, we formulate the following research goals:

1. Define assume-guarantee contracts.

2. Analyze how to verify if a system satisfies a specific contract or not.

3. Find a way to compare contracts.

4. Investigate how one can find a contract of the interconnection of a finite number of systems.

So, first of all, we obviously need to define what assume-guarantee contracts are. Then, we would
like to analyze how we can verify if a system satisfies (or, equivalently, implements) a specific
contract or not. In other words, we want to be able to determine if, for example, the engine
of a car satisfies its associated contract or not. Furthermore, we would then like to find a way
to compare contracts. This would allow us to compare the contract of one component (e.g. a
diesel engine) to that of a possibly improved version of that component (a hybrid engine), which
may allow for substitution of the former component by the latter (should the contracts of both
components be found to be the same). Hereto, the notion of refinement will be discussed, which is
a way of comparing contracts. Lastly, we want to investigate how one can find a contract for the
interconnection of a finite number of systems. This means that we want to find the global contract
of the interconnection of multiple components (say, a car) from the contracts of the individual
components (think of an engine, a battery, a braking system, etc.). In other words, we want to
investigate what the overall contract of a multi-component product looks like. This will lead to
the introduction of the notion of composition. In short, we make the following contributions in
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this paper: (1) we define assume-guarantee contracts for continuous dynamical systems based on
the notion of simulation; (2) we define and analyze implementation of a contract; (3) we define
and review refinement; (4) we define and investigate composition.

Upon reaching the goals, a theoretical basis is provided that is needed to reach the main goal,
where the ultimate goal of the research is to explore the properties of contracts. The results of
this research will then be beneficial to companies that work with designing and manufacturing
multi-component systems which are quite complex to analyze as a whole. Here, using contracts in
modular design allows for each component to be independently analyzed, where each component
can be designed and modified according to its corresponding contract. The notions of contract
refinement and composition will be especially useful in doing modular design and analysis, where
refinement allows us to compare contracts of different components - allowing for components to
be independently replaced or exchanged with other components - and composition allows us to
determine if the interconnection of all components satisfies the desired external behaviour. That
is, this research presents powerful results on contract theory, which can make it easier for companies
to use modular design to create, modify and analyze complex, multi-component products.

1.4 Structure of this paper

The structure of this report will be as follows: In order to reach the research goals listed above,
we will first need to introduce some notation and preliminaries. This will be done in Section 2.1.
After this, the notion of simulation will be defined for two different types of systems. This will be
done in the remainder of Section 2. Based on these system classes, the notion of contracts will be
introduced in Section 3. Expanding on this research, the concept of refinement will be introduced
in Section 4. What follows is analysis on contracts for series interconnected systems, which will be
done in Section 5. Next, the results retrieved will be summarized, using the previously formulated
research goals, and conclusions will be drawn from it in Section 6. However, we realise that the
discussed approaches are based on some assumptions and therefore have limitations; we will discuss
these too in Section 6. Some proofs that are not included in the main body of this paper can be
found in the Appendix.
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2 Simulation Relations

2.1 Notation and Preliminaries

"To solve math problems, you need to know the basic mathematics before you can start applying
it.", Catherine Asaro.
In order to reach the goals set in the introduction, it is necessary to introduce some notation and
preliminaries that will be used in coming sections.

The transpose of any matrix A ∈ Rm×n is denoted by AT ∈ Rn×m.

Definition 2.1 (Canonical Projection). The canonical projection of a subspace S ⊂ X1 × X2 on
X1, denoted by ΠX1

(S), is defined as

ΠX1(S) = {x1 ∈ X1 | ∃x2 ∈ X2 such that (x1, x2) ∈ S}.

Furthermore, a number of theorems and lemmas that will be introduced in the following sections
are based on properties of the image of matrices. The definition of this now follows.

Definition 2.2 (Image). The image of a matrix A ∈ Rm×n is defined by

imA = {y ∈ Rm | y = Ax, x ∈ Rn}.

If for example A = [a1 . . . an] with column vectors ai, i = 1, ..., n, then we have imA = span{a1, . . . , an}.

2.2 Simulation

"The beauty of mathematics only shows itself to more patient followers.", Maryam Mirzakhani.
In this section, we are interested in comparing the external behavior of two systems, which is where
the notion of simulation comes in. Simulation is a way of relating the external variables of one
system to those of another. The analysis on this will be mainly based on the paper by van der
Schaft (2004). Hereto, the focus will be on continuous dynamical systems of the form

Σi :

{
ẋi(t) = Aixi(t) +Biui(t) + Fidi(t), xi ∈ Xi, ui ∈ Ui, di ∈ Di,
yi(t) = Cixi(t), yi ∈ Y,

(1)

where we have a state variable xi, input variable ui, output variable yi and an additional input
variable, called disturbance, di. Here, Xi,Ui,Di and Y are finite-dimensional vector spaces. Note
that these systems are in input-output form, where the external behavior consists of the set of all
input trajectories ui and corresponding output trajectories yi for which there exists an internal-
variable trajectory xi (and a disturbance di) such that the equations (1) hold. Furthermore, note
that the disturbance di is an independent variable which accounts for the non-determinism in
the system as a result of external disturbances or unmodelled dynamics. These systems can be
visualized as in Figure 1. Now, we will consider these systems in combination with a more general
form of them, given by

Ξi :

 ẋi(t) = Aixi(t) + Fidi(t),
zi(t) = Cixi(t),
0 = Hixi(t),

(2)

where zi represents a combination of the external variables ui and yi and is itself an external
variable that interacts with the environment. Here, note that, compared to input-output systems
of the form (1), these systems are in driving variable representation, where the external behavior
consists of all output trajectories zi for which there exist auxiliary variable trajectories xi and di
such that equations (2) hold. Furthermore, another difference that we note between the two classes
of systems is the presence of the algebraic constraints, given by the last equation in (2). These
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constraints are included here as they will turn out to be useful later. Now, these systems can be
visualized as in Figure 2.

Σi

ui yi

di

Figure 1: System Σi.

Ξi

zi

di

Figure 2: System Ξi.

2.3 Input-output systems

Having introduced the system equations of the two types of systems that will be considered, we
can introduce the notion of simulation for such systems. Note that the definition of simulation is
slightly different for these two types of systems. In this section, we will therefore define simulation
for input-output systems of the form (1) and the next section will treat driving variable systems
of the form (2).

2.3.1 Simulation

Let us start by considering input-output systems of the form (1). Then, we have the following
definition of the notion of simulation:

Definition 2.3. Consider two systems Σ1 and Σ2 of the form (1). A simulation relation of Σ1 by
Σ2 is a linear subspace

S ⊂ X1 ×X2

with the following property: ∀(x10, x20) ∈ S, ∀u1(·) = u2(·) and ∀d1(·), there exists d2(·) such
that the resulting state solution trajectories x1(·) and x2(·), respectively with x1(0) = x10 and
x2(0) = x20, satisfy

(x1(t), x2(t)) ∈ S, ∀t ≥ 0, (3a)
C1x1(t) = C2x2(t), ∀t ≥ 0. (3b)

Then, Σ1 is said to be simulated by Σ2, denoted by Σ1 ⪯ Σ2, if the simulation relation S satisfies

ΠX1
(S) = X1.

Note that property (3b) is equivalent to saying that the output of system Σ1 is equal to that of
system Σ2. In other words, this definition says that if one system is simulated by another system,
then the one system Σ1 is mimicked by the other system Σ2 in such a way that the (externally
measurable) input-output data from the first is indistinguishable from that of the latter for all time
t ≥ 0, without having imposed a relation between the disturbance values d1 and d2. Or, to put it
differently, simulation means that: each trajectory that can be generated by Σ1, for a given input
u, can also be generated by Σ2. Here, it is important to note that the converse does not necessary
hold, nor is it required for the notion of simulation.

Alternatively to checking if the definition is satisfied, one can check if a simulation relation satisfies
the properties as stated in this lemma:

Lemma 2.4. Let Σ1 and Σ2 be two systems of the form (1). A linear subspace

S ⊂ X1 ×X2
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is a simulation relation of Σ1 by Σ2 if and only if ∀(x1, x2) ∈ S, u ∈ U = U1 ∩ U2, d1 ∈ D1, there
exists d2 ∈ D2 such that

1. (A1x1 +B1u+ F1d1, A2x2 +B2u+ F2d2) ∈ S. (4a)
2. C1x1 = C2x2. (4b)

Proof. Let us prove that (3a) and (4a), respectively, (3b) and (4b) are equivalent. For this, let
S ⊂ X1 ×X2 be a linear subspace.
(⇒) Take any (x10, x20) ∈ S, u1(·) = u2(·) and d1(·) ∈ D1, property (3a) then implies that there
exists a d2(·) ∈ D2 such that x1(·) with x1(0) = x10 and x2(·) with x2(0) = x20 satisfy

(x1(t), x2(t)) ∈ S, ∀t ≥ 0.

By linearity of S, it is then implied that(
x1(s)− x1(t)

s− t
,
x2(s)− x2(t)

s− t

)
∈ S, ∀s > t ≥ 0.

In particular, this then implies that

(ẋ1(t), ẋ2(t)) = lim
s↓t

(
x1(s)− x1(t)

s− t
,
x2(s)− x2(t)

s− t

)
∈ S, ∀t ≥ 0.

In other words, for any time instant t ≥ 0 we found, by the system equations, that

(A1x1 +B1u+ F1d1, A2x2 +B2u+ F2d2) ∈ S,

with xi = xi(t), u = ui(t), di = di(t) for i = 1, 2. From this, it is then also clear that (3b) implies
(4b). Hence, properties (4a) and (4b) are proved to hold.

(⇐) Conversely, take any (x1, x2) ∈ S, u ∈ U = U1 ∩ U2 and d1 ∈ D1. Property (4a) then implies
that there exists d2 ∈ D2 such that

(A1x1 +B1u+ F1d1, A2x2 +B2u+ F2d2) ∈ S.

Here, for any t ≥ 0, we have denoted xi = xi(t), di = di(t), u = ui(t) with i = 1, 2. This then
clearly shows that (4b) implies (3b). Furthermore, by the system equations, it is implied that

(ẋ1(t), ẋ2(t)) ∈ S (5)

for any such time instant t. Here, we note that the first Fundamental Theorem of Calculus, see
Chapter 5 of (Stewart, 2016), tells us that

xi(t) =

∫ t

0

ẋi(t̂)dt̂.

This integral can then be replaced by an infinite sum in the following way

xi(t) = lim
n→∞

n−1∑
r=0

hẋi(tr)

where the time instances are defined in the following way t0 = 0, ..., tr = rh, ..., tn = nh = t.
Combining this result with equation (5), it is implied that: for any time instant t ≥ 0, we have
that

(x1(t), x2(t)) = lim
n→∞

(
n−1∑
r=0

hẋi(tr),
n−1∑
r=0

hẋi(tr)

)
∈ S

by the linearity of S. In other words, properties (3a) and (3b) have been proved to hold.
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Furthermore, the notion of a simulation relation of Σ1 by Σ2 can be characterized algebraically as
seen in the following theorem:

Theorem 2.5. Let Σ1 and Σ2 be systems of the form (1). A subspace

S ⊂ X1 ×X2

is a simulation relation of Σ1 by Σ2 if and only if

im

[
F1

0

]
⊂ S + im

[
0
F2

]
, (6a)[

A1 0
0 A2

]
S ⊂ S + im

[
0
F2

]
, (6b)

im

[
B1

B2

]
⊂ S + im

[
0
F2

]
, (6c)

S ⊂ ker
[
C1 −C2

]
. (6d)

Proof. The proof of this theorem can be found in Appendix A.1.

Note that this theorem is very relevant as it implies that we can verify simulation through the
algebraic conditions stated above, for which efficient computational tools are available. Hence, this
theorem is very useful for determining whether one system is simulated by another, as we will also
show with the following examples.

2.3.2 Examples

Example 2.6. Consider the systems Σ1 and Σ2 of the form (1) with

A1 = A2 =

[
1 0
0 1

]
, B1 = B2 =

[
0
1

]
, F1 = F2 = 0, C1 =

[
1 0

]
and C2 =

[
0 1

]
.

Then, using the above theorem, we can show that Σ1 is not simulated by Σ2. Let us show this by
a proof by contradiction. Assume that Σ1 is simulated by Σ2, i.e. that

Σ1 ⪯ Σ2.

By definition, this means that there must exist a simulation relation S ⊂ X1 ×X2 that satisfies the
four properties in Theorem 2.5. In particular, we must have that

S ⊂ ker
[
C1 −C2

]
= ker

[
1 0 0 −1

]
= span



1
0
0
1

 ,


0
1
0
0

 ,


0
0
1
0


 .

Furthermore, S must also satisfy the following inclusion

im

[
B1

B2

]
= im


0
1
0
1

 = span



0
1
0
1


 ⊂ S.

However, it is impossible for both of these inclusions to hold simultaneously, which is in contradic-
tion with S being a simulation relation.

However, we can define a system that is very similar to Σ2 such that Σ1 is simulated by it. This
altered system, which we will call Σ3, has the same system matrices as Σ2 only with

B3 =

[
1
0

]
.
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We then find, by the theorem, that S must satisfy

S ⊂ ker
[
C1 −C2

]
= span



1
0
0
1

 ,


0
1
0
0

 ,


0
0
1
0


 ,

im

[
B1

B2

]
= span



0
1
1
0


 ⊂ S.

Here, we note that

S = span



0
1
1
0




satisfies both inclusions. From this, it is clear that the second property in the theorem is also
satisfied since: any element s ∈ S is of the form

s =


0
1
1
0

 r

for some r ∈ R. Therefore, we find that

[
A1 0
0 A2

]
s =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



0
1
1
0

 r =


0
1
1
0

 r = x ∈ S.

Note that since F1 = F2 = 0, the first property of the theorem is automatically satisfied. Therefore,
we have hereby proved that

S = span



0
1
1
0




satisfies the four properties in Theorem 2.5, by which it has been proved that S is a simulation
relation of Σ1 by Σ3.

Now, there is one other thing we would like to note here. Namely, if a system Σ1 is simulated by
Σ2, then that does not imply that the system Σ2 is also simulated by Σ1. We will show this in the
following example.

Example 2.7. Consider two systems Σ1 and Σ2 of the form (1) with the following system matrices

A1 =

[
0 0
0 1

]
, A2 =

[
0 1
0 1

]
, B1 = B2 =

[
0
1

]
, F1 =

[
0
0

]
, F2 =

[
1
0

]
, C1 =

[
0 1

]
, C2 =

[
1 0

]
.

We will show that there is a simulation relation of Σ1 by Σ2, but that the converse is not true. In
particular, we find that

S = span



0
1
1
0

 ,


0
0
0
1




satisfies all 4 properties of Theorem 2.5 and is hence a simulation relation of Σ1 by Σ2.
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However, the converse does not hold. There is no simulation relation of Σ2 by Σ1, meaning that
Σ2 is not simulated by Σ1. This can easily be shown by a proof by contradiction, similar to the
previous example. When considering properties 3 and 4 of the theorem, we find that S must satisfy
the following inclusion relations

S ⊂ ker
[
C2 −C1

]
= ker

[
1 0 0 −1

]
= span



1
0
0
1

 ,


0
1
0
0

 ,


0
0
1
0


 ,

im

[
B2

B1

]
= im


0
1
0
1

 = span



0
1
0
1


 ⊂ S.

However, it is clear that there is no set S that satisfies both inclusions simultaneously, which is in
contradiction with S being a simulation relation.

2.3.3 Series Interconnection

Before we can analyze more properties on the notion of simulation of one system by another, we need
to define what it means to interconnect systems of the form (1). These notions of interconnection
can then be used to provide properties on simulation.

Let us start by defining what it means to interconnect systems Σi of the form (1). For this, note
that the series interconnection of any two linear systems Σi and Σj , denoted by Σi×Σj , is given by
setting the output of the the first system equal to the latter, i.e. yi = uj . Here, it is assumed that
also Yi = Uj . The concept of series interconnection is illustrated in Figure 3. This interconnection
clearly gives the state-space realization

Σi × Σj :


[
ẋi

ẋj

]
=

[
Ai 0

BjCi Aj

] [
xi

xj

]
+

[
Bi

0

]
ui +

[
Fi 0
0 Fj

] [
di
dj

]
,

yj =
[
0 Cj

] [xi

xj

]
.

If we introduce the following notation

xij =

[
xi

xj

]
, Aij =

[
Ai 0

BjCi Aj

]
, Bij =

[
Bi

0

]
, uij = ui, Fij =

[
Fi 0
0 Fj

]
, dij =

[
di
dj

]
,

yij = yj , and Cij =
[
0 Cj

]
,

then the interconnected system equations can be written more compactly as

Σi × Σj :

{
ẋij = Aijxij +Bijuij + Fijdij ,
yij = Cijxij .

(7)

Σi Σ2

ui

yi = uj

yj

di dj

Σi × Σj

Figure 3: Interconnected system Σi × Σj .
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Now, using the notion of series interconnection, it is easily proved that we have the following
properties for systems of the form (1):

Lemma 2.8. Consider systems Σ1, Σ2,Σ3 and Σ4 of the form (1). Then, the following properties
hold:

1. Σ1 ⪯ Σ1 for any Σ1. (8a)
2. If Σ1 ⪯ Σ2 and Σ2 ⪯ Σ3, then Σ1 ⪯ Σ3. (8b)
3. If Σ1 ⪯ Σ3 and Σ2 ⪯ Σ4, then Σ1 × Σ2 ⪯ Σ3 × Σ4. (8c)

Proof. The proof of this can be found in Appendix A.2.

2.4 Driving variable systems

In this section, similar analysis will be done as in the previous section, only now for driving variable
systems of the form (2).

2.4.1 Simulation

Let us consider the more general systems of the form (2). Due to the algebraic constraints,
0 = Hixi, the definition of simulation must be altered slightly for these generalized systems. To
this end, the consistent subspace for system Ξi is defined as follows

VXi
= {xi(0) | ∃di(·) for which the resulting xi(·) satisfies Hixi(t) = 0 ∀t ≥ 0}.

Hence, the consistent subspace is the set of all initial conditions for which the resulting trajectory
satisfies the constraints for all time. From (Besselink et al., 2019) we then know that this space is
the largest subspace VXi ⊂ Xi such that

AiVXi
⊂ VXi

+ imFi and VXi
⊂ kerHi.

Furthermore, from this definition it is clear that, in case Hi is a zero matrix, then VXi
= Xi. Using

this definition of a consistent subspace, the definition of simulation for systems Ξi becomes:

Definition 2.9. Consider systems Ξ1 and Ξ2 of the form (2). A linear subspace S ⊂ X1 × X2

satisfying
ΠXi

(S) ⊂ VXi
, i = 1, 2

is a simulation relation of Ξ1 by Ξ2 if it has the following property: ∀(x10, x20) ∈ S and ∀d1(·)
such that the resulting state solution trajectory x1(·) with x1(0) = x10 satisfies

x1(t) ∈ VX1 , ∀t ≥ 0,

there exists d2(·) such that the resulting state solution trajectory x2(·) with x2(0) = x20, satisfies

(x1(t), x2(t)) ∈ S, ∀t ≥ 0, (9a)
C1x1(t) = C2x2(t), ∀t ≥ 0. (9b)

Then, Ξ1 is said to be simulated by Ξ2, denoted by Ξ1 ⪯ Ξ2, if the simulation relation S satisfies

ΠX1
(S) = VX1

.

Similar to what has been seen previously in Lemma 2.4, the notion of a simulation relation can
now be characterized algebraically as follows:
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Lemma 2.10. Let Ξ1 and Ξ2 be two systems with constraints, of the form (2). A linear subspace

S ⊂ X1 ×X2

satisfying ΠXi(S) ⊂ VXi , i = 1, 2 is a simulation relation of Ξ1 by Ξ2 if and only if ∀(x1, x2) ∈ S

1. ∀d1 ∈ D1 such that A1x1 + F1d1 ∈ VX1
, there exists d2 ∈ D2 such that A2x2 + F2d2 ∈ VX2

and
(A1x1 + F1d1, A2x2 + F2d2) ∈ S.

(10a)

2. C1x1 = C2x2. (10b)

Proof. The proof of this follows by a similar reasoning to that of Lemma 2.4 and is therefore not
repeated here.

In addition, the following theorem can be used to check if a subspace S is in fact a simulation
relation of Ξ1 by Ξ2. Note that this theorem can also be found in (Besselink et al., 2019, Thm. 6)
and is similar to Theorem 2.5.

Theorem 2.11. Let Ξ1 and Ξ2 be systems of the form (2). A subspace

S ⊂ X1 ×X2

is a simulation relation of Ξ1 by Ξ2 satisfying ΠXi
(S) ⊂ VXi

, i = 1, 2 if and only if[
im(F1) ∩ VX1

0

]
⊂ S +

[
0

imF2

]
, (11a)[

A1 0
0 A2

]
S ⊂ S + im

[
F1 0
0 F2

]
, (11b)

S ⊂ ker

H1 0
0 H2

C1 −C2

 . (11c)

Proof. The proof of this is similar to that of Theorem 2.5 and can be found in Appendix A.3.

2.4.2 Examples

Similar to what was noted for Theorem 2.5, this theorem is useful for determining whether or not
one system Ξ1 is simulated by another systems Ξ2. Applications of this theorem will be shown in
the following examples.

Example 2.12. Consider the systems Ξ1 and Ξ2 of the form (2) given by

Ξ1 :


ẋ1(t) =

[
1 0
0 1

]
x1(t) +

[
1
1

]
d1(t),

z1(t) =
[
1 0

]
x1(t),

0 =
[
1 −1

]
x1(t),

and Ξ2 :


ẋ2(t) =

[
1 0
0 1

]
x2(t) +

[
0
0

]
d2(t),

z2(t) =
[
0 1

]
x2(t),

0 =
[
1 −1

]
x2(t).

Let us assume that Ξ1 ⪯ Ξ2 holds. Then, by the previously stated theorem, we will find that
this leads to a contradiction, which would imply that the assumption is wrong and that Ξ1 is not
simulated by Ξ2. So, assuming that Ξ1 is simulated by Ξ2, Theorem 2.11 tells us that there must
exist a simulation relation

S ⊂ X1 ×X2
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satisfying ΠXi
(S) ⊂ VXi

, i = 1, 2, and satisfying properties (11a), (11b) and (11c). In particular,
property (11c) tells us that

S ⊂ ker

H1 0
0 H2

C1 −C2

 = ker

1 −1 0 0
0 0 1 −1
1 0 0 −1

 = span



1
1
1
1


 .

Since Ξ1 ⪯ Ξ2 holds by assumption, we hence know that

VX1
= ΠX1

(S) = span

{[
1
1

]}
.

Furthermore, we note that

imF1 = im

[
1
1

]
= span

{[
1
1

]}
.

Together, the latter two imply that

im(F1) ∩ VX1
= span

{[
1
1

]}
.

In addition, it is clear that, since F2 =

[
0
0

]
, we have that

imF2 = span

{[
0
0

]}
regardless of what VX2

looks like. Hence, S is required to simultaneously satisfy

S ⊂ span



1
1
1
1


 and span



1
1
0
0


 ⊂ S.

However, it is clear that no set S can satisfy both these inclusions at once, which is in contradiction
with S being a simulation relation. Therefore, we have proved, by proof by contradiction, that the
initial assumption does not hold, i.e. Ξ1 is not simulated by Ξ2.

However, if we alter the system equations of Ξ2 slightly then we can attain that Ξ1 is simulated by
Ξ2. Namely, consider the same system equations as before only with

F2 =

[
1
1

]
.

We then have that
imF1 = imF2 = span

{[
1
1

]}
.

On the systems considered, we furthermore claim the following:

Claim: VX1
= VX2

= span

{[
1
1

]}
.

Proof. (⊂) Let us first prove that

VXi
⊂ span

{[
1
1

]}
for i = 1, 2. This is easily proved since we know, by definition, that

VXi ⊂ kerHi = ker
[
1 −1

]
= span

{[
1
1

]}
.
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(⊃) Let us now show the reverse inclusion. Hereto, take any x ∈ span

{[
1
1

]}
. This means that x

is of the form
x =

[
1
1

]
r

for some r ∈ R. Now, set xi(0) = x and di(t) = 0 for all t ≥ 0. By the system equations we then
know that

ẋi(t) = Aixi(t), ∀t ≥ 0.

From (Trentelman et al., 2012, Ch.3) we then know that

xi(t) = eAitxi(0).

Since Ai is the identity matrix, the above is easily found to be given by

xi(t) =

[
et 0
0 et

] [
1
1

]
r =

[
et

et

]
r.

It is then clear that xi(t) ∈ kerHi for all t ≥ 0. By definition, this then implies that

x = xi(0) ∈ VXi
.

With this, the claim has been proved. ■

With this, it is clear that

im(F1) ∩ VX1 = span

{[
1
1

]}
and imF2 = span

{[
1
1

]}
.

If we now take

S = span



1
1
1
1




then we know that
ΠXi

(S) ⊂ VXi

for i = 1, 2, and that property (11c) is satisfied by previous analysis. In addition, it is clear that

property (11a) is satisfied since we have that: for any x =

[
1
1

]
r ∈ im(F1) ∩ VX1

, where r is any

element in R, there exists x̂ =


1
1
1
1

 r ∈ S and x̄ = −
[
1
1

]
r ∈ imF2 such that

x0
0

 = x̂+

00
x̄

 ,

which implies that [
im(F1) ∩ VX1

0

]
⊂ S +

[
0

imF2

]
.

Lastly, we can also prove that property (11b) is satisfied for this S. Namely, take any x̂ =


1
1
1
1

 r ∈ S

with any r ∈ R, then we find that

[
A1 0
0 A2

]
x̂ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



1
1
1
1

 r = x̂ ∈ S.
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In other words, this proves that property (11b) is satisfied. With this, we have proved by Theorem
2.11 that

Ξ1 ⪯ Ξ2.

Another thing we can take away from the theorem is that: if Ξ1 ⪯ Ξ2 then that does not imply
that also Ξ2 ⪯ Ξ1. In fact, this can be shown by the following example.

Example 2.13. Consider the systems Ξ1 and Ξ2 given by

Ξ1 :


ẋ1(t) =

[
1 0
0 1

]
x1(t) +

[
0
0

]
d1(t),

z1(t) =
[
1 0

]
x1(t),

0 =
[
1 −1

]
x1(t),

and Ξ2 :


ẋ2(t) =

[
1 0
0 1

]
x2(t) +

[
1
1

]
d2(t),

z2(t) =
[
0 1

]
x2(t),

0 =
[
1 −1

]
x2(t).

Similar to what is seen in the previous example, one can prove that

S = span



1
1
1
1




satisfies
ΠXi

(S) ⊂ VXi

for i = 1, 2, and it satisfies properties (11a), (11b) and (11c). Hence, Theorem 2.11 implies that

Ξ1 ⪯ Ξ2.

The converse, however, is not true. Hereto, note that if it were true then by Theorem 2.11 there
must exist a simulation relation

S ⊂ X2 ×X1

satisfying both properties (11a) and (11c), i.e.

span



1
1
0
0


 ⊂ S and S ⊂ span



1
1
1
1


 .

It is clear that no S satisfying both properties exists. Therefore, Ξ2 is not simulated by Ξ1, even
though the converse is true.

2.4.3 Interconnection by External Variables

In order to analyze and state more properties on the notion of simulation, we must first look at a
new type of interconnection. If we study systems Ξi of the form (2), then the system equations of
the interconnection by external variables can be found to be given by

Ξ1 ⊗ Ξ2 :



[
ẋ1

ẋ2

]
=

[
A1 0
0 A2

] [
x1

x2

]
+

[
F1 0
0 F2

] [
d1
d2

]
,

z12 = 1
2

[
C1 C2

] [x1

x2

]
,

0 =

H1 0
0 H2

C1 −C2

[x1

x2

]
.

(12)

Here, we defined the external variable z12 by z12 = z1 = z2, where it is assumed that Z1 = Z2.
Furthermore, the last row of the constraints in the above equation specifies the requirement that
z1 = z2. This interconnection is depicted in Figure 4.
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Ξ1

Ξ2

d1 z1

d2 z2

z12

Ξi ⊗ Ξj

Figure 4: Interconnected system Ξ1 ⊗ Ξ2.

For these type of interconnections between systems, the following properties are found:

Lemma 2.14. Consider the systems Ξ1,Ξ2,Ξ3 and Ξ4 of the form (2). The interconnection
by external variables for these systems are then as given in (12), which satisfies the following
properties:

1. Ξ1 ⊗ Ξ2 ⪯ Ξi, for i = 1, 2. (13a)
2. If Ξ ⪯ Ξi, for i = 1, 2 then Ξ ⪯ Ξ1 ⊗ Ξ2. (13b)
3. If Ξ1 ⪯ Ξ3 and Ξ2 ⪯ Ξ4, then Ξ1 ⊗ Ξ2 ⪯ Ξ3 ⊗ Ξ4. (13c)

Proof. The proof of this lemma can be found in the proofs of Theorems 3 and 4 in (Besselink et al.,
2019).

In addition, also the following properties on the notion of simulation can be stated.

Lemma 2.15. Consider systems Ξ1, Ξ2 and Ξ3 of the form (2). Then, the following properties
hold:

1. Ξ1 ⪯ Ξ1 for any Ξ1. (14a)
2. If Ξ1 ⪯ Ξ2 and Ξ2 ⪯ Ξ3, then Ξ1 ⪯ Ξ3. (14b)

Proof. The proof of this is similar to that of properties 1 and 2 of Lemma 2.8, see Appendix
A.4.

Note that it is also possible to interconnect systems Ξi of the form (2) with different zi, i.e. where
z1 and z2 are different combinations of the external variables ui, yi, i = 1, 2. In particular, it is

possible to connect systems Ξi with zi = ui, together with zj =

[
uj

yj

]
. Instead of requiring that

zi = zj , as we would for interconnecting systems Ξ with external variables of a similar type, we
now require the following on the external variables

ui = uj

for such interconnections. In particular, the system equations of such interconnections are given
by:

Ξi ⊗ Ξj :



[
ẋi

ẋj

]
=

[
Ai 0
0 Aj

] [
xi

xj

]
+

[
Fi 0
0 Fj

] [
di
dj

]
,[

ui

yj

]
=

[
Ci 0
0 Cy

j

] [
xi

xj

]
,

0 =

Hi 0
0 Hj

Ci −Cu
j

[xi

xj

]
.
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Hereto, note that the external variable of this interconnection is precisely that of Ξj . For this
interconnection of two slightly different types of systems Ξ, we can formulate similar properties as
seen in Lemma 2.14. These properties are stated in the following lemma.

Lemma 2.16. Consider systems Ξ1 and Ξ2 of the form (2) with z1 = u1 and z2 =

[
u2

y2

]
. Then,

the following property holds:
Ξ1 ⊗ Ξ2 ⪯ Ξ2.

Proof. The proof of this statement is similar to that of property 1 in Theorem 3 in (Besselink
et al., 2019), for i = 2. In particular, proving that the first condition in Lemma is satisfied follows
the same steps as seen there. Hereto, note that we consider the linear subspace

S = {(x1, x2, x̄2) | x̄2 = x2, (x1, x2) ∈ VX1×X2} ⊂ X1 ×X2 ×X2.

The only difference is in proving that the second condition in Lemma 2.10 is satisfied, which goes
as follows: take any x = (x1, x2, x̄2) ∈ S, then we know that (x1, x2) ∈ ΠX1×X2(S) ⊂ VX1×X2 . By
property of VX1×X2

and by the system equations of Ξ1 ⊗ Ξ2, we furthermore know that

VX1×X2
⊂ ker

H1 0
0 H2

C1 −Cu
2

 .

In particular, this means that C1x1 = Cu
2 x2. Using this, we find that: for any x = (x1, x2, x̄2) ∈ S,

we have that [
C1 0
0 Cy

2

] [
x1

x2

]
=

[
C1x1

Cy
2x2

]
=

[
Cu

2 x2

Cy
2x2

]
= C2x2,

finalizing the proof.

Note that we can also define the series interconnection of systems Ξi of the form (2), where zi = ui,
together with systems Σj of the form (1). Namely, this gives the following system equations of the
interconnection:

Ξi × Σj :



[
ẋi

ẋj

]
=

[
Ai 0

BjCi Aj

] [
xi

xj

]
+

[
Fi 0
0 Fj

] [
di
dj

]
,[

ui

yj

]
=

[
Ci 0
0 Cj

] [
xi

xj

]
,

0 =
[
Hi 0

] [xi

xj

]
.

Using this series interconnection of the two different types of systems, two more important prop-
erties on these systems can be given, the first of which is formulated in the following lemma.

Lemma 2.17. Consider systems Ξ1 and Ξ2 of the form (2) with zi = ui for i = 1, 2, and consider
systems Σ1 and Σ2 of the form (1). Then, the following property holds:

If Ξ1 ⪯ Ξ2 and Σ1 ⪯ Σ2, then Ξ1 × Σ1 ⪯ Ξ2 × Σ2. (15a)

Proof. The proof of this is similar to that of property 3 in Lemma 2.8. See Appendix A.5 for the
proof of this.

The second important property on interconnecting the two types of systems is specified in the now
following lemma.
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Lemma 2.18. Consider systems Ξ1 and Ξ2 of the form (2) with z1 = u1 and z2 =

[
u2

y2

]
. In

addition, consider system Σ of the form (1). Then, the following property holds:

If Ξ1 × Σ ⪯ Ξ2, then Ξ1 × Σ ⪯ Ξ1 ⊗ Ξ2. (16a)

Proof. The proof of this can be found in Appendix A.6.

In this chapter, we have defined the notion of simulation for input-output systems and driving
variable systems. This notion provides a way of comparing the external behaviour of two systems
and expresses if one system can be mimicked by the other, in the sense that the external trajectories
of the one system can be matched by that of the other. In particular, this notion presents a way in
which one can compare two systems, which will turn out to be very useful when we will introduce
and characterize assume-guarantee contracts in the next chapter.

19



3 Contract Theory: Compatibility and Consistency

3.1 Contract Theory

"The study of mathematics, like the Nile, begins in minuteness but ends in magnificence.", Charles
Caleb Colton.
Now that we know what it means for one system to be simulated by another, let us connect this
to the notion of contracts. Hereto, concepts from the book by Benveniste et al. (2018) will be used
to formulate some definitions. Recall that we consider continuous dynamical systems of the form

Σ :

{
ẋΣ = AΣxΣ +BΣuΣ + FΣdΣ, xΣ ∈ XΣ, uΣ ∈ UΣ, dΣ ∈ DΣ,
yΣ = CΣxΣ, yΣ ∈ Y,

(17)

with state variable xΣ, input variable uΣ, output variable yΣ and disturbance dΣ. Note that the
variables’ time-dependency is omitted for simplicity. This system can be visualized as in Figure 5.
Here, the system is an open system, meaning that its inputs u are provided by another system or
by the external world. This other system or exterior world is called the environment of the system
Σ. An environment E for the system Σ is defined to be a system of the form

E :

 ẋE = AExE + FEdE ,
uE = CExE ,
0 = HExE ,

(18)

as depicted in Figure 6. Here, the system Σ can operate in interconnection with an environment E,
where the two interact through the external variable uΣ. In particular, an environment E generates
outputs uE that can serve as inputs uΣ to the open system Σ, meaning that an environment E
is responsible for providing input trajectories to the open system Σ. Furthermore, it is clear that
the environment E is a system of the form (2) with zE = uE . Therefore, all the theory that was
found for systems Ξi of the form (2), applies to environments E.

Σ
uΣ yΣ

dΣ

Figure 5: System Σ.

E
dE uE

Figure 6: Environment E.

3.2 Series Interconnection

Since an environment E provides the inputs to the open system Σ, let us explain what the series
interconnection of an environment E with the system Σ looks like. Similar to what has been
defined in the previous chapter, the series interconnection of E and Σ, denoted by E × Σ is given
by setting the output of the environment, uE , equal to the input of the system, uΣ. This gives the
following:

E × Σ :



[
ẋE

ẋΣ

]
=

[
AE 0

BΣCE AΣ

] [
xE

xΣ

]
+

[
FE 0
0 FΣ

] [
dE
dΣ

]
,[

uE

yΣ

]
=

[
CE 0
0 CΣ

] [
xE

xΣ

]
,

0 =
[
HE 0

] [xE

xΣ

]
.

(19)

20



E Σ
dE

uE = uΣ

yΣ

dΣ

uΣ
E × Σ

Figure 7: Interconnected system E × Σ.

So, the series interconnection of an environment E with constraints and a system Σ without
constraints, is found to be a system with constraints. An illustration is given in Figure 7. Now,
we want to provide specifications on the system Σ, which will be formalized as the notion of a
contract. In particular, we want to specify the inputs that are allowed to be fed to our system Σ
and the corresponding outputs that we then expect. In other words, we are interested in the input-
output trajectories and the properties of the interconnected system E×Σ. To this end, we need to
specify a couple of things. Firstly, it needs to be specified what type of environments are allowed
to interconnect with the system Σ. In particular, it needs to be specified in which environments
the system Σ can operate, i.e. we need to specify what properties the output trajectories of
the environment, uE , are expected to satisfy. These properties are represented by the so-called
assumptions. Here, the assumptions A are given by a system of a form similar to that of the system
E, namely:

A :

 ẋA = AAxA + FAdA,
uA = CAxA,
0 = HAxA.

(20)

Secondly, we need to specify what properties the input-output trajectories (u, y) from the inter-
connected system are expected to have. The guarantees represent these properties and are given
by a system of a similar form as the system E × Σ, namely:

G :


ẋG = AGxG + FGdG,[
uG

yG

]
= CGxG,

0 = HGxG.

(21)

Here, note that all these systems, E,E × Σ, A and G, are systems of the form (2). Therefore, all
properties of systems Ξi, as discussed in the previous chapter, in particular apply to these systems.

This leads to the notion of a contract:

Definition 3.1. A contract C is given as a pair C = (A,G) of assumptions A and guarantees G.

Hence, a contract specifies what assumptions are being made about the environments E the system
Σ can operate in, and what guarantees the interconnected system E × Σ then provides. In other
words, the assumptions lead to a class of possible environments, whereas the guarantees lead to a
class of possible systems Σ.

3.3 Compatible Contracts

We can now define the following for contracts, using the previously defined notion of simulation:
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Definition 3.2. 1. An environment E is compatible with contract C = (A,G) if E is simulated
by A, i.e. E ⪯ A. A contract is called incompatible if it has no such environment.

2. The system Σ implements contract C = (A,G) if the interconnected system E×Σ is simulated
by G, i.e. E × Σ ⪯ G, for any environment E that is compatible with C.

In this second part of the definition, we are asked to show that the interconnected system E × Σ
is simulated by G for any environment E that is compatible with C. Now, we would, of course,
like to check if a system implements a contract, without having to check if the definition holds
for all environments E that are compatible with C. Here, we note that, as stated before, the
assumptions A can be considered as the class of possible environments, meaning that A is a set
of all environments in which the system can operate. Intuitively, one might then think that it
is enough to check whether or not the system Σ is such that A × Σ ⪯ G holds, in order for the
system Σ to implement the contract. This is indeed found to be true, as is formalized and proved
in the following theorem. Note that this theorem is similar to lemma 5 in (Besselink et al., 2019),
although in a slightly different setting.

Theorem 3.3. A system Σ implements contract C = (A,G) if and only if the interconnected
system A× Σ is simulated by G, i.e. A× Σ ⪯ G.

Proof. (⇒) Assume that system Σ implements contract C = (A,G). By definition this implies
that, for any environment E that is compatible with the contract, we have that

E × Σ ⪯ G.

By property 1 of Lemma 2.15 we know that A ⪯ A. So, in particular, we know that A is compatible
with C and hence

A× Σ ⪯ G.

(⇐) Conversely, assume that A×Σ ⪯ G holds. Let E be any compatible environment of contract
C = (A,G), then

E ⪯ A.

Lemma 2.8 furthermore tells us that
Σ ⪯ Σ.

The above two relations together give, by Lemma 2.17, that

E × Σ ⪯ A× Σ.

Combining this resulting simulation with the assumption that A × Σ ⪯ G, property 2 of Lemma
2.15 implies that

E × Σ ⪯ G.

Hence, it has been proved that E × Σ ⪯ G for all environments E that are compatible with C.
Therefore, Σ implements contract C by definition.

Note that, using Theorem 2.11, the theorem above leads to conditions for contract implementation
that can be verified numerically, as stated in the following corollary.

Corollary 3.4. A system Σ implements contract C = (A,G) if and only if there exists a subspace
S ⊂ XA ×XΣ ×XG satisfying

ΠXA×XΣ(S) = VXA
×XΣ, ΠXG

(S) ⊂ VXG
,
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and, additionally, satisfying the following propertiesim(FA) ∩ VXA

im(FΣ) ∩ XΣ

0

 ⊂ S +

 0
0

imFG

 , (22a)

 AA 0 0
BΣCA AΣ 0

0 0 AG

S ⊂ S + im

FA 0 0
0 FΣ 0
0 0 FG

 , (22b)

S ⊂ ker


HA 0 0
0 0 HG

CA 0 −Cu
G

0 CΣ −Cy
G

 . (22c)

Proof. The proof of this follows directly from applying Theorem 2.11 to the result in Theorem 3.3,
together with the proofs of the claims in Appendix A.5 that tell us that

VXA×XΣ = VXA
×XΣ.

3.4 Consistent Contracts

There is one more definition on contracts that we are interested in, namely:

Definition 3.5. A contract C = (A,G) is called consistent if there exists at least one implemen-
tation Σ of C. Conversely, when a contract has no implementation, then it is called inconsistent.

Theorem 3.3 can be used to check if a system Σ implements the contract and can hence be used to
say that the system is consistent. However, one may not always be able to find an implementation
as there need not exist one. The following theorem gives us conditions to check whether or not a
contract is consistent, which in return, by the previous Theorem, tells us if an implementation of
the contract exists or not. See also lemma 3 in (Shali et al., 2021) for a similar result in a different
setting.

Theorem 3.6. A contract C = (A,G) is consistent only if A is simulated by Gu, i.e. A ⪯ Gu.
Here, Gu denotes system G in which we are only concerned about the generated variables uG. This
system is given by the following equations

Gu :

 ẋG = AGxG + FGdG,
uG = Cu

GxG,
0 = HGxG.

(23)

Proof. The proof of this can be found in Appendix A.7.

This theorem can be used to imply inconsistency of a contract C = (A,G) in the following way:
namely, if A is not simulated by Gu then the negation of the statement in the theorem tells us
that contract C is not consistent. Checking for a contract if A is simulated by Gu can hence tell
us that the contract considered is not consistent.

3.5 Examples

An applications of this theorem will be shown in the following example.
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Example 3.7. Let us consider the contract C = (A,G) with

A :


ẋA =

[
1 0
0 1

]
xA +

[
1
1

]
dA,

uA =
[
0 1

]
xA,

0 =
[
1 −1

]
xA,

and G :



ẋG =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

xG +


0 1
0 0
1 0
1 0

 dG,

[
uG

yG

]
=

[
1 0 0 0
0 0 1 0

]
xG,

0 =
[
1 −1 0 0

]
xG.

We claim here that this contract is not consistent, which will be shown using the negation of the
previously stated theorem. Hereto, assume that A ⪯ Gu holds and let us show that this leads to a
contradiction, therefore implying that the assumption is wrong. Assuming that A ⪯ Gu, Theorem
2.11 implies that there exists a simulation relation

S ⊂ XA ×XG

which satisfies ΠXi
(S) ⊂ VXi

, i = A,G as well as properties (11a), (11b) and (11c). In particular,
the latter property tells us that we must have that

S ⊂ ker

HA 0
0 HG

CA −CGu

 = ker

1 −1 0 0 0 0
0 0 1 −1 0 0
0 1 −1 0 0 0

 = span




1
1
1
1
0
0

 ,


0
0
0
0
1
0

 ,


0
0
0
0
0
1




.

In order to check if property (11a) holds, we note that

imFA = im

[
1
1

]
= span

{[
1
1

]}
and imFG = im


0 1
0 0
1 0
1 0

 = span



0
0
1
1

 ,


1
0
0
0


 .

Furthermore, as proved in Example 2.12, we know that

VXA
= span

{[
1
1

]}
.

With this, we have found that

im(FA) ∩ VXA
= span

{[
1
1

]}
and imFG = span



0
0
1
1

 ,


1
0
0
0


 .

For properties (11a) and (11c) to both hold, we must hence have that

span




1
1
0
0
0
0




⊂ S + span




0
0
0
0
1
1

 ,


0
0
1
0
0
0




and S ⊂ span




1
1
1
1
0
0

 ,


0
0
0
0
1
0

 ,


0
0
0
0
0
1




.

It is clear that there does not exist a set S satisfying both inclusions simultaneously, which contra-
dicts with S being a simulation relation of A by Gu. Therefore, we found that A is not simulated by
Gu. By the negation of Theorem 3.6, it is hence implied that contract C = (A,G) is not consistent.
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The previous example therefore shows how Theorem 3.6 can be used to show that a contract is
inconsistent. Next, we will give an example of how Theorem 3.3 can be used to show that a contract
is consistent.

Example 3.8. For this example, we note that slightly changing the system equations of G in the
previous example can lead to a contract C = (A,G) that is consistent. Hereto, let us consider the
same system equations as in the previous example only with

FG =


0 1
0 1
1 0
1 0

 .

From this, it is clear that we have that

imFG = span



0
0
1
1

 ,


1
1
0
0


 .

We claim that the contract C = (A,G) is now consistent. This will be shown by proving that the
system

Σ :

 ẋΣ(t) =

[
1 0
0 1

]
xΣ(t) +

[
0
1

]
uΣ(t) +

[
1
1

]
dΣ(t),

yΣ(t) =
[
1 0

]
xΣ(t),

is in fact an implementation of it. In order to show this, we must first of all state the system
equations of the series interconnection of A with this system. The system equations of this inter-
connection are easily found to be given by

A× Σ :



[
ẋA(t)
ẋΣ(t)

]
=


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

[xA(t)
xΣ(t)

]
+


1 0
1 0
0 1
0 1

[dA(t)dΣ(t)

]
,

[
uA(t)
yΣ(t)

]
=

[
0 1 0 0
0 0 1 0

] [
xA(t)
xΣ(t)

]
,

0 =
[
1 −1 0 0

] [xA(t)
xΣ(t)

]
.

Similar to what has been proved for VXG
in the previous example, it can be shown that

VXA×Σ
= span



1
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 .

From this, it is easily found that

im(FXA×Σ
) ∩ VXXA×Σ

= span



0
0
1
1

 ,


1
1
0
0


 .

Let us now use Theorem 2.11 to show that this interconnection is simulated by G which, by Theorem
3.3, implies that the contract is consistent. Here, one can easily verify that

S = span





1
1
0
0
1
1
0
0


,



0
0
0
1
0
0
0
0


,



0
0
1
0
0
0
1
0


,



0
0
0
0
0
0
0
1
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satisfies the three conditions in Theorem 2.11. In addition, note that we have the following:

Claim: VXG
= span



1
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 .

Proof. (⊂) By definition, it is known that

VXG
⊂ kerHG = ker

[
1 −1 0 0

]
= span



1
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 .

(⊃) To show the reverse inclusion, take any

x ∈ span



1
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 .

We then know that x is of the form x =
[
a a b c

]T for some a, b, c ∈ R. Consecutively, set
xG(0) = x and dG(t) = 0 for all t ≥ 0. The system equations then imply that

ẋG(t) = AGxG(t), ∀t ≥ 0.

In return, this implies that
xG(t) = eAGtxG(0).

This can easily be computed and is found to be given by

xG(t) =


et 0 0 0
0 et 0 0
0 0 et 0
0 tet 0 et



a
a
b
c

 =


aet

aet

bet

atet + cet

 .

From this, it is clear that HGxG(t) = 0 for all t ≥ 0. By definition, this then implies that

x = xG(0) ∈ VXG
,

with which the claim has been proved. ■

With this claim, it is clear that the set S is such that

ΠXi
(S) = span



1
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 = VXi

(24)

for i = A × Σ and i = G. With this, it has been proved that A × Σ ⪯ G and that we hence have
that the contract C = (A,G) is consistent.

In this chapter, we introduced assume-guarantee contracts as a pair of assumptions, specifying the
input trajectories that are allowed to be fed to an input-output system by the environment in which
it operates, and guarantees, specifying the input-output trajectories that we then expect from the
interconnection of the input-output system with its environment. In other words, contracts give
specifications on the external behaviour of a system. Here, the notion of simulation plays an
important role in determining whether or not there exists an implementation of a contract.
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4 Contract Refinement

"What keeps me going are my learnings, which I would rather call my ’experience,’ and my urge
to explore.", Sushant Singh Rajput.
Having discussed the notion of simulation for two types of systems, let us continue discussing some
other concept of contract theory. In particular, let us discuss the notion of refinement. Here, the
book by Benveniste et al. (2018) will once more be used as the main source of inspiration.

Recall from the introduction that the notion of refinement is crucial in doing modular design and
analysis. In particular, refinement allows us to compare contracts of different components. The
following definition formalizes what it means for one contract to refine another.

Definition 4.1. Consider two contracts C1 and C2. Contract C1 refines contract C2, denoted by
C1 ⊴ C2, if

1. any environment that is compatible with C2 is also compatible with C1.

2. any implementation of C1 is an implementation of C2.

This definition hence tells us that a contract C1 refines contract C2 if it enlarges the class of
compatible environments, but reduces the possible implementations. It is not always easy to check
this, so we will state a theorem that gives sufficient conditions which, upon satisfaction, imply that
one contract refines another.

However, before we can state this theorem, we must first see what the interconnection by external
variables between the assumptions A and the guarantees G, denoted by A ⊗ G, looks like. The
theorem will heavily rely on this interconnection, and is therefore useful to state for future refer-
ence. Now, using what we have seen previously, the system equations of the assumptions and the
guarantees are coupled to each other by requiring the following on the external variables

uA = uG.

The system equations of the interconnection by external variables are then found to be given by

A⊗G :



[
ẋA

ẋG

]
=

[
AA 0
0 AG

] [
xA

xG

]
+

[
FA 0
0 FG

] [
dA
dG

]
,[

uG

yG

]
=

[
CA 0
0 Cy

G

] [
xA

xG

]
,

0 =

CA −Cu
G

HA 0
0 HG

[xA

xG

]
.

(25)

Note that the last equation specifies the requirement that uA = uG, see also the illustration in
Figure 8. Using the system equations of the interconnection A ⊗ G, we can state and prove the
following theorem.

A

G

dA uA

dG

uG = uA

uG

yG

Figure 8: Interconnected system A⊗G.
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Theorem 4.2. Consider contracts C1 = (A1, G1) and C2 = (A2, G2). If contract C1 is consistent,
then it refines contract C2 if

1. A2 ⪯ A1. (26a)
2. A2 ⊗G1 ⪯ G2. (26b)

In this case, C2 is consistent.

Proof. Assume that C1 is consistent, A2 ⪯ A1 and A2 ⊗ G1 ⪯ G2. Since C1 is consistent by
assumption, we know that there exists an implementation Σ of C1. In particular, this implies that

A1 × Σ ⪯ G1.

In addition, property 1 of Lemma 2.8 implies that Σ ⪯ Σ and, by assumption, we know that
A2 ⪯ A1. Lemma 2.17 then implies that

A2 × Σ ⪯ A1 × Σ.

Combining this with the refinement relation that was found previously, this implies that

A2 × Σ ⪯ G1.

By Lemma 2.18, it is then implied that

A2 × Σ ⪯ A2 ⊗G1.

Combining this together with the assumption that A2 ⊗G1 ⪯ G2, we find that

A2 × Σ ⪯ G2.

In other words, this proves that Σ implements C2 and that hence C2 is consistent. The second
property of Definition 4.1 is therefore proved to hold.

Let us now also prove the first property of the definition, i.e. that any compatible environment
of C2 is also a compatible environment of C1. To prove this, let us assume that E is a compatible
environment of C2, i.e.

E ⪯ A2.

In addition, it is assumed that
A2 ⪯ A1.

Together, these two imply by Lemma 2.15 that

E ⪯ A1.

With this, it has been proved that any compatible environment of C2 is also a compatible environ-
ment of C1. This then concludes the proof of the theorem.

An example of how this theorem can be applied in practice, can be found below.

Example 4.3. Consider the contracts C1 = (A1, G1) and C2 = (A2, G2) where we have

A1 :


ẋA1 =

[
1 0
0 1

]
xA1 +

[
1
1

]
dA1 ,

uA1 =
[
0 1

]
xA1 ,

0 =
[
1 −1

]
xA1 ,

G1 :



ẋG1
=


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

xG1
+


0 1
0 0
1 0
1 0

 dG1
,

[
uG1

yG1

]
=

[
1 0 0 0
0 0 1 0

]
xG1

,

0 =
[
1 −1 0 0

]
xG1

,
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G2 :



ẋG2
=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 1 0 1

xG2
+


1 0 0
1 0 0
0 0 1
0 0 1
0 1 0
0 1 0

 dG2
,

[
uG2

yG2

]
=

[
0 1 0 0 0 0
0 0 0 0 1 0

]
xG2

,

0 =

0 1 −1 0 0 0
1 −1 0 0 0 0
0 0 1 −1 0 0

xG2 ,

and where A2 has the exact same system equations as A1. From Example 3.8 we then know that
the contract C1 is consistent. Furthermore, it is easily found that the interconnection by external
variables A2 ⊗ G1 has the same system equations as G2. In other words, systems A1 and A2 are
the same, and systems A2 ⊗G1 and G2 are also the same. By property 1 of Lemma 2.15 we know
that this implies that

A2 ⪯ A1 and A2 ⊗G1 ⪯ G2.

By Theorem 4.2 it is then implied that
C1 ⊴ C2

and that the contract C2 is consistent. In particular, this means that the system Σ given in Example
3.8 should implement the contract C2. Indeed, it can be shown that the space

S = span





1
1
0
0
1
1
1
1
0
0


,



0
0
1
0
0
0
0
0
1
0


,



0
0
0
1
0
0
0
0
0
0


,



0
0
0
0
0
0
0
0
0
1





.

satisfies all properties stated in Theorem 2.11 and is hence a simulation relation of A2×Σ by G2,.

In this chapter, we have defined refinement. This is an important concept in contract theory that
allows us to compare contracts with one another. In particular, it provides a way to determine if
one component in a multi-component product can be substituted by another component. Hereto
note that, from the definition of refinement, it follows that one component can be replaced by
another if the contract corresponding to the latter refines that of the former. That is, once we
have a functioning product, we can improve its design by merely replacing one component - sat-
isfying contract C - by another component - satisfying contract C̃ - if we have that C̃ ⊴ C, instead
of redesigning the entire product from scratch. Contract refinement may hence allow for faster
development and improvement of products.
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5 Contract Composition

"To raise new questions, new possibilities, to regard old problems from a new angle, requires creative
imagination and marks real advance in science.", Albert Einstein.
Now, we are also interested in the concept of contract composition. More specifically, we want to
relate the contracts for subsystems to the contract of the overall series interconnection of these
subsystems.

5.1 Series Composition - Two Systems

Let us start by analysing series compositions, i.e. the series interconnection of systems Σ. Hereto,
recall that the series composition Σ1 × Σ2 is given by

Σ12 := Σ1 × Σ2 :


[
ẋ1

ẋ2

]
=

[
A1 0

B2C1 A2

] [
x1

x2

]
+

[
B1

0

]
u1 +

[
F1 0
0 F2

] [
d1
d2

]
,

y2 =
[
0 C2

] [x1

x2

]
.

Now, considering contracts Ci = (Ai, Gi) for i = 1, 2, we are interested in analyzing what a
contract looks like that implements the series composition Σ1 × Σ2 of any implementations Σi of
the contracts Ci = (Ai, Gi). In other words, we are interested in finding a contract C = (A,G),
given contracts C1 and C2, such that

A× Σ1 × Σ2 ⪯ G

for any systems Σi that implement the contracts Ci = (Ai, Gi) for i = 1, 2, see also Figure 9. Using
this depiction, we can formulate some other properties that the contract C = (A,G) should have.
Namely, we see that we need for the inputs uA to be valid inputs to the system Σ1, meaning that
any uA that can be generated by A should be an acceptable input for the system Σ1. This can be
written as the requirement that

A ⪯ A1.

In addition, we need the outputs yΣ1
to be acceptable input for the system Σ2, which translates

to the requirement that
(A× Σ1)

y ⪯ A2

for any implementation Σ1 of the contract C1 = (A1, G1). Here, the subscript y denotes that the
output variable is the only external variable considered of the interconnection.

A Σ1

dA
uA = uΣ1

Σ2yΣ1 = uΣ2

yΣ2

dΣ1 dΣ2

uA
A× Σ1 × Σ2

⪯ G
dG

yG

uG

Figure 9: Depiction of A× Σ1 × Σ2 ⪯ G.
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In short, the desired properties on C = (A,G) are: for any implementations Σi of the contracts
Ci = (Ai, Gi), i = 1, 2, we want that

1. A× Σ1 × Σ2 ⪯ G, (27a)
2. A ⪯ A1, (27b)
3. (A× Σ1)

y ⪯ A2. (27c)

Taking inspiration from Theorem 1 in (Saoud et al., 2018), we then formulate the following lemma:

Lemma 5.1. Consider consistent contracts Ci = (Ai, Gi) for i = 1, 2, which are such that Gy
1 ⪯ A2.

Let systems Σi be any implementations of the contracts Ci = (Ai, Gi). Then, a contract C = (A,G)
that satisfies

• A ⪯ A1,

• G12 ⪯ G,

has the three desired properties (27a), (27b) and (27c). Here, we define

G12 :



[
ẋG1

ẋG2

]
=

[
AG1 0
0 AG2

] [
xG1

xG2

]
+

[
FG1 0
0 FG2

] [
dG1

dG2

]
,[

uG1

yG2

]
=

[
Cu

G1
0

0 Cy
G2

] [
xG1

xG2

]
,

0 =

HG1
0

0 HG2

Cy
G1

−Cu
G2

[xG1

xG2

]
.

(28)

Proof. Consider consistent contracts Ci = (Ai, Gi), i = 1, 2, together with any implementations
Σi. Assume that the contracts satisfy Gy

1 ⪯ A2 and let C = (A,G) be any contract such that
A ⪯ A1 and G12 ⪯ G. Then, in order to show that the first desired property is satisfied, we claim
the following:

Claim: A1 × Σ12 ⪯ G12.

Proof. The proof of this can be found in Appendix A.8. ■

From the assumption that A ⪯ A1 and by Lemma 2.17, we then find that

A× Σ12 ⪯ A1 × Σ12.

Using the claim and the assumption that G12 ⪯ G, it then follows that

A× Σ12 ⪯ G,

by property 2 of Lemma 2.15. With this, the first desired property is proved to hold. Furthermore,
note that the second desired property is trivially satisfied by the first condition on the contract
C = (A,G) stated in the lemma. The third property can easily be proved to also hold. The proof
of this goes as follows: since we have A ⪯ A1 by assumption, we know by Lemma 2.17 that

A× Σ1 ⪯ A1 × Σ1.

In addition, since Σ1 is assumed to be an implementation of the contract C1 = (A1, G1), we know
that

A1 × Σ1 ⪯ G1.
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It then follows that
(A× Σ1)

y ⪯ Gy
1.

Since it is assumed that Gy
1 ⪯ A2, we hereby find that

(A× Σ1)
y ⪯ A2

and hence the third property also holds.

From this lemma, we note that: if Gy
1 ⪯ A2 holds, then a contract C = (A,G) that satisfies the

three desired properties exists. In particular, one possible contract is given by taking

A = A1 and G = G12.

This then gives rise to the following corollary:

Corollary 5.2. Consider consistent contracts Ci = (Ai, Gi), for i = 1, 2, together with any of their
implementations Σi. Then, a contract C = (A,G) exists that satisfies the three desired properties
(27a), (27b) and (27c) if Gy

1 ⪯ A2.

With this, it is also clear that the following result holds:

Corollary 5.3. If two contracts Ci = (Ai, Gi), i = 1, 2, are consistent and satisfy Gy
1 ⪯ A2, then

any contract C = (A,G) with A ⪯ A1 and G12 ⪯ G is also consistent.

Relating this to refinement as was introduced in the previous chapter, we can even prove that the
contract C = (A1, G12) is a refinement of any other contract satisfying Lemma 5.1. So, in a way,
the contract C = (A1, G12) is the best we can do with respect to the series interconnection of any
two systems Σ1,Σ2 implementing, respectively, contracts C1 = (A1, G1) and C2 = (A2, G2). This
is formalized in the following lemma:

Lemma 5.4. Consider consistent contracts Ci = (Ai, Gi), i = 1, 2, with Gy
1 ⪯ A2 and let

C′ = (A′, G′) be any contract that satisfies the conditions of Lemma 5.1. Then, the contract
C = (A1, G12) refines C′ = (A′, G′), i.e. C ⊴ C′.

Proof. Assume that Ci = (Ai, Gi), i = 1, 2, with Gy
1 ⪯ A2 are consistent contracts and let C′ =

(A′, G′) be any contract that satisfies the conditions of Lemma 5.1. By Theorem 4.2 we know that
the contract C = (A1, G12) refines contract C′ = (A′, G′) if

1. A′ ⪯ A1. (29a)
2. A′ ⊗G12 ⪯ G′. (29b)

The first property trivially holds since C′ = (A′, G′) is assumed to satisfy the conditions of Lemma
5.1. The second property is easily proved to hold as well. The proof of this goes as follows: by
Lemma 2.16, we know that

A′ ⊗G12 ⪯ G12.

In addition, since C′ = (A′, G′) is assumed to satisfy the conditions stated in Lemma 5.1, we know
that

G12 ⪯ G′.

Together, by Lemma 2.15, these two statements imply that

A′ ⊗G12 ⪯ G′,

with which property 2 stated above is proved to hold. With this, it has been proved that the
contract C = (A1, G12) refines C′ = (A′, G′).
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5.2 Series Composition - Generalized

So far, we have considered the interconnection of only two systems satisfying certain contracts.
However, the theory can easily be generalized to the case where we have n ≥ 2 systems. In this
case, the three desired properties on C = (A,G) need to be slightly rewritten. Namely, they now
read as follows: for any implementations Σi of the contracts Ci = (Ai, Gi), i = 1, ..., n,

1. the contract C = (A,G) must have Σ1,n := Σ1 × ...× Σn as an implementation :

A× Σ1,n ⪯ G. (30a)
2. the inputs uA need to be valid inputs for the system Σ1 :

A ⪯ A1. (30b)
3. the outputs, yΣi

, of the system Σi need to be acceptable inputs , uΣi+1
, to the system Σi+1 :

(A× Σ1,i)
y ⪯ Ai+1, for i = 1, ..., n− 1. (30c)

The generalization of Lemma 5.1 then reads as follows:

Lemma 5.5. Consider n consistent contracts Ci = (Ai, Gi), i = 1, ..., n, which are such that Gy
1,j ⪯

Aj+1 for j = 1, ..., n − 1. Let systems Σi be any implementations of the contracts Ci = (Ai, Gi).
Then, a contract C = (A,G) that satisfies

• A ⪯ A1,

• G1,n ⪯ G,

has the three desired properties (30a), (30b) and (30c). Here, we define

G1,i :



ẋG1

...
ẋGi

 =

AG1

. . .

AGi


xG1

...
xGi

+

FG1

. . .

FGi


dG1

...
dGi

 ,

[
uG1

yGi

]
=

[
Cu

G1
0 . . . 0 0

0 0 . . . 0 Cy
Gi

]xG1

...
xGi

 ,

0 =



HG1

. . .

. . .

HGi

Cy
G1

−Cu
G2

. . .
. . .

Cy
Gi−1

−Cu
Gi



xG1

...
xGi

 .

(31)

Proof. Assume that we have n consistent contracts Ci = (Ai, Gi), i = 1, ..., n, which are such that
Gy

1,j ⪯ Aj+1 for j = 1, ..., n − 1. Furthermore, let systems Σi be any implementations of the
contracts Ci = (Ai, Gi) and let C = (A,G) be any contract that satisfies A ⪯ A1 and G1,n ⪯ G.
Let us now prove that each of the three desired properties (30a), (30b) and (30c) holds.

Proof of (30a). By proof by induction, we can show that A1×Σ1,i ⪯ G1,i for any natural number
i ≥ 1. The proof of this goes as follows:

• Base case (i = 1): by assumption we know that Σ1 is any implementations of the contract
C1 = (A1, G1). Therefore, we know that

A1 × Σ1 ⪯ G1.
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Here, note that, by definition, G1,1 = G1 and Σ1,1 = Σ1. This then proves that A1 × Σ1,i ⪯
G1,i holds for the base case, i = 1.

• Induction step: let us assume that A1 × Σ1,i−1 ⪯ G1,i−1 holds and use this to prove that
then also A1 × Σ1,i ⪯ G1,i holds. In particular, this latter assumption tells us that Σ1,i−1

is an implementation of the contract (A1, G1,i−1). Furthermore, we know, by the other
assumptions, that Σi implements contract Ci = (Ai, Gi) and that Gy

1,i−1 ⪯ Ai. Lemma 5.1
then tells us that Σ1,i = Σ1,i−1×Σi is an implementation of the contract (A1, G1,i). In other
words, we found that

A1 × Σ1,i ⪯ G1,i,

as was desired.

Hence, by proof by induction, we have shown that A1 × Σ1,i ⪯ G1,i holds for any natural number
i ≥ 1. In particular, this holds for i = n, where n ≥ 2 is the number of contracts we consider.
Since A ⪯ A1 and G1,n ⪯ G by assumption, it is then implied that

A× Σ1,n ⪯ G1,n.

Therefore, property (30a) is proved to hold.

Proof of (30b). This property is trivially satisfied since we have, by assumption, that A ⪯ A1.

Proof of (30c). From the proof of property (30a), we know that A1 × Σ1,i ⪯ G1,i for any natural
number i ≥ i. In particular, this implies that

(A× Σ1,i)
y ⪯ Gy

1,i

for i = 1, ..., n − 1. Now, by assumption, we know that Gy
1,i ⪯ Ai+1 for any such i = 1, ..., n − 1.

Therefore, we find that
(A× Σ1,i)

y ⪯ Ai+1

for i = 1, ..., n− 1, with which property (30c) is proved to hold.

This then concludes the proof of the lemma.

Similar to before, we note that: if Gy
1,j ⪯ Aj+1 holds for j = 1, ..., n− 1, then there exists at least

one contract C = (A,G) that satisfies the three desired properties. Namely, one possible contract
is C = (A,G) where

A = A1 and G = G1,n.

This then gives rise to the following corollary:

Corollary 5.6. Consider n ≥ 2 consistent contracts Ci = (Ai, Gi), i = 1, ..., n, together with any
of their implementations Σi. Then, a contract C = (A,G) exists that satisfies the three desired
properties (27a), (27b) and (27c) if Gy

1,j ⪯ Aj+1 for all j = 1, ..., n− 1.

5.3 Example

Let us see an example of how the lemma on series composition of two systems, i.e. Lemma 5.1,
can be used.
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Example 5.7. Consider the contract C1 = (A1, G1) with

A1 :


ẋA1

=

[
1 0
0 1

]
xA1

+

[
1
1

]
dA1

,

uA1
=
[
0 1

]
xA1

,
0 =

[
1 −1

]
xA1 ,

and G1 :



ẋG1
=


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

xG1
+


0 1
0 1
1 0
1 0

 dG1
,

[
uG1

yG1

]
=

[
1 0 0 0
0 0 1 0

]
xG1

,

0 =
[
1 −1 0 0

]
xG1

.

This contract is consistent since we know, by Example 3.8, that it is implemented by system Σ1

given by

Σ1 :

 ẋΣ1
=

[
1 0
0 1

]
xΣ1

+

[
0
1

]
uΣ1

+

[
1
1

]
dΣ1

,

yΣ1
=
[
1 0

]
xΣ1

.

In addition, let us consider the following contract C2 = (A2, G2), where

A2 :


ẋA2

=

[
1 0
0 1

]
xA2

+

[
1
1

]
dA2

,

uA2
=
[
1 0

]
xA2

,
0 =

[
1 −1

]
xA2

,

and G2 :



ẋG2
=


1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

xG2 +


1 0
1 0
0 1
0 1

 dG2 ,

[
uG2

yG2

]
=

[
1 0 0 0
0 0 0 1

]
xG2

,

0 =
[
1 −1 0 0

]
xG2

.

This contract is consistent too. In particular, it is clear that Σ2, defined by

Σ2 :

 ẋΣ2 =

[
1 0
0 1

]
xΣ2 +

[
1
0

]
uΣ2

+

[
1
1

]
dΣ2

,

yΣ2 =
[
0 1

]
xΣ2 ,

is an implementation of this contract, since A2 × Σ2 has the same system equations as G2, for
which we then clearly have that

A2 × Σ2 ⪯ G2.

Now, let us use Theorem 2.11 to show that Gy
1 ⪯ A2. Hereto, note that we know from Example

3.8, respectively Example 2.12, that

im(FG1
) ∩ VXG1

= span



1
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 and imFA2

= ΠXA2
(S2) = span

{[
1
1

]}
.

Using this, it can easily be shown that

S12 = span




1
1
0
0
0
0

 ,


0
0
0
1
0
0

 ,


0
0
1
0
1
1




satisfies all conditions in Theorem 2.11. This then proves that Gy

1 ⪯ A2 which, by Corollary 5.2,
implies that there exists a contract C = (A,G) that satisfies the three desired properties (27a), (27b)
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and (27c). In particular, one such possible contract C = (A,G) is given by

A :


ẋA =

[
1 0
0 1

]
xA +

[
1
1

]
dA,

uA =
[
0 1

]
xA,

0 =
[
1 −1

]
xA,

and G :



ẋG =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

xG1
+


0 1
0 1
1 0
1 0

 dG1
,

[
uG1

yG1

]
=

[
1 0 0 0
0 0 1 0

]
xG1

,

0 =
[
1 −1 0 0

]
xG1

.

In this chapter, we have defined and discussed the notion of composition. This concept is of great
importance in contract theory as it provides a way to determine the overall contract of a multi-
component product, based on the contracts of its individual components. Here, we treated the case
in which the product was formed by the series interconnection of a finite number of components.
Furthermore, contract composition allows us to determine whether or not the interconnection of
all components satisfies the desired external behaviour, making it a very useful notion in modular
design and analysis of multi-component products.
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6 Conclusion

In this section, we will summarize the results and we will draw conclusions from these results. In
particular, we will look at the research goals stated in the introduction. After this, we will discuss
the limitations of the results in this paper and we will discuss what further research can be done
regarding the further development of this theory.

6.1 Summary of Results and Conclusion

"Each problem that I solved became a rule, which served afterwards to solve other problems.", Rene
Descartes.
As was mentioned in the introduction, the purpose of this report is to address the following research
goals:

1. Define assume-guarantee contracts.

2. Analyze how to verify if a system satisfies a specific contract or not.

3. Find a way to compare contracts.

4. Investigate how one can find a contract of the interconnection of a finite number of systems.

In our research, we managed to reach all of these goals. Hereto, we first needed to introduce
the two types of systems that we studied and what it means for such systems to be simulated
by another. Recall that simulation is a notion that allows us to compare the behaviour of two
systems. This was done in Chapter 2. Next, in the beginning of Chapter 3, we defined contracts as
a pair C = (A,G) of assumptions A and guarantees G. With this definition, we were able to define
what it means for a system to satisfy such a contract, which we referred to as implementing the
contract. In particular, we found that a system Σ implements a contract C = (A,G) if and only
if the interconnected system A × Σ is simulated by G. Here, we used the previously introduced
notion of simulation. Furthermore, we found that we could write this condition more numerically
as conditions on a subspace S. Thus, in order to check if a system implements a contract, it suffices
to find a subspace S that satisfies some numerical conditions. Here, we would like to stress that
these conditions can be checked efficiently. With this, we have met the first and second research
goal.

The third research goal was then achieved in Chapter 4. In particular, we defined the notion of
refinement as a way to compare contracts. Here, the definition of refinement can be understood as
follows: a contract C1 refines contract C2 if it enlarges the class of compatible environments, but
reduces the possible implementations. We were able to rewrite these conditions as conditions on
the assumptions and guarantees of the two contracts. Note that this is a powerful result as it tells
us that, contrary to the definition, we need not find implementations of the two contracts. Instead,
in order to check refinement, we only need to check conditions on the two contracts themselves.

Lastly, the fourth research goal was reached in Chapter 5. There, we looked into contracts for
series compositions. It was found that if we have a finite number of local contracts Ci = (Ai, Gi),
i = 1, ..., n, satisfying some assumptions, and any of their implementations, then the contract
C = (A1, G1,n) implements the series composition of the n implementations. In fact, we even
found that this global contract refines any other contract that has the series composition as an im-
plementation. This result is again quite powerful since we are able to find the global contract, using
only information on the local contracts. In other words, the global contract can be found indepen-
dently from any implementations of the local contracts. Instead, it suffices to check conditions on
the assumptions and guarantees of the local contracts.
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Altogether, refinement proved to be an important concept for modular design, as it provides a way
to determine if one component can be substituted by another. In particular, it was found that
that one component can be replaced by another if the contract corresponding to the latter refines
that of the former. Another important concept for modular design is the notion of composition.
It provides a way to determine the (global) contract of a multi-component product, based on the
(local) contracts of its individual components. More specifically, it allows us to determine if the
interconnection of all components satisfies the desired external behaviour.

In conclusion, having achieved the research goals, a theoretical basis on contracts is provided that
can be beneficial to companies that work with designing and manufacturing multi-component sys-
tems. Using contracts in modular design allows for easier analysis, design and improvement of
complex, multi-component products. In particular, the notion of refinement allows for components
to be independently replaced or exchanged with other components, whereas the notion of compo-
sition allows us to determine if the final product satisfies the desired external behaviour. That is,
this research presents powerful results on contract theory, which can make it easier for companies
to use modular design to create, modify and analyze complex, multi-component products.

6.2 Discussion

"The aim of argument, or of discussion, should not be victory, but progress.", Joseph Joubert.
Having met the research goals, we believe that the reader is in a position to use the results on
contract theory that are presented in this paper. The results do not come without warning as to
their applicability however. In the research conducted here, we chose to work with different types
of systems: the assumptions A and guarantees G were chosen to be constrained systems, whereas
systems Σ were taken to be unconstrained systems. Here, we deliberately chose the pair of systems
that form the contract to be of a different type than the system implementing the contract, as
we thought it would be most useful for application. In practice, we would like the mathematical
equations describing our system Σ to be as much simplified as possible, to make it easier to work
with them. This is why we chose the system equations to be unconstrained and of a general linear
form that is widely used. On the other hand, we can imagine that the corresponding contracts
contain some constraints that, for example, guarantee that the outputs are as desired. Hence,
we deliberately chose the two different types of system equations in our research. However, it is
possible that one deals with systems Σ (or contracts) that are of a different form, in which one
does (not) have constraints. So, while the research done here is useful, it can be improved.

In particular, the research conducted here can serve as a basis for further research and application,
where work expanding on this research could look into different types of systems Σ and/or contract
pairs. We also suggest further research to explore how contracts for subsystems relate to the
contract of the parallel and/or feedback interconnection of these subsystems. In addition to this,
we also encourage to research what the overall contract would look like when a finite number of
subsystems are interconnected in different ways: a combination of series, parallel and feedback
interconnections. Furthermore, it would be interesting to look into questions such as: how can
we guarantee contract satisfaction of a closed-loop system? Or, how can we design local contracts
given a global contract? This would be very helpful and would allow for more applications, i.e. a
wider range of systems and products for which contracts can be used in modular design.
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A Appendix

"Mathematical reasoning may be regarded rather schematically as the exercise of a combination of
two facilities, which we may call intuition and ingenuity.", Alan Turing.
In this section, proofs to previously stated results can be found.

A.1 Proof of Theorem 2.5

The proof of the theorem will be given in multiple parts. Firstly, we note the following: by Lemma
2.4 it is known that property (3a) is equivalent to (4a). This equivalence will now be used to prove
that, in return, property (3a) is equivalent to properties (6a), (6b) and (6c).

Proof of (3a) ⇐⇒ (6a), (6b) and (6c). Here, we use that it was previously proved that (3a) is
equivalent to (4a), which is in return equivalent to saying that: for any (x1, x2) ∈ S, u ∈ U = U1∩U2

and d1 ∈ D1, there exists d2 ∈ D2 such that[
A1 0
0 A2

] [
x1

x2

]
+

[
B1

B2

]
u+

[
F1

0

]
d1 +

[
0
F2

]
d2 ∈ S. (32)

This matrix-vector form will prove useful in the remainder of this proof.

(⇒) Assume the above inclusion holds, then the following is found:

• In particular, let u = 0 and (x1, x2) = (0, 0), which is an element in S since S is a linear
subspace. Then, property (32) reads as follows: for all d1 ∈ D1 there exists d2 ∈ D2 such
that [

F1

0

]
d1 +

[
0
F2

]
d2 ∈ S.

From this, it immediately follows that

im

[
F1

0

]
⊂ S + im

[
0
F2

]
.

Hence, property (6a) holds.

• Instead, let u = 0 and d1 = 0, property (32) then implies that: for all (x1, x2) ∈ S there
exists d2 ∈ D2 such that [

A1 0
0 A2

] [
x1

x2

]
+

[
0
F2

]
d2 ∈ S.

Therefore, it follows that [
A1 0
0 A2

]
S ⊂ S + im

[
0
F2

]
since (x1, x2) is an arbitrary element in S. Hence, property (6b) is implied.

• Now, let (x1, x2) = (0, 0) and d1 = 0, then property (32) implies that: for all u ∈ U there
exists d2 ∈ D2 such that [

B1

B2

]
u+

[
0
F2

]
d2 ∈ S.

This then implies that

im

[
B1

B2

]
⊂ S + im

[
0
F2

]
with which property (6c) is proved to hold.
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Hence, it is proved that property (3a) implies that properties (6a), (6b) and (6c) hold.

(⇐) Take any (x1, x2) ∈ S, u ∈ U = U1 ∩ U2 and d1 ∈ D1, and assume that properties (6a), (6b)
and (6c) hold. Note that it is sufficient to prove that these properties imply that

(A1x1 +B1u+ F1d1, A2x2 +B2u+ F2d2) ∈ S

since this has previously been proved to be equivalent to property (3a). As seen before, the
matrix-vector representation of the latter is given by[

A1 0
0 A2

] [
x1

x2

]
+

[
B1

B2

]
u+

[
F1

0

]
d1 +

[
0
F2

]
d2 ∈ S.

Now, let us study the properties in more detail, starting with property (6a). By definition, this
property implies that there exists (x̃1, x̃2) ∈ S and d̄2 ∈ D2 such that[

F1

0

]
d1 =

[
x̃1

x̃2

]
+

[
0
F2

]
d̄2.

Secondly, property (6b) implies that there exists (x1, x2) ∈ S and d2 ∈ D2 such that[
A1 0
0 A2

] [
x1

x2

]
=

[
x1

x2

]
+

[
0
F2

]
d2.

Lastly, property (6c) implies that there also exists (x̂1, x̂2) ∈ S and d̂2 ∈ D2 such that[
B1

B2

]
u =

[
x̂1

x̂2

]
+

[
0
F2

]
d̂2.

Together, these give that[
A1 0
0 A2

] [
x1

x2

]
+

[
B1

B2

]
u+

[
F1

0

]
d1 +

[
0
F2

]
d2 =

[
x1

x2

]
+

[
0
F2

]
d2 +

[
x̂1

x̂2

]
+

[
0
F2

]
d̂2 +

[
x̄1

x̄2

]
+

[
0
F2

]
d̄2 +

[
0
F2

]
d2.

Now, define x̌i = xi + x̂i + x̄i, i = 1, 2, then by linearity of subspace S we know that (x̌1, x̌2) ∈ S.
Furthermore, let us choose a particular d2, namely d2 = −d2 − d̂2 − d̄2. Note that since D2 is a
linear space and since d2, d̂2, d̄2 ∈ D2, then also d2 ∈ D2. This then gives that:[

A1 0
0 A2

] [
x1

x2

]
+

[
B1

B2

]
u+

[
F1

0

]
d1 +

[
0
F2

]
d2 =

[
x̌1

x̌2

]
∈ S.

In other words, it has now been proved that properties (6a), (6b) and (6c) imply that: if we take
any (x1, x2) ∈ S, u ∈ U and d1 ∈ D1, then there exists a d2 ∈ D2 such that[

A1 0
0 A2

] [
x1

x2

]
+

[
B1

B2

]
u+

[
F1

0

]
d1 +

[
0
F2

]
d2 ∈ S

as desired. This then concludes the proof that properties (6a), (6b) and (6c) imply that property
(3a) holds.

With this, it has been proved that property (3a) is equivalent to properties (6a), (6b) and (6c).

Proof of (3b) ⇐⇒ (6d). Now, note that property (3b) is equivalent to property (6d). The proof
of this goes as follows: take any (x1, x2) ∈ S, then

C1x1 = C2x2 ⇐⇒ C1x1 − C2x2 = 0

⇐⇒
[
C1 −C2

] [x1

x2

]
= 0
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Since the above holds for any arbitrary (x1, x2) ∈ S, this is in return equivalent to

S ⊂ ker
[
C1 −C2

]
by definition of the kernel. This latter statement is precisely what is stated in property (6d).
Hence, we have proved that properties (3b) and (6d) are equivalent.

A.2 Proof of Lemma 2.8

The properties will be proved separately, where we do not write the time dependency explicitly for
readability here.

Proof of 1. This is immediate with the choice

S = {(x1, x1) | x1 ∈ X1}. ■

Proof of 2. Secondly, let us prove the second statement. For this, assume that

Σ1 ⪯ Σ2 and Σ2 ⪯ Σ3

for any systems Σ1,Σ2 and Σ3. In other words, there exists a simulation relation of Σ1 by Σ2, say
S12 ⊂ X1 × X2, and a simulation relation of Σ2 by Σ3, called S23 ⊂ X2 × X3, satisfying Definition
2.3. From this, let us define another linear subspace as

S13 = {(x1, x3) | ∃x2 such that (x1, x2) ∈ S12, (x2, x3) ∈ S23}.

Take any (x1, x3) ∈ S13, u ∈ U = U1∩U3 and d1 ∈ D1. In particular, this gives us that there exists
x2 such that (x1, x2) ∈ S12, (x2, x3) ∈ S23 since (x1, x3) ∈ S13. Now, let us again use Lemma 2.4.
By definition of S12 being a simulation relation, this lemma implies that there exists d2 ∈ D2 such
that

(A1x1 +B1u+ F1d1, A2x2 +B2u+ F2d2) ∈ S12. (33)

Furthermore, for that d2 we know, by definition of S23 being a simulation relation and by the
lemma, that there exists d3 ∈ D3 such that

(A2x2 +B2u+ F2d2, A3x3 +B3u+ F3d3) ∈ S23. (34)

By definition of S13, equations (33) and (34) together imply that: ∀(x1, x3) ∈ S13, u ∈ U , d1 ∈ D1,
there exists d3 ∈ D3 such that

(A1x1 +B1u+ F1d1, A3x3 +B3u+ F3d3) ∈ S13.

Hence, property (3a) is proved to hold. In addition, it is clear that, by definition of S13, also
property (3b) holds since: for any (x1, x3) ∈ S13 there exists x2 such that (x1, x2) ∈ S12, (x2, x3) ∈
S23. Since S12 and S23 are simulation relations, we then know that

C1x1 = C2x2 and C2x2 = C3x3.

Hence, we know that
C1x1 = C3x3,

with which property (3b) is proved. Lastly, it can easily be proved that from

ΠX1(S12) = X1 and ΠX2(S23) = X2

it follows that
ΠX1(S13) = X1.
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Here, it is obvious that ΠX1
(S13) ⊂ X1, by definition of the canonical projection. Therefore, the

only thing that is left to show is that X1 ⊂ ΠX1
(S13). To prove the inclusion, we need to show

that: for any x1 ∈ X1, there exists x3 ∈ X3 such that (x1, x3) ∈ S13. Therefore, take any x1 ∈ X1.
Since S12 is a simulation relation, we know that ΠX1(S12) = X1. Hence, we find that there exists
an x2 ∈ X2 such that

(x1, x2) ∈ S12.

Since S23 is a simulation relation, we also know that ΠX2
(S23) = X2. Therefore, it is implied that

there exists an x3 ∈ X3 such that
(x2, x3) ∈ S23.

So, we found that (x1, x2) ∈ S12 and (x2, x3) ∈ S23 which, by definition of S13, implies that

(x1, x3) ∈ S13.

Thus, with this, it is proved that Σ1 is simulated by Σ3, i.e. Σ1 ⪯ Σ3, if Σ1 ⪯ Σ2 and Σ2 ⪯ Σ3. ■

Proof of 3. Lastly, let us show that the third property holds. Hereto, assume that Σ1 ⪯ Σ3 and Σ2 ⪯
Σ4. By Definition 2.3, there exist simulation relation S13 of Σ1 by Σ3 and simulation relation S24

of Σ2 by Σ4. Let us then consider the following linear subspace

S = {(x1, x2, x3, x4) | (x1, x3) ∈ S13, (x2, x4) ∈ S24}.

It will be shown that this is a simulation relation of Σ1 × Σ2 by Σ3 × Σ4. For this, note that
the series interconnection of Σ1 and Σ2 has as input u1 and takes u2 = y1 = C1x1, where it is
assumed that Y1 = U2. Similarly, note that the series interconnection of Σ3 and Σ4 has as input
u3 and takes u4 = y3 = C3x3, where it is assumed that Y3 = U4. So, to prove the claim, take any
(x1, x2, x3, x4) ∈ S, u ∈ U = U1 ∩ U3, d1 ∈ D1 and d2 ∈ D2. Then, since Σ1 ⪯ Σ3, we know by
Lemma 2.4 that: for such (x1, x3) ∈ S13, u ∈ U = U1 ∩ U3 and d1 ∈ D1, there exists d3 ∈ D3 such
that

(A1x1 +B1u+ F1d1, A3x3 +B3u+ F3d3) ∈ S13.

In addition, the lemma also tells us that

u2 = C1x1 = C3x3 = u4.

Furthermore, since we also have that Σ2 ⪯ Σ4 by assumption, Lemma 2.4 implies that: for our
variables (x2, x4) ∈ S24, u2 = C1x1 = C3x3 = u4 ∈ U2 ∩ U4 and d2 ∈ D2, there exists d4 ∈ D4 such
that

(A2x2 +B2C1x1 + F2d2, A4x4 +B4C3x3 + F4d4) ∈ S24.

By definition of S, these statements together imply that

(A1x1 +B1u+ F1d1, A2x2 +B2C1x1 + F2d2, A3x3 +B3u+ F3d3, A4x4 +B4C3x3 + F4d4) ∈ S.

Using the previously introduced notation for xij , dij , etc, this can be rewritten as

(A12x12 +B12u+ F12d12, A34x34 +B34u+ F34d34) ∈ S.

In other words, this proves that property (3a) is satisfied. By definition of S, it is then clear
that also property (3b) holds since: for any (x1, x2, x3, x4) ∈ S, we have that (x1, x3) ∈ S13 and
(x2, x4) ∈ S24. Since S13 and S24 are simulation relations, we know that

C1x1 = C3x3 and C2x2 = C4x4.

Hence, using the previously introduced notation, we in particular know that

C12x12 = C2x2 = C4x4 = C34x34

with which property (3b) is proved. In addition, it is clear that from

ΠX1(S13) = X1 and ΠX2(S24) = X2
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it follows that
ΠX1×X2

(S) = X1 ×X2.

Here, it is clear that ΠX1×X2
(S) ⊂ X1 ×X2. Now, to prove that the converse inclusion also holds,

we need to show that: for any (x1, x2) ∈ X1 × X2, there exists (x3, x4) ∈ X3 × X4 such that
(x1, x2, x3, x4) ∈ S. So, let us take any (x1, x2) ∈ X1 ×X2. Then, since S13 and S24 are simulation
relations, we know that

ΠX1(S13) = X1 and ΠX2(S24) = X2.

In particular, this implies that there exist x3 and x4 such that

(x1, x3) ∈ S13 and (x2, x4) ∈ S24.

By definition of S, this means that

(x1, x2, x3, x4) ∈ S.

Thus, with this, it is proved that Σ1 × Σ2 is simulated by Σ3 × Σ4, i.e. Σ1 × Σ2 ⪯ Σ3 × Σ4, if
Σ1 ⪯ Σ3 and Σ2 ⪯ Σ4.

■

With this, all properties have been proven, which concludes our proof of the lemma.

A.3 Proof of Theorem 2.11

(⇒) Assume that S is a simulation relation of Ξ1 by Ξ2, satisfying

ΠXi
(S) ⊂ VXi

, i = 1, 2.

By Lemma 2.10, we then know that: for any (x1, x2) ∈ S and d1 ∈ D1 such that A1x1+F1d1 ∈ VX1
,

there exists d2 ∈ D2 such that A2x2 + F2d2 ∈ VX2 and[
A1 0
0 A2

] [
x1

x2

]
+

[
F1

0

]
d1 +

[
0
F2

]
d2 ∈ S,

C1x1 = C2x2.

Using this, we find the following:

• In particular, the first property tells us that: if we take (x1, x2) = (0, 0) ∈ S and any d1 ∈ D1,
then there exists d2 ∈ D2 such that[

F1

0

]
d1 =

[
x̄1

x̄2

]
−
[
0
F2

]
d2

for some (x̄1, x̄2) ∈ S. Here, note that, by definition of the canonical projection, we have
that

F1d1 ∈ ΠX1(S) ⊂ VX1 ,

where the latter inclusion follows by assumption. In addition, it is clear that

Fidi ∈ imFi, i = 1, 2

by definition of the image. Therefore, we know that

F1d1 ∈ im(F1) ∩ VX1 and F2d2 ∈ imF2.

From the above, it then follows[
im(F1) ∩ VX1

0

]
⊂ S +

[
0

imF2

]
.

Hence, property (11a) is proved to hold.
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• Furthermore, the second property tells us that, for any (x1, x2) ∈ S, we have that

[
C1 −C2

] [x1

x2

]
= 0.

By the system equations of Ξi, i = 1, 2 we also know that we must have[
H1 0
0 H2

] [
x1

x2

]
=

[
0
0

]
.

Together, we hence find that H1 0
0 H2

C1 −C2

[x1

x2

]
=

00
0

 .

From this, it follows that

S ⊂ ker

H1 0
0 H2

C1 −C2


which implies that property (11c) holds.

Therefore, it has been proved that property (9a) implies properties (11a) and (11b), and that
property (9b) implies property (11c).

(⇐) Conversely, assume that properties (11a), (11b) and (11c) hold. We will then show that a
linear subspace S ⊂ X1 × X2 satisfying these properties satisfies the conditions stated in Lemma
2.10. The proof of this is given in multiple parts and goes as follows:

• Properties (11b) and (11c) respectively imply that

AiΠXi
(S) ⊂ ΠXi

(S) + imFi and ΠXi
(S) ⊂ kerHi

for i = 1, 2. Since VXi
is known to be the largest space in Xi satisfying the above inclusions,

we know that
ΠXi

(S) ⊂ VXi
, i = 1, 2.

So, this proves that the space S satisfies

ΠXi
(S) ⊂ VXi

, i = 1, 2

as required in Lemma 2.10.

• Let us now show that the first property of the lemma is satisfied. Hereto, take any (x1, x2) ∈ S

and d̂1 ∈ D1. Property (11b) then implies that there exist (x̂1, x̂2) ∈ S such that[
A1 0
0 A2

] [
x1

x2

]
=

[
x̂1

x̂2

]
−
[
F1 0
0 F2

] [
d̂1
d̂2

]
.

for some d̂2 ∈ D2. In particular, this implies that

A1x1 + F1d̂1 = x̂1 ∈ ΠX1(S) ⊂ VX1

where the inclusions follow by definition and by the previous analysis.

Now, take any d1 ∈ D1 such that

A1x1 + F1d1 ∈ VX1 .
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This then implies that

F1(d1 − d̂1) = A1x1 + F1d1 − x̂1 ∈ VX1
.

In addition, we clearly have that

F1(d1 − d̂1) ∈ imF1.

Therefore, we know that
F1(d1 − d̂1) ∈ im(F1) ∩ VX1

.

By property (11a) we then know that there exist (x̄1, x̄2) ∈ S and d̄2 such that F2d̄2 ∈ imF2

and [
F1(d1 − d̂1)

0

]
=

[
x̄1

x̄2

]
−
[

0
F2d̄2

]
.

Let us then choose a specific d2, namely d2 = d̂2 + d̄2, for which we find that

A2x2 + F2d2 = A2x2 + F2(d̂2 + d̄2)

= x̂2 + x̄2. (35)

In addition, we previously found that

A1x1 + F1d1 = x̂1 + F1(d1 − d̂1)

= x̂1 + x̄1. (36)

Together, these two equalities imply that[
A1 0
0 A2

] [
x1

x2

]
+

[
F1 0
0 F2

] [
d1
d2

]
=

[
x̂1 + x̄1

x̂2 + x̄2

]
∈ S

where the latter follows by linearity of S. With this, it has been proved that: for all (x1, x2) ∈
S and d1 ∈ D1 such that

A1x1 + F1d1 ∈ VX1 ,

there exists d2 such that [
A1 0
0 A2

] [
x1

x2

]
+

[
F1 0
0 F2

] [
d1
d2

]
∈ S.

Note here that d2 is such that
A2x2 + F2d2 ∈ VX2

since
A2x2 + F2d2 ∈ ΠX2

(S) ⊂ VX2

where the latter follows from previous analysis. In other words, with this, property (9a) is
proved to hold.

• It is clear that also property (9b) holds. The proof of this goes as follows: by property (11c)
we have that H1 0

0 H2

C1 −C2

[x1

x2

]
= 0

for all (x1, x2) ∈ S. In particular, this implies that

C1x1 = C2x2

with which we have proved that property (9b) indeed holds.

Hence, it has been proved that a linear subspace S ⊂ X1 × X2 satisfying properties (11a), (11b)
and (11c), also satisfies

ΠXi(S) ⊂ VXi , i = 1, 2

and is a simulation relation of Ξ1 by Ξ2. This concludes the proof of the theorem.
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A.4 Proof of Lemma 2.15

Note that the proof of this is similar to that of Lemma 2.8. Here, the two properties will be proved
separately.

Proof of 1. This follows immediately from choosing

S = {(x1, x1) | x1 ∈ VX1}. ■

Proof of 2. Let us prove the second statement. For this, assume that for any systems Ξ1,Ξ2 and Ξ3

we have the following
Ξ1 ⪯ Ξ2 and Ξ2 ⪯ Ξ3.

In other words, there exists a simulation relation S12 ⊂ X1 × X2 of Ξ1 by Ξ2 and a simulation
relation S23 ⊂ X2×X3 of Ξ2 by Ξ3, both satisfying Definition 2.9. From this, define linear subspace

S13 = {(x1, x3) | ∃x2 such that (x1, x2) ∈ S12, (x2, x3) ∈ S23}.

Using that S12 and S23 are simulation relations, it can be found that subspace S13 satisfies that

ΠX1
(S13) = VX1

and ΠX3
(S13) ⊂ VX3

.

The proof of this is done in three parts and goes as follows:

1. Claim: ΠX1
(S13) ⊂ VX1

.

Proof. Take any x1 ∈ ΠX1
(S13). Then, by definition, there exists an x3 such that (x1, x3) ∈

S13. In particular, by the definition of S13, this means that there exists x2 such that (x1, x2) ∈
S12. Since S12 is a simulation relation, we then know that

x1 ∈ ΠX1
(S12) = VX1

.

Since x1 was taken to be any element in X1(S13), the claim has been proven. ■

2. Claim: VX1
⊂ ΠX1

(S13).

Proof. Take any x1 ∈ VX1
. Since S12 is a simulation relation of Ξ1 by Ξ2, we then know that

x1 ∈ VX1 = ΠX1(S12).

By definition, this means that there exists an x2 such that (x1, x2) ∈ S12. Here, we can use
that S12 and S23 are simulation relations, which respectively imply that

ΠX2(S12) ⊂ VX2 and VX2 = ΠX2(S23).

By definition, this means that there exists an x3 such that (x2, x3) ∈ S23. By definition of
S13, we have then found that (x1, x3) ∈ S13. So, in other words, it is found that

x1 ∈ ΠX1
(S13).

Therefore, since x1 is any element in VX1
, we have proved the claim. ■

3. Claim: ΠX3
(S13) ⊂ VX3

.
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Proof. Take any x3 ∈ ΠX3
(S13). By definition we then know that there exists an x1 such

that (x1, x3) ∈ S13. In particular, the definition of S13 implies that there exists x2 such that

(x2, x3) ∈ S23.

Since S23 is a simulation relation, we then know that

x3 ∈ ΠX3(S23) ⊂ VX3 .

Since x3 was taken to be any element in X1(S13), the claim has hereby been proved. ■

Here, note that the first two claims together imply that

ΠX1
(S13) = VX1

.

Now, take any (x1, x3) ∈ S13 and d1 ∈ D1 then, by definition of S13, there exists x2 such that (x1, x2) ∈
S12, (x2, x3) ∈ S23. Since S12 and S23 are simulation relations, Lemma 2.10 implies that there exists
d2 ∈ D2 and there exists d3 ∈ D3 such that

(A1x1 + F1d1, A2x2 + F2d2) ∈ S12 and (A2x2 + F2d2, A3x3 + F3d3) ∈ S23.

By definition of S13, these equations together imply that: ∀(x1, x3) ∈ S13, d1 ∈ D1, there exists
d3 ∈ D3 such that

(A1x1 + F1d1, A3x3 + F3d3) ∈ S13.

Hence, the first property in Lemma 2.10, i.e. property (10a), is proved to hold. In addition, it is
clear that, by definition of S13, also the second property (10b) of the lemma holds since: for any
(x1, x3) ∈ S13 there exists x2 such that (x1, x2) ∈ S12, (x2, x3) ∈ S23. We then know that

C1x1 = C2x2 and C2x2 = C3x3

by definition of S12 and S23 being simulation relations. Hence, it is found that

C1x1 = C3x3,

with which property (10a) is proved. ■

A.5 Proof of Lemma 2.17

Assume that
Ξ1 ⪯ Ξ2 and Σ3 ⪯ Σ4.

We then know that there exist, respectively, a simulation relation S12 ⊂ X1 ×X2 of Ξ1 by Ξ2 and
a simulation relation S34 ⊂ X3 × X4 satisfying the properties in Lemma 2.10. From that, define
the following linear subspace

S = {(x1, x3, x2, x4) | (x1, x2) ∈ S12, (x3, x4) ∈ S34}.

Take any (x1, x3, x2, x4) ∈ S, u ∈ U , d1 ∈ D1 and d3 ∈ D3, then from the simulation relations S12

and S34 we know that: there exists d2 ∈ D2 and d4 ∈ D4 such that

(A1x1 + F1d1, A3x3 +B3u+ F3d3, A2x2 + F2d2, A4x4 +B4u+ F4d4) ∈ S

by definition of S. Now, note that the series interconnection of Ξi and Σi+2 for i = 1, 2 is obtained
by setting ui = ui+2, and is given by the following system equations

Ξi × Σi+2 :



[
ẋi

ẋi+2

]
=

[
Ai 0

Bi+2Ci Ai+2

] [
xi

xi+2

]
+

[
Fi 0
0 Fi+2

] [
di

di+2

]
,[

ui

yi+2

]
=

[
Ci 0
0 Ci+2

] [
xi

xi+2

]
,

0 =
[
Hi 0

] [ xi

xi+2

]
.
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In particular, we thus have u3 = u1 for the series interconnection of Ξ1 and Σ3, and we have
u4 = u2 for the series interconnection of Ξ2 and Σ4. Furthermore, note that we have u = u3 and
u = u4 since u ∈ U = U3 ∩ U4. Together with the system equations, this implies that

B3u = B3u3 = B3u1 = B3C1x1 and B4u = B4u4 = B4u2 = B4C2x2.

The first property of Lemma 2.10, see also (10a), is hence satisfied.

By definition of S, it is clear that also property (10b) is satisfied. The proof of this is as follows:
since S12 and S34 are simulation relations, we know that

C1x1 = C2x2 and C3x3 = C4x4.

This implies that [
C1 0
0 C3

] [
x1

x3

]
=

[
C2 0
0 C4

] [
x2

x4

]
,

with which property (10b) is proved. Furthermore, since S12 and S34 are simulation relations, it
can be shown that

ΠX1×X3
(S) = VX1×X3

and ΠX2×X4
(S) ⊂ VX2×X4

.

Note that the proof of this follows shortly. Now, assuming the above holds, one can additionally
show that[

A1 0
B3C1 A3

] [
x1

x3

]
+

[
F1 0
0 F3

] [
d1
d3

]
∈ VX1×X3

and
[

A2 0
B4C2 A4

] [
x2

x4

]
+

[
F2 0
0 F4

] [
d2
d4

]
∈ VX2×X4

.

Now, let us prove that we indeed have the following

ΠX1×X3(S) = VX1×X3 and ΠX2×X4(S) ⊂ VX2×X4 .

Hereto, it is clear that ΠX1×X3(S) ⊂ VX1 × X3 and ΠX2×X4(S) ⊂ VX2 × X4. Using this, the proof
goes as follows:

1. Claim: VX1
×X3 ⊂ ΠX1×X3

(S).

Proof. Take any (x1, x3) ∈ VX1 × X3. Then, since S12 and S34 are simulation relations, it is
implied that

x1 ∈ VX1
= ΠX1

(S12) and x3 ∈ X3 = ΠX3
(S34).

In particular, this means that there exist x2 and x4 such that

(x1, x2) ∈ S12 and (x3, x4) ∈ S34.

By definition of S, this implies that

(x1, x3, x2, x4) ∈ S,

which proves the claim. ■

2. Claim: VXi
×Xi+2 ⊂ VXi×Xi+2

, for i = 1, 2.

Proof. For i = 1, 2, take any (xi, xi+2) ∈ VXi
×Xi+2. In particular, this means that

xi ∈ VXi
and xi+2 ∈ Xi+2.

Here, note that since Σ3 and Σ4 are unconstrained systems, we know that

Xi+2 = VXi+2
.
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Furthermore, we know that the consistent subspaces are respectively such that

AiVXi ⊂ VXi + imFi and VXi ⊂ kerHi;

Ai+2VXi+2 ⊂ VXi+2 + imFi+2 and VXi+2 ⊂ kerHi+2.

Hence, for our xi, xi+2 we know that there exist x̃i ∈ VXi
, x̃i+2 ∈ Xi+2, di ∈ Di and di+2 ∈

Di+2 such that

Aixi = x̃i + Fidi,

Hixi = 0,[
Bi+2Ci Ai+2

] [ xi

xi+2

]
= x̃i+2 + Fi+2di+2.

Here, we used that Σ3 and Σ4 are unconstrained systems, therefore Hi+2 is the zero matrix.
In addition, we used that ui+2 = ui = Cixi for the interconnection of systems Ξi and Σi+2.
These equations together tell us that[

Ai 0
Bi+2Ci Ai+2

] [
xi

xi+2

]
=

[
x̃i

x̃i+2

]
+

[
Fi 0
0 Fi+2

] [
di

di+2

]
and

[
Hi 0

] [ xi

xi+2

]
= 0.

In fact, since we took any (xi, xi+2) ∈ VXi
×Xi+2, this implies that[

Ai 0
Bi+2Ci Ai+2

]
VXi

×Xi+2 ⊂ VXi
×Xi+2+im

[
Fi 0
0 Fi+2

]
and VXi

×Xi+2 ⊂ ker
[
Hi 0

]
.

By definition, we know that VXi×Xi+2
is the largest subspace such that the above inclusions

hold. Therefore, we must have that

VXi ×Xi+2 ⊂ VXi×Xi+2 . ■

3. Claim: VXi×Xi+2
⊂ VXi

×Xi+2, for i = 1, 2.

Proof. In order to prove the claim, let us show that

ΠXi
(VXi×Xi+2

) ⊂ VXi

for i = 1, 2. If this holds, then the claim holds as well. Namely, assuming the above inclusion
holds, we find that: if we take any (xi, xi+2) ∈ VXi×Xi+2

then, by definition, we have that

xi ∈ ΠXi
(VXi×Xi+2

) ⊂ VXi
and xi+2 ∈ ΠXi+2

(VXi×Xi+2
) ⊂ Xi+2.

Note that the latter inclusion is trivial by definition of the canonical projection. With this,
it has been found that

(xi, xi+2) ∈ VXi
×Xi+2.

This then proves that
VXi×Xi+2

⊂ VXi
×Xi+2.

So, let us now prove that
ΠXi

(VXi×Xi+2
) ⊂ VXi

from which the claim follows. Hereto, take any xi ∈ ΠXi
(VXi×Xi+2

). By definition of the
canonical projection, we know that there exists an xi+2 such that

(xi, xi+2) ∈ VXi×Xi+2
.

As was used to prove the previous claim, we know that the consistent subspace VXi×Xi+2

satisfies the following[
Ai 0

Bi+2Ci Ai+2

]
VXi×Xi+2

⊂ VXi×Xi+2
+ im

[
Fi 0
0 Fi+2

]
and VXi×Xi+2

⊂ ker
[
Hi 0

]
.
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This means that there exist (x̃i, x̃i+2) ∈ VXi×Xi+2
, di ∈ Di and di+2 ∈ Di+2 such that[

Ai 0
Bi+2Ci Ai+2

] [
xi

xi+2

]
=

[
x̃i

x̃i+2

]
+

[
Fi 0
0 Fi+2

] [
di

di+2

]
and

[
Hi 0

] [ xi

xi+2

]
= 0.

In particular, this implies that

Aixi = x̃i + Fidi and Hixi = 0

with x̃i ∈ ΠXi(VXi×Xi+2). Since we took any xi ∈ ΠXi(VXi×Xi+2), it is then implied that

AiΠXi(VXi×Xi+2) ⊂ ΠXi(VXi×Xi+2) + imFi and ΠXi(VXi×Xi+2) ⊂ kerHi.

Since VXi
is, by definition, the largest subspace that satisfies the above inclusion, we know

that the following must hold
ΠXi(VXi×Xi+2) ⊂ VXi .

As shown before, this then in return implies that the claim holds. ■

Note that claims together imply that

ΠX1×X3(S) = VX1×X3 and ΠX2×X4(S) ⊂ VX2×X4

as was desired. With this, it has been proved that Ξ1×Σ3 is simulated by Ξ2×Σ4, i.e. Ξ1×Σ3 ⪯
Ξ2 × Σ4, if Ξ1 ⪯ Ξ2 and Σ3 ⪯ Σ4.

A.6 Proof of Lemma 2.18

Let us prove the claim. For this, assume that Ξ1 and Ξ2 are systems of the form (2) with z1 = u1

and z2 =

[
u2

y2

]
. In addition, consider system Σ of the form (1) and let these systems be such that

Ξ1 × Σ ⪯ Ξ2.

By definition, there then exists a simulation relation of Ξ1 × Σ by Ξ2, say S̃ ⊂ XΞ1
× XΣ × XΞ2

.
From this, let us define another linear subspace

S = {(x1, xΣ, x̃1, x2) | (x1, xΣ, x2) ∈ S̃, x̃1 = x1}.

Take any (x1, xΣ, x̃1, x2) ∈ S and (d1, dΣ) ∈ D1 ×DΣ such that[
A1 0

BΣC1 AΣ

] [
x1

xΣ

]
+

[
F1 0
0 FΣ

] [
d1
dΣ

]
∈ VXΞ1×Σ .

Then, since S̃ is a simulation relation, this implies that there exists d2 ∈ D2 such that A2x2+F2d2 ∈
VX2

and ([
A1 0

BΣC1 AΣ

] [
x1

xΣ

]
+

[
F1 0
0 FΣ

] [
d1
dΣ

]
, A2x2 + F2d2

)
∈ S̃.

Rewritten this gives that

(A1x1 + F1d1, BΣC1x1 +AΣxΣ + FΣdΣ, A2x2 + F2d2) ∈ S̃.

Now, choose (d̃1, d̃2) = (d1, d2), then, by definition of S and by the above, we know that:
∀(x1, xΣ, x̃1, x2) ∈ S and (d1, dΣ) ∈ D1 × DΣ, there exists (d̃1, d̃2) = (d1, d2) ∈ D1 × D2 such
that

(A1x1 + F1d1, BΣC1x1 +AΣxΣ + FΣdΣ, A1x̃1 + F1d̃1, A2x2 + F2d̃2) ∈ S.
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Hence, property (10a) is proved to hold. In addition, it is clear that also property (10b) holds
since S̃ being a simulation relation implies that[

C1 0
0 CΣ

] [
x1

xΣ

]
=

[
Cu

2

Cy
2

]
x2.

In particular, this implies that
CΣxΣ = Cy

2x2.

Furthermore, x̃1 = x1 implies that C1x̃1 = C1x1. Together, the two equalities imply that[
C1 0
0 CΣ

] [
x1

xΣ

]
=

[
C1 0
0 Cy

2

] [
x̃1

x2

]
,

with which property (10b) is proved. Lastly, note that it can be shown that

ΠXΞ1
×XΣ(S) = VXΞ1

×XΣ and ΠXΞ1
×XΞ2

(S) ⊂ VXΞ1
× VXΞ2

hold since S̃ is a simulation relation. The proof of this follows similar steps as the proofs of the
claims in A.5. With this, it has been proved, by Lemma 2.10, that Ξ1×Σ is simulated by Ξ1⊗Ξ2,
i.e. Ξ1 × Σ ⪯ Ξ1 ⊗ Ξ2, if Ξ1 × Σ ⪯ Ξ2.

A.7 Proof of Theorem 3.6

Assume that contract C = (A,G) is consistent. This assumption implies that there exists an
implementation Σ of the contract. By Theorem 3.3 we then know that

A× Σ ⪯ G

for the implementation. Hence, there exists a simulation relation S̃ ⊂ XA×XΣ×XG which satisfies
the conditions in Lemma 2.10. From the space S̃, let us define the following linear subspace

S = {(xA, xG) | ∃xΣ such that (xA, xΣ, xG) ∈ S̃}.

Since S̃ is a simulation relation, we in particular now know that

CAxA = Cu
GxG.

In addition, we know that: for any (xA, xG) ∈ S and dA ∈ DA, there exists dG ∈ DG such that

(AAxA + FAdA , AGxG + FGdG) ∈ S.

Furthermore, note that we can prove that ΠXA
(S) = VXA

and that ΠXG
(S) ⊂ VXG

. In particular,
this then shows that

AAxA + FAdA ∈ VXA
and AGxG + FGdG ∈ VXG

,

as desired. Now, let us prove 2 separate claims that together provide the full proof that

ΠXA
(S) = VXA

and ΠXG
(S) ⊂ VXG

.

1. Claim: ΠXA
(S) ⊂ VXA

.

Proof. Take any xA ∈ ΠXA
(S). Then, by definition, this means that there must exist a xG

such that (xA, xG) ∈ S. By definition of S, we then know that there exist an xΣ such that

(xA, xΣ) ∈ ΠXA×XΣ
(S̃) = VXA×XΣ

= VXA
×XΣ.

Here, the former equality follows from S̃ being a simulation relation and the latter equality
follows from the claims in Appendix A.5. Therefore, it has been proved that

ΠXA
(S) ⊂ VXA

. ■

Note that we can similarly prove that

ΠXG
(S) ⊂ VXG

.
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2. Claim: VXA
⊂ ΠXA

(S).

Proof. In this proof, we reverse the analysis done in the proof of the previous claim. For this,
take any xA ∈ VXA

. For any xΣ we then know that

(xA, xΣ) ∈ VXA
×XΣ = ΠXA×XΣ

(S̃).

In return, it is then implied that there exists xG such that

(xA, xΣ, xG) ∈ S̃.

By definition of S, this means that
(xA, xG) ∈ S

which implies that xA ∈ ΠXA
(S). In other words, we have hereby proved that

VXA
⊂ ΠXA

(S). ■

Now that it has been proved that ΠXA
(S) = VXA

and that ΠXG
(S) ⊂ VXG

, we have proved (by
Lemma 2.10) that A is simulated by Gu, which concludes the proof.

A.8 Proof of claim in Lemma 5.1

In order to prove the claim, consider consistent contracts Ci = (Ai, Gi), i = 1, 2, with any of their
implementations Σi. In addition, assume that the contracts satisfy Gy

1 ⪯ A2. Theorem 2.11 then
tells us that A1 × Σ12 ⪯ G12 if there exists a subspace S ⊂ XA1 ×XΣ12 ×XG12 satisfying

im(FA1) ∩ VXA1

im(FΣ1
) ∩ XΣ1

im(FΣ2
) ∩ XΣ2

0
0

 ⊂ S +


0
0
0

imFG1

imFG2

 , (37a)


AA1

0 0 0 0
BΣ1

CA1
AΣ1

0 0 0
0 BΣ2

CΣ1
AΣ2

0 0
0 0 0 AG1 0
0 0 0 0 AG2

S ⊂ S + im


FA1

0 0 0 0
0 FΣ1

0 0 0
0 0 FΣ2

0 0
0 0 0 FG1 0
0 0 0 0 FG2

 , (37b)

S ⊂ ker


HA1

0 0 0 0
0 0 0 HG1

0
0 0 0 0 HG2

0 0 0 Cy
G1

−Cu
G2

CA1
0 0 −Cu

G1
0

0 0 CΣ2
0 −Cy

G2

 . (37c)

In other words, we need to prove that these properties are satisfied. Hereto, note that Σi is assumed
to implement contract Ci, i = 1, 2. By Corollary 3.4, we hence know that there exist subspaces
Si ⊂ XAi

×XΣi
×XGi

satisfying

ΠXAi
×XΣi

(Si) ⊂ VXAi
×XΣi

= VXAi
×XΣi

, ΠXGi
(Si) ⊂ VXGi

,
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and, additionally, satisfying the following propertiesim(FAi
) ∩ VXAi

im(FΣi
) ∩ XΣi

0

 ⊂ Si +

 0
0

imFGi

 , (38a)

 AAi
0 0

BΣi
CAi

AΣi
0

0 0 AGi

Si ⊂ Si + im

FAi
0 0

0 FΣi
0

0 0 FGi

 , (38b)

Si ⊂ ker


HAi 0 0
0 0 HGi

CAi
0 −Cu

Gi

0 CΣi
−Cy

Gi

 . (38c)

Since Gy
1 ⪯ A2 hold by assumption, we furthermore know that there exists a subspace T ⊂

XG1
×XA2

satisfying
ΠXG1

(T ) ⊂ VXG1
, ΠXA2

(T ) ⊂ VXA2
,

as well as satisfying the following properties[
im(FG1) ∩ VXG1

0

]
⊂ T +

[
0

imFA2

]
, (39a)[

AG1
0

0 AA2

]
T ⊂ T + im

[
FG1

0
0 FA2

]
, (39b)

T ⊂ ker

HG1 0
0 HA2

Cy
G1

−CA2

 . (39c)

From this, let us define

S = {(xA1 , xΣ1 , xΣ2 , xG1 , xG2) | (xA1 , xΣ1 , xG1) ∈ S1,

∃xA2 such that (xG1 , xA2) ∈ T and (xA2 , xΣ2 , xG2) ∈ S2}. (40)

Now, let us show that properties (37a), (37b) and (37c) are satisfied by this choice of S.

Proof of (37a). Take any

(xA1 , xΣ1 , xΣ2 , 0, 0) ∈


im(FA1) ∩ VXA1

im(FΣ1
) ∩ XΣ1

im(FΣ2
) ∩ XΣ2

0
0

 .

In particular, this means that

xA1
∈ im(FA1

) ∩ VXA1
and xΣi

∈ im(FΣi
) ∩ XΣi

, i = 1, 2.

Property (38a) then implies that there exist (x̄A1
, x̄Σ1

, x̄G1
) ∈ S1 and x̂G1

∈ imFG1
such that

xA1 = x̄A1 , xΣ1 = x̄Σ1 and 0 = x̄G1 + x̂G1 .

Now, choose xA2 such that (x̄G1 , xA2) ∈ T and (xA2 , xΣ2 , xG2) ∈ S2, then property (38a) also
implies that there exist (x̄A2 , x̄Σ2 , x̄G2) ∈ S2 and x̂G2 ∈ imFG2 such that

xA2 = x̄A2 , xΣ2 = x̄Σ2 and 0 = x̄G2 + x̂G2 .
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In particular, we now know that

(x̄Ai
, x̄Σi

, x̄Gi
) ∈ Si,

(x̄G1
, x̄A2

) = (x̄G1
, xA2

) ∈ T,

x̂Gi
∈ imFGi

,

for i = 1, 2. This means, by definition of S, that: for any

(xA1
, xΣ1

, xΣ2
, 0, 0) ∈


im(FA1

) ∩ VXA1

im(FΣ1
) ∩ XΣ1

im(FΣ2) ∩ XΣ2

0
0

 ,

we are able to find

(x̄A1
, x̄Σ1

, x̄Σ2
, x̄G1

, x̄G2
) ∈ S and (0, 0, 0, x̂G1

, x̂G2
) ∈


0
0
0

imFG1

imFG2


such that

(xA1
, xΣ1

, xΣ2
, 0, 0) = (x̄A1

, x̄Σ1
, x̄Σ2

, x̄G1
, x̄G2

) + (0, 0, 0, x̂G1
, x̂G2

).

With this, property (37a) is proved to hold.

Proof of (37b). Take any (xA1
, xΣ1

, xΣ2
, xG1

, xG2
) ∈ S. By definition of S, we know that (xA1

, xΣ1
, xG1

) ∈
S1, and that there exists an element xA2

such that (xG1
, xA2

) ∈ T and (xA2
, xΣ2

, xG2
) ∈ S2. Fur-

thermore, take any dΣ1
and dΣ2

, together with any dA1
such that

AA1
xA1

+ FA1
dA1

∈ VXA1
.

Note that, since S1 is such that ΠXA1
×XΣ1

(S1) ⊂ VXA1
×XΣ1 , we know by the first line of property

(38b) that such dA1
exists. Let us now use Lemma 2.10 a number of times to show that (37b)

holds.

• Firstly, since S1 is a simulation relation, we know by Lemma 2.10 that: for (xA1
, xΣ1

, xG1
) ∈

S1 and dA1
, dΣ1

, there exists a dG1
such that AG1

xG1
+ FG1

dG1
∈ VXG1

and([
AA1

0
BΣ1CA1 AΣ1

] [
xA1

xΣ1

]
+

[
FA1

0
0 FΣ1

] [
dA1

dΣ1

]
, AG1xG1 + FG1dG1

)
∈ S1.

Hereto, note that[
AA1 0

BΣ1CA1 AΣ1

] [
xA1

xΣ1

]
+

[
FA1 0
0 FΣ1

] [
dA1

dΣ1

]
∈ VXA1

×XΣ1

since we took any dA1 such that AA1xA1 + FA1dA1 ∈ VXA1
. Now, let us define

x̄A1
:= AA1

xA1
+FA1

dA1
, x̄Σ1

:= BΣ1
CA1

xA1
+AΣ1

xΣ1
+FΣ1

dΣ1
and x̄G1

:= AG1
xG1

+FG1
dG1

.

Then, from the above analysis, it is clear that AA1
0 0

BΣ1CA1 AΣ1 0
0 0 AG1

xA1

xΣ1

xG1

 =

x̄A1

x̄Σ1

x̄G1

+

FA1
0 0

0 FΣ1 0
0 0 FG1

−dA1

−dΣ1

−dG1


where (x̄A1

, x̄Σ1
, x̄G1

) ∈ S1 by definition.
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• Secondly, since T is also a simulation relation, we know by Lemma 2.10 that: for (xG1
, xA2

) ∈
T and for the dG1

found in the previous step, which satisfies AG1
xG1

+ FG1
dG1

∈ VXG1
, we

have that there exists a dA2 such that AA2xA2 + FA2dA2 ∈ VXA2
and

(AG1
xG1

+ FG1
dG1

, AA2
xA2

+ FA2
dA2

) ∈ T.

From this, we define
x̄A2

:= AA2
xA2

+ FA2
dA2

and note that this implies that (x̄G1
, x̄A2

) ∈ T .

• Lastly, since S2 is a simulation as well, we know by Lemma 2.10 that: for (xA2
, xΣ2

, xG2
) ∈

S2, dΣ2 and dA2 from the previous step, which satisfies AA2xA2 +FA2dA2 ∈ VXA2
, there exists

a dG2
such that AG2

xG2
+ FG2

dG2
∈ VXG2

and([
AA2

0
BΣ2

CA2
AΣ2

] [
xA2

xΣ2

]
+

[
FA2

0
0 FΣ2

] [
dA2

dΣ2

]
, AG2

xG2
+ FG2

dG2

)
∈ S2.

Note that [
AA2

0
BΣ2CA2 AΣ2

] [
xA2

xΣ2

]
+

[
FA2

0
0 FΣ2

] [
dA2

dΣ2

]
∈ VXA2

×XΣ2

since dA2 is such that AA2xA2 + FA2dA2 ∈ VXA2
. In addition, note that BΣ2CA2xA2 =

BΣ2
CΣ1

xΣ1
. The proof of this goes as follows: by (38c) and (39c) we, respectively, know

that
CΣ1

xΣ1
= Cy

G1
xG1

and Cy
G1

xG1
= CA2

xA2
.

Together, these equations imply that CΣ1
xΣ1

= CA2
xA2

, and hence that

BΣ2
CA2

xA2
= BΣ2

CΣ1
xΣ1

.

Using this, we define the following

x̄Σ2 := BΣ2CΣ1xΣ1 +AΣ2xΣ2 + FΣ2dΣ2 and x̄G2 := AG2xG2 + FG2dG2 .

From the above analysis, it is then clear that

[
BΣ2

CΣ1
AΣ2

0
0 0 AG2

]xΣ1

xΣ2

xG2

 =

[
x̄Σ2

x̄G2

]
+

[
FΣ2

0
0 FG2

] [
−dΣ2

−dG2

]

where (x̄A2 , x̄Σ2 , x̄G2) ∈ S2.

With this, we have proved that: for any (xA1
, xΣ1

, xΣ2
, xG1

, xG2
) ∈ S, we can find

(x̄A1
, x̄Σ1

, x̄Σ2
, x̄G1

, x̄G2
) ∈ S and (d̄A1

, d̄Σ1
, d̄Σ2

, d̄G1
, d̄G2

) = −(dA1
, dΣ1

, dΣ2
, dG1

, dG2
)

such that
AA1

0 0 0 0
BΣ1

CA1
AΣ1

0 0 0
0 BΣ2

CΣ1
AΣ2

0 0
0 0 0 AG1

0
0 0 0 0 AG2



xA1

xΣ1

xΣ2

xG1

xG2

 =


x̄A1

x̄Σ1

x̄Σ2

x̄G1

x̄G2

+

FA1

0 0 0 0
0 FΣ1

0 0 0
0 0 FΣ2

0 0
0 0 0 FG1 0
0 0 0 0 FG2



d̄A1

d̄Σ1

d̄Σ2

d̄G1

d̄G2

 .

This then proves that property (37b) holds.
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Proof of (37c). Take any (xA1
, xΣ1

, xΣ2
, xG1

, xG2
) ∈ S. By definition of S, we know that (xA1

, xΣ1
, xG1

) ∈
S1, and that there exists an element xA2 such that (xG1 , xA2) ∈ T and (xA2 , xΣ2 , xG2) ∈ S2. For
these elements in Si (i = 1, 2) and T , we know by properties (38c) and (39c) that

HAixAi = 0,

HGixGi = 0,

CAixAi = Cu
Gi
xGi ,

CΣixΣi = Cy
Gi
xGi ,

Cy
G1

xG1
= CA2

xA2
.

Together, these equations imply that

(xA1
, xΣ1

, xΣ2
, xG1

, xG2
) ∈ ker


HA1

0 0 0 0
0 0 0 HG1 0
0 0 0 0 HG2

0 0 0 Cy
G1

−Cu
G2

CA1 0 0 −Cu
G1

0
0 0 CΣ2 0 −Cy

G2

 .

Since we took any (xA1
, xΣ1

, xΣ2
, xG1

, xG2
) ∈ S, this proofs that property (37c) holds.

With this, we have shown that our choice of S is such that all properties in Theorem 2.11 are
satisfied. Hence, it has been proved that

A1 × Σ1 × Σ2 ⪯ G12.
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