
Interventions using optimal control for social
welfare maximization in network games

Master’s Research Project — WMIE901-30

Industrial Engineering & Management

Supervisors:
Dr. N. (Nima) Monshizadeh Naini
Dr. A.K. (Ashish) Cherukuri
PHD M. (Mehran) Shakarami

Author:
J.D. (Jan Douwe) Breeuwsma - S3229262

March 30, 2022

Abstract

Keywords — Network games, social welfare, optimal control, admissible controls, penalty
method

In this research, optimal control theory was applied as a means of social welfare maximization by
a regulator in a linear quadratic network game. After setting the conditions for achieving a social
welfare state in the network game, we derive the optimal intervention policy for two situations:
one with a constraint on the admissible control set, and one where the intervention is penalized
through an additional penalty term in the players’ cost functions. By introducing an adaptation
of the forward-backward sweep method used for numerical simulations, convergence to the social
welfare state could be ensured for different values of the penalty parameter α (denoting the
amount of penalization on the amount of intervention). In the following experiment, we noticed
that, compared to existing intervention policies, the newly derived policy could not provide lower
costs for the regulator. Therefore, the optimal control problem was altered, and new numerical
results were obtained showing improved results where fast convergence was achieved, and lower
regulator costs could be achieved. Hence, we showed that optimal control for social welfare
maximization in such network games is indeed possible. Finally, recommendations for further
research are given to strengthen the argument that the application of the derived intervention
policies can truly be called optimal.

Preface

In front of you lies the report of the Master’s Research Project on the use of optimal control
theory for social welfare maximization in network games. This report was written for the Smart
Manufacturing Systems research group of the University of Groningen as a part of finalizing my
Master’s in Industrial Engineering and Management.

Hereby, I would like to thank all those who have contributed to this research. Specifically, I
would like to thank my first supervisors Dr N. Monshizadeh Naini and PHD M. Shakarami for
their excellent guidance during the project and allowing me to conduct this research. Although
changing conditions regarding COVID-19 regulations or busy schedules on both sides posed
some challenges, I found the discussions we had regarding both the research in general, and the
more specific problems that I encountered to be very helpful. Furthermore, I would like to thank
my second supervisor Dr A.K. Cherukuri for his feedback on the final report and presentation.
And last but not least, I would like to thank my fellow students, friends, and family for their
ongoing support during the project.

i

Contents

1 Introduction 1
1.1 Research context . 1
1.2 Problem analysis . 1
1.3 Research goal . 2

1.3.1 Research questions . 2
1.4 Outline of the report . 3

2 Theoretical background 4
2.1 Network games and interventions . 4

2.1.1 Modelling the network game . 4
2.1.2 Interventions . 4
2.1.3 Player dynamics . 5
2.1.4 The social welfare problem . 5

2.2 Calculus of variations and optimal control . 6
2.2.1 Formulation of the optimal control problem 6
2.2.2 Penalization of constraints . 7

2.3 Forward-backward sweep method . 8

3 Optimal control design 10
3.1 Controller design . 10

3.1.1 Constrained optimal control . 10
3.1.2 Penalized optimal control . 11

3.2 Convergence to the social welfare solution . 12
3.3 Validation of the controller design in MATLAB® 14

4 Numerical simulations 15
4.1 Model parameters . 15
4.2 Numerical experiments . 16

4.2.1 Experiment 1: Free endpoint optimal control 16
4.2.2 Experiment 2: Reaching the social welfare solution 20
4.2.3 Experiment 3: Comparison with static and dynamic interventions 22
4.2.4 Experiment 4: Optimal control with altered cost criterion 24

5 Discussion 28
5.1 Reflection on the results . 28
5.2 Limitations and future research . 29

6 Conclusion 30

Bibliography 31

ii

Contents

A Derivation of first-order necessary conditions for the optimal control problem
4.2 33

B Matlab code 34
B.1 Main program . 34
B.2 Forward-backward sweep algorithm . 42
B.3 Program used for root finding in the adapted FBSM algorithm 44
B.4 Function used for validating the calculations . 45
B.5 Dynamic functions and controller expression . 46

B.5.1 State dynamics . 46
B.5.2 Co-state dynamics . 46
B.5.3 Optimal controllers . 47
B.5.4 Function used for simulating the static and dynamic intervention policies 47

iii

Nomenclature

FBSM Forward-backward sweep method

PMP Pontryagin’s Minimum Principle

PoA Price of Anarchy

RK4 Runge-Kutta 4

iv

List of Figures

2.1 Flowchart showing the steps of the FBSM algorithm 9

3.1 Flowchart showing the steps of the adapted FBSM algorithm 13
3.2 Action profiles of the dynamics of the state and co-state variables for 100 time-

steps under constrained optimal control. 14

4.1 Directed network which was also used in Shakarami, Cherukuri, and Monshizadeh
(2021). 15

4.2 Solutions of the constrained optimal control problem with controller bounds 0.5,
1, and 5. 17

4.3 Results of the numerical simulations of the free endpoint constrained optimal
control problem for three different values of umax. 18

4.4 Solutions of the penalized optimal control problem with penalty parameters 1, 3,
and 5. 19

4.5 Results of the numerical simulations of the free endpoint optimal control problems,
including the solutions of both the constrained and the penalized controllers. . . 20

4.6 Plotted results of the parameter variation experiment on the fixed endpoint op-
timal control problem for α ∈ [1, 20]. 22

4.7 Numerical results of the intervention policies discussed in Shakarami, Cherukuri,
and Monshizadeh (2021), showing the distance of the action profile to the social
welfare state. 23

4.8 Results of the numerical simulations of the fixed endpoint optimal control prob-
lems compared with the static and dynamic intervention policies. 24

4.9 Plotted results of the numerical simulations of the modified fixed endpoint optimal
control problem for α ∈ [0.03, 20]. 26

4.10 Results of the numerical simulations of the fixed endpoint optimal control prob-
lems compared with the static and dynamic intervention policies. 27

v

Chapter 1

Introduction

1.1 Research context

Within many different social or economic settings, the actions of individual decision-makers are
influenced by the actions of their peers. In the literature, network games have emerged as a
powerful framework for studying and modelling such settings, also covering interactions between
populations with a large number of agents (Parise and Ozdaglar 2021). This framework, in
addition, has applications in engineering settings such as optimization of supply chains(Vasnani
et al. 2019), traffic flows (Bui and Jung 2018), and the coordinated charging of electric vehicles
(Ma, Callaway, and Hiskens 2011). Here, network games differentiate from regular game theory
since, in network games, the payoffs of individual agents is not based on the strategy of all other
players, but only on those of the agents in the player’s direct neighbourhood. In this research,
we will look at network games from the perspective of a central regulator trying to steer the
behaviour of agents in a network towards a social optimum. This game is considered to be
non-cooperative since initially, the players only aim to minimize their individual cost functions
(Khan and Sun 2002). This selfish competitive behaviour of the players causes for a Nash
equilibrium where the solution is not socially optimal for all players. In literature, this loss of
efficiency is measured by the so-called price of anarchy (PoA), being the utility ratio between
the worst possible Nash solution and the social optimum (Başar and Zhu 2011; Deori, Margellos,
and Prandini 2018; Zhu and Başar 2010).

For regulators, methodologies for setting up incentives for players to alter their behaviour and
decrease the PoA often require private information of the individual agents (Başar and Zaccour
2018). In competitive environments, however, it could happen that private information such
as players’ possible actions, strategies, and objective functions is not publicly available. A
methodology not requiring such detailed information applies to control theoretic tools to design
intervention mechanisms, such as is done in Shakarami, Cherukuri, and Monshizadeh (2021).
Here, the regulator observes the actions of the players over time, therefore not requiring their
private information. In this sense, the problem can be regarded as a feedback control problem,
with the interventions performed by the regulator being the control input, and the social welfare
of the network being the desired outcome.

1.2 Problem analysis

In this research, we will consider a regulator trying to maximize the social welfare of a network
with players having linear quadratic utility functions. This utility structure implies that players’
cost functions will have both an individualized component, and a component that reflects the
local interaction of the players, meaning that each player can be affected differently by different

1

Chapter 1. Introduction

neighbours (Corbo, Calvó-Armengol, and Parkes 2007).

With this model, the regulator’s problem will be to maximize the total utility of the network, also
known as social welfare, by designing a suitable intervention policy. In Shakarami, Cherukuri,
and Monshizadeh (2021), two intervention protocols that achieve social welfare have already been
discussed. These static and dynamic interventions steer the network to a social optimal state,
depending on the available information on the players’ parameters. However, in some cases, the
regulator can only apply a limited amount of intervention and is therefore subjected to budget
constraints. With that, the problem can be turned into a constrained optimization problem,
where the optimal intervention protocol can be formulated using the optimality conditions found
by applying Pontryagin’s minimum principle (PMP) (Geering 2007). With this technique, the
maximum amount of intervention is set as a hard constraint. Here, the derived expression for the
optimal controller will usually take the form of a switching function, causing the intervention
applied by the regulator to be either 0% or 100%. Since in some applications the regulator
could also wish to apply an intervention of a different size than 100%. Therefore, the possibility
arises for the regulator to reformulate the budget constraint using a penalty term that can
be added to the utility function of the individual players. By doing so, an adjustable penalty
parameter is introduced to represent the amount of influence the regulator has on the network,
thus making the budget constraint more a soft constraint (Dolgopolik and Fominyh 2019). To
summarize the above, the problem statement for this research becomes within network games
with linear quadratic cost functions, budget constraints concerning the amount of intervention
a regulator can apply open up the possibility of the application of optimal control theory for
deriving optimal intervention policies. In these optimal control problems, the budget constraints
can be formulated both as a hard constraint and as a soft constraint. Due to the novelty of
this application, however, the proof is still required on whether this so-called optimal controller
can indeed reach social welfare and whether it can truly be called optimal compared to existing
policies.

1.3 Research goal

Given the problem statement from the previous section, the goal of this project will be to assess
the effectiveness of optimal control theory for maximizing social welfare in network games having
linear quadratic utilities, taking into account regulator budget constraints formulated as both hard
and soft constraints.

1.3.1 Research questions

To achieve the goal of this research, research questions have been devised which split up the
following main research question: How does the optimal control solution with control constraints
compare to the solution where a penalty function is used and what is the effect of the different
controllers on reaching a social welfare solution?

RQ-1 What are the convergence properties of the network game with linear quadratic cost
functions?

RQ-2 How is the optimal control problem in a linear quadratic network game solved in both
the constrained and unconstrained case, and how to ensure that this solution converges to
the social optimum?

RQ-3 What is the effect of different sizes of interventions on the solution of the penalized
optimal control problem?

RQ-4 How does the derived optimal intervention policy compare to static and dynamic feedback
intervention policies?

2

Chapter 1. Introduction

1.4 Outline of the report

Based on the research questions above, the report is outlined as follows. First, chapter 2 will be
used to introduce the theories involved with network games, optimal control, and the necessary
numerical methods to clarify the complexities involved in the problem. Subsequently, in this
chapter, we will also analyse the used network game model and derive the conditions for the
social welfare solution. Next, chapter 3 is used to elaborate on the derivation of the designed
optimal intervention policies and give the necessary conditions required for an optimal solution
for both the constrained and the penalized case. Along with that, this chapter will show how the
optimal intervention policy finds its connection with the social welfare maximization problem.
Then, in chapter 4, experiments for numerical simulations are proposed and performed to confirm
whether the obtained intervention policies indeed steer the network to a social welfare solution
and whether the policies can indeed be called optimal compared to previous literature. Finally,
chapter 5 is used to reflect on the results, describe the limitations of the research, and give
recommendations for further research on this topic.

3

Chapter 2

Theoretical background

2.1 Network games and interventions

2.1.1 Modelling the network game

In this research, we consider network games with a population of I = {1, ..., n} players interacting
with a central regulator, as well as with each other (Parise and Ozdaglar 2021). For such a given
network of interactions between players, P ∈ Rn×n denotes the adjacency matrix, where each
node Pij ∈ [0, 1] denotes the amount of influence player j has on player i. In these networks, no
self loops should occur, implying that Pii = 0 for all i. Additionally, we use the notion Pij = Pji
to say that the network under consideration is directed, and otherwise it is undirected. The set
of neighbours of player i is denoted by the set Ni = {j ∈ I|Pij > 0} Within the network, each
player i chooses a strategy xi ∈ Xi to minimize a cost function. Here, Xi denotes the strategy
space of player i, usually being a finite set in Rn. Here, each player i has a cost function
Ui(xi, zi(x)), which depends on the player’s own strategy xi ∈ R and the network aggregate

zi(x) =
∑
j∈Ni

= Pijxj , (2.1)

with x = [x1; ...;xi]. In this research, we will consider the minimization of linear quadratic cost
functions, taking the form

Wi(xi, zi(x)) =
1

2
x2i − xi(azi(x) + bi), (2.2)

where a ∈ R captures the impact of the network aggregate zi(x) on the cost of player i, and
bi ∈ R denotes the player’s standalone marginal return. Moreover, in the case that a > 0, we
say that this is a game of strategic complements, where players’ actions have positive effects on
their neighbours’ cost functions. In the other case, when a < 0, we are talking about a game
of strategic substitutes and the actions of each player i have a negative spillover effect on its
neighbours (Currarini and Feri 2015). As can be seen in equation (2.2), the strategy of player i
has a quadratic effect on the cost, and a linear effect on the benefits. In that way, this simple
parametric form allows for a tractable analysis of the impact of interventions on the network
structure.

2.1.2 Interventions

To decrease the PoA of the network, the regulator wishes to influence the players’ actions to
steer them towards social welfare. From the structure of the linear-quadratic cost function in
equation (2.2), it can be seen that a player’s action xi creates a standalone marginal return

4

Chapter 2. Theoretical background

that is independent of the actions of the other players. In that sense, the costs of an individual
player depending on how strongly the standalone marginal return is affected by the actions of
other players, which is denoted by the term azi(x) in equation (2.2) (Galeotti, Golub, and Goyal
2020). With that, the regulator seeks to alter the standalone marginal returns of individual
players. Hence, the term xiui is subtracted from the individual player’s cost function such that
it becomes:

Ui(xi, zi(x), ui) = Wi(xi, zi(x))− xiui =
1

2
x2i − xi(azi(x) + bi + ui), (2.3)

where ui denotes the amount of intervention the regulator performs regarding the cost function
of player i. Furthermore, in the case of strategic complements, if the regulator increases the
marginal returns of a player i, this will have a positive spillover effect on its neighbours, hence
lowering the value of their cost functions as well. In the case of strategic substitutes, however,
increasing the marginal returns will cause more costs for player i’s neighbours, discouraging
them from exerting action. In this research, the function for the intervention will be derived
as a solution to an optimal control problem where the aggregate of the individual players’ cost
functions is minimized.

2.1.3 Player dynamics

Given the amount of intervention performed by the regulator, each player in the network game
chooses its own strategy to minimize the individual cost function equation (2.3). In order
to capture the behaviour of the players over time, we consider the following pseudo-gradient
dynamics:

ẋi(t) = −∂Ui
∂xi

(xi(t), zi(x(t)), ui(t)), ∀i ∈ I, (2.4)

where it should be noticed that the sign before the partial derivative over Ui is negative due
to the convex nature of the cost function (De Persis and Grammatico 2019). Subsequently, by
including the definition of the network aggregate from equation (2.1), together with the fact
that Pii = 0, the dynamics above can be rewritten as:

ẋi(t) = −xi(t) + a
∑
j∈I

Pijxj(t) + bi + ui(t). (2.5)

Ultimately, the set of strategies where each player plays their best response to the other players’
strategies is called the Nash equilibrium, thus implying that no player has a profitable deviation
from the current strategy for all xi ∈ Xi. In the case where the regulator does not intervene,
i.e., ui(·) ≡ 0, the equilibrium of the dynamics equation (2.5) coincides with finding the action
profile x̄ satisfying:

x̄i ∈ arg miny∈RUi(y, zi(x), 0), ∀i ∈ I, (2.6)

(Galeotti, Golub, and Goyal 2020). Then after rewriting, the equilibrium in the network game
where the regulator does not intervene and the players thus choose selfishly becomes:

x̄ = (I − aP)−1b. (2.7)

In the following section, the method of deriving the optimal intervention policy will be intro-
duced, helping the regulator to maximize social welfare.

2.1.4 The social welfare problem

For this research, the network game model introduced in section 2.1.1 is considered from the
regulator’s point of view, implying that we take into account the sum of the individual cost
functions (equation (2.3)). Hence, we get the cost function

U(x(t), u(t)) =
1

2
x(t)Tx(t)− x(t)T (aPx(t) + b+ u(t)), t ∈ [0, T], (2.8)

5

Chapter 2. Theoretical background

where x = col(xi), u = col(ui), ∀i ∈ I, and the fact that Pii = 0 for all i allows us to write
z(x) = Px. Accordingly, the differential equation describing the action profile of the players is
derived by taking the sum of equation (2.5) and therefore given by:

ẋ(t) = (−I + aP)x(t) + b+ u(t), x(0) = x0, t ∈ [0, T], (2.9)

where x(t) = col(xi(t)), b = col(bi), and u(t) = col(ui(t)).

In section 2.1.3, we looked at the dynamics from the players’ point of view, where the inter-
vention signal ui(t) was assumed to be zero. From the regulator’s point of view, however, this
intervention signal has to be properly designed to achieve a social welfare solution, which is
defined as:

xopt ∈ arg miny∈Rn

∑
i∈I

Wi(yi, zi(y)), (2.10)

where the expression of Wi(yi, zi(y)) is also given in equation (2.2). In Shakarami, Cherukuri,
and Monshizadeh (2021), the necessary condition for the existence of a unique social optimum
xopt is given using the following lemma:

Lemma 1. (Shakarami, Cherukuri, and Monshizadeh 2021, Lemma II.1) The social welfare
maximization problem 2.10 has a unique solution if and only if

max
i∈I

aλi(P + P T) < 1, (2.11)

where λi denotes the i-th eigenvalue of P + P T .

Resulting from the lemma above, we make the following assumption before parameterizing the
model:

Assumption 1. The adjacency matrix P ∈ Rn×n and the parameter a ∈ R satisfy maxi∈I aλi(P+
P T) < 1.

Following assumption 1, we notice that the social welfare function on the right hand side of
equation (2.10) is strictly convex (since ∂2U

∂x2
= −I + a(P + P T) < 0), and thus the unique

solution for the social welfare maximization problem is given by

xopt = (I − a(P + P T))−1b. (2.12)

2.2 Calculus of variations and optimal control

2.2.1 Formulation of the optimal control problem

In order to get a better understanding of how the optimal control problem is formulated, methods
from the calculus of variations will be used. Within this framework, one tries to find the
minimum of a cost function by minimizing its integral (Zwart et al. 2012). By taking the
integral of the function, one can calculate the area beneath it, making this technique useful for
time dependant functions, such as the actions of the players in equation (2.3), for instance. In
the formulation of the optimal control problem, we consider the (nonlinear) dynamics of the
system to be controlled as a dynamic constraint

ẋ = f(x, u), (2.13)

with state vector x ∈ Rn and input vector u ∈ Rm. Next to the dynamic constraint, in
this research, we will also consider an admissible control constraint, representing the maximum
amount of intervention that can be applied by the regulator. Moreover, the set of admissible
controls is denoted by U = {u ∈ Rn : |ui| ≤ umax,∀i ∈ I}, for some maximum intervention

6

Chapter 2. Theoretical background

umax > 0. Subjected to these constraints, the cost criterion to be minimized over the inputs
u(·) becomes

J(x0, u) = S(x(T)) +

∫ T

0
L(x(t), u(t))dt, (2.14)

where the function S(x(T)) is usually called the end- or final cost and L(x(t), u(t)) is called
the running cost. Subsequently, the optimal control problem is then to find, for a given initial
condition x0, an input function u∗(t), t ∈ [0, T], for which the cost criterion (2.14) is minimized
(Zwart et al. 2012).

In order to solve such constrained optimization problems, a commonly used technique is to
introduce Lagrangian multipliers to derive the necessary conditions for the optimal solution.
Using Pontryagin’s minimum principle (PMP) (Zwart et al. 2012), these conditions for the
optimal control u∗(t) can be derived analytically by evaluating the Hamiltonian of the running
cost function shown in equation (2.14) and the dynamic constraint given in equation (2.13).
Explicitly, the Hamiltonian function is given as

H(x, λ, u) = λT f(x, u) + L(x, u), (2.15)

where λ(t) ∈ Rn plays the role of the Lagrangian multiplier, also called the adjoint variable,
next to the state variable x ∈ Rn. Accordingly, based on PMP, the following theorem is used to
derive the first order necessary conditions for solving the optimal control problem.

Theorem 2. (Zwart et al. 2012, Theorem 27) Suppose u∗(·) ∈ U is a solution of the optimal
control problem 2.14, and x∗(·) the resulting optimal state trajectory. Then there exists a function
λ∗ : [0, T]→ Rn such that

ẋ∗ =
∂H

∂λ
(x∗, λ∗, u∗)T , x∗(0) = x0, (2.16a)

λ̇∗ = −∂H
∂x

(x∗, λ∗, u∗)T , λ(T)∗ =
∂S

∂x
(x∗(T))T , (2.16b)

∂H

∂u
(x∗, λ∗, u∗)T = 0 (2.16c)

and
H(x∗, λ∗, u∗) = min

v∈U
H(x∗, λ∗, v), ∀t ∈ [0, T], ∀v ∈ U . (2.17)

Hence, with equation (2.17), we can derive the expression for the optimal control u∗(t) that is
within the set of admissible controls U . Additionally, it should be noted that when there are
no bounds on the control, solving equation (2.16c) should suffice for deriving an expression for
u∗(t). Furthermore, by solving the equations for the dynamics of the state (2.16a) and co-state
(2.16b) variables, and including the initial condition x∗(0) and transversality condition λ∗(T),
numerical results can be obtained for a particular controlled network.

2.2.2 Penalization of constraints

In the optimal control problem formulated in section 2.2, it can be seen that the set of admissible
controls U is formulated as a constraint to which the cost function is subjected, thus making
it a hard constraint. In order to make the control constraint less strict, it is added to the cost
function as a penalty function. By formulating the constraint as a soft constraint, the problem
becomes practically unconstrained and can be solved more easily (Gao, Zhang, and Wang 2014).
In the case we have a constrained optimization function in the form

min
x∈Rn

f(x) subject to gi(x) ≤ C, ∀i ∈ I, (2.18)

7

Chapter 2. Theoretical background

where C ∈ R is some constant. We can rewrite the problem into an unconstrained optimization
problem in the form

min
x∈Rn

Φα = f(x) + α||g(x)||p, (2.19)

where α ≥ 0 is called the penalty parameter which should be sufficiently large to make the penal-
ized problem equivalent to the original problem (Dolgopolik 2020). Moreover, in equation (2.19),
the p-norm || · ||p is used to take into account the constraint gi(x) ≤ C for all i in the objective
function function.

Using this method, we can substitute g(x) for u(t) to remove the set of admissible controls as a
hard constraint and transform it to a soft constraint by adding a penalty term to the objective
function. Hence, in our design, we will add the penalty term α||u(t)||22 to the optimization
function 2.3, where the norm term is squared for computational convenience.

2.3 Forward-backward sweep method

In order to obtain numerical results from the optimal control problem having the dynamical
equations (2.16a) and (2.16b), the indirect method is applied which is otherwise known as the
Forward-backward sweep method(FBSM) (Rodrigues, Monteiro, and Torres 2014; Lenhart and
Workman 2007). In this algorithm, first an initial guess is made on the control variable u(t)
for all t ∈ [0, T], for which u ≡ 0 is almost always sufficient. Secondly, the state equations
(2.16a) are solved forward in time, while the co-state equations (2.16b) are solved backward in
time using the initial conditions x0 and λ(T), respectively. In MATLAB®, this will be done by
applying the Runge-Kutta 4 (RK4) routine. This method, given a step-size h, solves the initial
value problem ẋ = f(t, x) by first defining four slopes at a time tn ∈ [0, T]:

k1 = f (tn, xtn)

k2 = f

(
tn +

h

2
, xtn + h

k1
2

)
k3 = f

(
tn +

h

2
, xtn + h

k2
2

)
k4 = f (tn + h, xtn + hk3) ,

(2.20)

and then approximating the next value with

xtn+1 =
1

6
(k1 + 2k2 + 2k3 + k4). (2.21)

Since in calculating k2 and k3 the value of u(tn + h/2) is not yet assigned, this value is approxi-
mated with the average of u(tn) and u(tn+1). Furthermore, for the backward calculation of λ̇(t),
we perform the same routine but here, we start at time T with initial condition λ(T) and end
at time 0.

In the following step of the FBSM algorithm, the control variable is updated using an update
policy where the obtained values of x(t) and λ(t) are plugged in the characterization of the
optimal control, which was found using PMP and will be denoted by unew. Although a common
update policy is to take the average of unew and uold(i.e., the u(t) calculated in the previous
iteration), in this paper we will make use of the policy

uupdate = unew · (1− ωi) + uold · ωi, (2.22)

where i is the current iteration and 0 < ωi < 1 is the weight that is placed on the previous
control input.

8

Chapter 2. Theoretical background

In the final step of the FBSM algorithm, the convergence of the solution is checked by verifying
if the error has become sufficiently small using the equation

||uupdate − uold||
||uupdate||

≤ δ, (2.23)

with δ being the accepted tolerance. As long as the difference between uupdate and uold is
not within the accepted tolerance, the FBSM algorithm will keep iterating and update the
control u(t) at each iteration. In this research, the convergence of x and λ will also be set as a
requirement and is checked in the same manner as in equation (2.23). To summarize, the steps
of the algorithm are also depicted in figure 2.1.

Figure 2.1: Flowchart showing the steps of the FBSM algorithm

9

Chapter 3

Optimal control design

3.1 Controller design

In section 2.2, we have introduced the calculus of variations and optimal control theory as
methods for deriving an intervention policy for the network game model where control constraints
are taken into account. In this section, we will apply this theory and propose expressions for the
optimal intervention policy for the control problems taking into consideration either admissible
control constraints or a penalization on the amount of control effort.

3.1.1 Constrained optimal control

In the optimal control problem, the cost function equation (2.8) is integrated over the time-
interval [0, T] since the model deals with continuous strategies. Fort the optimal control problem,
this cost criterion has to be minimized for all t ∈ [0, T]. Then, initially, for the boundary
conditions we take an arbitrary value for x(0), namely x0. Furthermore, the problem will
also be constrained by the dynamics equation (2.9) and the control bounds u ∈ U , where
U = {u ∈ Rn : |ui| ≤ umax,∀i ∈ I}. With that, we formulate the optimal control problem to
be solved:

min
u

J(x0, u) =

∫ T

0

(
1

2
x(t)Tx(t)− x(t)T (aPx(t) + b+ u(t))

)
dt (3.1a)

subject to ẋ(t) = (−I + aP)x(t) + b+ u(t), (3.1b)

x(0) = x0, (3.1c)

u(t) ∈ U , (3.1d)

t ∈ [0, T]. (3.1e)

What can be noticed from equation (3.1a), is that there is no final cost function S(x(T)) included.

Proposition 2.1. Consider the optimal control problem given in 3.1. Then, by applying Pon-
tryagin’s Minimum Principle, the expression for the optimal controller u∗(t) is given by u∗i (t) =
−umax sign(ψi(t)).

Proof. From equation (3.1), we define the associated Hamiltonian to be:

H(x, λ, u) = λT ((−I + aP)x+ b+ u) +
1

2
xTx− xT (aPx+ b+ u), (3.2)

where λ : [0, T] → Rn plays the role of the Lagrangian multiplier. Subsequently, by applying
theorem 2, we can say that if u∗(t) ∈ U is an optimal control, and x∗(t) is the resulting optimal

10

Chapter 3. Optimal control design

state trajectory, then there exists a function λ∗ : [0, T]→ Rn such that:

ẋ∗ =
∂H

∂λ
(x∗, λ∗, u∗)T = (−I + aP)x∗ + b+ u∗, x∗(0) = x0, (3.3a)

λ̇∗ = −∂H
∂x

(x∗, λ∗, u∗)T = (I − aP T)λ∗ − x∗ + a(P + P T)x∗ + b+ u∗, (3.3b)

λ∗(T) =
∂S

∂x
(x∗(T))T = 0. (3.3c)

Notice that the condition ∂H
∂u = 0 is not included in the necessary conditions above because we

are dealing with a restricted set U . Therefore, this condition is replaced by a true minimization
condition obtained from Pontryagin’s Minimum Principle:

H (x∗(t), λ∗(t), u∗(t)) = min
v∈U

H (x∗(t), λ∗(t), v(t)) , (3.4)

for which filling in the Hamiltonian leaves us with the equality:

(λ∗T (t)− x∗T (t))u∗(t) = min
v∈U

(λ∗T (t)− x∗T (t))v(t), (3.5)

for all t ∈ [0, T] and all i ∈ I. Then, from equation (3.5), we identify the switching function
ψi(t) = λ∗i (t)− x∗i (t), allowing us to rewrite the minimization of the Hamiltonian into:

u∗i (t) =


umax if ψi(t) < 0,

0 if ψi(t) = 0,

−umax if ψi(t) > 0,

(3.6)

for all i ∈ I. Subsequently, the expression for the optimal control solution can be rewritten as

u∗i (t) = −umax sign(ψi(t)), ∀i ∈ I. (3.7)

By numerically solving the first-order necessary conditions equations (3.3a) to (3.3c) and (3.7)
with the FBSM algorithm introduced in section 2.3, the optimal state trajectory x∗(t) that
minimizes the cost criterion 3.1a is obtained.

3.1.2 Penalized optimal control

From the above result, we notice that the optimal control expression 3.7 generates a discontin-
uous signal. In other words, the amount of intervention employed by the regulator is either 0%
or 100%. Hence, the hard constraint on the admissible control set has made this intervention
policy unusable for applications where the amount of intervention that is applied has to be
somewhere in between the upper and lower bound of the admissible control set. To remove the
strict dependence of the optimal control problem on the set of admissible controls U , a penalty
term is added to the optimal control problem shown in equation (3.1), creating the following
modified optimal control problem:

min
u

Ĵ(x0, u) =

∫ T

0

1

2
x(t)Tx(t)− x(t)T (aPx(t) + b+ u(t)) + α||u(t)||22︸ ︷︷ ︸

penalty term

 dt (3.8a)

subject to ẋ(t) = (−I + aP)x(t) + b+ u(t), (3.8b)

x(0) = x0, (3.8c)

t ∈ [0, T]. (3.8d)

11

Chapter 3. Optimal control design

Proposition 2.2. Consider the optimal control problem given in 3.1. Then, by applying Pon-
tryagin’s Minimum Principle, the expression for the optimal controller u∗(t) is given by u∗(t) =
x∗(t)−λ∗(t)

2α .

Proof. For the optimal control problem equation (3.8), we write the following Hamiltonian:

H(x, λ, u) = λT ((−I + aP)x+ b+ u) +
1

2
xTx− xT (aPx+ b+ u) + α||u||22. (3.9)

Again, using theorem 2, the first-order necessary conditions for the existence of the optimal
controller can be derived:

ẋ∗ =
∂H

∂λ
(x∗, λ∗, u∗)T = (−I + aP)x∗ + b+ u∗, x∗(0) = x0, (3.10a)

λ̇∗ = −∂H
∂x

(x∗, λ∗, u∗)T = (I − aP T)λ∗ − x∗ + a(P + P T)x∗ + b+ u∗, (3.10b)

λ∗(T) =
∂S

∂x
(x∗(T))T = 0, (3.10c)

∂H

∂u
(x∗, λ∗, u∗)T = λ∗ − x∗ + 2αu∗ = 0. (3.10d)

Now, since the bounds U on the control are dropped, condition 3.10d becomes relevant. From this
equality, we can derive an expression for u∗(t), implying that we do not have to use the equation
for the Minimum Principle, as was done in the constrained problem. Hence, the expression for
optimal controller becomes:

u∗(t) =
x∗(t)− λ∗(t)

2α
(3.11)

As can be seen, we have now obtained a continuous function for the control input, rather than
the discontinuous control function derived in equation (3.7).

3.2 Convergence to the social welfare solution

Although the expressions for the optimal controllers and the necessary conditions that need to
be fulfilled have now been defined, this is not yet a guarantee that the state x∗(t) will converge
to the social optimal solution formulated in equation (2.12). To do this, we change the optimal
control problem defined in the previous sections by adding a fixed endpoint constraint, being:

x(T) = xopt, ∀i ∈ I. (3.12)

Although it seems straightforward that this alteration causes the optimal control expression to
solve the social welfare problem, its complexity lies in the numerical implementation of this fixed
endpoint constraint. Since xopt is now the specified state that must be reached at the final time,
an additional boundary value is introduced to the system and transversality condition (λ∗(T))
can no longer be zero (Sharp, Burrage, and Simpson 2021). In Lenhart and Workman (2007), a
modified version of the FBSM algorithm (see also section 2.3) is introduced that helps to solve
the fixed endpoint optimal control problem numerically. For this adapted FBSM algorithm, first
an initial guess is made for λ̂∗(T) = θ, for some θ ∈ R. With this guess, the optimal control
problem is then solved using the regular FBSM algorithm. Having obtained the solution of this
optimal control problem, the goal of the adapted FBSM becomes finding the value of θ where
the function

Vi(θ) = x̂i(T)− xi,opt (3.13)

12

Chapter 3. Optimal control design

is equal to zero, for all i. In this way, an outer iterative method is required for finding the roots
of V (θ) and updating the guess θ. The method used for finding these roots is the secant method
(Papakonstantinou and Tapia 2013). With this method, the approximating formula

x1 − x2 =
θ2 − θ1

V (θ2)− V (θ1)
V (θ1) (3.14)

is used to alter the guess θ by simply subtracting this finite difference approximation (x1 − x2).
As can be seen, this approximating formula requires two guesses to be made upfront, i.e., θ1 and
θ2. From these two guesses, the guess θ resulting in the V (θ) that is the closest to zero is set to
θ1. This guess is then updated through subtracting the finite difference approximation 3.14, for
which we then again calculate the value of V (θ). In this way, the sequence is continued until
we find a V (θ) that is defined to be ”close” to zero, i.e., |V | < ε, for some small error tolerance
ε. Hence, by finding the value for θ that is the root for V (θ) = 0, we have found the value for
the transversality condition λ∗(T) that steers the state trajectory towards the solution of the
social welfare problem xopt. Moreover, the roots for Vi(θ) can be calculated simultaneously for
all players. The reason for this is that other than in Lenhart and Workman (2007), each player
i considers a dynamic function of the same form, only having different values for the parameters
(see also equation (2.16a)). In figure 3.1, a schematic overview is given of the steps involved in
the calculation of the roots of V (θ) using this adapted FBSM algorithm.

Figure 3.1: Flowchart showing the steps of the adapted FBSM algorithm

13

Chapter 3. Optimal control design

3.3 Validation of the controller design in MATLAB®

To validate whether the outcome of the numerical calculations to be performed using the FBSM
algorithm are correct, the implementation of the optimal controller in MATLAB® is checked.
As previously described in section 2.3, the FBSM algorithm will be used to solve the first-order
necessary conditions ẋ(t) and λ̇(t), and updating the control function according to an updated
policy 2.22. For this update policy, we will use the value ω = 0.9, implying that, at each iteration,
we will take the average of the control output of the previous iteration and the newly calculated
control output to update the controller. Furthermore, an error tolerance of δ = 0.001 is found
to be sufficiently small for the convergence of the FBSM algorithm (see equation (2.23)), and
will therefore be used throughout this research. To check whether the obtained time series x∗(t)
and λ∗(t) has been correctly calculated by the numerical algorithm, they are plugged back into
their corresponding dynamic functions ẋ∗(t) and λ̇∗(t), respectively. The resulting time series
are then compared to the approximations of the derivatives of x∗(t) and λ∗(t), being calculated
by:

˙̂x∗(t) =
x∗t+1 − x∗t

dt
,

˙̂
λ∗(t) =

λ∗t+1 − λ∗t
dt

, (3.15)

respectively, and for all t ∈ [0, T]. In the case that the obtained time series for ẋ∗(t) and λ̇∗(t)

match those of ˙̂x∗(t) and
˙̂
λ∗(t), while also taking into account a tolerance δ, it can be said that

the numerical results are valid. To demonstrate, we look at the results of the optimal controllers
derived in this chapter. In figure 3.2, the comparisons between the dynamics and approximated
time derivatives of the state and co-state are given for the controller from equation (3.7). Here,
the applied parameters for the network model correspond with those defined in Shakarami,
Cherukuri, and Monshizadeh (2021), and will be discussed in more detail in chapter 4. Further-
more, the bound on the controller umax here is set to 1. As can be seen from both figures, the
results of the dynamic functions and the approximations of the time derivatives are roughly the
same, for which it can be said that the obtained time series of x∗(t) and λ∗(t) are both valid.

0 10 20 30 40 50 60 70 80 90 100

t

0

0.2

0.4

0.6

0.8

1

1.2

x

Validation of x*

x-dot
dxdt

(a) ẋ∗ and ˙̂x∗

0 10 20 30 40 50 60 70 80 90 100

t

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Validation of *

-dot
d dt

(b) λ̇∗ and
˙̂
λ∗

Figure 3.2: Action profiles of the dynamics of the state and co-state variables for 100 time-steps
under constrained optimal control.

14

Chapter 4

Numerical simulations

In this chapter, the model and designs described in the previous chapters will be implemented
in MATLAB® for numerical simulations to answer the research questions formulated in sec-
tion 1.3.1.

4.1 Model parameters

As already shortly introduced in the previous chapter, this research will, initially, make use of the
same parameters as those used in Shakarami, Cherukuri, and Monshizadeh (2021). Therefore,
we will consider a population I = {1, ..., 6} players interacting over the weighted directed graph
shown in figure 4.1. Here, the width of each link indicates the weight on each link and thus
the value of Pij in the adjacency matrix P , where player i is the one receiving the influence of
player j. Then, the number next to each node represents the value of the player’s standalone
marginal return bi. Furthermore, this network game will be considered as a game of strategic
substitutes, where a = −0.2. For the initial condition x0, we will assign a random value within
the interval [0, 1], similarly to what was done in Shakarami, Cherukuri, and Monshizadeh (2021).
Additionally, we will also make use of the same initial and final time as in this paper. That is,
the initial time will be 0, and the final time T will be 25. For the reader’s convenience, we will
express this time in seconds.

Given these parameters, we can already conclude that there should exist a unique solution to
the social welfare maximization problem, as the condition given in lemma 1 is satisfied. Hence,
we also can find the values of the social optimal states xopt, which are found by filling in the
given model parameters into equation (2.12).

Figure 4.1: Directed network which was also used in Shakarami, Cherukuri, and Monshizadeh
(2021).

15

Chapter 4. Numerical simulations

4.2 Numerical experiments

In order to test the performance of the obtained necessary conditions for the optimal controllers
derived in chapter 3, four experiments have been set up. The first experiment here is used to
obtain a baseline result which is then used to analyse the behaviour of the different controllers
in the case of a free endpoint x(T). Then, in the second experiment the final time condition
x(T) = xopt is added to ensure convergence to the social optimal solution. Simultaneously, this
experiment is also used to investigate the behaviour of the penalized optimal control for increas-
ing values of the penalty parameter α. Subsequently, in the third experiment, the numerical
results for the optimal controllers will be compared to those obtained in Shakarami, Cherukuri,
and Monshizadeh (2021) to evaluate whether the policy obtained our research can indeed be
referred to as optimal compared to other existing policies. Finally, a fourth experiment is con-
ducted to examine the effect of changing the network on the behaviour of the controllers and
therefore analyse the robustness of the optimal intervention policies. That said, the remainder
of this section will be dedicated to elaborating on each experiment to be performed in more
detail and also providing their numerical results.

4.2.1 Experiment 1: Free endpoint optimal control

Experimental setup

In the first experiment, all controllers derived in chapter 3 will be tested without having the
constraint on the final time that enforces the social welfare solution. Hence, the regular FBSM
algorithm which was described in section 2.3 will be applied, where we set the transversality
condition equal to zero, i.e., λi(T) = 0 for all i ∈ I. In this way, we can analyse and compare
the behaviour of the constrained and the penalized controllers and the solutions to which they
converge. Furthermore, for the constrained optimal controller (see equation (3.7)), the boundary
of the admissible control set U will be set to umax = 1. For the penalized controller, we will
choose the penalty parameters α having the values 1, 3, and 5.

Next to the solutions of the optimal control problems, also the results of implementing a static
open-loop intervention will be shown for reference. As also described in Shakarami, Cherukuri,
and Monshizadeh (2021), this intervention is a constant signal where the regulator possesses full
knowledge of the game, namely the pair (aP, b), and therefore also the value of xopt. With that,
the control signal for this open-loop intervention becomes u(t) ≡ (I − aP)xopt − b.

Simulation results

In figure 4.2, the results of solving the free endpoint constrained optimal control (see sec-
tion 3.1.1) using regular FBSM are given for different sizes of the controller bounds umax.
The first thing to be noticed from these plots is that, for every player, the constrained optimal
controller produces a constant control input signal that is equal to the value of umax and thus
does not change to 0 or −umax. When comparing input signals to the trajectories shown in
the upper plots of the states and co-states, we see that this behaviour of the control signal can
be explained by the values of the states being higher than those of the co-states at all times.
Next to that, we see that after approximately three time units, the input signal causes the state
variables of the individual players to converge to constant values. Furthermore, figures 4.2a
to 4.2c also show that the value to which the state converges also increases when allowing for
higher values of the controller in the set U , which is logical given the linear relationship between
the dynamics ẋ(t) and the control input u(t).

16

Chapter 4. Numerical simulations

0 5 10 15 20 25
Time

0

0.5

1

x

State variable

0 5 10 15 20 25
Time

-0.4

-0.2

0

0.2
Adjoint variable

0 5 10 15 20 25
Time

-0.5
0

0.5
1

u

Control input

Constrained optimal control u
max

=0.5

(a)

0 5 10 15 20 25
Time

0

1

2

x

State variable

0 5 10 15 20 25
Time

-0.4
-0.2

0
0.2

Adjoint variable

0 5 10 15 20 25
Time

0

1

2

u

Control input

Constrained optimal controller output u
max

=1

(b)

0 5 10 15 20 25
Time

0

5

x

State variable

0 5 10 15 20 25
Time

-2

-1

0

1
Adjoint variable

0 5 10 15 20 25
Time

4

5

6

u

Control input

Constrained optimal control u
max

=5

(c)

Figure 4.2: Solutions of the constrained optimal control problem with controller bounds 0.5,
1, and 5.

If we then plot the distance of the state trajectories to the social optimal state, as is done in
figure 4.3a, we see that the states of the constrained optimal controllers steer away from the
desired state. Furthermore, we observe that for larger values of umax, the deviation from the
social optimal state becomes larger. For the trajectory of the co-state variable λ, we observe in
figure 4.3b that similar behaviour is obtained when comparing the different values of umax.

17

Chapter 4. Numerical simulations

0 5 10 15 20 25

Time

0

2

4

6

8

10

12

||x
-x

op
t||

Distance of action profile to social optimum

Static open-loop intervention
Constrained optimal control u

max
=0.5

Constrained optimal control u
max

=1

Constrained optimal control u
max

=5

No intervention

(a)

0 5 10 15 20 25

Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

||
||

Norm of the co-states

Static open-loop intervention
Constrained optimal control u

max
=1

Constrained optimal control u
max

=3

Constrained optimal control u
max

=5

No intervention

(b)

Figure 4.3: Results of the numerical simulations of the free endpoint constrained optimal
control problem for three different values of umax.

Next, in figures 4.4a to 4.4c, the outputs of the simulations using the penalized controllers are
given, obtained by solving the optimal control problem formulated in section 3.1.2. Compared
to the constrained controllers, we see that the values of the control inputs u now vary over time
and with respect to each other, rather than all taking the same constant value. Furthermore,
for the chosen values of α, the control inputs all converge to a constant value after 3 seconds,
after which they deviate from this value at around 24 seconds. This behaviour is also similar
to what can be seen in the plots of the adjoint variables, where the backward calculation starts
from λ = 0 and then moves towards a steady-state value.

18

Chapter 4. Numerical simulations

0 5 10 15 20 25
Time

0

1

x

State variable

0 5 10 15 20 25
Time

-0.4

-0.2

0

0.2

Adjoint variable

0 5 10 15 20 25
Time

0

0.5

u

Control input

Penalized optimal controller output =1

(a)

0 5 10 15 20 25
Time

0

0.5

1

x

State variable

0 5 10 15 20 25
Time

-0.2

0

0.2

0.4

Adjoint variable

0 5 10 15 20 25
Time

0

0.1

0.2

u

Control input

Penalized optimal controller output =3

(b)

0 5 10 15 20 25
Time

0

0.5

1

x

State variable

0 5 10 15 20 25
Time

-0.2

0

0.2

0.4

Adjoint variable

0 5 10 15 20 25
Time

0

0.05

0.1

u

Control input

Penalized optimal controller output =5

(c)

Figure 4.4: Solutions of the penalized optimal control problem with penalty parameters 1, 3,
and 5.

In figure 4.5a, the solutions of the penalized optimal control problems are shown together with
those of the constrained optimal controller having umax = 1. Similar to figure 4.3a, the norm of
the difference between each player’s trajectory and the social optimal solution is taken. When
comparing the two different types of controllers, we see that the solution of the penalized optimal
controllers also converge to a constant steady-state value after around 3 seconds but changes
course in the last seconds of the time series. What becomes clear from this plot, however, is that
it seems that for increasing values of α, the amount of deviation from the steady-state value
decreases. Next to that, The trajectory also becomes more similar to that of the solution where
the intervention u is equal to zero. Inherently, this makes sense since, for higher values of α, the
punishment on the intervention becomes more and more fierce, thus further demotivating the
regulator of performing any interventions in the network.

19

Chapter 4. Numerical simulations

0 5 10 15 20 25

Time

0

0.5

1

1.5

2

2.5

3

3.5

4

||x
-x

op
t||

Distance of action profile to social optimum

Static open-loop intervention
Constrained optimal control u

max
=1

Optimal control =1
Optimal control =3
Optimal control =5
No intervention

(a)

0 5 10 15 20 25

Time

-0.2

0

0.2

0.4

0.6

0.8

1

u(
t)

Average control input

Static open-loop intervention
Constrained optimal control u

max
=1

Optimal control =1
Optimal control =3
Optimal control =5

(b)

Figure 4.5: Results of the numerical simulations of the free endpoint optimal control problems,
including the solutions of both the constrained and the penalized controllers.

4.2.2 Experiment 2: Reaching the social welfare solution

Experimental setup

In the second experiment, the final time constraint x(T) = xopt will be added to the optimal
control problem such that the solution is guaranteed to converge to the social welfare solution.
Moreover, in this experiment only the penalized optimal controller is taken into consideration for
including the final time constraint x(T) = xopt since the discontinuous nature of the constrained
optimal control signal does not allow the implementation of the adapted FBSM algorithm.
Therefore, the optimal control problem formulated in section 3.1.2 is slightly rewritten:

min
u

Ĵ(x0, u) =

∫ T

0

(
1

2
x(t)Tx(t)− x(t)T (aPx(t) + b+ u(t)) + α||u(t)||22

)
dt (4.1a)

subject to ẋ(t) = (−I + aP)x(t) + b+ u(t), (4.1b)

x(0) = x0, (4.1c)

x(T) = xopt, (4.1d)

t ∈ [0, T]. (4.1e)

Since the addition of the final time constraint cannot be handled by the regular FBSM algorithm,
the adapted FBSM algorithm will be used here to calculate the corresponding values of λi(T)
at each xi(T), for all i (see also section 3.2). For the initial guesses on the transversality
condition λ(T) = θ, we select θ1 = 10 and θ2 = −10, for all i ∈ I. These values are found
to be sufficiently large to find achieve convergence to the social welfare solution with an error
tolerance ε = 0.0015. With that, this experiment will be used to check the convergence of the
penalized optimal controller for different values of α, running from α = 1 until α = 20. In this
way, we seek to find the effect of increasing the penalization on the intervention u.

Simulation results

After solving the fixed endpoint optimal control problem with the adapted FBSM, we see in
figure 4.6a that the social welfare state has indeed been reached for all α ∈ [1, 20]. On a side
note, however, during the testing phase, also penalty parameter values lower than 1 have been
tested but for these, the algorithm was not able to converge to the social optimum. That said,
the second thing to be noticed in the figure is the shape of the trajectories, which all converge
to a constant value up until the last seconds, where all trajectories change directions and steer
towards the social welfare state. Taking then into account the norm of the trajectories of the

20

Chapter 4. Numerical simulations

controller input depicted in figure 4.6d, we see that at the same time, the norms of the inputs
all increase. In other words, to reach the social welfare solution, a higher amount of intervention
is required compared to the steady-state situation. Furthermore, from figure 4.6c we see that
the change from a decreasing value of ||u(t)|| to an increasing value in figure 4.6d is a result of
the control effort changing signs from positive to negative in the last second.

When comparing the solutions for penalty parameters varying from 1 to 20, we can see from
figure 4.6a that increasing the penalty for intervention does not imply better performance in
terms of convergence speed to the social optimum due to the late change of trajectory discussed in
the previous paragraph. Additionally, the graph also shows that for low values of α, the distance
to the social optimal state is larger than for the higher values. Furthermore, figure 4.6d shows us
that for increasing values of α, the amount of control effort performed by the regulator becomes
lower, which is logical since more intervention is then punished by increased costs. Accordingly,
figures 4.6e and 4.6f show decreasing costs for fiercer punishments on the intervention. An
important side-note to these figures is that these plots consider the costs that are incurred by
the regulator, i.e., the cost function equation (2.2). Therefore, these costs do not take into
account the added costs of the performed intervention but only consider the calculated action
profile x∗ and the other constants of the model. Moving on, another relation that is shown by
the latter graph is that from a penalty parameter value of α = 10, an even further increase of α
will have little effect on the total costs incurred during the time running from 0 to 25 seconds.

This can also be seen in table 4.1, which shows the convergence results of the parameter variation
on the penalty parameter α. Furthermore, this table also shows that as α increases, fewer
iterations are required for both the FBSM algorithm, and the outer algorithm searching for the
roots of V (θ) using the secant method.

Table 4.1: Convergence results of the numerical simulation of the penalized optimal control
problem with the parameter variation on α ∈ [1, 20].

α 1 2 3 4 5 6 7 8 9 10

Total costs -562.47 -1038.41 -1108.93 -1134.53 -1147.35 -1154.96 -1159.96 -1163.48 -1166.10 -1168.10
Secant iterations 11 5 5 5 5 6 5 5 5 5
FBSM iterations 814 290 265 255 250 294 240 240 236 235

α 11 12 13 14 15 16 17 18 19 20

Total costs -1169.69 -1170.98 -1172.05 -1172.95 -1173.71 -1174.37 -1174.95 -1175.45 -1175.91 -1176.30
Secant iterations 5 5 7 3 3 3 4 4 2 2
FBSM iterations 235 235 329 141 139 138 184 184 92 92

21

Chapter 4. Numerical simulations

0 5 10 15 20 25

Time

0

0.2

0.4

0.6

0.8

1

1.2

||x
-x

op
t||

Distance of action profile to social optimum

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

si
ze

 o
f

(a)

0 5 10 15 20 25

Time

0

5

10

15

20

25

||
||

Norm of the co-states

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

si
ze

 o
f

(b)

0 5 10 15 20 25

Time

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

u(
t)

Average control input

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

si
ze

 o
f

(c)

0 5 10 15 20 25

Time

0

0.5

1

1.5

||u
(t

)|
|

Norm of input

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

si
ze

 o
f

(d)

0 5 10 15 20 25

Time

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

C
os

ts

Aggregated costs over time

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

si
ze

 o
f

(e)

0 2 4 6 8 10 12 14 16 18 20
-1200

-1100

-1000

-900

-800

-700

-600

-500

T
ot

al
 c

os
ts

Total costs versus amount of intervention

(f)

Figure 4.6: Plotted results of the parameter variation experiment on the fixed endpoint optimal
control problem for α ∈ [1, 20].

4.2.3 Experiment 3: Comparison with static and dynamic interventions

Experimental setup

After testing the optimal control solutions for different intervention sizes, these solutions will
be compared to two of the intervention policies described in Shakarami, Cherukuri, and Mon-
shizadeh (2021). The policies to be considered in this paper will be the static feedback policy and
the dynamic feedback policy. In the first intervention policy, the regulator has knowledge of the
network structure and the impact of the players on each other, i.e., aP . With that, a feedback
loop is included in the control, making up the static feedback intervention u(t) = aP Tx(t).

22

Chapter 4. Numerical simulations

Next to this static intervention policy, Shakarami, Cherukuri, and Monshizadeh (2021) also
proposes a dynamic intervention policy that does not require the knowledge of aP but uses
an estimate of the social optimum xs ∈ Rn. With that, an integral control-based intervention
is proposed taking the form u̇(t) = −(x(t) − xs). Similar to the paper, we assume that the
regulator knows the social optimum and we set xs = xopt.

Then to recall, figure 4.7 depicts the results of the paper, which were obtained by using the
ode45 function of MATLAB®. Although the aim of the paper is to maximize the payoff
function that is equal to −Wi(xi, zi(x)) from equation (2.2), the comparison to the optimal
control to be performed in this experiment will still be valid since the numerical calculations
take into account the same dynamics ẋ(t).

0 5 10 15 20 25

Time

0

0.2

0.4

0.6

0.8

1

1.2

||x
-x

op
t||

Distance of action profile to social optimum

Static feedback
Dynamic feedback
Static open-loop intervention

Figure 4.7: Numerical results of the intervention policies discussed in Shakarami, Cherukuri,
and Monshizadeh (2021), showing the distance of the action profile to the social welfare state.

Simulation results

Now that the social welfare solution has been reached and the performance of different sizes
of penalization on the intervention has been analysed, the third experiment will be dedicated
to further investigating the controllers’ performance in comparison to the results of Shakarami,
Cherukuri, and Monshizadeh (2021). Figure 4.8 shows the numerical results of the penalized
optimal intervention policies, compared with those of the static and dynamic policies. From
figure 4.8a, the first thing that strikes is that both the static and dynamic intervention policies
converge faster to the social welfare state xopt. As a result, the costs incurred by the regulator are
lower when applying the static and dynamic intervention policies, as is also shown in figures 4.8c
and 4.8d. Moreover, figure 4.8d also makes it clear that even for the higher values of α, the costs
are not as low as for the static intervention policy, which has a total regulator cost of -1210.86
(equal to a payoff of +1210.86) over the entire time period and is marked in the plot with a red
line.

23

Chapter 4. Numerical simulations

0 5 10 15 20 25

Time

0

0.2

0.4

0.6

0.8

1

1.2

||x
-x

op
t||

Distance of action profile to social optimum

Static feedback
Dynamic feedback
Static open-loop intervention
Optimal control =1
Optimal control =5
Optimal control =10
No intervention

(a)

0 5 10 15 20 25

Time

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

u(
t)

Average control input

Static feedback
Dynamic feedback
Open-loop intervention
Optimal control =1
Optimal control =5
Optimal control =10

(b)

0 5 10 15 20 25

Time

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

C
os

ts

Aggregated regulator costs over time

Static feedback
Dynamic feedback
Open-loop intervention
Optimal control =1
Optimal control =5
Optimal control =10
No intervention

(c)

Total costs incurred by the regulator

No intervention

Static intervention

Dynamic intervention

Penalized optim
al contro

l
=1

Penalized optim
al contro

l
=5

Penalized optim
al contro

l
=10

-1400

-1200

-1000

-800

-600

-400

-200

0

T
ot

al
 c

os
ts

(d)

Figure 4.8: Results of the numerical simulations of the fixed endpoint optimal control problems
compared with the static and dynamic intervention policies.

4.2.4 Experiment 4: Optimal control with altered cost criterion

Experimental setup

Seeing the results of experiments 2 and 3, we notice that although the proposed intervention
policies achieve in steering the network towards social welfare, they cannot yet be called truly
optimal. This is for the reason that compared to existing intervention policies, more time is
needed for achieving the social welfare state, implying also higher costs. Therefore, we reevaluate
the optimal control problem shown in equation (4.1). What stands out now after looking at the
results, is that the cost functions used for deriving the optimal controller (see equations (3.1a)
and (3.8a)) take into consideration the modification term −xTu that is applied by the regulator.
What is then important to remark is that the addition of this modification term is also the
difference between the cost function that is to be optimized by the regulator(see equation (2.2)),
and the cost function as it is observed by the individual agents (see equation (2.3)). In that way,
the use of the latter cost function in the formulation of the optimal control problem, therefore,
implies that there already is a penalization on the control from the regulator’s point of view.
Moreover, in the penalized optimal control problem, adding the penalty term α||u(t)|| also
causes a double penalization on the amount of intervention performed by the regulator. As the
term u(t) now also appears in the dynamics of the co-state λ̇, the transversality condition λ(T)
that is essential for reaching the social welfare solution, is now also dependent on the amount of
intervention that is performed. With that, we can see why the trajectories of the solutions to the
optimal control problems desolate their steady-state value in order to satisfy the transversality
condition. Therefore, for this last experiment we propose the following modified optimal control

24

Chapter 4. Numerical simulations

problem, where we remove the double dependency on the control effort u(t):

min
u

Ĵ(x0, u) =

∫ T

0

(
1

2
x(t)Tx(t)− x(t)T (aPx(t) + b) + α||u(t)||22

)
dt (4.2a)

subject to ẋ(t) = (−I + aP)x(t) + b+ u(t), (4.2b)

x(0) = x0, (4.2c)

x(T) = xopt, (4.2d)

t ∈ [0, T]. (4.2e)

As can be seen, the minimization objective has now become equal to W (x(t), z(x(t)))+α||u(t)||22,
and thus includes a single penalization on the control effort u(t). Then, by applying PMP as was
also done in chapter 3, we derive the following first order necessary conditions for the modified
optimal control problem:

ẋ∗(t) = (−I + aP)x∗(t) + b+ u∗(t), x∗(0) = x0, (4.3a)

λ̇∗(t) = (I − aP T)λ∗(t)− x∗(t) + a(P + P T)x∗(t) + b, (4.3b)

λ∗(T) = θ, (4.3c)

u∗ = −λ
∗

2α
. (4.3d)

The next section will provide the simulation results for the numerical calculations on the above
equations using the adapted FBSM algorithm. Here, we will again use θ1 = 10 and θ2 = −10
for all i ∈ I as the first guesses on the transversality condition equation (4.3c).

Simulation results

In table 4.2 and figure 4.9, we show the results of the parameter variation on α for the modified
optimal control problem 4.2. With this modification of the optimal control problem, the adapted
FBSM algorithm is now able to obtain numerical results converging to the social welfare solution
for smaller values of α. Therefore, the interval used for the parameter variation on the penalty
parameter is now [0.03, 20], with 0.03 being the smallest value for which results could be obtained.
When comparing figure 4.9a to figure 4.6a, we see that the solutions of the modified optimal
control problem show similar behaviour in terms of converging to a steady-state value before
steering to the social optimal state in the last seconds of the time window. However, the steady-
state values obtained by the solutions of the modified optimal control problem are now closer
to the social optimum than in figure 4.6a, especially for the lower values of α. Furthermore,
figure 4.9c also shows that the control effort is now negative during the entire time window of
the simulation, other than figure 4.6c where it changes from positive to negative in the last
seconds. Then, looking at the costs in figures 4.9e and 4.9f, we now see that for lower values of
the penalty parameter α, fewer costs are incurred by the regulator. This is again contrary to
the solutions shown in figure 4.6, where costs increased for lower values of α.

Table 4.2: Convergence results of the numerical simulation of the adjusted penalized optimal
control problem with the parameter variation on α ∈ [0.03, 20].

α 0.03 1 2 3 4 5 6 7 8 9 10

Total costs -1218.99 -1199.80 -1193.70 -1190.86 -1189.23 -1188.18 -1187.43 -1186.89 -1186.46 -1186.13 -1185.85
Secant iterations 2 3 3 4 4 4 4 4 4 4 4
FBSM iterations 68 105 117 164 168 172 172 176 176 176 176

α 11 12 13 14 15 16 17 18 19 20

Total costs -1185.63 -1185.44 -1185.28 -1185.14 -1185.02 -1184.91 -1184.81 -1184.73 -1184.65 -1184.59
Secant iterations 4 5 5 6 5 4 3 6 4 2
FBSM iterations 176 220 220 270 225 180 135 270 180 90

25

Chapter 4. Numerical simulations

0 5 10 15 20 25

Time

0

0.2

0.4

0.6

0.8

1

1.2

||x
-x

op
t||

Distance of action profile to social optimum

0.03
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

si
ze

 o
f

(a)

0 5 10 15 20 25

Time

0

5

10

15

20

25

||
||

Norm of the co-states

0.03
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

si
ze

 o
f

(b)

0 5 10 15 20 25

Time

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

u(
t)

Average control input

0.03
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

si
ze

 o
f

(c)

0 5 10 15 20 25

Time

0

0.5

1

1.5

2

2.5

3

3.5

4

||u
||

Norm of input

0.03
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

si
ze

 o
f

(d)

0 5 10 15 20 25

Time

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

C
os

ts

Aggregated regulator costs over time

0.03
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

si
ze

 o
f

(e)

0 2 4 6 8 10 12 14 16 18 20
-1220

-1215

-1210

-1205

-1200

-1195

-1190

-1185

-1180

T
ot

al
 c

os
ts

Total regulator costs versus amount of intervention

(f)

Figure 4.9: Plotted results of the numerical simulations of the modified fixed endpoint optimal
control problem for α ∈ [0.03, 20].

Then, with figure 4.10 we compare the results of the modified controller to the solutions of
the static and dynamic interventions. Considering figure 4.10a, we notice that for the optimal
control solution with penalty parameter α = 0.03, the action profile rapidly converges to a
steady-state with a distance of approximately 0.01 from the social optimal state, after which
it steers to xopt. Comparing this to the action profiles of the static and dynamic intervention
policies, we see that a steady state is reached quicker with the penalized optimal control with
α = 0.03. Even though the steady-state of the penalized optimal controller is not yet the social
optimal state, as is the case for the static and dynamic controllers, figures 4.10c and 4.10d show
that the behaviour of the optimal controller does cause slightly lower costs for the regulator.

26

Chapter 4. Numerical simulations

Explicitly, the costs incurred when using the penalized optimal control with α = 0.03 are now
-1218.99, whereas the costs with using static feedback intervention are -1210.86. Hence, we can
conclude from this that the penalized optimal controller with a penalty parameter value has
slightly better performance than the existing intervention policies considered in this section.

0 5 10 15 20 25

Time

0

0.2

0.4

0.6

0.8

1

1.2

||x
-x

op
t||

Distance of action profile to social optimum

Static feedback
Dynamic feedback
Static open-loop intervention
Optimal control =0.03
Optimal control =1
Optimal control =5
Optimal control =10
No intervention

(a)

0 5 10 15 20 25

Time

-0.4

-0.2

0

0.2

0.4

0.6

0.8

u(
t)

Average control input

Static feedback
Dynamic feedback
Open-loop intervention
Optimal control =0.03
Optimal control =1
Optimal control =5
Optimal control =10

(b)

0 5 10 15 20 25

Time

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

C
os

ts

Aggregated regulator costs over time

Static feedback
Dynamic feedback
Open-loop intervention
Optimal control =0.03
Optimal control =1
Optimal control =5
Optimal control =10
No intervention

(c)

Total costs incurred by the regulator

No intervention

Static intervention

Dynamic intervention

Penalized optim
al contro

l
=0.03

Penalized optim
al contro

l
=1

Penalized optim
al contro

l
=5

Penalized optim
al contro

l
=10

-1400

-1200

-1000

-800

-600

-400

-200

0

T
ot

al
 c

os
ts

(d)

Figure 4.10: Results of the numerical simulations of the fixed endpoint optimal control prob-
lems compared with the static and dynamic intervention policies.

27

Chapter 5

Discussion

5.1 Reflection on the results

Now that we have shown the results of the numerical simulations, we will use this chapter to
reflect on the results by taking into account the research questions formulated in section 1.3.1.
After analysing the linear-quadratic network game model and defining the requirement for a
social optimal solution with theorem 1, chapter 3 showed the derivation of two different types of
intervention policies: one that includes a constraint on the maximum amount of control effort to
be applied by the regulator, and one that lifts this constraint by including a penalty term in the
cost function. Although the first-order necessary conditions remain the same in both optimal
control problems, a crucial difference between the two obtained optimal intervention policies
is that the constrained optimal controller has a discontinuous nature, whereas the penalized
optimal controller is a continuous function. This difference was further illustrated in the first
experiment, where it was seen that the discontinuous control function caused the control effort to
always take the (positive) value of the maximum allowed intervention umax, causing the action
profiles of x∗ to converge to a constant value. Moreover, the penalized controller showed that for
different sizes of α the action profiles of x∗ also reached a steady state at a particular distance
from the social optimal state but moved away from that to fulfil the final time condition of the
co-state variable λ(T). This behaviour became more evident in the second experiment where
convergence to the social welfare state was enforced by adding it as a final time constraint in
the optimal control problem. By adding the final time constraint, the regular FBSM algorithm
needed to be adjusted to find the corresponding value for the transversality condition λ(T) that
represents the constraint x(T) = xopt. In the adjusted algorithm, the guesses θ1 = 10 and
θ2 = −10 proved to be sufficient for estimating λ(T) but convergence could not be achieved for
lower values of α in solving the penalized optimal control problem. For penalty parameter values
running from 1 to 20, however, we noticed that the dynamics considered in solving the optimal
control problem (ẋ(t) and λ̇(t)) tend to steer the solution of the optimal control problem to a
certain equilibrium value, only for it to be desolated to reach a final solution that is dependent
on the estimated value of the transversality condition λ(T).

When comparing the solution of the penalized optimal control to three existing intervention
policies found in Shakarami, Cherukuri, and Monshizadeh (2021), we found that the costs in-
curred by the regulator were higher when using the penalized intervention policy for different
α’s. Therefore, in the final experiment, the optimal control problem was revised to exclude
the double penalization on the control effort u(t) and thus minimize the function W (x, z(x).
By solving the modified optimal control problem, we have seen that increasing the penalty pa-
rameter α for this optimal control problem entailed an increase in the regulator’s costs as well.
However, as the value of α approached 20, the increase in costs ebbed. By interpolation, we can

28

Chapter 5. Discussion

then state that further increases of the penalty parameter α will have less and less effect on the
costs. Furthermore, from solving the modified problem we saw that it is now possible to obtain
slightly lower costs with the use of a penalized optimal intervention policy with a low amount
of penalization on the amount of control effort applied by the regulator.

5.2 Limitations and future research

Through the modification of the optimal control problem in the last experiment, we have shown
that in some situations the intervention policy derived in this research can be called slightly
more optimal compared to existing policies. However, since this research focused mainly on the
derivation of the first-order necessary conditions for this controller and their implementation
for numerical calculations, true optimality could not yet be proven. Therefore, to strengthen
the argument for the controller’s optimality, more significant proof needs to be obtained from
experiments, also taking into account comparison with other existing intervention policies, and
simulations for different network topologies to test robustness.

The second limitation of this research is that we have not been able to fully compare the working
of the optimal controller with admissible control constraints with that of the penalized controller
in terms of convergence to the social optimum. The reason for this is that for the constrained
optimal control, convergence to the social optimal solution could not be guaranteed using the
adapted FBSM algorithm due to the discontinuous nature of the controller expression u∗(t).
Therefore, we suggest approximating the expression for the optimal controller using the so-
called control barrier function technique, a method where the control bounds are included in
the objective function to alleviate the admissible control U set as a constraint (Xiao, Cassandras,
and Belta 2019). By doing so, the expression for the controller will take a more continuous form
that will have more capability of causing the solution of the optimal control problem to converge
to social welfare using the adapted FBSM algorithm.

Lastly, the accuracy of the numerical methods used for obtaining the solution of the optimal
control problem could be improved by applying techniques to improve convergence such as those
applied in Sharp, Burrage, and Simpson (2021), or by using a direct numerical method rather
than the indirect method used in this research. With that, the increase in the accuracy of the
results will contribute to the argument for using optimal control as a method to derive policies
for social welfare maximization in network games.

29

Chapter 6

Conclusion

In this research, we have shown to be able to derive and solve the optimal control problems
for a network game where players have linear quadratic utility functions. Additionally, we have
defined the condition for finding a solution in which social welfare is obtained and for which
the regulator has to design an intervention policy. Here the distinction was made between two
types of optimal intervention policies: one where the amount of intervention to be performed
by the regulator was bounded, and one where intervention by the regulator was punished by
adding a penalty term to the cost function. To ensure that social welfare could be reached using
the optimal control technique, the social welfare state xopt was added to the formulation of the
optimal control problem as a final time constraint. To solve this fixed endpoint optimal control
problem, an adaptation of the forward-backward sweep method was required. In the numerical
experiments, we observed that due to the constrained controller’s discontinuous nature, social
welfare could only be achieved for the penalized controller. With that, the second experiment
also showed that for increasing values of the penalty parameter α, the amount of intervention,
and with that also the costs incurred by the regulator, decreased. However, the third experiment
showed that compared to static and dynamic feedback intervention policies derived in preceding
literature, the optimal controller derived in this research showed worse performance in terms
of total costs incurred by the regulator. Therefore, another experiment was performed with a
modified cost function where the double penalization of the control effort u(t) was removed. The
numerical simulation for this experiment showed that the penalized controller could offer slightly
lower regulator costs compared to the static and dynamic intervention policies. For future work,
we suggest seeking to strengthen the argument for calling this intervention policy truly optimal
by performing more experiments for obtaining more significant and accurate proof.

30

Bibliography

Başar, Tamer and Georges Zaccour (2018). Handbook of dynamic game theory. Springer.
Başar, Tamer and Quanyan Zhu (2011). “Prices of anarchy, information, and cooperation in

differential games”. In: Dynamic Games and Applications 1.1, pp. 50–73.
Bui, Khac-Hoai Nam and Jason J Jung (2018). “Cooperative game-theoretic approach to traf-

fic flow optimization for multiple intersections”. In: Computers & Electrical Engineering 71,
pp. 1012–1024.

Corbo, Jacomo, Antoni Calvó-Armengol, and David C Parkes (2007). “The importance of net-
work topology in local contribution games”. In: International workshop on web and internet
economics. Springer, pp. 388–395.

Currarini, Sergio and Francesco Feri (2015). “Information sharing networks in linear quadratic
games”. In: International Journal of Game Theory 44.3, pp. 701–732.

De Persis, Claudio and Sergio Grammatico (2019). “Distributed averaging integral Nash equi-
librium seeking on networks”. In: Automatica 110, p. 108548.

Deori, Luca, Kostas Margellos, and Maria Prandini (2018). “Price of anarchy in electric vehicle
charging control games: When Nash equilibria achieve social welfare”. In: Automatica 96,
pp. 150–158.

Dolgopolik, MV (2020). “Exact penalty functions for optimal control problems II: Exact pe-
nalization of terminal and pointwise state constraints”. In: Optimal Control Applications and
Methods 41.3, pp. 898–947.

Dolgopolik, MV and AV Fominyh (2019). “Exact penalty functions for optimal control problems
I: Main theorem and free-endpoint problems”. In: Optimal Control Applications and Methods
40.6, pp. 1018–1044.

Galeotti, Andrea, Benjamin Golub, and Sanjeev Goyal (2020). “Targeting interventions in net-
works”. In: Econometrica 88.6, pp. 2445–2471.

Gao, Xiangyu, Xian Zhang, and Yantao Wang (2014). “A simple exact penalty function method
for optimal control problem with continuous inequality constraints”. In: Abstract and Applied
Analysis. Vol. 2014. Hindawi.

Geering, Hans P (2007). Optimal control with engineering applications. Springer.
Khan, M Ali and Yeneng Sun (2002). “Non-cooperative games with many players”. In: Handbook

of game theory with economic applications 3, pp. 1761–1808.
Lenhart, Suzanne and John T Workman (2007). Optimal control applied to biological models.

Chapman and Hall/CRC.
Ma, Zhongjing, Duncan S Callaway, and Ian A Hiskens (2011). “Decentralized charging control

of large populations of plug-in electric vehicles”. In: IEEE Transactions on control systems
technology 21.1, pp. 67–78.

Papakonstantinou, Joanna M and Richard A Tapia (2013). “Origin and evolution of the secant
method in one dimension”. In: The American Mathematical Monthly 120.6, pp. 500–517.

Parise, Francesca and Asuman Ozdaglar (2021). “Analysis and interventions in large network
games”. In: Annual Review of Control, Robotics, and Autonomous Systems 4, pp. 455–486.

Rodrigues, Helena Sofia, M Teresa T Monteiro, and Delfim FM Torres (2014). “Optimal control
and numerical software: an overview”. In: arXiv preprint arXiv:1401.7279.

31

Bibliography

Shakarami, Mehran, Ashish Cherukuri, and Nima Monshizadeh (2021). “Adaptive interventions
for social welfare maximization in network games”. In: 2021 60th IEEE Conference on Decision
and Control (CDC). IEEE, pp. 942–947.

Sharp, Jesse A, Kevin Burrage, and Matthew J Simpson (2021). “Implementation and acceler-
ation of optimal control for systems biology”. In: bioRxiv.

Vasnani, Neelesh N et al. (2019). “Game theory in supply chain management: Current trends
and applications”. In: International Journal of Applied Decision Sciences 12.1, pp. 56–97.

Xiao, Wei, Christos G Cassandras, and Calin Belta (2019). “Decentralized merging control
in traffic networks with noisy vehicle dynamics: A joint optimal control and barrier func-
tion approach”. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE,
pp. 3162–3167.

Zhu, Quanyan and Tamer Başar (2010). “Price of anarchy and price of information in N-person
linear-quadratic differential games”. In: Proceedings of the 2010 American Control Conference.
IEEE, pp. 762–767.

Zwart, Hans et al. (Nov. 2012). Lecture notes in Calculus of Variations and Optimal Control.

32

Appendix A

Derivation of first-order necessary
conditions for the optimal control
problem 4.2

Consider the following optimal control problem:

min
u

Ĵ(x0, u) =

∫ T

0

(
1

2
x(t)Tx(t)− x(t)T (aPx(t) + b) + α||u(t)||22

)
︸ ︷︷ ︸

L(x,u)

dt (A.1a)

subject to ẋ(t) = (−I + aP)x(t) + b+ u(t), (A.1b)

x(0) = x0, (A.1c)

x(T) = xopt, (A.1d)

t ∈ [0, T]. (A.1e)

With this, we derive the following Hamiltonian function to be minimized:

H(x(t), λ(t), u(t)) = λT (t)f (x(t), u(t)) + L (x(t), u(t)) , (A.2)

= λT (t)(−I + aP)x(t) + b+ u(t) +
1

2
x(t)Tx(t)− x(t)T (aPx(t) + b) + α||u(t)||22,

(A.3)

where λ : [0, T] → Rn plays the role of the Lagrangian multiplier. Then, using theorem 2, we
can derive the first order necessary conditions for optimal control:

ẋ∗(t) =
∂H

∂λ
(x∗(t), λ∗(t), u∗(t))T = (−I + aP)x∗(t) + b+ u∗(t), x∗(0) = x0, (A.4a)

λ̇∗(t) = −∂H
∂x

(x∗(t), λ∗(t), u∗(t))T = (I − aP T)λ∗(t)− x∗(t) + a(P + P T)x∗(t) + b, (A.4b)

λ∗(T) = θ, (A.4c)

∂H

∂u
(x∗(t), λ∗(t), u∗(t))T = −λ

∗

2α
. (A.4d)

Notice that for equation (A.4c), we already made a guess on the value of λ∗ at time T (namely θ)
and therefore we do not consider a final cost function S(x(T)) to be added to the cost criterion
A.1a. Furthermore, if we rewrite the optimality condition A.4d, we obtain the expression for
the optimal controller u∗(t):

u∗(t) = − λ

2α
. (A.5)

33

Appendix B

Matlab code

B.1 Main program

1

2 %% Set-up
3 clear; clc; close all;
4 set(0,'DefaultFigureWindowStyle','docked')
5 %set(0,'DefaultFigureWindowStyle','normal')
6 rng('default');
7 t0 = 0; % initial time
8 parameters.tf = 25; % final time
9 parameters.dt = 0.025; % size of time-step

10 parameters.N = floor(parameters.tf/parameters.dt-1); % number of ...
nodes in time discretization

11 N = parameters.N;
12 parameters.tspan = linspace(t0,parameters.tf,parameters.N+1);% time ...

discretization
13 tspan = parameters.tspan;
14 parameters.omega = 0.9; % weighting ...

factor of previous iteration's control maintained
15 parameters.delta = 1e-3; % tolerance of ...

the FBSM
16 parameters.epsilon = 1.5e-3; % tolerance of ...

the secant method
17 experiment = 2; % experiment ...

indicator
18

19 % Model parameters
20 parameters.dim = 6; % dimension of ...

state variable
21 dim = parameters.dim;
22 P dir = [0 0.5 0 0 0 0;
23 1 0 0.35 0 0 0;
24 0 0 0 0 0.8 0;
25 0 0.7 0 0 0 0;
26 0 0 0.6 0.15 0 0.3;
27 0 0 0.4 0 0 0]; % adjacency ...

matrix directed network
28 parameters.P = P dir(1:dim,1:dim);
29 P = parameters.P;
30 parameters.a = -0.2; % effect of ...

neighbours in the network
31 a = parameters.a;
32 b = [0.35 ; 0.80 ; 1.05 ; 0.65 ; 0.95 ; 0.25]; % standalone ...

marginal returns

34

Appendix B. Matlab code

33 parameters.b = b(1:dim);
34 b = parameters.b;
35 parameters.I = eye(dim); % create ...

variable for identity matrix
36 xopt = (parameters.I-a*(P+P'))ˆ-1*b; % calculate ...

value of social optimal state
37 umax = 1; % bounds on the ...

control
38 alphas = 1:20; % vector of ...

different penalty parameters
39

40

41 % Initial conditions
42 x = cell(length(alphas),1); % create cell to ...

store the time series x for each iteration
43 lambda = cell(length(alphas),1);
44 U = cell(length(alphas),1);
45 J = zeros(3+length(alphas),1);
46 Jt = zeros(3+length(alphas),N+1);
47 numberIterationsFBSM = zeros(length(alphas),1);
48 numberIterationsSecant = zeros(length(alphas),1);
49 y0 = [rand(dim,1); rand(dim,1)]; % initial state
50 x0 = y0(1:dim);
51 parameters.theta1 = 10*ones(dim,1); % first guess on ...

lambda(T) used for adapted FBSM
52 parameters.theta2 = -10*ones(dim,1); % second guess ...

on lambda(T) used for adapted FBSM
53 parameters.lambdaT = 0*ones(dim,1); % lambda(T) used ...

for regular FBSM
54

55

56 %% Numerical calculations
57 % Results of Shakarami, et al. (2021)
58 % static open-loop
59 [˜, ySOL] = ode45(@(t,y) dynFun(y,"uSOL",parameters,xopt),tspan,y0);
60 uSOL = (eye(dim)-a*P)*xopt-b;
61 JtOL = sum((1/2)*ySOL(:,1:dim)'.ˆ2 - ySOL(:,1:dim)'.*(a*P*ySOL(:,1:dim)' + b));
62 JOL =trapz(JtOL,2);
63

64 % no intervention
65 [˜, yNo] = ode45(@(t,y) dynFun(y,"u0",parameters,xopt),tspan,y0);
66 Jt(1,:) = sum((1/2)*yNo(:,1:dim)'.ˆ2-yNo(:,1:dim)'.*(a*P*yNo(:,1:dim)'+b));
67 J(1) =trapz(Jt(1,:),2);
68

69 % static feedback
70 [˜, yS] = ode45(@(t,y) dynFun(y,"uS",parameters,xopt),tspan,y0);
71 uS = (a*P'*yS(:,1:dim)');
72 Jt(2,:) = sum((1/2)*yS(:,1:dim)'.ˆ2-yS(:,1:dim)'.*(a*P*yS(:,1:dim)'+b));
73 J(2) =trapz(Jt(2,:),2);
74

75 % dynamic feedback
76 [˜, yD] = ode45(@(t,y) dynFun(y,"uD",parameters,xopt),tspan,y0);
77 Jt(3,:) = sum((1/2)*yD(:,1:dim)'.ˆ2-yD(:,1:dim)'.*(a*P*yD(:,1:dim)'+b));
78 J(3) =trapz(Jt(3,:),2);
79

80

81 % Results of optimal controllers using regular Forward-Backward Sweep
82 % (experiment 1)
83 % for i = 1:length(alphas)
84 % parameters.alpha = alphas(i);
85 % parameters.V1 = zeros(dim,1);
86 % parameters.uBound = umax*ones(dim,1);

35

Appendix B. Matlab code

87 % [x{i},lambda{i},U{i},Jt(i+3,:),numberIterationsFBSM(i)] = ...
FBSM(x0,parameters);

88 % J(i+3) = trapz(Jt(i+3,:),2);
89 % end
90

91 % Results of optimal controllers using Adapted Forward-Backward Sweep
92 for i = 1:length(alphas)
93 parameters.alpha = alphas(i);
94 [x{i},lambda{i},U{i},Jt(i+3,:),numberIterationsFBSM(i), ...

numberIterationsSecant(i)] = AFBSM(x0,parameters,xopt);
95 J(i+3) = trapz(Jt(i+3,:),2);
96 end
97

98

99 % Calculate norms and averages
100 p norm = 2;
101 normx = zeros(length(alphas),N+1);
102 normlambda = zeros(length(alphas),N+1);
103 normu = zeros(length(alphas),N+1);
104 normxdist = zeros(length(alphas),N+1);
105 normxNo = zeros(parameters.N+1,1);
106 normxdistNo = zeros(parameters.N+1,1);
107 normxS = zeros(parameters.N+1,1);
108 normxSOL = zeros(parameters.N+1,1);
109 normxdistS = zeros(parameters.N+1,1);
110 normxdistSOL = zeros(parameters.N+1,1);
111 normxD = zeros(N+1,1);
112 normxdistD = zeros(N+1,1);
113 avgu = zeros(length(alphas),N+1);
114 avguS = zeros(N+1,1);
115 avguSOL = zeros(N+1,1);
116 avguD = zeros(N+1,1);
117

118 for i = 1:N+1
119 for k = 1:length(alphas)
120 normx(k,i) = norm(x{k}(:,i));
121 normlambda(k,i) = norm(lambda{k}(:,i));
122 normu(k,i) = norm(U{k}(:,i));
123 normxdist(k,i) = norm(x{k}(:,i) - xopt,p norm);
124 avgu(k,i) = mean(U{k}(:,i));
125 end
126 normxNo(i) = norm((yNo(i,1:dim)),p norm);
127 normxdistNo(i) = norm((yNo(i,1:dim) - xopt'),p norm);
128 normxS(i) = norm((yS(i,1:dim)),p norm);
129 normxSOL(i) = norm((ySOL(i,1:dim)),p norm);
130 normxdistS(i) = norm((yS(i,1:dim) - xopt'),p norm);
131 normxdistSOL(i) = norm((ySOL(i,1:dim) - xopt'),p norm);
132 normxD(i) = norm((yD(i,1:dim)),p norm);
133 normxdistD(i) = norm((yD(i,1:dim) - xopt'),p norm);
134 avguSOL(i) = mean(uSOL);
135 avguS(i) = mean(uS(:,i));
136 avguD(i) = mean(yD(i,1+dim:2*dim));
137 end
138

139

140

141 % Display simulation results in command window
142 disp('--');
143 disp('Numerical results:')
144 disp([' ' 'total costs without intervention: ' num2str(sum(J(1)))]);
145 disp([' ' 'total costs using dynamic intervention: ' num2str(sum(J(2)))]);
146 disp([' ' 'total costs using dynamic intervention: ' num2str(sum(J(3)))]);
147 disp('--');

36

Appendix B. Matlab code

148 for i = 1:length(alphas)
149 disp([' ' 'total number of FBSM iterations optimal control with penalty ...

alpha=' num2str(alphas(i)) ': ' num2str(numberIterationsFBSM(i))]);
150 disp([' ' 'number of secant iterations optimal control with penalty alpha=' ...

num2str(alphas(i)) ': ' num2str(numberIterationsSecant(i))]);
151 disp([' ' 'total costs optimal control: ' num2str(sum(J(i+3)))]);
152 disp('--');
153 end
154

155

156

157 %% Experiment 1
158 if experiment == 1
159 close all
160 % Norm of the states
161 figure
162 hold on
163 plot(tspan,normxSOL,'LineWidth',2,'DisplayName',"Static open-loop ...

intervention")
164 xlabel('Time')
165 ylabel(' | | x | | ')
166 for i = 1:length(alphas)
167 if alphas(i)==0
168 lgdtxt = ['Constrained optimal control u {max}=' num2str(umax)];
169 else
170 lgdtxt = ['Optimal control \alpha=' num2str(alphas(i))];
171 end
172 plot(tspan,normx(i,:),'LineWidth',2,'DisplayName',lgdtxt)
173 end
174 plot(tspan,normxNo,'-.','LineWidth',2,'DisplayName',"No intervention")
175 hold off
176 legend show
177 title("Norm of the players' action profiles")
178

179 % Norm of the co-states
180 figure
181 hold on
182 plot(tspan,normxSOL,'LineWidth',2,'DisplayName',"Static open-loop ...

intervention")
183 xlabel('Time')
184 ylabel(' | | \lambda | | ')
185 for i = 1:length(alphas)
186 if alphas(i)==0
187 lgdtxt = ['Constrained optimal control u {max}=' num2str(umax)];
188 else
189 lgdtxt = ['Optimal control \alpha=' num2str(alphas(i))];
190 end
191 plot(tspan,normlambda(i,:),'LineWidth',2,'DisplayName',lgdtxt)
192 end
193 plot(tspan,normxNo,'-.','LineWidth',2,'DisplayName',"No intervention")
194 hold off
195 legend show
196 title("Norm of the co-states")
197

198 % Distance of action profiles to social optimum
199 figure
200 hold on
201 plot(tspan,normxdistSOL,'LineWidth',2,'DisplayName',"Static open-loop ...

intervention")
202 xlabel('Time')
203 ylabel(' | | x-x {opt } | |')
204 for i = 1:length(alphas)
205 if alphas(i)==0

37

Appendix B. Matlab code

206 lgdtxt = ['Constrained optimal control u {max}=' num2str(umax)];
207 else
208 lgdtxt = ['Optimal control \alpha=' num2str(alphas(i))];
209 end
210 plot(tspan,normx(i,:),'LineWidth',2,'DisplayName',lgdtxt)
211 end
212 plot(tspan,normxdistNo,'-.','LineWidth',2,'DisplayName',"No intervention")
213 hold off
214 legend show
215 title('Distance of action profile to social optimum')
216

217 % Plots of the outputs of the optimal controllers
218 for k = 1:length(alphas)
219 figure
220 subplot(3,1,1)
221 plot(tspan,x{k}(1:dim,:),'LineWidth',2)
222 xlabel('Time')
223 ylabel('x')
224 title('State variable')
225

226 subplot(3,1,2)
227 plot(tspan,lambda{k}(1:dim,:),'LineWidth',2)
228 xlabel('Time')
229 ylabel('\lambda')
230 title('Adjoint variable')
231

232 subplot(3,1,3)
233 plot(tspan,U{k}(1:dim,:),'LineWidth',2)
234 xlabel('Time')
235 ylabel('u')
236 title('Control input')
237

238 if alphas(k) ==0
239 txt = ['Constrained optimal control u {max}=' num2str(umax)];
240 else
241 txt = ['Penalized optimal controller output \alpha=' ...

num2str(alphas(k))];
242 end
243 sgtitle(txt)
244 end
245

246 % Plot of the average control input
247 figure
248 plot(tspan,avguSOL,'LineWidth',2,'DisplayName',"Static open-loop ...

intervention")
249 hold on
250 xlabel('Time')
251 ylabel('u(t)')
252 for i = 1:length(alphas)
253 if alphas(i)==0
254 lgdtxt = ['Constrained optimal control u {max}=' num2str(umax)];
255 else
256 lgdtxt = ['Optimal control \alpha=' num2str(alphas(i))];
257 end
258 plot(tspan,avgu(i,:),'LineWidth',2,'DisplayName',lgdtxt)
259 end
260 hold off
261 title('Average control input')
262 legend show
263

264

265 end
266

38

Appendix B. Matlab code

267 %% Experiment 2: Reaching the social welfare solution
268 if experiment == 2
269 close all
270 % Distance of action profiles to social optimum
271 figure
272 xlabel('Time')
273 ylabel(' | | x-x {opt } | |')
274 hold on
275 cc = colormap(jet(length(alphas)));
276 for i = 1:length(alphas)
277 plot(tspan,normxdist(i,:),'color',cc(i,:),'LineWidth',2)
278 end
279 hold off
280 caxis([min(alphas) max(alphas)])
281 c = colorbar('Ticks',alphas);
282 c.Label.String = 'size of \alpha';
283 title('Distance of action profile to social optimum')
284

285 % Norm of the co-states
286 figure
287 hold on
288 cc = colormap(jet(length(alphas)));
289 caxis([min(alphas) max(alphas)])
290 c = colorbar('Ticks',alphas);
291 c.Label.String = 'size of \alpha';
292 xlabel('Time')
293 ylabel(' | | \lambda | | ')
294 for i = 1:length(alphas)
295 plot(tspan,normlambda(i,:),'color',cc(i,:),'LineWidth',2)
296 end
297 hold off
298 title("Norm of the co-states")
299

300 % Plot of average input
301 figure
302 xlabel('Time')
303 ylabel('u(t)')
304 cc = colormap(jet(length(alphas)));
305 caxis([min(alphas) max(alphas)])
306 c = colorbar('Ticks',alphas);
307 c.Label.String = 'size of \alpha';
308 hold on
309 for i = 1:length(alphas)
310 plot(tspan,avgu(i,:),'Color',cc(i,:),'LineWidth',2)
311 end
312 hold off
313 title('Average control input')
314

315 % Plot of norm of the input
316 figure
317 xlabel('Time')
318 ylabel(' | | u | | ')
319 cc = colormap(jet(length(alphas)));
320 caxis([min(alphas) max(alphas)])
321 c = colorbar('Ticks',alphas);
322 c.Label.String = 'size of \alpha';
323 hold on
324 for i = 1:length(alphas)
325 plot(tspan,normu(i,:),'Color',cc(i,:),'LineWidth',2)
326 end
327 hold off
328 title('Norm of input')
329

39

Appendix B. Matlab code

330

331 % Plots of state variables of optimal controllers
332 for k = 1:length(alphas)
333 figure
334 subplot(3,1,1)
335 plot(tspan,x{k}(1:dim,:),'LineWidth',2)
336 xlabel('Time')
337 ylabel('x')
338 title('State variable')
339

340 subplot(3,1,2)
341 plot(tspan,lambda{k}(1:dim,:),'LineWidth',2)
342 xlabel('Time')
343 ylabel('\lambda')
344 title('Adjoint variable')
345

346 subplot(3,1,3)
347 plot(tspan,U{k}(1:dim,:),'LineWidth',2)
348 xlabel('Time')
349 ylabel('u')
350 title('Control input')
351 if alphas(k) ==0
352 txt = 'Constrained optimal controller output';
353 else
354 txt = ['Penalized optimal controller output \alpha=' ...

num2str(alphas(k))];
355 end
356 sgtitle(txt)
357 end
358

359

360 % Plot of the costs over time
361 figure
362 hold on
363 cc= colormap(jet(length(alphas)));
364 caxis([min(alphas) max(alphas)])
365 c = colorbar('Ticks',alphas);
366 c.Label.String = 'size of \alpha';
367 for i = 1:length(alphas)
368 plot(tspan,Jt(i+3,:),'Color',cc(i,:),'LineWidth',2,'DisplayName')
369 end
370 hold off
371 title('Aggregated regulator costs over time')
372 xlabel('Time')
373 ylabel('Costs')
374

375

376 % Plot of costs versus increasing values of alpha
377 figure
378 plot(alphas,J(4:end),'LineWidth',2)
379 title('Total regulator costs versus amount of intervention')
380 xlabel('\alpha')
381 ylabel('Total costs')
382

383 end
384 %% Experiment 3: Comparison with static and dynamic intervention policies
385 if experiment == 3
386 close all
387

388 % Norm of the states
389 figure
390 plot(tspan,normxdistS,'LineWidth',2,'DisplayName',"Static feedback")
391 xlabel('Time')

40

Appendix B. Matlab code

392 ylabel(' | | x-x {opt } | |')
393 hold on
394 plot(tspan,normxdistD,'LineWidth',2,'DisplayName',"Dynamic feedback")
395 plot(tspan,normxdistSOL,'LineWidth',2,'DisplayName',"Static open-loop ...

intervention")
396 for i = 1:length(alphas)
397 if alphas(i)==0
398 lgdtxt = 'Constrained optimal control';
399 else
400 lgdtxt = ['Optimal control \alpha=' num2str(alphas(i))];
401 end
402 plot(tspan,normxdist(i,:),'LineWidth',2,'DisplayName',lgdtxt)
403 end
404 plot(tspan,normxdistNo,'-.','LineWidth',2,'DisplayName',"No intervention")
405 hold off
406 legend show
407 title("Distance of action profile to social optimum")
408

409 % Plot of input norms
410 figure
411 plot(tspan,avguS,'LineWidth',2,'DisplayName',"Static feedback")
412 xlabel('Time')
413 ylabel('u(t)')
414 hold on
415 plot(tspan,avguD,'LineWidth',2,'DisplayName',"Dynamic feedback")
416 plot(tspan,avguSOL,'LineWidth',2,'DisplayName',"Open-loop intervention")
417 for i = 1:length(alphas)
418 if alphas(i)==0
419 lgdtxt = 'Constrained optimal control';
420 else
421 lgdtxt = ['Optimal control \alpha=' num2str(alphas(i))];
422 end
423 plot(tspan,avgu(i,:),'LineWidth',2,'DisplayName',lgdtxt)
424 end
425 hold off
426 title('Average control input')
427 legend show
428

429

430 % Plot of the costs over time
431 figure
432 plot(tspan,Jt(2,:),'LineWidth',2,'DisplayName',"Static feedback")
433 hold on
434 plot(tspan,Jt(3,:),'LineWidth',2,'DisplayName',"Dynamic feedback")
435 plot(tspan,JtOL,'LineWidth',2,'DisplayName',"Open-loop intervention")
436 for i = 1:length(alphas)
437 if alphas(i)==0
438 lgdtxt = 'Constrained optimal control';
439 else
440 lgdtxt = ['Optimal control \alpha=' num2str(alphas(i))];
441 end
442 plot(tspan,Jt(i+3,:),'LineWidth',2,'DisplayName',lgdtxt)
443 end
444 plot(tspan,Jt(1,:),'-.','LineWidth',2,'DisplayName',"No intervention")
445 hold off
446 legend show
447 title('Aggregated regulator costs over time')
448 xlabel('Time')
449 ylabel('Costs')
450

451 % Bar plot of total costs
452 figure
453 xlabels = {'No intervention','Static intervention','Dynamic intervention'};

41

Appendix B. Matlab code

454 for i = 1:length(alphas)
455 if alphas(i) ==0
456 xlabels{i+3} = 'Constrained optimal control';
457 else
458 xlabels{i+3} = ['Penalized optimal control \alpha=' ...

num2str(alphas(i))];
459 end
460 end
461 barx = 1:length(alphas)+3;
462 bar(barx,J)
463 line(xlim,[J(2) J(2)],'Color','r');
464 xticks(1:length(alphas)+3);
465 xticklabels(xlabels)
466 ylabel('Total costs')
467 title('Total costs incurred by the regulator')
468 end

B.2 Forward-backward sweep algorithm

1 function [x,lambda,u,Jt,numberIterations] = FBSM(x0,parameters)
2

3 % Initialize parameters
4 dim = parameters.dim;
5 a = parameters.a;
6 b = parameters.b;
7 P = parameters.P;
8 N = parameters.N;
9 h = parameters.tf/N;

10 tspan = parameters.tspan;
11 omega = parameters.omega;
12 delta = parameters.delta;
13 test = -1;
14 numberIterations = 0;
15 maxIterations = 300;
16

17 % Initialize state, co-state and control
18 x = zeros(dim,N+1);
19 x(:,1) = x0;
20 lambda = zeros(dim,N+1);
21 lambda(:,end) = parameters.lambdaT;
22 u = zeros(dim,N+1);
23

24 while(test<0)
25

26 % Save variables of previous iteration
27 uOld = u;
28 xOld = x;
29 lambdaOld = lambda;
30

31 % Plot intermediate results
32 % if parameters.V1 < parameters.epsilon
33 % figure(30)
34 % subplot(3,1,1)
35 % plot(tspan,x(1:dim,:))
36 % xlabel('Time')
37 % ylabel('x')
38 % title('State variable')
39 %
40 % subplot(3,1,2)
41 % plot(tspan,lambda(1:dim,:))

42

Appendix B. Matlab code

42 % xlabel('Time')
43 % ylabel('\lambda')
44 % title('Adjoint variable')
45 %
46 % subplot(3,1,3)
47 % plot(tspan,u(1:dim,:))
48 % xlabel('Time')
49 % ylabel('u')
50 % title('Control input')
51 % if parameters.alpha ==0
52 % txt = 'Constrained optimal controller feedback';
53 % else
54 % txt = ['Penalized optimal controller feedback \alpha=' ...

num2str(parameters.alpha)];
55 % end
56 % sgtitle(txt)
57 % end
58

59 % Forward sweep using Runge-Kutta 4
60 for i = 1:N
61 k1 = stateEq(x(:,i), u(:,i), parameters);
62 k2 = stateEq(x(:,i)+h*k1/2, 0.5*(u(:,i) + u(:,i+1)), parameters);
63 k3 = stateEq(x(:,i)+h*k2/2, 0.5*(u(:,i) + u(:,i+1)), parameters);
64 k4 = stateEq(x(:,i)+h*k3, u(:,i+1), parameters);
65 x(:,i+1) = x(:,i) + (h/6)*(k1 + 2*k2 + 2*k3 + k4);
66 end
67

68 % Backward sweep using Runge-Kutta 4
69 for i = 1:N
70 j = N+2-i;
71 k1 = costateEq(x(:,j), lambda(:,j), u(:,j),parameters);
72 k2 = costateEq(0.5*(x(:,j)+x(:,j-1)), lambda(:,j)-h*k1/2, ...

0.5*(u(:,j)+u(j-1)), parameters);
73 k3 = costateEq(0.5*(x(:,j)+x(:,j-1)), lambda(:,j)-h*k2/2, ...

0.5*(u(:,j)+u(j-1)), parameters);
74 k4 = costateEq(x(:,j-1), lambda(:,j)+h*k3, u(:,j-1),parameters);
75 lambda(:,j-1) = lambda(:,j) - (h/6)*(k1 + 2*k2 + 2*k3 + k4);
76 end
77

78

79 % Update the control
80 uNew = controlEq(x,lambda,parameters);
81 u = omega*uOld + (1-omega)*uNew;
82

83 % Check convergence
84 temp1 = delta*sum(abs(u),2)-sum(abs(uOld-u),2);
85 temp2 = delta*sum(abs(x),2)-sum(abs(xOld-x),2);
86 temp3 = delta*sum(abs(lambda),2)-sum(abs(lambdaOld-lambda),2);
87 test = min(min(temp1, min(temp2,temp3)));
88

89 % Give error message if number of iterations becomes too high
90 if numberIterations > maxIterations && test<0
91 error('Maximum number of % i FBSM iterations reached, current test ...

value is %4.3f. alpha=%4.2f \n',maxIterations,test,parameters.alpha)
92 end
93 numberIterations = numberIterations + 1;
94 end
95

96 % Calculate costs over time
97 Jt = sum((1/2)*x.ˆ2-x.*(a*P*x + b));
98

99

100

43

Appendix B. Matlab code

101 % Validate the obtained results
102 % controlValidation(x,lambda,u,parameters);
103

104

105 end

B.3 Program used for root finding in the adapted FBSM algo-
rithm

1 function [x,lambda,u,Jt,numberIterationsFBSM, numberIterationsSecant] = ...
AFBSM(x0,parameters,xopt)

2

3 % Initialize parameters
4 test = -1;
5 epsilon = parameters.epsilon;
6 tspan = parameters.tspan;
7 dim = parameters.dim;
8 numberIterationsFBSM = 0;
9 numberIterationsSecant = 0;

10 maxIterations = 200;
11 parameters.V1 = ones(dim,1);
12

13 % Calculate V(theta1)
14 theta1 = parameters.theta1;
15 parameters.lambdaT = theta1;
16 [x,˜,˜,˜,˜] = FBSM(x0,parameters);
17 V1 = x(:,end) - xopt;
18

19 % Calculate V(theta2)
20 theta2 = parameters.theta2;
21 parameters.lambdaT = theta2;
22 [x,˜,˜,˜,˜] = FBSM(x0,parameters);
23 V2 = x(:,end) - xopt;
24

25 while(test<0)
26 % If the guess for theta2 is better, switch the variables for theta to
27 % use the better one
28 for i = 1:dim
29 if abs(V1(i)) > abs(V2(i))
30 temp = theta1;
31 theta1 = theta2;
32 theta2 = temp;
33 temp = V1;
34 V1 = V2;
35 V2 = temp;
36 end
37 end
38 % Calculate finite difference approximation times the function value,
39 % and use that to make better estimate of theta
40 fdapprox = V1.*((theta2-theta1)./(V2-V1));
41 theta2 = theta1;
42 V2 = V1;
43 theta1 = theta1 - fdapprox;
44 parameters.lambdaT = theta1;
45 [x,lambda,u,Jt,numberIterations] = FBSM(x0,parameters);
46 V1 = x(:,end) - xopt;
47 parameters.V1 = V1;
48 numberIterationsFBSM = numberIterationsFBSM + numberIterations;
49

50

44

Appendix B. Matlab code

51 % If solution converges to social optimal state, stop iterating
52 if max(abs(V1)) < epsilon
53 test = 0;
54 elseif isnan(parameters.lambdaT(1))
55 error('lambdaT has obtained an intractable value. Highest value of V1 ...

is %4.3d.',max(abs(V1)))
56 elseif numberIterationsSecant > maxIterations
57 error('Maximum number of % i secant iterations reached. Highest value ...

of V1 is %4.3d, alpha=%4.3f. ...
\n',maxIterations,max(abs(V1)),parameters.alpha)

58 end
59 numberIterationsSecant = numberIterationsSecant+1;
60 parameters.currentSecantIt = numberIterationsSecant;
61 end
62

63 % Validate the obtained results
64 % controlValidation(x,lambda,u,parameters);
65

66 end

B.4 Function used for validating the calculations

1 function controlValidation(x,lambda,u,parameters)
2

3 % Initialize
4 alpha = parameters.alpha;
5 dim = parameters.dim;
6 a = parameters.a;
7 b = parameters.b;
8 P = parameters.P;
9 I = parameters.I;

10 dt = parameters.dt;
11 N = parameters.N;
12 delta = 0.01;
13

14 % Calculate derivatives using their prescribed functions and the actual ...
derivatives

15 testxdot = (-I+a*P)*x + b + u;
16 testlambdadot = (I-a*P')*lambda - x + a*(P+P')*x + b + u;
17 dxdt = diff(x,1,2)/dt;
18 dlambdadt = diff(lambda,1,2)/dt;
19

20 testx = abs(testxdot(:,1:end-1) - dxdt);
21 testlambda = abs(testlambdadot(:,1:end-1) - dlambdadt);
22

23 % Test whether the derivatives are the same and give an error if results do
24 % not match within the given tolerance
25 if testx > delta*ones(dim,length(dxdt))
26 largesterr = max(max(testx - delta*ones(dim,length(dxdt))));
27 error('Obtained results cannot be validated, x is not valid. Norm of test ...

x1: %5.2f, largest error is %4.3f',norm(testx),largesterr)
28 elseif testlambda > delta*ones(dim,length(dxdt))
29 largesterr = max(max(testlambda - delta*ones(dim,length(dlambdadt))));
30 error('Obtained results cannot be validated, lambda is not valid. Norm of ...

test lambda1: %5.2f, largest error is %4.3f',norm(testlambda),largesterr)
31 else
32 txt = [' ' 'calculated vectors of x and lambda have been validated'];
33 end
34

35 % Display results of validation and show plots

45

Appendix B. Matlab code

36 disp(['Validation result for alpha = ' num2str(alpha) ':']);
37 disp(txt);
38 disp('--');
39

40 figure
41 plot(1:N,sum(testxdot(:,1:end-1)/dim),'Displayname','x-dot')
42 hold on
43 plot(1:length(dxdt),sum(dxdt)/dim,'-.','LineWidth',1.5,'DisplayName','dxdt')
44 legend show
45 ylabel('\dot{x}', 'Interpreter','latex')
46 xlabel('t')
47 title(['Validation of xˆ*, \alpha=' num2str(alpha)])
48

49 figure
50 plot(1:N,sum(testlambdadot(:,1:end-1)/dim),'Displayname','\lambda-dot')
51 hold on
52 plot(1:length(dlambdadt),sum(dlambdadt)/dim,'-.','LineWidth',1.5,'DisplayName','d\lambda ...

dt')
53 legend show
54 ylabel('$\dot{\lambda}$', 'Interpreter','latex')
55 xlabel('t')
56 title(['Validation of \lambdaˆ*, \alpha=' num2str(alpha)])
57

58 end

B.5 Dynamic functions and controller expression

B.5.1 State dynamics

1 function xdot = stateEq(x,u,parameters)
2

3 % initialize parameters
4 a = parameters.a;
5 b = parameters.b;
6 P = parameters.P;
7 I = parameters.I;
8

9 % define state equation
10 xdot = (-I + a*P)*x + b + u;
11

12 end

B.5.2 Co-state dynamics

1 function lambdadot = costateEq(x,lambda,u,parameters)
2

3 % initialize parameters
4 a = parameters.a;
5 b = parameters.b;
6 P = parameters.P;
7 I = parameters.I;
8

9 % define costate equation
10 lambdadot = (I-a*P')*lambda - x + a*(P+P')*x + b + u;
11

12 end

46

Appendix B. Matlab code

B.5.3 Optimal controllers

1 function u = controlEq(x,lambda,parameters)
2

3 % initialize parameters
4 alpha = parameters.alpha;
5

6 % define optimal controller equations for constrained and penalized
7 % intervention
8 if alpha == 0
9 u = -parameters.uBound.*sign(lambda-x);

10 else
11 u = (x-lambda)/(2*alpha);
12 end
13

14 end

B.5.4 Function used for simulating the static and dynamic intervention poli-
cies

1 function [sys,u] = dynFun(y,uType,parameters,xopt)
2

3 % initialize model parameters
4 dim = parameters.dim;
5 a = parameters.a;
6 b = parameters.b;
7 P = parameters.P;
8 I = parameters.I;
9 x = y(1:dim);

10 u = y(1+dim:2*dim);
11

12 if uType == "uSOL"
13 u = (I-a*P)*xopt -b;
14 udot = zeros(dim,1);
15 elseif uType == "uS"
16 u = a*P'*x;
17 udot = zeros(dim,1);
18 elseif uType == "uD"
19 udot = -(x-xopt);
20 elseif uType == "u0"
21 u = zeros(dim,1);
22 udot = zeros(dim,1);
23 end
24

25 %formulate diferential equations
26 xdot = (-I + a*P)*x + b + u;
27 sys = [xdot ; udot];
28 end

47

	Introduction
	Research context
	Problem analysis
	Research goal
	Research questions

	Outline of the report

	Theoretical background
	Network games and interventions
	Modelling the network game
	Interventions
	Player dynamics
	The social welfare problem

	Calculus of variations and optimal control
	Formulation of the optimal control problem
	Penalization of constraints

	Forward-backward sweep method

	Optimal control design
	Controller design
	Constrained optimal control
	Penalized optimal control

	Convergence to the social welfare solution
	Validation of the controller design in MATLAB (R)

	Numerical simulations
	Model parameters
	Numerical experiments
	Experiment 1: Free endpoint optimal control
	Experiment 2: Reaching the social welfare solution
	Experiment 3: Comparison with static and dynamic interventions
	Experiment 4: Optimal control with altered cost criterion

	Discussion
	Reflection on the results
	Limitations and future research

	Conclusion
	Bibliography
	Derivation of first-order necessary conditions for the optimal control problem 4.2
	Matlab code
	Main program
	Forward-backward sweep algorithm
	Program used for root finding in the adapted FBSM algorithm
	Function used for validating the calculations
	Dynamic functions and controller expression
	State dynamics
	Co-state dynamics
	Optimal controllers
	Function used for simulating the static and dynamic intervention policies

