
Master Thesis

System Identification in Network Games

by

Bastiaan Kok

Submitted in Partial Fulfilment of the Requirements for the Degree

MSc Industrial Engineering and Management

Faculty of Science and Engineering

Supervisors:

dr. N. Monshizadeh

dr. A.K. Cherukuri

M. Shakarami (PhD)

Groningen

March 29, 2022

Abstract

In this research, we consider the problem of identifying network parameters that define a net-

work game from data. The players in a network game interact continuously with each other,

creating an action profile over time. These actions are captured by a central regulator who

performs system identification to estimate the network parameters. In this report an algorithm

is provided to perform the system identification using an adaptive lasso that promotes sparsity

in the solution. This is a desired property as the graph that defines the interaction network

of a network game is expected to be sparse, as links indicate how players are influenced by

each other. Using the identified network parameters, the central regulator can apply suitable

interventions to steer the network to social welfare. Results from experiments showed that the

adaptive lasso is a robust algorithm that can identify network parameters in an underdetermined

setting, and when there is noise present in the network. A drawback is that the adaptive lasso

is computationally expensive to optimise when the number of players in a network is large, or

the sample size is large.

Contents

1 Introduction 1

1.1 Problem Analysis . 2

1.2 Research Objective . 2

1.3 Research Questions . 3

1.4 Research Outline . 3

2 Theoretical Background 4

2.1 Network Game Formulation . 4

2.1.1 Linear quadratic games . 4

2.1.2 Player’s action dynamics . 5

2.1.3 Equilibria . 5

2.1.4 Intervention protocol . 6

3 System Identification 7

3.1 Data Gathering . 7

3.1.1 Euler Discretization . 7

3.1.2 Data Informativity . 7

3.1.3 Noise . 8

3.2 Candidate Model . 8

3.3 Singular Value Decomposition . 9

3.4 Linear Regression . 10

3.5 Regularised Linear Regression . 11

3.5.1 Problems with Lasso . 12

3.6 Adaptive Lasso . 13

3.7 Cross-validation . 13

4 Simulation Experiments 15

4.1 Model Set-up . 15

4.2 Experimental Set-up . 16

4.2.1 Varying sample size . 16

4.2.2 Adaptive lasso in under- and overdetermined systems 17

4.2.3 Link failure detection . 18

5 Simulation Results 21

5.1 Results varying sample size . 21

5.2 Results adaptive in under- and over-determined systems 24

5.3 Results link failure . 26

i

6 Conclusion 28

7 Discussion 29

7.1 Future Work . 30

Appendices 33

A Data Matrix Sample Size Variation 33

ii

Chapter 1

Introduction

Network games provide a powerful framework for formal analysis of a wide variety of social and

economic settings. In general, individuals decisions are not merely based on their own judgement,

but are rather influenced by the actions of their peers. For example, the decision of an individual

to buy a new product, commit a crime, or contribute to a public good is affected by the choice

of people in their social network (Parise and Ozdaglar, 2021). Hence, the pay-off of individuals

i.e. players/agents is based on their own actions and the actions of their neighbours, creating a

standalone marginal return. We can study these games by defining the underlying interaction

network using graphs, where the pairwise links can represent geographic distance or peer effects

(Bramoullé and Kranton, 2015). Engineering applications include supply chain network game

modelling for competing firms, from product differentiation and price competition (Nagurney

and Li, 2015) to labour constraints (Nagurney, 2021).

The players in the network are considered independent, non-cooperative and rational, mean-

ing that they show selfish behaviour in maximising their own pay-off, evoking a game theoretic

approach in their analysis. Therefore, players will eventually converge to a Nash equilibrium,

a situation in which each player is taking his optimal action with respect to the actions taken

by all other players. No player has an incentive to deviate from his current action, as it will

decrease his pay-off (Koutsoupias and Papadimitriou, 1999).

Such selfish behaviour of players leads to deterioration of performance with respect to the

situation where all players would cooperate to maximise social welfare, which is defined as the

sum of the pay-off of all players (Shakarami et al., 2021). This degradation of performance,

or loss in efficiency, is defined by the price of anarchy (Koutsoupias and Papadimitriou, 1999).

Deviating from the Nash equilibrium to the social optimum is achieved through interventions.

A central regulator who is aware of the underlying interaction network can provide incentive for

the players to deviate from their current action by modifying their standalone marginal return.

Subsequently, the players choose different strategies and are steered towards the social optimum

(Shakarami et al., 2021).

The problem that arises is that the central regulator must have access to the agents’ private

information to apply suitable interventions. Generally speaking, there are many situations in

which this network information is unknown to the agents or the central regulator (Galeotti

et al., 2010). For instance due to privacy or proprietary concerns (Parise and Ozdaglar, 2021)

Therefore, before a central regulator can apply suitable interventions, it is necessary to determine

the underlying interaction network and the standalone marginal return. There do exist control

techniques to steer the agent towards the social optimum without perfect information, however,

these techniques require at least knowledge of the underlying interaction network, or the social

optimum (Alpcan et al., 2009). Furthermore, Shakarami et al. (2021) proposed a dynamic

1

Chapter 1. Introduction

intervention protocol, that requires the player’s standalone marginal return alone. During this

research, these network parameters are considered unknown to the central regulator. Resulting

in the need to develop methods to recover these parameters before interventions can be applied

to the network.

System identification is a process of going from observed data to a mathematical model.

It has its roots in statics and was early adopted by the control engineering community. The

objective is finding dynamical models based on differential equations from observed data. The

system identification procedure is characterised by four requirements. Observed data, a can-

didate model, a criterion of fit and validation (Ljung, 1998). Studying a system identification

technique to retrieve the network parameters from observed data is the main topic of this re-

search.

Therefore, in this research we present a system identification technique that will retrieve

the network parameters for quadratic network games, based on the observed actions of players

interacting in a network. The data is obtained from a network game which is used as an

illustrative example of a six player network game in (Shakarami et al., 2021). In this example,

the agents are selfish and interested in maximising their individual pay-off function. They

choose their actions based on pseudo-gradient dynamics. The performance of the identification

algorithm is assessed by using the identified parameters as input for the central regulator and

determine if the network is steered towards the social optimum.

1.1 Problem Analysis

Many social or economic settings can be modelled using network games. In general, the network

parameters that define the network are unknown to a central regulator. Through the price of

anarchy, the action profile of network games tends to converge to a sub-optimal Nash equilibrium,

where no player has a unilateral profitable deviation. However, there exists an action profile

that increases the total pay-off of all agents leading to social welfare. Social welfare can only be

achieved through interventions from a central regulator. Subsequently, these interventions can

only be applied if the central regulator has full knowledge of the network parameters.

1.2 Research Objective

From a utilitarian perspective it is desired to steer the action profile of quadratic network

games to the solution of the social welfare maximisation problem. To achieve this objective,

it is required to have knowledge of the network parameters to apply a suitable intervention.

Therefore, the objective of this research is to identify the network parameters of a network game

from observed data. The system identification technique is tested on clean data, as well as data

corrupted by noise.

2

Chapter 1. Introduction

1.3 Research Questions

The main research question that stands central throughout this research is the following: ”How

are the network parameters of quadratic network games determined from observed data under

noisy conditions?”. To find the solution to this research questions, the following sub questions

are derived.

1. What are linear quadratic network games and how are they defined mathematically?

2. How is suitable data obtained from simulating network games?

3. What is a suitable system identification technique to derive a mathematical model from

observed data?

4. What is the effect of noisy data and how do we deal with noise?

1.4 Research Outline

The thesis is organised using seven chapters. Chapter 2 provides a theoretical background on

how to formulate network games mathematically. Chapter 3 discusses system identification

techniques and properties of the required data. Chapter 4 describes the simulation experiments

used to assess the performance of the proposed algorithms. Chapter 5 presents the simulation

results, and chapter 6 and 7 provide concluding remarks and a discussion and future work.

Notation:

The symbol Rn denotes a set of real numbers of dimension n. The norm of a vector is denoted

by ∥ · ∥p, where p ∈ {0, 1, 2}. Vectors and matrices are presented in bold face, and matrices are

denoted by a capital letter. For a given vector x ∈ Rn its ith element is denoted by xi. The

transpose of a vector y is denoted by y⊤. The words player/agent are used interchangeably

throughout this thesis.

3

Chapter 2

Theoretical Background

2.1 Network Game Formulation

We consider a game with a finite set of players I = {1, ..., n} that interact with each other

continuously on an underlying interaction network. The connections between the players are

defined by the adjacency matrix P ∈ Rn×n, where Pij ∈ [0, 1] denotes the influence of player j

on player i. The network contains no self-loops, therefore Pii = 0 ∀i ∈ I. The set of neighbours
of player i is denoted by Ni = {j ∈ I | Pij > 0}. The network is undirected if Pij = Pji for all

i, j, otherwise it is directed.

The objective of each player is to maximise his payoff function denoted by Ui(xi, zi(x), ui),

which captures his own action xi ∈ R and the aggregate of his neighbours actions (Shakarami

et al., 2021)(Parise and Ozdaglar, 2021). The network aggregate of player i is defined by:

zi(x) :=
n∑

j=1

Pijxj . (2.1)

2.1.1 Linear quadratic games

Linear quadratic games are used in literature to model peer effects in social and economic

settings (Engwerda, 2006). In linear quadratic games, each player has a payoff that is quadratic

in his own strategy and linear in the network aggregate (Parise and Ozdaglar, 2021). These so-

called linear quadratic games are popular in the literature for practical considerations. On the

one hand, these type of games are analytically and numerically solvable, which becomes much

more difficult when considering nonlinear partial differential equations. On the other hand,

linear quadratic problem settings appear naturally in situations where the player is trying to

minimise the effect of small perturbations in their environment (Engwerda, 2005). A parametric

formulation of the utility function is given in Equation 2.2 and allows for a tractable analysis of

the impact of the network structure and equilibrium analysis (Parise and Ozdaglar, 2021).

Ui(xi, zi(x), ui) := −1

2
x2i + xi(azi(x) + bi) + xiui, (2.2)

where a ∈ R captures the impact of the network aggregate and bi ∈ R is the standalone marginal

return. Furthermore, the term xiui is used to capture the effect of the central regulator which

modifies the standalone marginal return bi into bi + ui.

An interesting property of the pay-off parameter a is that its sign (positive or negative)

defines whether the game exhibits increasing (or decreasing) pay-off differences. These are so-

called games of strategic complements and strategic substitutes (Galeotti et al., 2010). For

instance, strategic complements arise whenever a player obtains a greater pay-off when his

4

Chapter 2. Theoretical Background

neighbours play the same strategy. Strategic substitutes arise whenever the opposite is taking

place such as when one player is providing more to a public good, his neighbour starts providing

less, which is known as free-riding.

2.1.2 Player’s action dynamics

All players are rational in choosing their action and interested in maximising their individual

pay-off function Ui given the aggregated behaviour of their neighbours zi(x), and the interven-

tion signal ui. Therefore, the players continuously take action until they reach an equilibrium.

De Persis and Grammatico (2019) introduced the pseudo-gradient dynamics that describe the

evolution of the players’ actions over time by taking the derivative of the players’ pay-off function,

which results in the following dynamics:

ẋi(t) =
∂Ui

∂xi
(xi(t), zi(x(t)), ui(t)) , ∀ i ∈ I. (2.3)

By computing this derivative we obtain the action dynamics for every player i.

ẋi(t) =
∂Ui

∂xi

(
−1

2
x2i + xi(azi(x) + bi) + xiui

)
, (2.4a)

= −xi(t) + azi(x(t)) + bi + ui(t), (2.4b)

= −xi(t) + a
n∑

j=1

Pijxj(t) + bi + ui(t). (2.4c)

The pseudo gradient dynamics in Equation 2.4c can be written in matrix form to capture the

complete network dynamics.

ẋ(t) = (−I+ aP)x(t) + b+ u(t). (2.5)

2.1.3 Equilibria

For this type of network games, there exist two types of equilibria of interest. One possible

equilibrium is when u(·) = 0, there is no intervention applied by the central regulator. In that

case, the network will converge to the Nash equilibrium of the game, where each agent plays

the best response to other agents actions. In this situation no player will deviate from its best

response as it will result in a lower pay-off (Parise and Ozdaglar, 2021). However, the Nash

equilibrium is not necessarily the optimal situation where all players achieve their maximum

pay-off possible. Therefore, we introduce the social optimum which describes a state where all

agents still play their best response to other agents actions, but obtain a higher total pay-off.

To reach the social optimum, the central regulator must apply suitable interventions that steer

the agents to the social optimum and reach social welfare. The social optimum is defined by the

following social welfare maximisation problem:

xopt := argmax
x∈Rn

n∑
i=1

−1

2
x2i + xi(azi(x) + bi). (2.6)

5

Chapter 2. Theoretical Background

To explore the existence of a unique social optimum xopt, Shakarami et al. (2021) proposed a

necessary and sufficient condition which must be met, namely:

max
i∈I

aλi(P+P⊤) < 1, (2.7)

where λi are the eigenvalues of the matrix P+P⊤. When this condition is satisfied, the unique

maximiser is given by:

xopt =
(
I− a(P+P⊤)

)−1
b. (2.8)

2.1.4 Intervention protocol

The objective of the central regulator is to steer the network to the social optimum by applying

interventions that modify the players standalone marginal return. The intervention protocol

used throughout this is static feedback intervention. Static feedback can be applied when the

central regulator has complete knowledge of the network and pay-off parameter aP. It ensures

convergence to the social optimum and is denoted by u(t) = aP⊤x(t). Under static feeback

intervention, the action profile of the agents converges exponentially to the social optimum xopt,

which is proven by Shakarami et al. (2021).

6

Chapter 3

System Identification

The previous chapter provided a detailed mathematical formulation on network games. In this

chapter it is described how suitable data for system identification is obtained. Then, two methods

are proposed that can perform the system identification.

3.1 Data Gathering

Before a system identification method is proposed, we describe how the relevant data will be

gathered. Then, to increase the informativity of the data, we define an excitation signal that is

sufficiently rich. Finally, we describe how the data can be corrupted by noise, which complicates

the system identification process.

3.1.1 Euler Discretization

The pseudo-gradient dynamics in Equation 2.5 are given in continuous time. However, to simu-

late these dynamics, discrete time dynamics are required. Therefore, Euler’s method is used for

discretisation of the dynamics. Euler’s method is a numerical solution to a differential equation

and its derivation is given in Equation 3.1.

x (tk+1) = x (tk) +

∫ tk+1

tk

f(t, x(t))dt ≈ xk +

∫ tk+1

tk

f (tk, xk) dt = xk + hf (tk, xk) = xk+1. (3.1)

The computed values of xk+1 are an approximation of the true values x(tk+1). Choosing a

smaller step size h requires more computations, but leads to a more accurate approximation of

the ODE.

Applying Euler’s discretization method to the pseudo-gradient dynamics in Equation 2.5

results in Equation 3.2. These discretised dynamics are used to simulate network games, and

analyse output data in the form of information on the player’s strategy over time.

xk+1 = xk + h((−I+ aP)xk + b+ u). (3.2)

3.1.2 Data Informativity

To obtain a consistent estimate of the prediction parameters in system identification, data is

required to be informative with respect to the model structure (Gevers et al., 2008). In the

open loop system in Equation 3.2, data informativity is equivalent to the persistency of the

input regressor (i.e. the regressor is persistently exciting) derived from the model structure. A

necessary and sufficient condition for the input regressor to be persistently exciting is that the

the signals in the regressor are linearly independent (Colin et al., 2019).

7

Chapter 3. System Identification

For this application we consider the case where the input regressors ui(t) are multisine.

Colin et al. (2019) deduced that one necessary condition on ui(t) is that each sinusoid has two

frequencies in its power spectral density, hence, each ui(t) must contain at least m/2 sinusoids

at different frequencies. Here, m is the order of the model structure. Take n ≥ m/2 sinusoids

at different frequencies denoted by [ω1 . . . ωh], where h ∈ [1, n]. Then, each regressor input ui(t)

is given by the following formulation.

ui(t) =

n∑
h=1

aih sin(ωht+ ϕih), (3.3)

where, aih are the amplitudes, ωh are the frequencies and ϕih are phase shifts.

3.1.3 Noise

The challenge that arises when performing system identification in the case of noise is that exact

recovery of the underlying system is impossible. For this thesis we consider endogenous noise,

which is noise present within the network and can be thought of as players that obtain a noisy

measurement of other players actions. If players have noisy measurements on other players’

actions, their optimal response is different than their optimal response when reacting to the true

action of other players. Therefore, endogenous noise is affecting the action profile of the players,

resulting in more complex network dynamics. We model the noise as a uniform distributed

variable with zero mean ϵk. The noise term is added to the differential equation resulting in:

xk+1 = xk + h((−I+ aP)xk + b+ u+ ϵk). (3.4)

A uniform distributed random variable has an arbitrary outcome that lies between two

bounds. The bounds are given by a, b and determine the minimum and maximum possible

outcome. The probability that a variable takes a certain value is equal for all values within this

interval. The probability density function of a uniform distribution is given by Equation 3.5.

f(x) =

 1
b−a for a ≤ x ≤ b

0 otherwise.
(3.5)

For simulation purposes, the bounds of the uniform distribution are defined. However, as

the number of random variables used for the experiments is finite, a set of random variables

is defined by its mean and variance. In terms of mean (µ) and variance (σ2) the probability

density function is given by Equation 3.6.

f(x) =

 1
2σ

√
3

for − 1
σ
√
3
≤ x− µ ≤ 1

σ
√
3

0 otherwise.
(3.6)

3.2 Candidate Model

To identify the network parameters using system identification, a simple candidate mathematical

model of linear equations that fits the data is required, in order to perform linear regression.

8

Chapter 3. System Identification

Therefore, we rewrite the discretized pseudo-gradient dynamics in Equation 3.2 to the simple

linear form in Equation 3.7d.

xk+1 = xk + h((−I+ aP)xk + b+ u) (3.7a)

= xk + h(Axk + b+ u) (3.7b)

= (I+ hA)xk + hb+ hu (3.7c)

= Ãxk + b̃+ ũ, (3.7d)

where A = (−I+ aP), Ã = (I+ hA), b̃ = hb and ũ = hu.

In this current form it remains difficult to perform linear regression if we have a large data

set containing the state vectors for a certain time period. Therefore, it is necessary to write

Equation 3.7d in a single map such that it becomes easier to fit the model to the data. Consider

u = 0 for now.

xk+1 = Ãxk + b̃ =


Ã11 . . . Ã1n

...
. . .

...

Ãn1 . . . Ãnn




x1k

...

xnk

+


b̃1

...

b̃n

 (3.8)

⇒ xk+1 =


Ã11 . . . Ã1n b̃1

...
. . .

...
...

Ãn1 . . . Ãnn b̃n





x1,k

...

xn,k

1


(3.9)

⇒ xk+1 =
ˆ̃A

 xk

1

 . (3.10)

3.3 Singular Value Decomposition

The singular value decomposition (SVD) is among the most useful matrix factorisations provid-

ing a foundation for many statistical methods. The SVD provides a numerically stable matrix

that is guaranteed to exist and has two important characteristics that are used throughout this

research. The SVD can be used to perform a Moore-Penrose pseudo-inverse of a non-square ma-

trix which is used to find the least squares solution to a system of equations Ax = b. Another

useful feature of the SVD is that it provides an optimal low-rank approximations to a matrix

by keeping the leading singular values and vectors, and discarding the rest (Brunton and Kutz,

2019).

Consider a real non-square matrix A ∈ Rm×n with rank r, then A can be rewritten as a

product of three matrices: A = UΣV⊤, where U is an m ×m orthogonal matrix and V is an

n× n orthogonal matrix, i.e. U⊤U = I and V⊤V = I. Σ is an m× n pseudo diagonal matrix.

9

Chapter 3. System Identification

The first r elements on the diagonal of Σ are the singular values of A. All other elements of

Σ are zero. The matrix A⊤A is a symmetric matrix that can be written as A⊤A = VΛV⊤,

where V represents the right singular values of A and Λ is a diagonal matrix consisting of the

eigenvalues of AA⊤. The singular values are the positive square roots of the eigenvalues of A⊤A

i.e. σi =
√
λi for i = 1, 2, ..., r. The SVD of a matrix can be used to compute a pseudo-inverse

of that matrix according to A† := VΣ−1U⊤.

The system Ax = b is overdetermined when A ∈ Rm×n with m > n, meaning that there are

more equations than unknowns. This matrix cannot be full column rank because the columns

of the matrix are not linearly independent. Hence, it is guaranteed that there are vectors b that

have no solution x. However, in this overdetermined case, it is often desired to find a solution

x that minimises the sum of the squared error ∥Ax − b∥2, called the least-squares solution

(Brunton and Kutz, 2019). The solution to this optimisation problem is found by computing

VΣ−1U⊤b.

The SVD is a great choice for solving this optimisation problem as computing the pseudo-

inverse is computationally efficient, after computing the more expensive SVD. Inverting the

matrices U,V involves matrix multiplications requiring O(n2) operations (Brunton and Kutz,

2019).

3.4 Linear Regression

Using Equation 3.10 it is now possible to solve for ˆ̃A by applying a right singular value decom-

position. The required data matrices X and X′ are constructed as follows:

X =

 x1 x2 . . . xm−1

1 1 . . . 1


X′ =

[
x2 x3 · · · xm

]
,

(3.11)

where data matrix X contains the snapshots of the state vectors and data matrix X′ contains

snapshots of the time shifted state vectors. Writing Equation 3.13 for the entire data set, and

rewriting such that we solve for ˆ̃A results in the following:

X′ = ˆ̃AX

⇒ ˆ̃A = X′X†,
(3.12)

where X† is the pseudo inverse and ˆ̃A is denoted by:

ˆ̃A =
[
Ã b̃

]
. (3.13)

Note, that when an exploration signal is used in the simulation of the network game, this

must be accounted for in the linear regression. Therefore:

X′ − hUexpl =
ˆ̃AX (3.14)

10

Chapter 3. System Identification

where Uexpl denotes a matrix containing the exploration signal Uexpl = [u1u2 · · ·um−1].

Solving the system of linear equations in Equation 3.12 using an SVD allows us to retrieve

matrix Ã and the vector b̃. Ã contains the network structure as I+h(−I+aP), and b̃ contains

the marginal return vector as hb.

Now by back substituting for Ã, we obtain Ã = I+ hA = I+ h(−I+ aP). To uncover the

network information aP, we invert the equation resulting in aP = ((Ã− I)/h) + I. To uncover

the marginal return b, we simply divide b̃ by the time step h.

3.5 Regularised Linear Regression

Exact system identification using the the pseudo inverse only works in the ideal situation when

there is no noise present in the network (ϵ = 0). When there is noise present in the network

(ϵ ̸= 0), the method does not result in the true solution due to the pseudo inverse, which is a

method of finding the best-fit or least squares solution (Brunton and Kutz, 2019). This means

that the found solution will be non-sparse, meaning that all predictor variables are nonzero.

However, for this application we require the solution to be sparse as the network defined using

a graph is sparse.

Consider the following linear regression model:

y = Xβ∗ + ϵ, (3.15)

where y is an n× 1 response vector, X is an n× p covariate matrix, β∗ is the regression vector

and ϵ is an n × 1 error matrix of independent identically distributed (i.i.d.) random variables

with zero mean and variance σ2.

Finding the sparsest solution to a linear regression problem as defined in Equation 3.15 is

based on an l0 quasi-norm ∥ · ∥0 which counts the number of nonzero elements in its argument,

and can be formulated as a mathematical program (Tropp, 2006).

minimise
β

∥y−Xβ∥2

subject to ∥β∥0 ≤ ξ.
(3.16)

Solving Equation 3.16 requires combinatorial optimisation which is computationally in-

tractable due to the exponentially large search space. To mitigate this problem, we replace

the l0 quasi-norm with an l1 norm to obtain a convex optimisation problem (Tropp, 2006).

minimise
β

∥y−Xβ∥2

subject to ∥β∥1 ≤ ξ.
(3.17)

This substitution is referred to as convex relaxation, as the l1 norm is a convex function

closest to the l0 quasi-norm. The advantage of the new formulation is that it is computationally

tractable and can be solved in polynomial time. Furthermore, when the solution to the relaxation

is sparse, it can be a good approximation of the ideal coefficient vector β∗ (Donoho, 2006). This

technique is called least absolute shrinkage and selection operator, or lasso for short, and is used

to impose a size constraint on the coefficients to promote sparsity in the solution Van Le (2020).

11

Chapter 3. System Identification

In Equation 3.17 ξ is a predetermined free variable that determines the amount of regularisa-

tion. The lasso is written in a more compact in Lagrangian form in Equation 3.18. Lagrangian

duality implies that there is a one-to-one correspondence between the constrained optimisation

Equation 3.17 and the Lagrangian form Equation 3.18. More precisely, there is a corresponding

value of λ for each value of ϵ such that both Equation 3.17 and Equation 3.18 yield the same

solution (Van Le, 2020).

β̂
∗
= argmin

β
∥y−Xβ∥2 + λ ∥β∥1 . (3.18)

The parameter λ is varied through a range of values to obtain the best fit. The fit is validated

against a test set using k-fold cross validation. Because the constraint region is diamond shaped,

choosing a sufficiently large value of λ is likely to result in a solution that lies at the corner point

of that region. As a result, a sparse solution is obtained in which some coefficients are set to

zero (Van Le, 2020). This is illustrated in Figure 3.1. This example is only valid in 2D; the

constraint region is a polyhedron in 3D and a polytope in higher dimensions, however, the key

insights in Figure 3.1 still hold (James et al., 2013).

Figure 3.1: Due to the diamond shaped constraint region in 2D, choosing λ sufficiently large results in a

sparse solution where one or more coefficients are zero.

3.5.1 Problems with Lasso

Experimenting with the lasso for system identification was not giving satisfactory results. The

main problem concerning lasso was that it failed to select the proper model as predictor variables

are shrunken too much. False discoveries occur early along the lasso path, therefore, lasso is

considered merely as a variable screener, rather than a model selector (Tibshirani, 1996).

These problems with lasso are usually attributed to small effect sizes or correlations between

the predictor variables. However, Su et al. (2017) showed that lasso fails to select the proper

model, even when the signal to noise ratio is infinitely large and the predictor variables are

stochastically independent. Therefore, lasso is regarded as unsuitable for identifying the correct

model for system identification.

12

Chapter 3. System Identification

3.6 Adaptive Lasso

Whereas a regular lasso algorithm fails to identify the correct model, there exists a slight variation

to this algorithm called adaptive lasso. In the regular lasso algorithm each regressor coefficient is

penalised by the same regularisation parameter λ in the l1 penalty, thus shrinking each coefficient

equally. By applying different weights to each regressor variable, this problem is mitigated. This

method of penalising each regressor coefficient differently is called the adaptive lasso and was

first described by (Zou, 2006). When the weights of the adaptive lasso are data driven and

cleverly chosen, this method is suitable for model selection.

Consider the linear regression model in Equation 3.15, then take an estimator β̂ that is

a root-n-consistent estimator of β∗, for instance pick β̂ that gives the ordinary least squares

solution to the regression problem. Pick γ > 0, and define the weight vector according to

w = 1/|β̂|γ . Then, the adaptive lasso is given by:

β̂
∗
= argmin

β

∥∥∥∥∥∥y −
p∑

j=1

xjβj

∥∥∥∥∥∥
2

+ λn

p∑
j=1

ŵj ∥βj∥1 . (3.19)

The adaptive lasso provides improvement over regular lasso in that it does not require strong

regularity conditions on the regressor variables for variable selection, and reduces the bias in the

selected nonzero components (Chatterjee and Lahiri, 2013). To show these properties, suppose

that the first p0 elements of the true regression variable β∗ are nonzero, where 1 ≤ p0 ≤ p.

Let the set Ãn =
{
j : 1 ≤ j ≤ p, β̂∗

j,n ̸= 0
}
denote the nonzero elements picked by the adaptive

lasso. Zou (2006) showed that under mild regularity conditions for constant p and n → ∞, then,

• lim
n→∞

P (Ãn = A) = 1,

•
√
n
(
β̂
∗ − β∗

)
d→ N (0, σ2C−1

11),

where A denotes the true nonzero elements in β∗, N (0, σ2C−1
11) is a normal distribution with

zero mean and σ2C−1
11 variance. C−1

11 is the upper left p0 × p0 matrix of C, where 1
nX

⊤X → C

and C is a positive definite matrix (Chatterjee and Lahiri, 2013)(Zou, 2006).

Therefore, the adaptive lasso enjoys oracle properties (Fan and Li, 2001), meaning that it

can correctly identify the set of nonzero components of β∗ with a probability converging to one.

Furthermore, these nonzero components can be estimated correctly, with the same precision as

ordinary least squares method (Chatterjee and Lahiri, 2013).

An additional benefit of the adaptive lasso is that it remains a convex optimisation problem.

Therefore, its global minimiser can be efficiently solved using a convex optimisation solver (Zou,

2006).

3.7 Cross-validation

The value of λ controls the amount of shrinkage that is applied to the estimates. To determine

λ, it is tested across a range of values, for which each fit must be assessed by using k-fold cross-

validation. The concept of k-fold cross-validation is to partition the data into k random sets,

13

Chapter 3. System Identification

or folds of approximately equal size. The first fold is withheld and the remaining k − 1 folds

are used for training the algorithm. The mean squares error (MSE) is then computed on the

held-out fold. This procedure is repeated k times such that every fold is used once for testing,

resulting into k estimates of the error. The k-fold cross-validated error is then computed by

averaging these values (James et al., 2013).

An important advantage of k-fold cross-validation is that it gives accurate estimates of the

test errors due to its beneficial bias-variance trade-off. When performing k-fold cross validation

with k = n, or leave-one-out-cross-validation (LOOCV), it leads to an unbiased estimate of the

test error as there are n− 1 observations. Therefore, using 5- or 10-fold cross-validation results

in a more biased test error. However, bias is not the only performance indicator of concern. It

turns out that LOOCV has higher variance than k-fold cross-validation where k < n, due to the

high positive correlation between the n fitted models. In contrast, using k-fold cross-validation

we average k models which are less correlated with each other, since there is a smaller overlap

between test and training data in each model (James et al., 2013). Therefore, 5- or 10-fold

cross-validation is typically used as it has a good trade-off between estimation bias and variance

(Van Le, 2020).

14

Chapter 4

Simulation Experiments

In this chapter the performance of the proposed algorithms is assessed for system identification

using illustrative numerical examples. Experiments are performed to provide an answer to the

following questions:

• What is the effect of varying the sample size on the performance of the system identifica-

tion?

• Under what conditions is adaptive lasso better for system identification in terms of pa-

rameter estimation accuracy than least squares?

• What the effect of link failure during intervention?

• How is a link failure detected without performing system identification for the entire net-

work?

4.1 Model Set-up

The network game used for simulations is based on the numerical example from Shakarami

et al. (2021). This is a six player network game, hence I ∈ {1, 6}, which has an interaction

network defined by the directed graph visually presented in Figure 4.1. Here, the number in the

directed arrows of the graph represent the weight of that link, denoting the influence of player

i on player j. The number next to the nodes denotes the standalone marginal return of that

player. Furthermore, the pay-off parameter a = −0.5 means that the game exhibits strategic

substitutes. This choice is without loss of generality, as a positive pay-off parameter changes the

type of network game for which it exhibits strategic complements. The initial strategy played

by an agent is a random value within the interval x0 ∈ [0, 1]. Due to the discretisation, a step

size of h = 0.05 is introduced to determine the rate at which players update their strategy.

Figure 4.1: The directed graph that defines the interaction network of the network game. Figure retrieved

from Shakarami et al. (2021).

15

Chapter 4. Simulation Experiments

4.2 Experimental Set-up

In this sections, experiments are set-up to test the performance of the adaptive lasso for system

identification and provide an answer to the research questions at the beginning of this chapter.

4.2.1 Varying sample size

During this experiment, the sample size is varied to determine its effect on the adaptive lasso

algorithm. From Equation 3.13 we know that our mathematical model is a linear map that

consists of a matrix that contains the network topology, concatenated with a vector containing

the marginal return. The network game used for simulation consists of six players. Therefore,

Equation 3.13 consists of a 6 × 6 matrix concatenated with a 6 × 1 vector, resulting in a

6× 7 linear map. As a result, to solve Equation 3.12 at least seven samples are required such

that the system is not underdetermined. Therefore, the minimum number of samples for this

experiment is seven. As for the varying part of the experiment: the number of samples is

doubled five times which means that the algorithm is run for six different sample sizes denoted

by N ∈ {7, 14, 28, 56, 112, 244}.
For every sample size, the identification algorithm is tested using different noise parameter

values. The noise variables are picked from a uniform distribution where the level of noise is

determined by the bounds of the distribution. The bounds are set to −1 and 1, meaning that

a variable picked from this distribution can take any value between [−1, 1]. In the simulation,

the level of noise is scaled by a parameter that effectively scales the bounds of the uniform

distribution. This noise parameter is denoted by Bnoise ∈ {0, 0.01, 0.02, 0.05, 0.1}.
Multiple parameters of the algorithm are stored during its operation to assess the perfor-

mance of the algorithm afterwards. These parameters are the maximum payoff obtained from

intervention using the identified network parameters, the gamma and lambda value that lead

to the best model (highest pay-off) selected by the adaptive lasso algorithm, the l1 norm of the

difference between the equilibrium of the action profile (social optimum) during intervention

using identified system parameters and the true social optimum action profile (∥xopt − x̄opt)∥1).
Another parameter is the number of false positive and false negative elements detected by the

algorithm. How this parameter is defined will be explained below. Lastly, the computation time

of the adaptive lasso is measured and stored for each iteration.

The above named performance indicators are determined for a model given by the least

squares solution as well, to compare the performance of the adaptive lasso algorithm to ordinary

least squares.

Pay-off parameter

The pay-off or utility obtained by a player is computed using Equation 2.2. Summing this pa-

rameter for all players gives the pay-off obtained by the network. This parameter is optimised by

applying static intervention to the network using network parameters identified by the adaptive

lasso algorithm.

16

Chapter 4. Simulation Experiments

Lambda and gamma

The adaptive lasso algorithm optimises the fit of a model to the data based on the parameters

gamma and lambda. Gamma determines the magnitude of the weights used by the adaptive

lasso, and lambda determines the amount of regularisation. Therefore, the adaptive lasso finds

the best solution on a grid of gamma by lambda. The range and step size of gamma and

lambda determine the size and refinement of the grid. Hence, increasing the range of gamma

and lambda and decreasing their step size increases the probability of finding the best model

that approximates the true model. Gamma is ranged from γ ∈ {0, 0.1, 0.2, 0.5, 0.1} and lambda

is ranged logarithmically from [1e−6, 1] in 20 steps.

Proximity to social optimum

The pay-off function in Equation 2.2 admits a unique solution which is given by Equation 2.8.

For a stable system the players converge to an equilibrium which is denoted by x̄opt. The absolute

distance of this vector from the true social optimum xopt is defined as the proximity to the social

optimum and is used as a performance indicator.

Sparsity index

It is known that the network used for system identification is sparse, therefore, the estimated

network parameter aP must be sparse as well. To assess the sparsity of the identified model,

the number of false positive elements are counted. An elements is considered a false positive if

its value is greater than a certain threshold value (1e−2) and the element is zero in the true P

matrix. Furthermore, the number of false negative elements is counted. An element is considered

a false negative when it is not within a predefined percentage (30%) of the actual value in the

true P matrix1.

Computation time

The computation time is tracked for each iteration of the algorithm to determine the effect of

noise and increasing sample size on the computation time of the algorithm.

4.2.2 Adaptive lasso in under- and overdetermined systems

For illustrative purposes the network considered for this thesis is only a six player network game.

Therefore, the number of samples quickly exceeds the number of unknown links in the network.

However, in practical applications the number of players in a network game may be in the order

of magnitude of 103. In such settings, the graph that defines the interaction network is 103 by

103. It is not unthinkable that less than 103 number of samples are available, meaning that the

regression problem in system identification is underdetermined. If one tries to solve this problem

using least squares, a non-sparse solution is found.

1As it might occur that the identified element is more than (30%) higher/lower than the actual value of that

element it is considered a false negative even though the element is correctly active. Hence, a false negative is not

necessarily a false negative by its definition.

17

Chapter 4. Simulation Experiments

Fortunately, there are methods of solving such underdetermined systems of equations using

methods that give sparse solutions, such as the adaptive lasso. This experiment is organised to

assess the ability of the adaptive lasso algorithm to deliver sparse solutions that approximate

the true model in system identification of network games.

As described in the previous experiment, the model that defines the network game consists

of six linear equations containing seven unknowns each. Therefore, the exact solution to this

regression problem can only be found when there are at least seven samples. For this experiment,

the sample size is ranged from two to ten, to see how the adaptive lasso algorithm compares to

the least squares solution. The key performance indicators from the previous varying sample size

experiment are used. This experiment is repeated using relatively small noise Bnoise = 5e−5, to

see its affect on the network parameter estimation accuracy.

4.2.3 Link failure detection

In this section we explore the ability of the system identification algorithm to detect a link

failure during intervention. To simulate a link failure, one of elements in the P matrix is

dropped. Consider the graph in Figure 4.1, where we remove the weakest link P54 = 0.15 during

intervention.

The experiment is performed according to the following steps: first, the ODE that describes

the network dynamics receives an input variable u(·) that contains the exploration signal defined

by the central regulator, and a noise variable ϵ. Then, the output data of the ODE (the states

of the agents) is stored and the adaptive lasso algorithm is used to identify the underlying

interaction network. Using the identified network parameters, a static feedback intervention is

applied to the network. At an arbitrary point in time during the applied intervention, a link

fails in the network. As a result of this link failure, the action profile that satisfies social welfare

will change, and thus, a new suitable intervention must be applied to reach the new social

optimum action profile. Therefore, we want the algorithm to detect this link failure, reapply an

exploration signal to the changed network, identify the changed network parameters and apply

a new suitable intervention that steers the network to the social optimum.

A link failure causes a change in network topology which subsequently affects how the agents

interact with each other. This change is noticeable as a discontinuity in the action profile of the

agents from the point of the link failure. A discontinuity is a type of irregularity that occurs in an

otherwise smooth function, and appears as an abrupt change in direction in the action profile of

the agents. Gijbels and Goderniaux (2005) computed the second order derivative of a Nadaraya-

Watson kernel estimator to detect a discontinuity in the data. However, as we do not use an

estimator, we compute the numerical second order derivative along the player’s action profile.

This results in a peak at the point where the discontinuity occurs. To understand this effect

conceptually, the second order derivative can be thought of as acceleration. When the action

profile of an agent changes abruptly, the (negative) acceleration at that point is significant. The

18

Chapter 4. Simulation Experiments

numerical second order derivative is defined in Leibniz notation in Equation 4.1.

d2x

dh2
=

[
1
h2

−2
h2

1
h2

]

x1

x2

x3

 . (4.1)

The numerical second order derivative is computed along the action profile of the agents. A

discontinuity in the action profile of the agents results in a relative high intensity peak. A peak

is detected when the current value of the second order derivative is greater (or smaller) than

its subsequent and previous neighbouring data point. A peak is defined as a (local) minimum

or maximum. A minimum or maximum occurs when the second order derivative switches from

increasing to decreasing (or vice versa) in value, which translates to a switch from an increasing

to decreasing value (or vice versa) of the action profile of a player. To correctly identify a peak

due to a discontinuity, rather than a switch in action profile of an agent, a small tolerance is used

as a threshold value such that relatively small peaks are not falsely assigned to a link failure.

The discontinuity that occurs in the action profile due to the link failure can be observed in

figure Figure 4.2a. Even though the discontinuity is difficult to observe visually, it appears as

a significant peak in the second order derivative given in Figure 4.2. The figure is used as an

illustrative example and is generated for a situation without noise.

(a) Action profile of the agents under static feed-

back intervention.

(b) Numerical second order derivative computed

along the player´s action profile in (a).

Figure 4.2: Subfigure (a) shows the discontinuity in the action profile due to a link failure. Subfigure (b)

shows the second order derivative of the action profile in (a). At the point where the link failure occurs,

a large peak appears.

The link failure is going to occur at a random iteration. When the algorithm has detected

an anomaly in the action profile of any agent(s), system identification must be performed again

to accommodate for the change in network topology. However, running the system identification

algorithm for the entire network is excessive, thus, a waste of computing power as only a minor

proportion of the network structure has changed. Therefore, the identification algorithm should

only re-identify the part of the network where a link failure has occurred.

When a link failure has occurred, the agent that is directly affected by that link shows the

largest change in action profile. Hence, it is possible to detect which agent is directly affected by

19

Chapter 4. Simulation Experiments

the link failure, although, which link has failed cannot be deduced from this information. This

means that the system identification algorithm must re-compute the values for each link directed

towards that agent. Practically speaking, it means that the elements along the row belonging

to that agent in Equation 3.13 must be re-identified and all other elements retain their value

from the previous system identification run. The elements of this row describe the influence of

all other players on that agent, and his marginal return. After re-identification it is possible to

determine which specific link has failed by computing the difference between the elements from

before link failure and after link failure.

20

Chapter 5

Simulation Results

5.1 Results varying sample size

The results of the experiment are presented in Table A.1 in the appendix. The threshold value for

when an element is considered a false positive is set at1e−2, meaning that elements in aP smaller

than this threshold are considered zero. An element active in the identified aP is considered

false negative when it is not within 30% of the value in the true aP.

Computation time adaptive lasso

The relation between computation time and sample size for the convergence of the adaptive lasso

is important as it may set a limitation on how large the sample size can be. For this experiment

the computation time of the adaptive lasso on a lambda by gamma grid was clocked. To obtain

more data points, the sample size was doubled twice more to show a better relation between

computation time and sample size. The computation time data is plotted in Figure 5.1.

Figure 5.1: This graph shows the relation between computation time and the sample size.

From the graph it is observed that the computation time grows exponentially with respect

to the sample size. This imposes a size constraint on the sample size, as adaptive lasso becomes

computationally more expensive.

21

Chapter 5. Simulation Results

Convergence

The absolute distance of the Nash equilibrium form the social optimum is 1.1053. Any distance

closer to the social optimum is considered an improvement. This is due to better estimation

of the network parameters such that an adequate intervention can be applied. Using the data

from Table A.1 distance from the social optimum is plotted for the adaptive lasso is presented

in Figure 5.2.

Figure 5.2: A bar plot of the absolute distance from the social optimum for adaptive lasso with respect

to the Nash-equilibrium per sample size. The legend shows the noise bounds used in the simulation for

system identification. The dashed horizontal line shows the distance of the Nash equilibrium from the

social optimum. for unstable interventions, the distance is set to -0.1.

Two main observations are made from Figure 5.2. First, for every noise level, a trend is visible

that the distance from the social optimum decreases with increasing sample size, meaning that

more samples lead to better estimation of the network parameters and thus, to closer convergence

to the social optimum. Second, a more trivial observation is that the distance from the social

optimum increases with increasing noise. Thus, for each sample size the five bars that represent

the noise levels show an increasing trend.

Another plot presenting the distance from the social optimum for least squares using a bar

plot is given in Figure 5.3. The negative values indicate an instability during intervention using

the parameters derived from the model fit using least squares.

The trends in Figure 5.3 for least squares are less obvious with respect to adaptive lasso.

Nevertheless, it is assumed that the trends described for adaptive lasso hold for least squares.

Remarkable is that for some noise and sample size combination, the intervention based on the

estimated parameters is unstable. Furthermore, it is observed that for the largest sample size

(N = 224) the least squares solution converges closer to the social optimum than the adaptive

lasso.

22

Chapter 5. Simulation Results

Figure 5.3: A bar plot of the absolute distance from the social optimum for least squares. The legend

shows the noise bounds used in the simulation for system identification. The horizontal dashed line shows

the distance of the Nash equilibrium from the social optimum. For unstable interventions, the distance

is set to -0.1.

Robustness

This large varying sample size experiment showed that the adaptive lasso is more robust than

least squares regarding intervention using the identified parameters. The robustness of adaptive

lasso is due to the gamma / lambda regularisation, which shrinks elements to zero. When there is

much uncertainty due to noise, adaptive lasso selects high gamma/lambda values which heavily

regularise the elements in the regression model. Heavy regularisation also affects large elements

that are expected to be active in the regression model. Therefore, in a low noise situation, more

elements are nonzero than for a high noise situation. Furthermore, in a low noise situation the

model fits the data better, even though noise variables are being picked up. In a high noise

situation, the heavy regularisation shrinks most elements to zero. Hence, adaptive lasso is more

robust than least squares.

Conclusion

The computation time of the adaptive lasso grows exponentially with increasing sample size,

imposing a size constraint on the number of samples. Increasing the sample size results in better

estimation of the network parameters, thus better convergence to the social optimum for both

adaptive lasso and least squares. For lower sample sizes the adaptive lasso gives sparser results

and is more robust than least squares, at the cost of reduced prediction accuracy due to the heavy

regularisation. When the number of samples is increased further, least squares is outperforming

the adaptive lasso in terms of accuracy.

In conclusion; for lower sample sizes, adaptive lasso is preferred over least squares as it is

more accurate and robust. When the sample size is large, least squares is a better suited due to

23

Chapter 5. Simulation Results

its better performance in terms of accuracy and computation time.

5.2 Results adaptive in under- and over-determined systems

The experiment is performed for a sample size N ranging from two to ten, and the noise in the

network is zero. The adaptive lasso is computed on a grid of gamma γ ∈ {0, 0.1, 0.2, 0.5, 0.1} by

lambda , where lambda ranged from 1e−5 to 1e0 in 20 steps logarithmically. The performance

of the algorithm is compared to least squares based on the maximum pay-off achieved from

intervention using the identified network parameters, the l1 norm of the difference between the

social optimum and the true social optimum and the number of false positive and false negative

estimated elements. The results are presented in Table 5.1.

Adaptive Lasso Algorithm Least Squares

N γ λ Pay-off ∥xopt − x̄opt∥1 FP FN FP FN Pay-off ∥xopt − x̄opt∥1
2 0.5 4.83e−2 0.8736 1.0465 5 8 27 9 0.7250 1.7459

3 0.5 8.86e−2 0.9068 0.5907 11 8 27 9 0.7366 1.7116

4 0.5 8.86e−2 0.9032 0.7538 11 8 27 9 0.7854 1.6672

5 0.5 3.36e−5 0.9169 0.0310 7 3 27 9 0.8486 1.2747

6 0.5 1.00e−5 0.9148 0.2364 21 5 27 8 0.9127 0.5792

7 0.5 1.83e−5 0.9169 0.0189 0 0 0 0 0.9169 0.0186

8 0.5 1.00e−5 0.9169 0.0104 0 0 0 0 0.9169 0.0107

9 0.5 1.00e−5 0.9169 0.0060 0 0 0 0 0.9169 0.0062

10 0.05 1.00e−5 0.9169 0.0018 0 0 0 0 0.9169 0.0036

Table 5.1: The performance indicators for the adaptive lasso algorithm and least squares solution.

Figure 5.4: This graph shows the convergence to the social optimum for adaptive lasso and least squares

for under- and overdetermined systems. There is no noise present in the network.

24

Chapter 5. Simulation Results

Figure 5.5: This graph shows the convergence to the social optimum for adaptive lasso and least squares

for under- and overdetermined systems. Here a small noise of Bnoise = 5e−5 is present in the network.

Interpretation

As the sample size increases, the identified model approximates the true model more accurately

which is observed as a decreasing difference between the actual and true social optimum ac-

tion profile in Figure 5.4. This effect is observed for both the adaptive lasso algorithm and

least squares. However, adaptive lasso gives better results when the system is underdetermined

which is until the sample size reaches 7. From this point the linear regression is no longer

underdetermined and least squares can give the exact solution which is sparse.

However, Figure 5.5 shows that when noise is introduced, the number of samples required to

obtain an accurate estimate of the network parameters is increased. From sample size N = 12

the distance from the social optimum for adaptive lasso coincides with the distance for the social

optimum for least squares, indicating that both estimates of the network parameters are equal.

From the columns presenting the falsely negative predicted elements (7 and 9), it is observed

that for the first three iterations, 8 out of 9 elements are falsely identified. When the sample size

increases, the adaptive lasso gives less false negatives than least squares. Least squares estimates

nearly all elements wrong until N = 7. The number of false positives is used to indicate the

sparsity of the estimated network parameter. If an element is larger than a threshold value and

it is zero in the true model, it is registered as a false positive. Least squares predicts nonzero

elements alone until N = 7. The number of false positives for the adaptive lasso is growing

as the sample size increases. This means that more elements are predicted as nonzero, which

seems counter intuitive at first sight. However, as the sample size increases, the regularisation

parameter lambda is decreasing, indicating that the amount of regularisation applied by the

adaptive lasso is reduced. This explains that it is probable that for a low sample size and high

regularisation, the elements of the model are shrunken to zero. As the sample size increases and

the amount of regularisation decreases, more elements are picked up to increase the fit of the

model.

25

Chapter 5. Simulation Results

Conclusion

The adaptive lasso performs better when the system is underdetermined, which is when the

number of samples is less than the number of unknowns in linear regression. When the number of

samples is growing and the system becomes overdetermined, the least squares estimates coincide

with the adaptive lasso. The point where they coincide depends on the level of noise in the

network; when the level of noise increases, more samples are required.

5.3 Results link failure

Multiple simulations are performed to assess the performance of the algorithm under noisy

conditions. Table 5.2 shows the outcome of the algorithm for multiple simulation runs using

different noise parameters Bnoise ∈ {0, 0.01, 0.02, 0.05, 0.1}. The gamma value that determines

the weights for the adaptive lasso are ranged from γ ∈ {0, 0.1, 0.2, 0.5, 0.1} and the lambda

value that determines the amount of regularisation is ranged from 1e−6 to 1e0 in 20 steps

logarithmically. The number of samples used is N = 100. The link with lowest magnitude

P54 = 0.15 is dropped at iteration 23. The maximum pay-off obtainable before link failure is

0.9169 and after link failure 0.9329. In the table below, Bnoise denotes the noise parameters used

in the simulation, and the mean and variance of all noise variables are given as well. Here, we use

the realised pay-off as a performance indicator. The realised pay-off by intervention before link

failure (LF) and after link failure, the tuning parameters gamma and lambda and the iteration

at which the link failure is detected. The heading ”player” denotes which agent is effected the

most by the link failure, thus one of the links directed to that agent has failed.

Noise level Realised pay-off Tuning parameters Link Failure (LF)

Bnoise Mean (µ) Variance (σ2) Before LF After LF γ1 γ2 λ1 λ2 Iteration Player

0 0 0 0.9169 0.9329 0.05 0.05 1e−6 1e−6 23 5

0.01 −4.4631e−5 3.1200e−5 0.9167 0.9327 0.1 0.1 1e−6 1e−6 23 5

0.02 −8.9262e−5 1.2480e−4 0.9161 0.9327 0.1 0.5 6.9519e−2 1e−6 23 5

0.05 −2.2315e−4 7.8001e−4 0.9136 0.9298 0.1 0.5 2.9764e−3 1e−6 23 5

0.1 −4.4631e−4 3.1200e−3 0.9079 0.9203 0.2 0.05 1e−6 2.0691e−6 23 5

Table 5.2: Simulation results of the link failure identification algorithm.

Interpretation

From Table 5.2 it is observed that for the no noise situation, the maximum pay-off is achieved

before and after link failure, and that the correct iteration of link failure and agent are identified.

This indicates that the algorithm behaves as expected. With increasing noise, the realised pay-

off is decreasing. This indicates that the estimation of the parameters used for intervention have

picked up noise variables. Nevertheless, the link failure is detected at the correct iteration and

for the player that is directly affected.

Table 5.3 shows the values assigned to each element that denotes a link directed towards

player five, before and after link failure, for different noise parameters. In the zero noise situation,

26

Chapter 5. Simulation Results

Bnoise ↓ P51 P52 P53 P54 P55 P56

0

Before LF 0 0 -0.3000 -0.0750 0 -0.1500

After LF 0 0 -0.3000 0 0 -0.1500

Difference 0 0 0 0.0750 0 0

0.01

Before LF 0.0017 0.0045 -0.2878 -0.0701 -0.0104 -0.1506

After LF -0.0008 0.0009 -0.2840 0.0028 0.0091 -0.1506

Difference 0.0025 0.0034 0.0038 0.0729 0.0195 0.0000

0.02

Before LF 0.0017 0.0051 -0.2756 -0.0662 -0.0185 -0.1496

After LF -0.0006 0.0133 -0.3253 0.0022 0.0107 -0.1471

Difference 0.0023 0.0082 0.0497 0.0684 0.0292 0.0025

0.05

Before LF 0.0029 0.0075 -0.2394 -0.0519 -0.0411 -0.1442

After LF -0.0035 0.0006 -0.2118 0.0196 0.0430 -0.1515

Difference 0.0064 0.0069 0.0276 0.0715 0.0841 0.0073

0.1

Before LF 0.0040 0.0105 -0.1800 -0.0232 -0.0720 -0.1279

After LF -0.0005 0.0028 -0.1155 0.0537 0.0793 -0.1461

Difference 0.0045 0.0077 0.0645 0.0769 0.1513 0.0182

Table 5.3: The link strengths before and after link failure identified by the link failure detection algorithm.

The exact link strengths are found in the no noise situation (Bnoise = 0).

all links are correctly identified before and after link failure. As the noise increases, some noise

variables are picked up, resulting in more nonzero elements. However, considering that the

picked up noise variables are small in magnitude, it is observed that the algorithm can correctly

identify the link failure. The failing link is assigned to the element with the absolute largest

difference before and after link failure. The first three runs correctly identify P54 as the failing

link. In the last two runs, P55 has the largest change in magnitude and is falsely detected as the

failing link.

Conclusion

As long as the noise level in the network remains below a certain value (in this case 0.05), noise

variables that have been picked up by the algorithm are not significant enough to obstruct the

identification of a link failure. For this experiment, the weakest link in magnitude was dropped,

which was identified in three out of five simulation runs. The algorithm misidentified the link

failure for the last two iterations.

27

Chapter 6

Conclusion

In this thesis, we considered system identification of quadratic network games based on data. The

players in the network game choose their actions continuously using pseudo-gradient dynamics,

maximising their individual pay-off. By observing these actions over time, large data matrices

can be composed containing the dynamics of the agents. Multiple algorithms were proposed

to analyse this data and extract the network parameters that define the network game. The

network parameters are used by a central regulator to apply interventions to the network and

steer the players to a social optimum. The performance of the network parameter estimation

by the proposed algorithm was assessed by how close the network is steered towards the social

optimum.

The algorithm used for system identification is based on the adaptive lasso. This is a linear

regression technique that applies regularisation to promote sparsity in the solution. Its perfor-

mance was tested using two experiments where the number of samples and level of noise in the

network was varied. The experiments showed that adaptive lasso is robust in situations where

the number of samples is relatively low, or the noise level is relatively high. The second algo-

rithm used for system identification is the least squares solution computed using a singular value

decomposition. This is a fast method that does not give sparse solutions to underdetermined

systems. However, when the number of samples is increased, it can identify the true active

elements correctly.

A drawback of the adaptive lasso is that it requires optimisation of two parameters, increasing

the computational cost. Furthermore, the computation time scales exponentially with increasing

sample size limiting the practical application of the lasso. However, when the sample size is large

and the system is overdetermined, the least squares solution outperforms the adaptive lasso, and

is significantly faster to compute. Therefore, alleviating the scaling problem of the adaptive lasso.

When the system is underdetermined, the adaptive lasso is robust and estimates the network

parameters surprisingly good, in contrast to the least squares solution. Therefore, adaptive lasso

is preferred in situations where the number of samples is less than the number of players in the

network.

The third experiment showed that the adaptive lasso is capable of identifying the player

that is affected the most by a link failure under noisy conditions. The re-identification is only

performed for the links directed towards the agent that is effected the most. By comparing the

newly identified links to the old links, it is determined which exact link had failed. When the

noise level becomes significant, elements are picked up due to noise which obstructs the correct

identification of the link failure.

28

Chapter 7

Discussion

The (pseudo) random numbers generated for the experiments are drawn from a distribution

using one seed value, which restricts the statistical significance of the results from the experi-

ments. Increasing the number of replications using different seed values increases the statistical

significance and would show the trends in the data more clearly.

The adaptive lasso is superior to least squares when the regression problem performed is

underdetermined. When there is noise present in the system, the adaptive lasso outperforms least

squares in terms of accuracy, although, this difference in performance decreases when the number

of samples is increased. As least squares is significantly less computationally expensive, it is

recommended to collect more samples and compute the least squares solution, than relying on the

sparsity promoting characteristic of the adaptive lasso in underdetermined systems. Naturally,

it depends on the practical application whether this choice is available or not.

Furthermore, least squares does not give sparse solution when the sample size is increased,

however, the estimate of the true active elements converges to their true value. The zero elements

have picked up minor noise variables. The weights computed for the adaptive lasso depend on

an initial estimate of the model. During the research the weights were computed using a lasso

estimate with regularisation parameter λ = 1e−3. When the least squares estimate is close to

the true solution, it makes a better initial estimate to base the adaptive weights on, such that the

true active elements remain active in the solution of the adaptive lasso, and the zero elements

that have picked up noise, are shrunken to zero.

In this research it was observed that when the number of samples increases, the estimation

of the network parameters converges to the true value of the network parameters. However, no

conditions are given on the number of samples that are minimally required to estimate the true

model. Another limitation of the research is that the performance of the algorithm is assessed

based on convergence of the network to the social optimum. This is done by applying inter-

ventions based on the estimated network parameters. However, this type of assessment requires

knowledge of the true network parameters, which might not be accessible in real applications.

Finally, it was observed that when a significant level of is noise present in the network

with respect to the number of samples, the adaptive lasso shrunk predictor elements to zero

to minimise the objective function. This means that such heavy regularisation increased the

weight of the l1 norm significantly with respect to the weight of the l2 norm of the minimisation

algorithm.

29

Chapter 7. Discussion

7.1 Future Work

Future research is required to solve the limitations pointed out in the discussion. For exam-

ple, future research can explore the relationship between prediction accuracy and sample size,

providing stricter criteria on how many samples are minimally required to obtain an accurate

estimate of the network parameters. Furthermore, it could explore the possibility to assess the

performance of the system identification algorithm based on cross validation as explained in

section 3.7.

To increase the weight of the l2 norm, a regularisation parameter can be added to this

norm to increase its importance with respect to the l1 norm. This can have the effect that

the error between the model and data is more balanced with respect to the size constraints

on the predictor variables in the l1 norm Future research is required to investigate if such a

regularisation parameter on the l2 norm leads to a better estimation of the network parameters

in noisy situations.

Finally, the research can be extended by exploring the performance of the adaptive lasso

in larger network games to see how it compares to least squares. Furthermore, the system

identification algorithm can be extended to identify the network parameters for network games

that have constraints imposed on a subset of players. As such constraints lead to abnormal

behaviour in the action profile of those players with respect to unconstrained players.

30

Bibliography

Alpcan, T., Pavel, L., and Stefanovic, N. (2009). A control theoretic approach to noncooperative

game design. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held

jointly with 2009 28th Chinese Control Conference, pages 8575–8580. IEEE.

Bramoullé, Y. and Kranton, R. (2015). Games played on networks. The Oxford handbook of the

economics of networks.

Brunton, S. L. and Kutz, J. N. (2019). Data-driven science and engineering: Machine learning,

dynamical systems, and control. Cambridge University Press.

Chatterjee, A. and Lahiri, S. N. (2013). Rates of convergence of the adaptive lasso estimators to

the oracle distribution and higher order refinements by the bootstrap. The Annals of Statistics,

41(3):1232–1259.

Colin, K., Bombois, X., Bako, L., and Morelli, F. (2019). Informativity: how to get just

sufficiently rich for the identification of miso fir systems with multisine excitation? In 2019

18th European Control Conference (ECC), pages 351–356. IEEE.

De Persis, C. and Grammatico, S. (2019). Distributed averaging integral nash equilibrium

seeking on networks. Automatica, 110:108548.

Donoho, D. L. (2006). For most large underdetermined systems of linear equations the minimal

l-norm solution is also the sparsest solution. Communications on Pure and Applied Mathe-

matics: A Journal Issued by the Courant Institute of Mathematical Sciences, 59(6):797–829.

Engwerda, J. (2005). LQ dynamic optimization and differential games. John Wiley & Sons.

Engwerda, J. C. (2006). Linear quadratic games: An overview. CentER Discussion Paper Series.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle

properties. Journal of the American statistical Association, 96(456):1348–1360.

Galeotti, A., Goyal, S., Jackson, M. O., Vega-Redondo, F., and Yariv, L. (2010). Network games.

The review of economic studies, 77(1):218–244.

Gevers, M., Bazanella, A., and Miskovic, L. (2008). Informative data: how to get just sufficiently

rich? In 2008 47th IEEE Conference on Decision and Control, pages 1962–1967. IEEE.

Gijbels, I. and Goderniaux, A.-C. (2005). Data-driven discontinuity detection in derivatives of

a regression function. Communications in Statistics-Theory and Methods, 33(4):851–871.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical

learning, volume 112. Springer.

Koutsoupias, E. and Papadimitriou, C. (1999). Worst-case equilibria. In Annual symposium on

theoretical aspects of computer science, pages 404–413. Springer.

Ljung, L. (1998). System identification. In Signal analysis and prediction, pages 163–173.

Springer.

Nagurney, A. (2021). Supply chain game theory network modeling under labor constraints:

Applications to the covid-19 pandemic. European Journal of Operational Research, 293(3):880–

891.

31

Bibliography

Nagurney, A. and Li, D. (2015). A supply chain network game theory model with product

differentiation, outsourcing of production and distribution, and quality and price competition.

Annals of Operations Research, 226(1):479–503.

Parise, F. and Ozdaglar, A. (2021). Analysis and interventions in large network games. Annual

Review of Control, Robotics, and Autonomous Systems, 4:455–486.

Shakarami, M., Cherukuri, A., and Monshizadeh, N. (2021). Adaptive interventions for social

welfare maximization in network games. In 2021 60th IEEE Conference on Decision and

Control (CDC), pages 942–947. IEEE.

Su, W., Bogdan, M., and Candes, E. (2017). False discoveries occur early on the lasso path.

The Annals of statistics, pages 2133–2150.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 58(1):267–288.

Tropp, J. A. (2006). Just relax: Convex programming methods for identifying sparse signals in

noise. IEEE transactions on information theory, 52(3):1030–1051.

Van Le, C. (2020). How to choose tuning parameters in lasso and ridge regression? Asian

Journal of Economics and Banking.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American statistical

association, 101(476):1418–1429.

32

Appendix A

Data Matrix Sample Size Variation

Adaptive Lasso Algorithm Least Squares

N Bnoise Time γ λ Pay-off ∥xopt − x̄opt∥1 FP FN FP FN Pay-off ∥xopt − x̄opt∥1
7 0 8.07 0.05 1.00e−5 0.9122 0.6220 22 2 0 0 0.9169 0.0186

0.01 7.55 0.05 1.44e−2 0.9122 0.3264 7 4 27 9 -1 -1

0.02 8.49 0.1 8.86e−2 0.9031 0.3885 9 6 27 9 -1 -1

0.05 8.27 0.05 2.98e−1 0.8971 0.8655 8 8 27 9 -1 -1

0.1 8.76 0.1 8.86e−2 0.8991 0.8439 5 8 27 9 -1 -1

14 0 8.08 0.2 1.00e−5 0.9169 0.0004 0 0 0 0 0.9169 0.0004

0.01 8.05 0.05 1.27e−3 0.9024 0.3239 19 4 27 8 -1 -1

0.02 8.13 0.2 6.95e−3 0.9098 0.6855 24 5 27 8 -1 -1

0.05 8.32 0.2 6.95e−3 0.8966 1.1658 20 6 27 8 -1 -1

0.1 8.37 0.05 5.56e−1 0.8682 0.9259 6 8 27 8 -1 -1

28 0 8.8 0.05 3.36e−5 0.9169 0.0000 0 0 0 0 0.9169 0.0000

0.01 8.93 1 2.34e−3 0.9012 0.5496 12 3 24 2 0.8994 0.6415

0.02 8.98 1 4.28e−3 0.9018 0.7072 10 7 26 3 0.8166 1.5383

0.05 9.04 0.5 7.85e−3 0.9104 0.6420 12 5 27 5 -1 -1

0.1 8.91 0.05 2.98e−1 0.8973 0.9973 8 8 27 7 -1 -1

56 0 10.11 0.05 1.13e−4 0.9169 0.0000 0 0 0 0 0.9169 0.0000

0.01 10.21 0.2 3.79e−4 0.9166 0.1678 9 0 13 0 0.9166 0.1566

0.02 10.31 0.2 2.34e−3 0.9157 0.3137 16 0 23 0 0.9156 0.3005

0.05 10.53 1 6.16e−5 0.9115 0.6023 10 3 24 1 0.9095 0.6710

0.1 10.58 1 2.07e−4 0.8981 1.1031 12 7 26 3 0.8899 1.1420

112 0 15.01 0.05 1.00e−5 0.9169 0.0000 0 0 0 0 0.9169 0.0000

0.01 16.44 0.05 4.83e−2 0.9168 0.096 6 0 7 0 0.9167 0.1417

0.02 16.79 0.05 1.62e−1 0.9161 0.2544 8 0 12 0 0.9158 0.3004

0.05 16.38 0.05 1.62e−1 0.9131 0.5406 14 0 23 0 0.9064 0.9046

0.1 17.2 0.05 1.62e−1 0.9078 0.8017 13 4 26 1 0.8269 2.5800

224 0 34.18 0.1 1.00e−5 0.9169 0.0000 0 0 0 0 0.9169 0.0000

0.01 36.15 0.05 2.64e−2 0.9168 0.0968 4 0 1 0 0.9169 0.0175

0.02 35.65 0.05 4.83e−2 0.9163 0.1984 9 0 9 0 0.9168 0.0354

0.05 35.61 0.05 1.44e−2 0.9143 0.3698 15 0 17 0 0.9162 0.0949

0.1 36.06 0.05 6.95e−4 0.9093 0.4959 19 5 21 0 0.9139 0.2487

Table A.1: The performance indicators for the adaptive lasso algorithm and least square solution.

Table A.1 contains data of the performance indicators used to assess the performance of

adaptive lasso and least squares. The first column contains the sample sizes, the second column

the time to compute the adaptive lasso solution on a gamma by lambda grid. The total pay-off

and l1 norm deviation from the social optimum are given in column 5,6 and 11,12 respectively.

FP and FN denote the number of false positive and false negative elements detected by adaptive

lasso or least squares.

For some models identified using least squares, the network diverged during intervention, or

33

Appendix A. Data Matrix Sample Size Variation

converged to equilibria unattainable due to a violation of Equation 2.7. For those situations,

the value is set to negative one.

34

	Introduction
	Problem Analysis
	Research Objective
	Research Questions
	Research Outline

	Theoretical Background
	Network Game Formulation
	Linear quadratic games
	Player's action dynamics
	Equilibria
	Intervention protocol

	System Identification
	Data Gathering
	Euler Discretization
	Data Informativity
	Noise

	Candidate Model
	Singular Value Decomposition
	Linear Regression
	Regularised Linear Regression
	Problems with Lasso

	Adaptive Lasso
	Cross-validation

	Simulation Experiments
	Model Set-up
	Experimental Set-up
	Varying sample size
	Adaptive lasso in under- and overdetermined systems
	Link failure detection

	Simulation Results
	Results varying sample size
	Results adaptive in under- and over-determined systems
	Results link failure

	Conclusion
	Discussion
	Future Work

	Appendices
	Data Matrix Sample Size Variation

