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Abstract

Statistical mechanics can give valuable fundamental insight into the qualities of
Artificial Intelligence (AI) architectures. Modern developments in AI architectures
call for further insight into the qualities of fundamentally nonlinear classifiers. The
off-line generalizing behavior of a multiplicative nonlinear extension of the perceptron
was explored using mathematical methods derived from statistical mechanics. While
a general treatment is hindered by challenges related to nonlinearity, exact results
were obtained for a simplified low-dimensional binary version of the system in the
limits of high and low temperature. At high temperature, the generalization error
was found to conform to a quotient of exponential functions of the number of
training examples presented, while in the low temperature limit the generalization
error conforms to a sum of exponential decaying functions. These results may
facilitate fundamental comparison with neural networks’ performance on identical
tasks, which may motivate whether nonlinear architectures can be competitive in
learning nonlinear behavior.
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1 Introduction

1.1 Background

For decades, mathematical tools from Statistical Physics have enabled analytic
research into the fundamental learning behavior of a variety of Artificial Intelligence
(AI) systems [1–5]. In particular, interesting qualitative results have been obtained
for Artificial Neural Networks (ANN), demonstrating the origin of phenomena such
as phase transitions and unit specialization [6–11], as well as the effect thereof
on the system’s performance. Such results aid intelligent decision-making in the
design and application of these AI concepts [12–16]. This analysis often treats
simple and representative models for the qualitative investigation of AI architectures.
Notably, much early research has concerned the simplest possible (single-layer)
neural network: the perceptron (e.g. Ref. 17). Later, much work has also been
done concerning multi-layered ANN with a small number of layers. See Ref. 8 for a
historical overview.

Though such ANN can realize any regression task given that it is large enough
[18], alterations from conventional neural networks are proposed: so-called ’dendritic
neural networks’ [19]. Here, a neuron’s activation is explicitly a function of products
of its inputs. Meanwhile, recent developments in unconventional computing draw
attention to an alternative, more direct approach to realizing (in particular) nonlinear
behavior, namely where intelligent behavior is realized physically, rather than virtually.
Such so-called neuromorphic computing offers a broad and fascinating perspective
regarding both energy- and computational efficiency in computing. A distinction can
be made between classes of neuromorphic systems: On the one hand much interest
goes out to systems with spiking neuron dynamics as discussed in e.g. Refs. 20–22.
On the other hand there exists a class of more unstructured systems, such as in-
materio systems [23–26]. Developments in the field of in-materio computing present
us with the ability to harness the output of some unknown nonlinear multivariate
function to realize desired behavior. This is done by leveraging inherent deterministic
nonlinearities in the internal dynamics of electric charge jumping between impurities
in matter. As an example, a logical XOR gate was realized by invoking an evolution
algorithm in the configuration of voltages applied to a designless, unstructured
cluster of nanoparticles [23]. This is just one example of how disorganized systems
and resulting nonlinearity can be configured to suit AI purposes [27].

Yet, there is little theoretical understanding of the implications of such nonlinearity
for the performance on a regression task; results are often empirical/simulational in
nature and therefore offer little fundamental understanding. Abstracting away the
precise implementation, these types of systems can be categorized as intrinsically
nonlinear. In the present work, these are modeled as a straightforward nonlinear
extension of the perceptron in order to qualitatively analyze the capacity of such
nonlinear perceptrons to generalize from training data. Specifically, I attempt to
apply the familiar tools from (equilibrium) Statistical Physics in order to obtain
an analytic expression for the generalization error as a function of the number of
examples presented during a training process. When systems with arbitrarily high-
dimensional continuous inputs are considered, this computation presents fundamental
challenges presented in this work. For the limiting cases of high and low formal
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training temperature, and under simplifying assumptions of low-dimensional discrete
(binary) inputs, exact results are obtained for the generalization capacity of such
a nonlinear system when learning nonlinear behavior. These results - the learning
curves - show no surprising features: a gradual, uniform and asymptotic convergence
to perfect learning is observed, which is qualitatively very similar to the performance
of a perceptron learning linear behavior. However, in the high temperature limit
the generalization decays linearly for small training set sizes, revealing qualitatively
different behavior than that seen in a linear system.

1.2 Research Questions

To summarize, this thesis focuses on the following problems:

Q1. How can Statistical Mechanics be applied to analyze the
learning behavior of nonlinear perceptrons?

Q2. What can be concluded qualitatively about the fundamental
learning behavior and generalizing ability of nonlinear perceptrons?

1.3 Thesis Outline

I begin by introducing the reader to the relevant mathematical concepts and relations
from the field of the Statistical Mechanics of Learning. I then proceed by introducing
the model for the nonlinear perceptron as well as the assumptions made throughout
the analysis. I then present in detail what results were obtained in answering the
research questions, as well as how these are arrived at. Following this, I provide an
extensive discussion on the challenges faced in further answering these questions,
as well as possible directions for future research. Finally, I summarize my main
conclusions.
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2 Theory

The present work applies a theoretical framework commonly known as the statistical
mechanics of off-line learning dynamics. This revolves around the application of
mathematical concepts from statistical mechanics in equilibrium, a branch of physics,
to systems from the field of AI. Specifically, this is applied to systems which ’learn’
a mapping between inputs and outputs, and which therefore form the basis for
an immense number of AI applications. The statistical mechanics of these systems
serves to provide fundamental understanding of the capacities of different architectures
of learning systems, and can often be solved exactly for simplified cases [2].

’Off-line learning’ in this context refers to the premise that whatever training process
is applied has already been concluded for a particular dataset. It therefore focuses
on the outcome of a training process, rather than the process of training. The latter
is referred to as on-line learning; examples of this are treated in Refs. 28–31. In
such analysis, non-equilibrium statistical mechanics may also be applied.

Here, I will explain the core concepts and methods required for understanding the
present work, both for readers with a physics background as well as readers with an
AI background. For a more complete review of this theory, see Refs. 32–34.

2.1 Phase Space and the Gibbs-Boltzmann distribution

In physics, phase space refers to the space of all possible configurations which define
a given (physical) system. In a scenario known as the canonical ensemble each such
configuration, or microstate, of the system is then associated with a certain energy,
which together with the temperature of the system determines the probability that
the system occupies this specific microstate after reaching an equilibrium situation.
In general, microstates with lower energy are favored by chance, as governed by
the Gibbs-Boltzmann distribution [35] for the given temperature. Here, the system
may be found in a particular configuration (or microstate, here labelled by i) with
a probability proportional to the Boltzmann factor:

pi ∝ exp(−βEi) (1)

Where Ei is the energy associated with this configuration. I use the conventional
shorthand β = 1/T , where T is the temperature (and units were chosen such that
Boltzmann’s constant equals 1). This distribution typically applies to equilibrium
situations wherever the lowest energy state is bounded from below. Note that in
some situations different statistics apply, though the reasoning remains the same:
configurations are associated with a certain probability determined by some distribution.
Analysis here restricts to the Gibbs-Boltzmann distribution.

As there is often a far greater number of possible microstates associated with higher
energy, in aggregate one is virtually guaranteed to find that the system tends to
occupy a state of an energy greater than the lowest possible energy. Intuitively, this
is why everything in this world is not frozen. Only in the extreme case where
the temperature tends to zero does chance (according to the Gibbs-Boltzmann
distribution) overwhelmingly favor the lowest possible energy, and only then will
we be guaranteed to find the system in a state with the lowest possible energy (the
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ground state). For convenience, this energy maybe (re)defined such that the ground
state has zero energy (E = 0).
A completely analogous phenomenon is seen in AI, when a system has been ’trained’
on a given set of training data, consisting of training examples (inputs) and training
labels (outputs). That is to say, the system has been presented with a set of input
data points in some input space, say RN , and some training algorithm has sought
to configure the parameters of the system such that the system’s output is equal
to the training example output. In other words, the system has been trained to
learn a mapping between inputs and outputs. We restrict ourselves to mappings to
a scalar RN → R. If we suppose that the system is capable of learning the mapping
(also known as a realizable rule) then it is easy to imagine that after training (at
zero temperature) only a proper subset of all possible configurations (microstates)
is eliminated, while any configuration which gives the correct output for all training
examples may still be arrived at with equal probability. We now observe that if the
degree of error is viewed as an analog of physical energy, this situation is exactly
analogous to the physics picture described above in the zero-temperature limit: only
the optimal states remain. For simplicity we assume that the training algorithm has
no bias towards any particular microstate, and the system is equally likely to occupy
a microstate with equal performance. This is a specific case of what is known as
the ergodic hypothesis, which facilitates a lot of statistical analysis. Here lay the
motivation for referring to the set of all possible configurations of the AI system
as ’phase space’. Following Ref. 32, we may refer to the subspace of phase space
which satisfies a given training set {xγ} of P examples (γ = 1, . . . , P ) as the ’version
space’, whose volume is denoted by Ω({xγ}).
Illustratively, we may consider a simple scenario with a learning system consisting
of a vector W ∈ RN which produces from input x ∈ RN the output

σ(x) = g(y) ≡ g(W · x+ b) (2)

where b is called the bias, g is known as the activation function (typically a sigmoid
function or similar) and y is called the activation. This system is known as the
perceptron, and it can be seen as the simplest possible neural network. More complex
neural networks are often no more than interconnected perceptrons. Therefore
perceptrons are the primary focus of a lot of fundamental analysis of neural networks.
For binary classification it is common to instead define the output

σ(x) = sgn (g(y)) ≡ sgn (g(W · x+ b)) (3)

where sgn is the sign function, defined by:

sgn(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

(4)

This system is then known as the binary perceptron.
Central to this analysis is how well a system performs for a given dataset. This is
quantified by the training error, which is the sum of the error function ϵ(W ,x) as
evaluated for each of the examples:
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(a) Some training examples are not yet
classified correctly.

(b) The training algorithm explores other
configurations and favors one with more
correct classifications.

Fig. 1: Illustration of how a training algorithm may proceed for a binary perceptron:
Each dot is an example. Its features are represented by its position. Incorrectly
classified dots contribute to the training error (5).

E(W ) =
P∑

γ=1

ϵ(W ,xγ) ≡
P∑

γ=1

1

2
(σt(x

γ)− σ(xγ))2 (5)

Where σt gives the target output, as defined by the training data. Here the popular
quadratic error function is chosen. Figures 1 illustrate how a binary perceptron
might learn from a dataset: training algorithms tend towards configurations which
classify more examples in accordance with the target labels, that is ’correctly’
(illustrated in blue).
Now if we assign to each possible perceptron weight vector W (that is, each point in
phase space) the training error which would result from it, we obtain a scalar field
in phase space known as the error landscape. For the simple case of the perceptron,
it is easy to see that a realizable rule must result in a convex error landscape.
It is then easy to imagine how a training algorithm may use the gradient of this
error landscape to arrive at the optimal configuration for the system: a method
known as gradient descent. A phenomenon analogous to gradient descent is found
naturally in physics, where forces (also proportional to the gradient of an energy
landscape) operate to reconfigure a system. When the temperature is non-zero,
however thermal noise is what allows the physical system to explore the states
with greater-than-minimal energy. It may be desirable to have a training algorithm
which mimics this behavior. This may, for instance, be realized by an algorithm
which updates the system step-by-step according to:

∂W

∂t
= −∇E(W ) + ηT (t) (6)

Where t is time, EW = and ηT (t) is some uncorrelated zero-mean noise term at a
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certain formal ”temperature” T defined by

⟨ηT i(t)ηTj(t
′)⟩ = 2Tδijδ(t− t′) (7)

This type of dynamics is identical in form to overdamped Langevin dynamics (or
Brownian dynamics), which in equilibrium is known to result in a Gibbs-Boltzmann
distribution. The analysis which follows relates to any training algorithm which
results in such a distribution; not exclusively to Langevin dynamics.
Many training algorithms applied in conventional learning systems (most notably
neural networks), are not designed to eliminate all of phase space besides version
space. Considerations such as overfitting, nonconvex error landscapes and noisy data
have motivated learning algorithms which tend to favor configurations (microstates)
which correctly label training examples, without totally excluding configurations
which do not. Situations where this is desirable then motivate the analysis of the
behavior of a learning system ’at some given temperature’.

2.2 Partition function

Normalizing the probabilities given by Eq. (1), we obtain a quantity also used in
the canonical ensemble in physics, called the partition function:

Z =

∫
exp(−βE(W ))dµ(W ) (8)

where again β = 1/T , integration runs over all of phase space, and dµ(W ) encodes
the capacity of the system to realize microstateW (often called the a priori measure
of W ). In words, the partition function is obtained by integrating the so-called
Boltzmann factor over all possible microstates. The partition function can be used
to obtain useful information about the expectation value of ’macroscopic’ variables,
such as the energy. We may use it to take ’thermal averages’ of quantities, denoted
by ⟨. . . ⟩T :

⟨X⟩T =
1

Z

∫
X exp (−βE(W )) dµ(W ) (9)

2.3 Student Teacher Scenario

The training data target outputs σt(x) in Eq. (5) are known as the teacher signal.
The system which is trained to learn from this signal is often called the student. The
behavior of the teacher signal defines the type of ’problem’ for which the student’s
performance is analyzed. This can in theory be used to compare the capacity of one
system architecture to imitate the behavior of another architecture.
Analysis is most straightforward and clarifying, however, when there exists a configuration
which has zero error (E = 0). This is clearly the case in scenarios where the student
and teacher have the same architecture, and only the configuration (microscate) of
the system parameters may vary. This is the scenario we consider in the present
work.
An intuitive picture of how this scenario functions is illustrated in Fig. 2. Conceptually,
the student teacher scenario for a binary perceptron can be compared to a physical
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Fig. 2: An intuitive picture of the student teacher scenario for the binary perceptron,
and an analogy to physics illustrating how the number of examples P , random
fluctuations with temperature T and the teacher perceptron Wt all affect the
configuration of student perceptron W . For simplicity the bias, see (2), is chosen
to equal 0.

scenario where P magnets (analogous to the P examples) with random positions
(analogous to random features) direct a compass needle (analogous to the student
weight vector). Meanwhile, random fluctuations shake the compass needle with an
intensity that is proportional to temperature T . All magnets are equally compelling
to the needle, and some unknown polarization direction (analogous to the teacher
vector) determines whether magnets face inward with their north pole or south pole
(analogous to a positive or negative target label respectively).

2.4 Quenched Disorder and Generalization Error

In the AI context, the partition function may be used to obtain an estimate of
the performance of the system on the given training set. Note that the partition
function is specific to the particular training data provided. Consider Fig. 2: clearly,
the behavior of the compass needle is affected by the particular randomly sampled
positions of the magnets. For fundamental research, one should average any quantity
of interest over all possible training datasets. This is known as averaging over the
quenched disorder, and denoted by ⟨. . . ⟩D:

⟨X⟩D ≡
∫

X

N∏
j

dµ(xj) (10)

Where the dµ(xj) term specifies the a priori measure of the example input’s jth
component, and reflects the nature of the dataset. For general analysis, each
component is often assumed to be Gaussian distributed, but we will also consider a
binary distribution of the input features.
An interesting quantity which can then be obtained is the training error per example,
given by:
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ϵt(T, P ) = P−1 ⟨⟨E(W )⟩T ⟩D (11)

An even more interesting quantity is the generalization error: this quantifies the
expected error of the system for a randomly sampled example. This sets it apart
from the training error, which averages only over those examples which happen to
be in the training set. Precisely, it is given by:

ϵg(T, P ) = ⟨⟨ϵ(W )⟩T ⟩D (12)

where

ϵ(W ) =

∫
ϵ(W ,x)dµ(x) (13)

is known as the generalization function, and this quantifies the performance of a
specific system configuration on randomly sampled input.
In other words, the generalization error is the expected error of the system when
presented with an arbitrary input, after being trained on a particular training dataset
of size P at temperature T , averaged over all possible such training datasets. The
generalization error is of great interest, as it quantifies the fundamental capacity of
a system to generalize a given rule from examples, in other words, to learn a rule.
In general, one may obtain the expected training error through the so-called free
energy F :

F (T, P ) = −T ⟨lnZ⟩D (14)

using that: (See e.g. Ref. 34)

ϵt =
1

P

∂(βF )

∂β
(15)

2.5 Interesting Limits

Clearly, thermal averaging is crucial in obtaining useful results, in particular the
quantity ⟨lnZ⟩T is crucial. In the general case, computation of the thermal average
may be carried out using the so-called replica trick, which may be rather involved
(See e.g. Ref. 2), and is in some cases non-solvable. Two simplifying limits are of
interest:
As mentioned, when the training temperature is T → 0, training ensures that only
those configurations where the error is lowest are allowed to occur. This scenario
gives qualitative insight into the capacity of the system to simply store information
provided. Analysis in this limit may use the quenched average of version space:

ΩP (Wt) = ⟨Ω(Wt, {xγ})⟩D (16)

where Wt denotes the configuration of the teacher system.
Alternatively, one may consider the limit T → ∞, β → 0, which has proven
useful in the qualitative investigation of various learning scenarios [2, 34]. A useful
approximation exists:

⟨lnZ⟩ ≈ ln⟨Z⟩ (17)
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This is known as the Annealed Approximation [36], and it allows us to focus on
evaluating the average partition function rather than evaluating the average log
partition function, which is generally far more difficult to compute. In the limit
T → ∞, this approximation becomes exact [6]. In analysis of this scenario, an
infinite amount of noise must be compensated with an infinite amount of training
data. We therefore define a quantity:

α = βP/N (18)

which can be seen as a properly scaled training set size [2]. As the training set
size then tends towards infinity, the generalization error and training error become
equivalent.
These limits both offer qualitative insight into the fundamental behavior of a system
in the case of either noiseless or very noisy training dynamics.

2.6 Activation Space

In the annealed approximation, then, the crucial quantities to compute are of a form
similar to:

⟨Z⟩D =

∫ P∏
γ=1

dµ(xγ)

∫
dµ(W ) exp(−βϵ(W ,xγ))

In Refs. 32 and 34 (see Appendix C) a conventional approach to evaluating this
quantity for the case of a perceptron is illustrated. First, it is assumed that all
examples are independently sampled and identically distributed (IID), which gives:

⟨Z⟩D =

∫
dµ(x)

∫
dµ(W ) exp(−Pβϵ(W ,x)) (19)

In a student teacher Scenario, we can write

ϵ(W ,x) =
1

2
(g(W · x)− g(W̃ · x))2

Where W̃ is the configuration of the teacher perceptron. A very popular approach is
then to transform the N -dimensional integral over x into a two-dimensional integral
over newly introduced auxiliary variables, say u = W · x and v = W̃ · x, which
equate to respectively the student and teacher activations (2). This is realized by
simply introducing dirac delta functions:

⟨Z⟩D =

∫
dµ(W )

∫ P∏
γ=1

duγdvγ exp

(
−β

1

2
(g(uγ)− g(vγ))

2

)
∫

dµ(xγ)δN(uγ −W · xγ)δN(vγ − W̃ · xγ)

(20)

The delta functions are written in integral form using

δN(z) =

∫
dzdẑ

2π
exp(iẑ · z) (21)
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Since we assume that examples x are IID and normally distributed, the integration
over input space

∫
dµ(x) can readily be carried out resulting in a Gaussian integral

in activation space.
As a corollary of Eq. (20), we may write:

ΩP (W̃ ) =

∫
dµ(W )

∫ P∏
γ=1

duγdvγθ(uγvγ)

∫
dµ(xγ)δN(uγ−W ·xγ)δN(vγ−W̃ ·xγ)

(22)
where the Heaviside function θ is known as the indicator function, indicating which
microstates are included in version space.
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3 Model

The present work analyses in general a class of systems which may be viewed as
a nonlinear extension of a perceptron. The perceptron is linear in the sense that
its activation is a linear combination of its inputs. This linear behavior forms the
basis of the functioning of virtually all Artificial Neural Networks (ANN). Recent
advances mentioned in the introduction pave the way for implementation of learning
systems which include multiplicative (nonlinear) interactions between the input
features. Most generally, the unit activation (2) could be a function of all arbitrarily
high-order interactions (products) of the features. However, for first results on the
behavior of such nonlinear systems, it should suffice to model them as a simple
quadratic extension of a perceptron, now with activation also determined by first-
order multiplicative interactions between the features, and output label given simply
as:

σ(x) = g(y) ≡ g(W · x+
N∑

j,k=1

ωjkxjxk) (23)

where the interaction matrix ω is an N ×N upper triangular matrix with zeros on
the diagonal, such that it models all multiplicative interactions between the inputs.
We shall refer to this system as a Multiplicative Perceptron (MP). For simplicity, as
we are only interested in the influence of the nonlinearity, we will restrict ourselves
to the simplified case of g(y) = y and do not consider a bias here. Similar to the
case of the perceptron, for binary classification we restrict to;

σ(x) = sgn(g(y)) = sgn(W · x+
N∑

j,k=1

ωjkxjxk) (24)

This shall be referred to as a binary MP or an MP classifier. The introduction
of multiplicative feature interactions fundamentally changes the intuition behind
classification: see Fig. 3 for an example of a classification boundary for N = 2.
It should be noted that this MP can be seen as a specific class of Support Vector
Machines (SVM), for which statistical mechanical analysis has been performed [37].
However, while SVM are often trained using a maximal stability algorithm, we
consider here a different class of training algorithms resulting in different dynamics
analysis.
For the binary MP, as well as for the familiar binary perceptron, only the ratios
between the configuration parameters are relevant to the system’s output. That is,
only the direction of a vector in phase space is relevant. In the case of the perceptron,
this is nicely illustrated in e.g. Ref. 32. Here, this motivates the convention
restricting analysis to spherical configurations, normalized to a magnitude of

√
N .

That is, analysis commonly restricts perceptrons to have weight vectors of magnitude
|W | =

√
N , so as to avoid degeneracy and still obtain qualitatively insightful results.

We will here extend this convention by imposing the restriction:

|W |2 +
N∑

j,k=1

ω2
jk = N (25)
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Fig. 3: A general picture of what the Binary Multiplicative Perceptron’s
classification boundary may look like for the case of N = 2. The hyperbolic shape
results in fundamentally different behavior than that of the Perceptron.

Examples with continuous features are conventionally modeled most generally as
vectors of IID components, sampled from a zero-mean, unit variance distribution.
That is:

⟨xµ
j ⟩ = 0, ⟨xµ

j x
ν
k⟩ = δj,kδµ,ν

We will assume these to be normally distributed, meaning:

dµ(x) =
N∏
j=1

dxj√
2π

e−x2
j/2 (26)

Another scenario to consider is that of strictly binary features. For ease of analysis,
we encode binary features as:

x ∈ {−1, 1}N (27)

Clearly, in this case there is only a finite number of possible binary inputs, and we
naturally suppose that the features follow a Bernoulli distribution [38] with p = 1/2.
We then see that integration over all of feature space becomes a summation:∫

. . . dµ(x) =
1

2N

∑
x

. . . (28)

where summation runs over all possible binary inputs. Illustratively, one may then
encode the behavior of a logical XOR gate as (N = 2):

σt(x) = −x1x2 (29)

Which will be used as the teacher system in later analysis, as it is a benchmark
example of nonlinear behavior which cannot be realized with a perceptron [25, 39].
Note that while the student teacher scenario for the MP, due to its inherent nonlinearity,
does not lend itself well to visualization or analogy with physics as in Fig. 2, the
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student teacher scenario remains an interesting case study, and functions identically
for the MP as it does for the perceptron.



Chapter 4 RESULTS 19

4 Results

Results were obtained for the binary MP in a particular student teacher scenario
(see section 2.3). For the case where the teacher is a logical XOR gate and features
are binary encoded as {−1, 1}, exact solutions for the generalization error exist for
both the high-temperature and the zero-temperature limit. In the case of N = 2,
the computation is tractable and illustrative.

4.1 High Temperature Limit

Firstly, we consider the T → ∞ limit, and apply the annealed approximation (17).
We therefore begin with writing the quenched average of the partition function as
a summation (28):

⟨Z⟩D =
1

4

∑
x1

. . .
1

4

∑
xP

dµ(W , ω) exp

(
−β

P∑
γ=1

1

2
(σs(x

γ)− σs(x
γ))2

)
(30)

We use that for binary outputs the error can be written as:

1

2
(σs(x)− σt(x))

2 = 2θ(−σs(x)σt(x)) (31)

where θ is the Heaviside step function. Furthermore, we use the fact that in the
high temperature limit, we also have P → ∞, and therefore we can, using Eq. (18),
replace the sum in the exponential (30) rewriting to:

⟨Z⟩D =

(
1

4

)P

4Pdµ(W , ω) exp

(
−α
∑
x

θ(−σs(x)σt(x))

)
(32)

In evaluating this integral, we use the description for the XOR gate teacher as in
Eq. (29). We use the fact that for the symmetric binary encoding (27) x2

1 = x2
2 = 1,

and expand the summation as:

exp

(
−α
∑
x

θ(−σs(x)σt(x))

)
= exp

(
−α
∑
x

θ(W1x2 +W2x1 + ω)

)
= exp

(
− α

[
θ(W1 +W2 + ω)

+θ(−W1 +W2 + ω)

+θ(W1 −W2 + ω)

+θ(−W1 −W2 + ω)
])

≡ exp (−α(A+B + C +D))

(33)
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Fig. 5: The partition function is obtained by integration of the probability-
per-microstate (Boltzmann factor) along circular slices of a sphere. Three

trigonometrically distinct cases exist for these circles: r < |ω|√
2
(red), |ω|√

2
< r < |ω|

(green), r > |ω| (blue). See Eqs. (34), (35).

(a) ω < 0 (b) ω > 0

Fig. 4: Areas of phase space with constant Boltzmann factors, divided by lines
depending on the value of ω. Colored arrows mark regions where the respective
Heaviside function (31) evaluates to 1, indicating that the respective example was
classified incorrectly. Hence, the number of arrows in a region indicate the number of
examples classified incorrectly by MP’s with configurations belonging to that region.

Each of the step functions now labeled A, B, C and D then indicate the error
corresponding to a specific microstate when presented with a specific example. For
a given value of ω, then, we find that we can view the value of each of the step
functions as separated by a line in (W1,W2)-coordinates. These lines effectively
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segment phase space into regions within which identical classifications are realized.
This allows for the evaluation of the integral using trigonometric arguments, as we
can use these linear boundaries to split up the integral over all spherical (25) MP
configurations into integration over separate regions of constant value. Figures 4a
and 4b illustrate schematically how for each point in phase space some number of the
step functions A, B, C and D equal 1, depending on separating lines, and how the
situation is geometrically different for positive ω and negative ω. Due to the spherical
configuration, each value of ω corresponds to a circle in (W1,W2)-coordinates, along
which integration can be carried out separately. Three qualitatively different cases
for the radii r of these circles can be distinguished, namely r < |ω|√

2
, ω|√

2
< r < |ω|,

and r > |ω|. This is illustrated in Fig. 5. A geometric argument, combined with
the fact that r =

√
2− ω2 (27) reveals we can write

⟨Z⟩ =
∫ 0

−
√
2

g−(ω)dω +

∫ √
2

0

g+(ω)dω (34)

where g± are the contribution to the partition function from microstates with
positive and negative values of ω respectively. For each value of ω, this is obtained
by integration along a circle (see Fig. 5) and is given as:

g±(ω) =


2
√
2πQ1±, for |ω| >

√
4
3√

2 arccos
(

|ω|√
4−2ω2

)
(8Q2± − 8Q1±) + 2

√
2πQ1±, for

√
4
3
> |ω| > 1

√
2 arccos

(
|ω|√
4−2ω2

)
(8Q3± − 8Q2±) +

√
2π (4Q2± − 2Q3±) , for 1 > |ω|

(35)
Where we refer to the constants Q1±, Q2±, Q3± as ’center integrand’, ’edge integrand’
and ’corner integrand’ respectively; these give the value of the integrand in the
regions indicated in Figs. 4. These values are determined by the number of training
examples which are classified incorrectly by microstates in the respective region, for
positive and negative values of ω respectively, see Fig. 5:

Q1− =exp (−α× 0) = 1

Q2− =exp (−α× 1)

Q3− =exp (−α× 2)

Q1+ =exp (−α× 4)

Q2+ =exp (−α× 3)

Q3+ =exp (−α× 2)

(36)

Integration is then performed in Wolfram Mathematica [40]. Using Eqs. (14) and
(15), and 1

P
∂
∂β

= 1
2

∂
∂α
, as well as the fact that in this limit ϵg → ϵt, we obtain a plot

of the generalization error, see Fig. 6. The plot characterizes the learning behavior
of a MP classifier when learning a nonlinear rule from binary examples in a very
noisy training process: a uniform and asymptotic decrease of discrepancy between
the behavior of the XOR gate and that of the student MP classifier is observed.
Specifically, the curve is characterized as the quotient of two sums of exponential
functions, given exactly in appendix B.
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Fig. 6: Generalization error ϵg, which in this limiting case with T → ∞ equals ϵt, see
Eqs. (12), (15), of the N = 2 binary examples MP classifier versus α (18), according
to both the analytic result obtained through the partition function (Fig. 5) and the
Monte Carlo Simulation (Error bars show standard deviations).

4.2 Zero Temperature Limit

For binary examples with T = 0 or β → ∞, the exact generalization error may be
arrived at through a different avenue than in the high T limit: For binary examples
we may write Eq. (12) as:

ϵg = ⟨1
4

∑
x

⟨ϵ(W , ω,x)⟩T ⟩D

=
1

2
⟨⟨
∑
x

θ(W1x2 +W2x1 + ω)⟩T ⟩D
(37)

where we used Eqs. (31) and (29). This thermal average is obtained by finding the
probability of the system occupying microstates in each of the individual regions
indicated in Figs. 4a, 4b, which depends on the Boltzmann factor of the microstate.
Let, for example, Q2+ denote the Boltzmann factor corresponding to any microstate
belonging to the region Q2 in the figure, for a positive value of ω (See Fig. 5). We
then multiply the probability of finding the system in any such microstate by the
respective generalization function (13), which is known for each of the regions.
Analysis is more involved than in the T → ∞ case because due to the small
training-set cardinality, we must consider the different possible scenarios for the
resulting Boltzmann factors, weighted by their respective probability. This proceeds
as follows: For an arbitrary example set {xγ}, computing the thermal average
amounts to integrating over version space as obtained for said example set. We
therefore define and compute a ’version-space-specific’ generalization error:
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ξ({xγ}) ≡ 2⟨
∑
x

θ(W1x2 +W2x1 + ω)⟩T

=
2

Ω({xγ})

(∫ 0

−
√
2

h−(ω)dω +

∫ √
2

0

h+(ω)dω

) (38)

Here h±(ω) equals the generalization function integrated over all microstates in
version space with a specific value of ω. The observation that

ϵ(W , ω) =



2× 0 if (W , ω) ∈ Q1−

2× 1/4 if (W , ω) ∈ Q2−

2× 1/2 if (W , ω) ∈ Q3−

2× 1 if (W , ω) ∈ Q1+

2× 3/4 if (W , ω) ∈ Q2+

2× 1/2 if (W , ω) ∈ Q3+

(39)

combined with the same geometric reasoning as in the T → ∞ case implies that:

h−(ω) =


0, for |ω| >

√
4
3√

2 arccos
(

|ω|√
4−2ω2

)
(2Q2−) , for

√
4
3
> |ω| > 1

√
2 arccos

(
|ω|√
4−2ω2

)
(4Q3− − 2Q2−) +

√
2π (Q2− −Q3−) , for 1 > |ω|

(40)
and

h+(ω) =


2
√
2πQ+, for |ω| >

√
4
3√

2 arccos
(

|ω|√
4−2ω2

)
(6Q2+ − 8Q1+) + 2

√
2πQ1+, for

√
4
3
> |ω| > 1

√
2 arccos

(
|ω|√
4−2ω2

)
(4Q3+ − 6Q2+) +

√
2π (3Q2+ −Q3+) , for 1 > |ω|

(41)
In order to find Ω({xγ}) ≡ Z, then, we perform the integral in Eq. (34), where
now the values (Boltzmann factors) of Q1±, Q2± and Q3± take values from 0 to 1,
indicating how much the of respective region is included in the version space.
Finally, in obtaining the quenched average of this thermal average we first observe
that for each point in version space we have:

P∏
γ=1

θ (−W1x
γ
2 −W2x

γ
1 − ω) = 1 (42)

which reflects the fact that any unique example may serve to eliminate a region
of phase space from version space. Now let the set of all possible example sets of
cardinality P be denoted by X ≡ {{xγ}Pγ=1}. The quenched average can then be
written as:
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ϵg =

(
1

4

)P ∑
{xγ}∈X

(
P∏

γ=1

[θ(−W1x
γ
2 −W2x

γ
1 − ω)] ξ({xγ})

)
(43)

We now note that

∑
{xγ}∈X

(
P∏

γ=1

[θ(−W1x
γ
2 −W2x

γ
1 − ω)]

)
=

[∑
x

θ(−W1x
γ
2 −W2x

γ
1 − ω)

]P
(44)

and we use that whenever A2 = A, B2 = B, etc. (As is the case when A and B are
Heaviside step functions):

[A+B + C +D]P = (A+B + C +D)× (I)

+ (AB +BD +BC + AC + AD + CD)× (II)

+ (ABC +BCD + CDA+DAB)× (III)

+ (ABCD)× (IV )

(45)

where

(I) ≡1

(II) ≡
P−1∑
j=1

(
P

j

)

(III) ≡
P−1∑
j=1

(
P

j

) j−1∑
k=1

(
j

k

)

(IV ) ≡
P−1∑
j=1

(
P

j

) j−1∑
k=1

(
j

k

) P−j−1∑
l=1

(
P − j

l

)
(46)

(See appendix A). If we then identify A, B, C and D with the step functions (42)
corresponding to examples x =

(
1
1

)
,
(−1

1

)
,
(

1
−1

)
,
(−1
−1

)
respectively, we can then use the

coefficients (46) to quantify the number of possible example sets resulting in each
possible version space. This leads to a natural and exhaustive classification of all
example sets into subsets, and therefore to the probability of each of the 5 scenarios
for the Boltzmann factors. Specifically:

• Q1− is included in version space for all example sets, regardless of the example
set. Furthermore:

1. For all example sets where A, B, C or D equals 1 (that is, in (I) number of
example sets), 3/4 Q2− regions, 2/4 Q3− regions, 2/4 Q3+ regions and 1/4 Q2+

region are included in version space.

→ Q1− = 1, Q2− = 3/4, Q3− = Q3+ = 1/2, Q2+ = 1/4, Q1+ = 0;
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2. For all example sets where AB, AC, CD or BD equals 1 (that is, in (II)
number of example sets), 2/4 Q2− regions, 1/4 Q3− region and 1/4 Q3+ region
are included.

→ Q1− = 1, Q2− = 2/4, Q3− = Q3+ = 1/4, Q2+ = Q1+ = 0;

3. For all example sets where AD or BC equals 1 (that is, in (II) number of
example sets), 2/4 Q2− regions are included

→ Q1− = 1, Q2− = 2/4, Q3− = Q3+ = Q2+ = Q1+ = 0;

4. For all example sets where ABC, BCD, CDA or DAB equals 1 (that is, in
(III) number of example sets), 1/4 Q2− region is included.

→ Q1− = 1, Q2− = 1/4, Q3− = Q3+ = Q2+ = Q1+ = 0;

5. For all example sets where ABCD equals 1 (that is, in (IV) number of example
sets), no further regions are included. In these cases, version space is restricted
to Q1−.

→ Q1− = 1, Q2− = Q3− = Q3+ = Q2+ = Q1+ = 0;

The expansion in Eq. (45) assumes P > 0, P ∈ Z. Only when P = 0 may Q1+ be
included in version space.
From this reasoning, we may now deduce the exact generalization error as:

ϵg =

(
1

4

)P

(4(I)ξ1 + 4(II)ξ2 + 2(II)ξ3 + 4(III)ξ4 + (IV)ξ5) (47)

where each ξ is defined as in Eq. (38) and to be computed with the above indicated
values of Q1±, Q2±, Q3± in Eqs. (40) and (41). The integration is then performed in
Wolfram Mathematica, resulting in the exact expression given in appendix C. The
result is evaluated for varying P and plotted in Fig. 7.

4.3 Monte Carlo Simulations

Demonstrating the validity of the analytical results obtained above, Monte Carlo
simulations of the training process were performed using a standard Metropolis-like
scheme [6, 41]. Simulations were performed for the low temperature extreme T = 0,
the high temperature of T = 1000 and for a relatively low formal temperature of
T = 1. Results are compared in Figs. 6 and 7.
Both for T → ∞ and for T = 0, the simulations proceeded as follows: The student
was initialized to a random spherical configuration and a set of randomly sampled
binary N = 2 examples of desired cardinality was generated. Training error is
computed, and then in each Monte Carlo Step (MCS), Gaussian noise was added
to the 3-vector consisting of W and ω, before normalizing the configuration to a
spherical one again. Hereafter, the change in training energy ∆E resulting from
this modification in configuration is computed, and the modification is accepted
with a probability of min{1, exp(−β∆E)}. The variance of the Gaussian noise is
constant throughout each simulation, and is chosen such that approximately half of
all modifications are accepted (except in the limit T = 0, in which no modification
from the optimal configuration is allowed).
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Fig. 7: Generalization error (12) of the N = 2 binary features MP classifier against
P at T = 0. Both analytical results and Monte Carlo simulation results shown
(Standard deviations also shown). Note the discrepancy for P = 0 results from the
assumption P > 0 in Eq. (45).

For each configuration, generalization error is readily computed by simply averaging
the error generated for each of the 4 possible binary examples for N = 2. As a
consequence, there are only 4 available levels which the generalization error may
occupy for any given configuration, which is reflected in a square-step-like graph
of ϵg versus MCS (See for instance Fig. 10). However, we average over all MCS,
revealing the typical behavior and the interesting trends.
Due to the small size of the system, only 500 MCS were performed, and the first 100
MCS were discarded for equilibration before obtaining the average generalization
errors. Results were averaged over 30 simulations for T = 1000 and T = 1, and 200
simulations for T = 0. Excellent agreement with analytic results is observed in the
high and low temperature extremes.
The Monte Carlo simulations were also used to obtain the evolution of student
ω versus α in the high-temperature limit (Fig. 11, appendix D). Results are as
expected and show ω converging asymptotically.
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5 Discussion/Outlook

5.1 Challenges of Nonlinearity

In analyzing the statistical mechanics of the MP, it has become clear that the
nonlinearities pose a great obstacle to obtaining exact, scalable results for the
partition function, and by extent the generalization error. The results provided
here have been obtained by considering only the heavily simplified scenario of low
N and binary features. Several attempts were made to evaluate the version space
in the T = 0 limit following a procedure of integration over activation space.
This procedure is the field standard for analysis of conventional ANN (See e.g.
Refs. 32, 34), where transformation into activation space readily reveals how the
performance of the system is governed by a small number of order parameters. In
the case of ANN, these order parameters typically quantify the alignment of the
configurations of the student and teacher, and it is then not difficult to imagine how
they determine the generalization error through geometric relations.
However, for the multiplicative perceptron we have failed to obtain an exact expression
in this way due to the nonlinearity of the transformation to activation space. To
illustrate the obstacles, the calculation is outlined here:
We adapt Eq. (20) to the case of the MP, and begin with:

Ωp = ⟨Ω({xγ}, W̃ , ω̃)⟩D =

∫
dµ(W , ω)

∫ p∏
dudvθ(uv)

×⟨δ(u−W · x−
N∑

j,k=1

ωjkxjxk)

×δ(v − W̃ · x−
N∑

j,k=1

ω̃jkxjxk)⟩D

(48)

Where W̃ , ω̃ are the configuration of the teacher, which means that u and v are the
student and teacher activation respectively. We then rewrite using Eq. (21) to:

Ωp =

∫
dµ(W , ω)

∫ p∏ dudû

2π

dvdv̂

2π
θ(uv)eiûu+iv̂v

×
∫

dµ(x) exp

(
−i(W û+ W̃ v̂) · x− i

N∑
j,k=1

(ωjkû+ ω̃jkv̂)xjxk

) (49)

Following the convenient and conventional scenario we now assume Eq. (26) applied,
and obtain the following N -dimensional Gaussian integral:

Ωp =

∫
dµ(W , ω)

∫ p∏ dudû

2π

dvdv̂

2π
θ(uv)eiûu+iv̂v

×
∫

dµ(x) exp

(
−i(W û+ W̃ v̂) · x− i

N∑
j,k=1

(ωjkû+ ω̃jkv̂)xjxk

) (50)
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Evaluating this integral requires finding the inverse of

Aij =

{
1, for i = j
2i√
N
(ωijû+ ω̃ij v̂), for i ̸= j

(51)

which can in principle be done (if we redefine ω and ω̃ to be symmetric rather than
upper triangular), but the result could not be written in a usable form and the
procedure would not be scalable to higher N . Moreover, the matrix is not always
invertible, and the singular behavior would further complicate computation.
In search for a more feasible approach, another mathematical trick was attempted:
The choice evaluate version space by integrating over activation space can be thought
of as a method of factoring out the complexity of the transformation which the model
imposes on the input features, thus yielding in activation space a very straightforward
integral in uγ, vγ (22). One may consider repeating a similar transformation prior
to evaluating the Gaussian integral over the feature space, and writing:

Ωp(W̃ , ω̃) =

∫
dµ(W , ω)

[ ∫ N∏
j=1

(
ex

2
j/2dxj√
2π

)∫
du1dv1du2dv2θ (u1v1)

δ (u1 − (W + u2) · x) δ
(
v1 − (W̃ + v2) · x

)
δN

(
u2 −

N∑
j=1

xjωj

)
δN

(
v2 −

N∑
j=1

xjω̃j

)]p
(52)

where we have now introduced auxiliary variables u1, v1,u2,v2 (where the latter 2
are N -vectors) instead of u, v.
ωj ≡ (ωj1, . . . , ωjN)

T

and we assumed for demonstrative purposes that ω is symmetric and thus

N∑
j=1

xjωj ≡ ωTx = ωx

Now one might attempt following the procedure of performing the Gaussian integral
in feature space, and then evaluating the remaining Gaussian integrals in all the
auxiliary variables. Problematically, however, after integrating out one of the auxiliary
variables the remaining integral is no longer of Gaussian form. In fact, no method
known to us exists for evaluating the integral which results. The sought after
expression for the version space of the MP for general N and continuous features
remains elusive. More generally, the same applies to the quenched average partition
function and any function thereof. Without such expressions, the application of the
(offline) statistical mechanical framework is hindered altogether.
Statistical mechanical analysis of nonlinear classifiers is not a wholly novel idea:
If a bias is included in the activation (23) the MP is equivalent to a Support
Vector Machine (SVM) with a quadratic kernel. As mentioned, an analysis of the
statistical mechanics of an SVM with a generic kernel was presented in [37], however
the premise here is that an optimal stability training algorithm is used, which is
fundamentally different than the situation treated in the present work. Hence, the
answers and methods we seek in this work are not found there.
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Fig. 8: A plot of Gaussian examples transformed into activation space (20) for a
student and teacher perceptron, illustrating the 2-dimensional Normal distributed
nature. In the case of perfect alignment between student and teacher, these points
lay along the rising diagonal. Illustratively, for T = 0, all points in the upper-right
and lower-left quarter contribute towards the likelihood that this configuration is
included in version space.

5.1.1 The distribution of the activation

In order to further understand the complexity of obtaining the statistical mechanical
behavior of this nonlinear system, let us look into the nature of the integral which
would result in version space and contrast the situations in the case of a perceptron
and an MP.

In the case of the perceptron, the fact that activation is a linear combination of
the features allows for a convenient application of the central limit theorem (CLT)
to conclude that regardless of the exact nature of the feature’s distributions, the
activation will follow a distribution which approaches a Normal distribution for
large N . Moreover this holds both for the student and the teacher perceptron,
which means that distribution in activation space (20) is a two-dimensional Normal
distribution, thus determined by a small number of order parameters (specifically
the dot product between student and teacher’s respective weight vectors) resulting
in a situation as illustrated in Fig. 8. This is widely utilized in the treatment of the
perceptron, see e.g. Refs. 2, 32, 34.

Upon failing to evaluate the integral for the MP directly, the nature of this distribution
was investigated for the case of the MP. Point clouds were plotted as a first inquiry
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(a) Some arbitrary N = 2 student with
XOR-like teacher (29).

(b) Some arbitrary MP student and teacher
with N = 8.

Fig. 9: Gaussian examples transformed to activation space (20) for illustrative MP
scenarios. Note the asymmetry and non-Gaussianity of the distributions.

into the nature of the distribution in activation space, and in the hope of identifying
order parameters to describe this distribution. For small N, the non-gaussianity of
the distribution in activation space is immediately evident, even in cases where the
features were normally distributed (see Fig. 9a). For larger N , this non-gaussianity
persists (Fig. 9b), continuing to complicate analysis further.

One might argue that for large N the activation must converge towards a normal
distribution, as it is a summation of random variables. However we will see that
it does not, as the random variables which are summed to arrive at the activation
are in fact not independent, meaning that the CLT does not apply. More generally,
the mutual dependence of the summand random variables means that we cannot
construct the distribution of the activation even by construction through a cumulant
expansion or an Edgeworth series [42]. Perhaps a more detailed treatment of this
probability-theoretic approach accounting for the mutual dependence between the
summand random variables may give clues as to the large-N behavior of the partition
function, however it seems unlikely that exact results for the distribution can be
obtained at all, as summations of χ2 random variables follow no known distribution
[43]. Further analysis on the nature of this distribution could be very insightful, but
this is beyond the scope of the present work.

5.2 Discussion of results

The analytic results obtained show a convincing correspondence with simulation
data, affirming the validity of our work. Generalization error is observed to tend
asymptotically to zero with increasing α, qualitatively very similar to the performance
of a perceptron in a linear student teacher scenario. However, the curve of the
generalization error is characterized as a quotient of exponential functions, resulting
in qualitatively different behavior than simple exponential decay as the curve approximates
a straight line for low α. The spread of the generalization error across different Monte
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Carlo simulations is substantial, revealing that while the expected behavior of the
MP is captured well by the exact results, an arbitrary MP’s performance may not
be assumed to conform to this behavior. This is also in part a consequence of the
low N , preventing self-averaging behavior which may be seen in higher-dimensional
systems. Fig. 6 also shows how the generalization error behaves differently for lower
temperatures (T = 1), illustrating that only qualitative observations results are of
interest.

While similar behavior is observed in the limit of T = 0, the generalization error
in this limit is instead characterized by a sum of simple exponential functions in P .
Though the analytic expression is invalid for P = 0, it is interesting to see how (as
also suggested by the MC simulations) the line-approximating behavior seen in the
T → ∞ limit is absent here, suggesting fundamentally different generalizing behavior
in both limits. It is further worth noting that the spread of the generalization error
across the MC simulations are substantially greater in this case than in the T → ∞
limit, suggesting a higher level of dependence on the stochasticity of the examples,
especially around the region 2 ≤ P ≤ 6. One explanation could be that for a small
number of binary features it is largely a matter of chance whether the same example
is presented more than once, which would leave version space unaffected. This is
in line with the low standard deviation at P = 1. This is then an artifact of the
simplifications imposed, and does not pertain to the nonlinearity of the system.

The heavy degree of simplification which was necessary in order to obtain exact
results limits the applicability of these results. The results were obtained only
for binary features. This bypassed the analytical challenges introduced by the
nonlinearity, as it replaced nonlinear integrals with summations which could be
performed step-by-step. However, it is not proven that the qualitative generalizing
behavior revealed in our results are also valid for the case of continuous features,
nor in the case of large N ; the fundamental scalability of the MP is therefore still
unconfirmed. Additionally, it should be noted that while existing literature on off-
line training dynamics typically also averages the partition function over all possible
teacher configurations we have only considered the illustrative XOR-gate teacher in
our results, further limiting the applicability; the initial linear decay in generalization
error in the high temperature limit (Fig. 6) may hint at a fundamentally different
type of generalizing behavior to be expected when learning with a binary MP, though
it has only been confirmed for this nonlinear low-dimensional teacher with binary
examples. It may therefore also be an artifact of the low-dimensionality combined
with the binary features, or be specific to the XOR gate teacher.

Regardless, no further surprising features were found in the learning behavior of the
MP classifier under these simplifications. This suggests that it may be sensible to
consider MP-like systems such as dendritic neural networks or in-materio systems
in practical applications involving nonlinear behavior, although further research is
certainly needed.

5.3 Future research

There are many possible future steps in the investigation of the performance of
nonlinear extensions of perceptrons. First, it is possible to perform a similar computation
as presented here for binary features for other values of N as well as a larger discrete
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set of allowed feature values (rather than just binary features) and other types
of teacher configurations. However, the complexity quickly becomes prohibitively
impractical. Ideally, perhaps different mathematical avenues may shed light onto
the computation of the partition function for continuous (Gaussian) features and/or
arbitrary N . For instance, perhaps light can be shed on this by considering the
MP as a regular perceptron where the dataset is considered to be structured in
some way that is determined by the teacher’s configuration, as described in Ref.
44. In any case, if such a method is discovered, analysis may move beyond the low
and high temperature limits, and treat the case of arbitrary T , perhaps through
application of the replica trick (see e.g. Ref. 34). Further, analysis may evolve
towards higher-order nonlinear interactions between features, rather than just the
quadratic interactions considered here.
Besides this, the prior distribution of the configurations has been assumed spherical
throughout the present work. This has served to explore fundamentally the influence
of nonlinearity on the process of statistical mechanical analysis. Yet this, too, may be
later extended to a more specific model of the system at hand: the dendritic neural
networks would accurately be modeled very differently than in-materio systems, and
this would be reflected in this prior distribution.
Another possibility is to consider the on-line training of the MP instead of the off-line
training. Throughout the present work we have assumed that some suitable training
algorithm exists resulting in a Gibbs-Boltzmann (or some other) distribution, yet
much remains unclear about how one may go about training the systems we here
model as an MP. For instance, Ref. 19 points out that the conventional backpropagation
algorithm is not suited for dendritic neural networks in many cases and applies
different training algorithms instead. In the case of in-materio systems, an evolutionary
algorithm has been applied [25] and the possibility of applying gradient descent
has been proposed [24]. The choice of training method will strongly affect the
performance of the model, yet little fundamental understanding of this exists. Statistical
mechanics of on-line training may help inform this choice.
A more realistic next step may be to compare the results obtained here with analogs
for other types of systems capable of performing the same task. For instance, a
simple 2-layer neural network with biases may already realize XOR-gate behavior;
generalization error performance may be compared between the MP and such ANN
to further explore the advantages and disadvantages of either. Alternatively the
influence of including a bias in the MP model may reveal interesting behavior.
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6 Conclusion

This work has explored the possibilities for applying the statistical mechanics of
learning to gain insight into the behavior of nonlinear extensions of the perceptron.
We have sought an exact expression for the generalizing behavior of a multiplicative
perceptron in the student teacher scenario. Attempts were made to adapt to the
system of interest the mathematical approach of obtaining the partition function
by considering integration over respectively the student- and teacher activation.
However, the nonlinearity resulted in an integral which could not be evaluated.
Neither did the analysis yield a natural set of order parameters describing the
system’s behavior. Further attempts to obtain insight into the nature of the partition
function and any order parameters governing it were made by visualizing the two-
dimensional distribution of the student- and teacher activations. This illustrated the
difficulty of the analysis, however no conclusions could be drawn from this either.
Finally, a simplified case where only binary two-dimensional examples following
logical XOR gate behavior were considered did yield an exact expression for the
partition function and generalization error, both in the limit of high and low (formal)
temperature. The resulting learning curve in the high temperature limit is characterized
as the quotient of exponential functions, while the curve for the low temperature
limit is characterized as a sum of exponential functions. The results highlight
the complexity of analysis on multiplicative perceptrons subject to mean-squared
error, and illustrate the need for different mathematical techniques in order to
obtain more general results. Yet, a first result was obtained as to the generalizing
behavior of such nonlinear systems, and this offers a means of fundamentally and
qualitatively comparing the performance of systems which can be described using the
multiplicative perceptron (such as dendritic neural networks and in-materio systems)
and other architectures such as multilayer neural networks in certain scenarios.
Further, the initial linear decay in the generalization error of the system when
learning this nonlinear rule is qualitatively different than that observed for a linear
system learning a linear rule, hinting at fundamental difficulties in learning nonlinear
behavior based on mean-squared error. This may help motivate further research into
the systems which may be modeled as a multiplicative perceptron.
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Appendices

A Derivation of coefficients for different scenarios for version
space

The coefficients presented in Eqs. 45 and 46 were derived as follows:
We begin with the binomial theorem, which can be stated as:

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k (53)

It then follows that whenever P ≥ 1:

[A+B +C +D]P =
P∑

j=0

(
P

j

)( j∑
k=0

(
j

k

)
AkBj−k

)(
P−j∑
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(
P − j

l

)
C lDP−j−l

)
(54)

We now use the fact that An≥1 = A, A0 = 1 (and the same holds for B, C and D)
to rewrite Eq. 54 into qualitatively different terms as:

=
P∑
l=0

(
P

l

)
C lDP−l

+
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(
P

l

)
AlBP−l

+
P−1∑
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(
P

j

)( j∑
k=0

(
j

k

)
AkBj−k

)(
P−j∑
l=0

(
P − j

l

)
C lDP−j−l

) (55)

This step of isolating and simplifying summand terms is repeated until the coefficients
in Eq. 46 are obtained.
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B Exact expression for ϵg for N = 2 binary features in the
T → ∞ limit

The full expression for the generalization error plotted in Fig. 6 is included here for
completeness. Note the decimal numbers are rounded values of exact expressions,
meant to make character of the expression more readable:

ϵg(α) =
5.44e−4α + 6.62e−3α + 10.87e−2α + 2.21e−α

2.71 + 2.71e−4α + 4.41e−3α + 10.87e−2α + 4.41e−α
(56)

For the very interested reader, the exact expression is given as:

Where ’Zann’ is the (annealed) partition function as computed following Eq. 34.
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C Exact expression for ϵg for N = 2 binary features in the
T = 0 limit

The full expression for the generalization error ϵg plotted in Fig. 7 is a sum of
exponential functions in P , and it is given exactly as:
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D Monte Carlo simulations: Evolution of ω versus α

Fig. 10: Generalization error ϵg (approximately equal to the training error per
example ϵt) throughout the steps of a single Monte Carlo simulation at high
temperature.

In all MC simulations performed, only 4 levels of energy (training error) were
available, due to the low-dimensional and discrete nature of the examples. For
a single MC simulation, this resulted in step-like transitions in the energy, as
illustrated in Fig. 10.

Further MC simulations were performed for the N = 2 binary features MP classifier
and the evolution of ω was recorded (Fig. 11). This shows how the student gradually
learns to become more nonlinear. Note how ω stabilizes before reaching the teacher’s
value of −1, as perfect classifying behavior may already be reached sooner due to
the discrete set of possible examples. The apparent peak around α = 1.5 seems
incidental and falls well within the standard deviation. The plot shows no further
surprising features, though it nicely illustrates the gradual way in which nonlinear
rules may be learned.
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Fig. 11: Nonlinear interaction parameter ω of the student N = 2 binary features
MP classifier versus α (Eq. 18), according to Monte Carlo Simulation (Standard
deviations also shown).

The python and Mathematica source code generating all simulations, plots and
analytic results can be found at https://github.com/Ushwald/MasterThesisCode.

https://github.com/Ushwald/MasterThesisCode
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