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ABSTRACT
Many agree that COVID measures are necessary for reducing pressure on our health sys-
tem. However, they have dramatic social and economic downsides. One of the measures
in the Netherlands is the visitors measure (bezoekersmaatregel), with which the government
advises receiving no more than a maximum number of visitors per day. The intended effect
is social distancing, which directly opposes the need for many to experience social contact.
For young adults, especially those living alone, social contact is crucial for making friends,
building a network and general well-being. Many young adults experience mental health
issues resulting from a lack of social contact. Consequently, support and compliance for the
visitors measure have been decreasing in the period March 2020–February 2022.

This thesis presents an agent-based model developed to explore this case. More specif-
ically, such a model is used to study the interaction between the need to experience social
contact and the support base for the visitors measure. Agent-based modelling can be used
to study the emergence of macro-level behaviour of a population as a result of changes in
micro-level characteristics in individuals, and to study changes in individual behaviour re-
sulting from changes to the environment. In our case, we limit the agents allowed visitors
per day, to study the effect of this measure on the amount of contact and the support for the
visitors measure.

The decision-making mechanism of the agents is mainly structured by the HUMAT inte-
grated framework: a cognitive framework based on social scientific theory in which agents
determine their behaviour on the basis of satisfying different needs. Potentially, some of
their needs are conflicting: agents, on the one hand, have the experiential need to experience
social interaction with others, but on the other hand have the values need to contribute to
general health by following the visitors measure, thereby refraining from social interaction.
Moreover, agents have an opinion on the visitors measure, which represents their support.
Agents have the social need to belong to their social group, with regards to these opinions.
Interaction between agents leads to opinion-influencing effects. Data from RIVM (National
Institute for Public Health and the Environment) surveys on the support for the visitors
measure is used to initialize the opinions of the agents, such that the opinions of the agent
population resemble those of the Dutch population.

Simulations of the model are used to study the change in efficacy and support for dif-
ferent policies, varying the strength of the visitors measure. Experiments are performed to
study behaviour in both single HUMAT populations, using the RIVM data for initialization
of opinions, and in more general patterns, considering aggregated behaviour of multiple
HUMAT populations.

Results show that decreasing the allowed number of visitors leads to a lower total amount
of contact, but also to a lower support base for the measure. Interestingly, for the strictest
visitors measures, with the fewest allowed daily visitors, the support base is increasingly
lower, while the intended effect on lowering the total amount of contact is relatively little.

We conclude that there exists a trade-off between efficacy and support for the visitors
measure. Stricter measures are initially effective in reducing numbers of contact, but the
effect stagnates, while support does continue to decrease. A sweet spot may exist in which
the policy is effective while maintaining general acceptance.
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1 | INTRODUCTION

At the moment of writing this thesis, the world is experiencing the COVID-19 pandemic, the
biggest public health threat since the second world war (Sample, December 2020). In order
to battle the spreading of the coronavirus, governments are taking fierce measures to prevent
humans from coming into contact with each other, leading to a lower number of infections.
Lockdown measures such as curfew and visitor limitations heavily restrict the freedom of
citizens. The main goal of these measures is to reduce pressure on healthcare, in hospitals
and nursing homes, such that healthcare remains accessible to those in need.

1.1 Problem description

Although many agree social-distancing measures are necessary in order to prevent the spread-
ing of the virus, unfortunately, they have dramatic social and economic downsides. For
many human beings, the intended effect of avoiding contact directly opposes their need to
experience social contact. Having the focus mainly on healthcare and protecting people at
risk comes at the expense of other factors. A result of prolonging the measures is that it leads
to a growing impact on mental health. Leaving the house and coming into contact with
friends leads to a positive effect on mental well-being, due to more experienced variation
(Gloster et al., 2021, p. 15). Hence, curtailing this possibility could have the opposite effect.

One of the groups for which the measures are difficult is young adults. According to
Lifelines research, in February 2021 the Northern-Dutch population graded the quality of
their life with a 6.9 on average, whereas during the summer period in 2020 this was a 7.7.
For young adults, this grade has dropped to a 6.0, an all-time low during the crisis (Lifelines,
February 2021). Among other age groups, young adults mostly long for social contact, mak-
ing friends and building their network.1 With study activities being mostly online and other
forms of contact such as sports and associations not being possible, this group experiences
problems such as stress, depression, loneliness and concentration problems. On top of that,
many young adults are losing their jobs and are unable to find work or internships. The
uncertainty that the pandemic brings with respect to their future also contributes negatively
to their mental health. Moreover, as many students live in small rooms and dorms, with
typically no garden or balcony, curfew is extra tough. This holds especially for young adults
living on their own, with no roommates and the reduced possibilities for social contact. The
feeling of loneliness and isolation are substantially stronger in individuals living alone, with
this effect being the strongest in the ages between 18 and 30 (Mc Intyre et al., 2021). In the

1Age groups 5-9, 10-19 and 20-29 have the highest mean number of contacts outside of COVID times, accord-
ing to Backer et al. (2020, p. 4).
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Chapter 1. Introduction 1.2. Research Questions

same small room, they have to sleep, study, work, eat and spend their spare time. Having
the obligation to remain in the same room increases mental health problems even further.

Research done by 113 suicide prevention has shown that the suicide rate for the age
group up to 30 years has increased by 15% in 2021 (CANS, January 2022). Though it’s not
certain, it is highly likely that the corona measures have influenced this increase. Many of the
measures directly affect domains that are very important to young adults in this age group,
such as having contacts with others, forming friendships, discovering the world and future
perspective. Moreover, the research by 113 states that the increase in suicide is only one tip
of the iceberg. Young adults have reported twice as many mental complaints than other age
groups during lockdowns, such as increased tiredness, gloom and loss of perspective. A
few months after the lockdowns have ended, they still report one and a half times as many
mental complaints. Recovering from these complaints take time, and for some young adults,
problems start stacking up if the next lockdown begins before they had the chance to recover.

As a consequence of these complaints, the support for the measures is decreasing. An in-
creasing amount of young adults choose not to follow measures in favour of satisfying their
needs for social contact, for example by meeting up with more than the allowed number of
visitors per day.

In this project, we aim to model the interaction between the need to experience social
contact and the support base for the corona measures. Specifically, we focus on the visitors
measure, which is an advice to receive no more than a maximum number of visitors per day.
We aim to create a multi-agent simulation in which the dynamics between the support for the
Dutch COVID visitors measure and the need for social contact can be studied. The agents
represent a group of young adults, who live on their own and have different conflicting
needs. On the one hand they have the need to experience social contact and meet friends, but
on the other they want to adhere to the visitors measure, which limits the allowed number
of visitors per day. Using the model, we hope to explore how the efficacy of and the support
base for this measure changes over time. Survey data from the Dutch National Institute for
Public Health and the Environment (RIVM) on the support for these measures can be used
to initialize the agent population with, such that the distribution of the agents’ opinions
resembles the opinions of the participants. Interestingly, agent-based simulations can play
a crucial role in policy-making during a pandemic, as they have the advantage of studying
policy without dealing with the dangers that the pandemic brings. Instead, persons are
represented by autonomously acting digital agents, acting according to their mental state
and needs (Wooldridge, 2009).

1.2 Research Questions

Given the described problem, there are two broad research questions that arise. Firstly, we
wonder whether it is possible to create a simulation, in which we capture the main elements
of the interaction between the support for the Dutch COVID visitors measure and the need
for social contact in an agent-based model. Secondly, we want to know what we could learn
from such a model.

1. Can we create an agent-based model in which the interaction between the support for the Dutch
COVID visitors measure and the need for social contact can be explored?

5
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(a) Is the HUMAT framework (Antosz et al., 2019) a suitable cognitive framework to model
different agent needs and decision making for this case?

(b) To which extent can this model realistically capture the dynamics in this interaction?

(c) Is the data from RIVM surveys2 sufficient to initialize the HUMATs’ opinions with?

2. What can an agent-based model in which the interaction between the support for the Dutch
COVID visitors measure and the need for social contact is modelled teach us?

(a) How does the support for the visitors measure change as a result of the strictness of the
measure?

(b) How does the amount of social interaction change as a result of the strictness of the visitors
measure?

1.3 Scientific Relevance for Artificial Intelligence

The social relevance of this project comes from the fact that models, such as the one pro-
posed, help with better understanding the complex dynamics that play a role within the
interaction between mental health and COVID measures. Model results could then provide
insights with regards to the most suitable policy, taking into account both physical health
(by COVID-measures, limiting the spread of the virus) and mental health (by fine-tuning the
same measures, limiting mental health dissatisfaction). Moreover, the model could help with
understanding the societal factors that play a role in human decision making with regards
to adhering to COVID measures.

On the other hand, applying ABM to specific cases, such as this topic, will contribute
to the field of ABM and AI as a whole. ABM are relatively easy to understand, as they are
mostly visual and one does not need to be a programmer to see the effects. This benefits
the use of ABM for a better understanding of such processes in society. Moreover, ABM are
always abstractions of real-life phenomena. By parameterizing the model using empirical
data, we can learn which aspects are and which aren’t important to include in such abstrac-
tions. Also, the use of theoretically grounded ABM is a relatively new development. This
research contributes to the use of integrating a cognitive framework into ABM.

1.4 Thesis structure

The structure of this thesis is as follows: Chapter 2 describes the theoretical background and
the foundation on which the model is built, concerning the field of agent-based modelling
and its development from simple models to dynamical integrated models, theory on indi-
vidual decision-making making and social influence and the HUMAT framework. Chapter
3 presents the model that is developed for this thesis, describing the implementation of the
different algorithmic steps and model choices. In Chapter 4, a number of experiments that
were performed with the model are discussed, along with their results. Finally, in Chapter
5, the results are interpreted and the research questions are discussed, followed by some
suggestions and directions for future work and an overall conclusion.

2see https://www.rivm.nl/gedragsonderzoek/maatregelen-welbevinden/draagvlak
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2 | THEORETICAL BACKGROUND

This chapter discusses the theoretical background on which the model is built. It describes
the foundations for the model, specifically discussing the field of agent-based modelling and
its development from relatively simple models with simple rules to dynamical integrated
models and social simulations. Moreover, some theory on individual decision making, social
influence and models concerning social influence is reviewed. Furthermore, the architecture
to which the model is mainly applied - the HUMAT framework - is discussed. This chapter
aims to lay the foundation for the model, which will be discussed in Chapter 3.

2.1 Agent-based modelling

Agent-based modelling (ABM) concerns the field researching computational models that
simulate an environment in which computational elements, also known as agents, can in-
teract with other agents and the environment. In these types of models, one of the goals
researchers have is to investigate the effects of a complex system at the macro-level emerg-
ing from the behaviour of individual computational agents at the micro-level (Gilbert, 1995).
Simultaneously, complexity at the macro-level can influence processes at the micro-level, a
process known as downward causation (Campbell, 1974), for instance, where a change at
the level of individuals is triggered by changes in the environment. Studying these phe-
nomena in agent-based simulations can lead to a better understanding of social processes
(Epstein, 1999). The process of emergence is also known as self-organization. Increasing num-
bers of complex phenomena are conceived as self-organizing networks, in which groups of
interacting agents evolve to complex, intelligent and adaptive systems. Consequently, this
conception allows researchers to address some of the most fundamental issues involving
actions, intentions and environments (Heylighen, 2011).

Self-organization is visible in many real-life phenomena, hence is studied broadly within
ABM. In this type of model, the design is mostly aimed at the macro-levels of the simulation,
such that the agents do not necessarily have to be the most intelligent. Here it suffices to de-
sign agents with the level of complexity needed for showing the studied emergent behaviour.
Hence, these simulations typically involve large numbers of relatively uniform agents, with
rather simple rules. Agent simulations are applied to many different domains, such as social
and ecological sciences. Examples include simulations of the environment, such as dispersal
of seeds (Kubo et al., 1996) and habitat destruction (Bascompte & Sole, 1996) and simulations
regarding animals, such as interaction and selection between competitive species of organ-
isms (Johnson & Seinen, 2002; Szabó & Czárán, 2001), fish school shapes and transitions
(Hemelrijk & Hildenbrandt, 2008; Tunstrom et al., 2013), predator and prey-escape strategies
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(Nishimura, 2002; Parrish, 1993; Zheng et al., 2005; Olberg et al., 2000).
Several sub-fields model simulations of human behaviour and the emergent phenom-

ena. Social simulations primarily focus on social processes in humans, studying how individ-
ual human behaviour leads to changes in networks and communities and how individuals
respond to changes in an environment. In this type of simulation, human beings are repre-
sented by agents, interacting within networks or environments. Some group processes are
impossible to reproduce in laboratory settings, due to large time requirements and the neces-
sary space. By means of computer simulations, AMBs can provide experimental control over
situations that would not fit in a laboratory. Moreover, they offer the ability to repeat sim-
ulations many times without the costs normally needed for running experiments. Hence,
these models are very suitable for different objectives. One objective is that these models
help with understanding social phenomena. They can for instance illustrate that certain be-
haviour is shown as the result of simple rules. Moreover, these models can also be used
for prediction, by simulating how a society responds to a given problem or policy (such as
our case: the response of a network to the policy of introducing different COVID-measures).
Furthermore, social simulations may be used for testing and verifying assumptions and also
for the formulation of hypotheses (Gilbert & Troitzsch, 2005).

Some other instances of human-centred ABM include Grow et al. (2017), in which status
beliefs are studied. A network is modelled with a hierarchy of status, investigating network
properties and opinion dynamics as a result of individuals preferring changing their opinion
towards individuals with higher status. Prandi & Primiero (2020) investigate the spread of
misinformation during a pandemic: simulating information transmission with different lev-
els of trust, mistrust and distrust operations by the epistemic characterization of paranoid,
sceptical and standard agents, the authors study the diffusion of (mis)information and the
resulting behaviour change. Moreover, the authors explore the spread of the COVID-19 dis-
ease with different protection and distancing measures in the resulting networks, such that
some individuals are less inclined to follow measures as a result of misinformation. More
simulations investigating the spread of infectious diseases in different domains include Har-
vey et al. (2007) and Ghaffarzadegan (2021).

2.1.1 ABM development

The first ABMs already showed the potential of the methodology. Researchers recognized
the capacity of ABMs to illustrate how certain fascinating societal and group phenomena are
generated from simple individual tendencies and that they could be used to further explore
these social-driven processes. As a consequence, many scientists were inspired to explore
dynamical processes in ABM, such as diffusion of ideas and misinformation, opinion dy-
namics and other social practices (Jager, 2021).

A classic example is Schelling’s model of segregation, dating from 1971. In this well-
known model, a neighbourhood is simulated, with agents living on entries of a grid. Each
agent is either of type A or type B and is placed randomly on the grid, while some of the
entries remain open. The agents were given simple preference rules: Agents are in the cen-
tre of a 3x3 grid and have 8 adjacent neighbours. They are initialized with a threshold for
the minimal proportion of neighbours that are of their type. If the actual proportion is lower

8



Chapter 2. Theoretical Background 2.1. Agent-based modelling

than this threshold, agents move randomly to one of the open entries.1 Iteration of the exper-
iment illustrated that initializing individuals with certain preference values for the threshold
would lead to segregation of the full neighbourhood (Schelling, 1971).

Figure 2.1: (a) shows the initial (random) distribution of agents. (b) shows the stabilized
model: a neighbourhood with a segregated pattern (Schelling, 1974).

The power of Schelling’s model is that it could show that a simple preference rule would
lead to interesting group behaviour. However, as computation and the development of
ABMs was traditionally done by computer scientists (in contrast to social scientists), the un-
derlying assumptions on individual behaviour were often poorly grounded in behavioural
theory and data. Schelling’s preference rule for agents (to move randomly to an open grid en-
try if the proportion of neighbours of an agent’s type is insufficient) does not typically reflect
one’s motive to move. Flache et al. (2017) argue that, even for the modellers themselves, such
rules are unrealistic and that the outcomes are obvious and limited in usefulness. Hence, hu-
man behaviour should be represented in a sufficiently realistic manner in order for ABMs to
be useful (Jager, 2021, p. 133).

Despite the theoretical limitations of early ABMs such as Schelling’s model, the used
methodology has inspired many researchers to apply a similar approach to explore be-
havioural dynamics, better grounded in theory. Ernst (1998) was one of the first to implement
behavioural theory in an ABM, in which he models a simulation of resource dilemma, rep-
resented in a socio-ecological system of fishery (the “Fishing Conflict Game"). The agents
possess ecological knowledge about the resource (a replenishable fish stock, based on an
ecological model) and knowledge about the ecological knowledge, intentions and motives

1For example, an agent of type A could have a threshold of 50%, meaning they prefer to have at least half of
the neighbours of type A. If they would have 2 neighbours of type A and 3 neighbours of type B, they would
move to a random free location on the grid. With 3 neighbours of type A and 3 of type B, the agents would
remain stationary.
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of the other agents, as well as knowledge concerning the actions they can engage in (with
regards to their motive). In the model, the agents represented a heterogeneous population,
where agents differ in their prime motive: The agents’ prototypical motive could be

1. to maximize individual gain,

2. to maximize overall resource outcome, or

3. to minimize the differences between participating agents.

Interestingly, the results of the simulations illustrated many similarities between the be-
haviour of the artificial population of agents and the behaviour of real people interacting on
the basis of the ecological model. Real people could play the Fishing Conflict Game with
artificial agents, without identifying them as being such. Consequently, this indicated that
the human behaviour was represented in a sufficiently realistic manner, thereby correctly
illustrating the variety of behaviours induced from real-life experimentation. Ernst was one
of the pioneers to use behavioural theory in an ABM to investigate an environmental issue.
The approach has demonstrated the suitability of ABM to integrate social scientific princi-
ples in models of ecological systems. Hence, the approach was used to study many different
environmental issues using ABMs. Some instances of environmental issues include: social-
ecological systems such as fishery, land management and water use, transportation, home
energy use and consumer behaviour (For more elaborate descriptions of ABMs regarding
different environmental issues, see Jager (2021, pp. 134 - 136)).

Over the last years, the number of models addressing environmental issues has increased,
relevant to increasing awareness of climate change. Social innovations, such as the change
towards a sustainable lifestyle, are very suitable to explore using social simulation. Kangur
et al. (2017) use an integrated behavioural model to investigate the transition from fuel cars
to electric cars, exploring the interaction between policies and consumer behaviour over a
number of decades. In the model, an agent architecture designed to address customer needs
and decision strategies is parametrized using respondent data. Experiments indicate that a
long-lasting implementation of a combination of monetary, structural and information mea-
sures is necessary to ensure effective policy. This is an example of research that implemented
an integrated model, involving the CONSUMAT (Jager, 2000), a theoretical framework that
integrates consumer needs with decision strategies.

In contrast to earlier ABMs, newer models that are developed integrate more theory on
behavioural processes, with the micro rules increasing by being grounded in social scientific
theory. For instance, newer models might not only include behavioural theory on decision
making but also combine this with a cognitive component such as the needs underlying
the decision making or with theory on social interactions. A general trend within ABM is
that agents have become more intelligent, such that agent design incorporates theories from
psychology, sociology and behavioural studies, leading to more complex simulations. This
shines a light on one of the key challenges of the field: determining the suitable level of the-
ory that should be integrated into a model. It seems that many theoretical ideas are relevant
in capturing the full complexity of human behaviour. However, adding too many theoretical
components has its downside, as it may lead to models with behaviour too difficult to un-
derstand. Consequently, the outcomes are harder to validate, leading to lower applicability.
Hence, there exists a trade-off between simplicity and completeness and a suitable balance
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should be found between them, which ultimately depends on the intended use of a model
(Jager, 2021, p. 136).

We have discussed the development of the field of ABM and have seen that many studies
primarily explore macro-level effects as a result of individual behaviour. Another type of
research goal within ABM is centred around the design of particular agents: in contrast to
macro-level effects in the self-organizational models, the behaviour of individual intelligent
agents is more prominent. Here, the goal is to design an agent in a particular way and
test its behaviour by means of a simulation, in order to circumvent problems and errors.
Consequently, the use of a resulting physical or actual agent in a particular application can
be empirically validated. For example, an ABM simulation can be used to validate behaviour
for a physical robot (Bellifemine et al., 2007).

Many types of ABM’s are available and their use has evolved into various communities
and sub-fields, for instance, modelling human behaviour and studying emergent phenom-
ena. One can even speak of the development of a new dynamical social science, or as Epstein
calls it, generative social science (Epstein, 2006), in which agent-based models are new tools for
empirical research. Due to the diversity of ABMs, the exact semantics of the different terms
lead to confusion. Frequently, the term ’agent’ is the only thing different communities ap-
plying ABM have in common. Moreover, not only does the inconsistent use of terms within
ABM causes confusion, but also the whole field is confused with related domains, such as
Multi-agent systems (MAS) and Individual-based modelling (IBM) (Niazi & Hussain, 2011). Be-
tween ABM and MAS there remains discussion on which of the domains is a sub-domain
of the other or whether we can even speak of sub-domains at all. Moreover, many authors
use the terms interchangeably, contributing to the confusion. However, we will treat them as
two different domains with overlapping content and will elaborate on some of the perceived
differences in the remainder of this section. Also, some of the terms and key differences
relating to ABM will be discussed.

2.1.2 Agents

Agents are the main elements of an ABM and can represent many different entities, such as
human beings, animals, plants, bacteria and many others. Agents can be defined to have two
main capabilities. Firstly, agents are capable of acting autonomously to at least some extent.
That is, they make their own decisions regarding acting in correspondence with their de-
signed objective. Secondly, agents are capable of interacting with their environment, or with
other agents, engaging in social activities such as cooperation, coordination and negotiation
(Wooldridge, 2009). Other properties ascribed to agents include reactivity, concerning the re-
sponses to changes in an agent’s environment and pro-activity, the ability of an agent to take
initiative with respect to its goals (Wooldridge & Jennings, 1995). Depending on the specific
domain, agents can range from having simple, not very intelligent behaviour to behaving
intelligently.

In the field of artificial intelligence, more complex human-like concepts can be described
to agents, in which their behaviour is determined by rules and their private mental state,
which includes concepts such as beliefs, decisions, capabilities and obligations (Shoham,
1993).
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2.1.3 Multi-Agent systems

A field related to agent-based modelling is that of Multi-agent systems (MAS). MAS origi-
nates in the field of Artificial Intelligence, with more specific influences by the components
of logic, computer science and cognitive science. Similar to the definition of ABM, MAS are
systems composed of multiple interacting computing elements (agents). Essential here, is
that the system contains multiple agents (Wooldridge, 2009). As mentioned before, due to
the broad range of applications of the field and the high level of overlap, ABM and MAS
are sometimes confused. ABM usually focuses on the emergent phenomena of a simulation,
making the complexity of the agents less important. In contrast, MAS typically involve the
more complex designs of agents, with the goal of solving or studying a practical problem.
The agent design can for instance be used to validate the underlying assumptions made in
a model, such that if the simulation shows the expected outcome, the design of the agent
is validated, and vice versa. MAS is most useful for problems where multiple perspectives
are beneficial, because for example a single point of view is insufficient, or central control is
lacking. Individual agents with different decision-making interact in a shared environment,
with conflicting or shared goals. Instances of research that can be investigated with MAS are
competition or cooperation between agents or robots.

Howorth (2020) distinguishes the two terms by defining MAS as more directed towards
solving a particular real-life problem or task, in which multiple agents cooperate in order to
solve the task. As the task is typically unsolvable by a single agent, the agents aim to find
a set of behaviours in order to find the solution. In contrast, ABM is more directed towards
exploring how a system may respond as a result of individual agents obeying simple rules.
Here, the main aim is to gain insights into the collective behaviour of agents, rather than
finding a solution to a particular problem or task.

The model in this thesis investigates the interaction between mental health and COVID-
measures, studying the emergence of illegal behaviour by showing how decreasing mental
health can lead to actions contrary to behaviour imposed by the COVID-measures. Compar-
ing the model to both ABM and MAS, it can be observed that the model contains properties
of both: As the main interest of this model is the dynamics in the support base of the COVID-
measure regarding visitors (Dutch: bezoekersregeling) in Dutch citizens, this model focuses
on an emergent phenomenon (namely, how will a network of agents respond to rules imped-
ing the satisfaction of their needs), thereby relating the model to ABM. However, as Section
2.4 will illustrate, the agents are designed using a cognitive framework, in which their deci-
sion process is determined by their mental states. This makes the agents quite complex, as
agents may alter their needs in order to remain satisfied. A relation to MAS would be that
the systems aim to find the collective set of agent behaviours to solve the problem of keeping
all agents satisfied in their needs.

2.2 Individual decision making

Since our model aims to explore human behaviour given certain restrictions, it is necessary
to consider which factors play a role in the choices individuals make. In this section, different
aspects that play a role in individual decision making are discussed. Specifically, the theory
of satisficing as the basis for decision making by Herbert Simon is discussed and contrasted
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to classical economical models, in which maximizing expected utility formed the basis.

Research by Simon (1955, 1956) states that the characterization of rational choice has been
a central concern in the theory of decision making, but that there are serious doubts about
how it had been conceptualized until then. With regards to rational choice, economic theory
tends to assume that the behaviour of individuals is aimed at maximizing expected utility.
Typically, in these theories, humans are assumed to make decisions from a finite set of alter-
natives. A choice follows from comparing alternatives using a utility function, which is a
function U: X → R such that x � y if and only if U(x) > U(y). This means that alternative x
is strictly preferred over alternative y if and only if the utility of x is higher than the utility
of y. Moreover, the utility of an alternative U(x) is then typically weighted by the expecta-
tion of that alternative, which is the probability px that the alternative occurs. The result is
the expected utility of an alternative: EU(x) = px ∗U(x). The resulting behaviour is then the
alternative (or set of alternatives in the case of a tie) that has the maximum expected utility
and therefore is preferred over all other alternatives (Varian, 1992).

One of the main issues is that the use of such a function for decision making requires
strong assumptions: In order to apply the utility function, one has to assume a complete, re-
flexive and transitive preference order on a set of alternatives, respectively such that each al-
ternative can be compared to itself and other alternatives in the set (i.e., a preference relation
exists), each outcome is related to itself and there always exists a most preferred outcome.2

With respect to human decision making, this assumption is unrealistic: In reality, humans
do not have such a clearly defined set of alternatives and preference relations between alter-
natives, and even if they did, mental costs are too high and time is too limited to determine
the most preferred alternative in a realistic situation. Another issue comes from the way
that expected utility is determined for a single alternative. Given a behavioural alternative,
determining its expected utility includes multiplying the utility with the probability the al-
ternative will result in that particular outcome. These probabilities are typically not available
for humans, nor would they have the cognitive means to calculate with them.

Even though the expected utility theory might sound appealing for explaining human
behaviour, in practice human adaptiveness falls short of the ideal, due to the complexity of
the choice mechanisms. According to Simon, rational choice is bounded by two main com-
ponents: the human mind and the fundamental structural characteristics of the environment.
Maximizing expected utility in rational choice requires a level of obtaining information and
performing computations that is too complex for human beings: The environment is too
limited with regards to information availability and even if it were available, human cog-
nition would be too limited to process this information (Newell et al., 2007). Moreover, the
theory of rational choice based on expected utility postulates a well-defined environment,
in which humans have knowledge regarding all possible behavioural alternatives and their
consequences, as well as possess time and cognitive means to find the most optimal choice.
However, real-world situations are typically poorly-defined, making a utility function im-
possible to apply. One underlying problem comes from the fact that humans do not know
much about behavioural possibilities in advance. Consequently, there is no optimal method
for deciding to stop considering alternatives. Moreover, humans lack the ability to know

2If the preference order on a set of outcomes is not transitive, there could exist cycles of preference in the set
such that there is no clear preferred alternative
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about the expected pay-off of the different behavioural alternatives. Furthermore, given
the constraint of time and the presence of different goals, a consistency requirement is in-
troduced, such that time that is consumed for one goal limits the time for the other goals.
Therefore, in reality, humans often approach tasks using approximate methods, in which the
search for further information necessary for an optimal choice is not pursued. Rather, hu-
mans act towards goals, in which they take into account information available to them. As
a consequence, Simon states that the rational choice of individuals is not generally aimed at
maximizing expected utility, but can be better explained by being aimed at satisfying needs
(which Simon calls satisficing) available to them in a given situation.

For our case, the goals available to humans could represent satisfying the need for phys-
ical contact, as well as satisfying the need for following the visitors measure. A priority
mechanism could be that an individual persists in searching for the behaviour that satisfies
the particular need that first reaches a threshold for initiating certain behaviour. However,
this would only hold for independent needs. In our case, the needs are in a trade-off, where
behaviour satisfying the need for physical contact almost directly opposes behaviour satis-
fying the need to follow the visitors measure.3

Simon concludes that individuals don’t have the sense nor wits to discover optimal be-
haviour, but that they are more directed towards satisfying needs. Even though multiple
goals could be conflicting and efficient behaviour taking into account all needs is possi-
ble, in general individuals typically allocate time for behaviour aimed at satisfying single
needs, without introducing coordination problems with regards to a general ’utility func-
tion’. Moreover, the psychological environment of an organism is usually structured such
that only certain information is available and a central cognitive mechanism that would take
into account all information is lacking. Consequently, the available information is point-
ing towards single needs, making a potential most efficient behavioural choice regarding all
needs unavailable.

The analysis by Simon criticizes the basis for rational decision making postulated by eco-
nomical theory. His alternative approach is more closely related to psychological theories
of perception and cognition. It points towards a theory in which satisfying different needs
is the basis for decision making. Gigerenzer et al. (1999) agree with Simon’s critiques to-
wards economical theory and state that human decision making should be built on what we
know about mental capacities rather than on fictitious competencies. In many real-world
situations, optimal strategies are unknown or unknowable, since our rationality is bounded.
There is no optimal method for going over all alternative choices and determining the ex-
pected utility for each of them. Instead, Simon’s concept of satisficing needs, in which a
choice is made with limited time and limited knowledge, seems a more sufficient heuristic
for decision making.

These findings support the justification for the use of the HUMAT framework, which is
the cognitive framework in our model (discussed in Section 2.4). In this framework, realistic
psychological mechanisms and rules are implemented by having the agents determine their
behaviour and decision making based on the satisfaction of different needs and phenomena
such as cognitive dissonance. Moreover, the framework includes theory about networks and
communication between agents and the social influence that is involved, which will be the

3The needs are not in complete opposition, since the visitors measure allows for a number of contacts per day.
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topic of the next section.

2.3 Social influence

The model in this thesis primarily explores the effect on mental health due to the lack of inter-
action between individuals as a result of visitor restrictions. The emergence of illegal group
meetings concerning COVID-measures and the changes in support for these measures, as
a result, are investigated. When individuals do interact, psychological processes of social
influence take place, which in turn will affect the choices the individuals make. This section
reviews some benchmark literature on social influence and models of social influence.

Cialdini & Goldstein (2004) review developments in social influence literature. The au-
thors illustrate principal processes underlying a target’s susceptibility to outside influences
and study the social influence of different psychological phenomena, primarily focusing on
compliance and conformity. The review emphasizes how certain goals for human function-
ing interact with external forces and shows the effect of social influence processes which are
subtle, indirect and outside of awareness. Three of the core motivations to human function-
ing are:

1. Targets are motivated to form accurate perceptions of reality and react accordingly,

2. to develop and preserve meaningful social relationships, and

3. to maintain a favourable self-concept.

In the light of compliance and conformity, these fundamental goals lead to humans feel-
ing urged to respond in the desired way: Firstly, the goal of accuracy (1) entails that humans
are motivated to achieve their goals in the most effective and rewarding manner possible,
which demands an accurate perception of reality.

Secondly, the goal of affiliation (2), states that human beings are fundamentally moti-
vated to create and maintain meaningful social relationships. We use approval and liking
cues for this purpose (affiliation-oriented goals), as well as abiding norms of social exchange
such as reciprocity.

Thirdly, the goal of maintaining a positive self-concept (3) entails humans have a strong
tendency to enhance self-concepts, by behaving consistently with their actions, statements,
commitments, beliefs and self-ascribed traits. The authors mainly emphasize the interaction
between these three goals and external forces to illustrate social influence processes.

For this thesis, mainly the goal of affiliation is of interest. In order to adequately under-
stand and effectively respond to social situations, individuals tend to look to social norms
to guide their behaviour. Here two types of norms are distinguished: On the one hand,
there are injunctive norms, which inform humans about what is typically approved or disap-
proved. In the light of affiliation, humans believe that if they engage in behaviour approved
by others, they are more likely to gain approval from others. On the other hand, descriptive
norms are norms informing humans about what is typically done. Both the degree to which
each norm is focal, as well as the extent to which different types of norms are in alignment
determine the impact on behaviour.
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In addition to external norms, also personal norms influence individuals in their behaviour.
The extent of the influence of personal norms is determined by the attention an individual
has on itself in comparison to external stimuli (Kallgren et al., 2000). Depending on the
salience of injunctive, descriptive and personal norms, one’s behaviour is influenced only
when normative information is highlighted in consciousness accordingly.

Cialdini & Goldstein illustrate how these different norms socially influence human be-
ings. In our model, these norms can be linked to different needs of the agents: Personal
norms can be linked to values needs, where an agent has the needs to act according to its
norms to satisfy its values needs. Hence, it feels the need to follow the visitors measure.
Moreover, an agent wants to conform to their network in their behaviour in order to satisfy
its social needs, which can be linked to injunctive norms and descriptive norms. Agents will
communicate and ask the opinions, i.e., which behaviour they approve of (injunctive norms),
and potentially view the behaviour of others in their network (descriptive norms).

In recent years, emphasis has increased on exploring group-level consequences, in which
research illustrates the dynamics of a social environment as the result of individual be-
haviour (Latané, 1996). A core assumption is that an individual in a social environment is
more likely to conform to the beliefs and opinions of the local majority than by both the local
minority and by individuals in lower proximity. Models following this assumption predict
clustering of opinions in social space, reduction in diversity, correlations across opinions by
cluster members and continuing diversity. It must be noted here that agents in our model
act on the basis of different needs, namely experiential, social and values needs (as will be
further explained in Section 2.4). Consequently, the models deal with a higher-dimensional
space, consisting of the satisfaction levels of these three needs.

Flache et al. (2017) illustrate the effects of different theoretical assumptions on group-level
social dynamics in agent-based models containing social influence. Mainly focused on mod-
els of opinion dynamics (with continuous opinions), the authors distinguish between three
main approaches (prominent model classes) and the core assumptions underlying these ap-
proaches:

1. Firstly there are models of assimilative social influence, which assume that connected in-
dividuals always have an influence on each other which reduces opinion differences
(i.e., their opinions become more similar). These models will inevitably converge with
a consensus of opinions.

2. Secondly, models with similarity biased influence include the assumption that individuals
can influence towards reducing opinion difference depending on the similarity of their
opinions or on additional psychological mechanisms, such as social identity and sta-
tus (in other words, opinions become more similar depending on certain restrictions).
In these models, a consensus is not given, but depending on similarity bias different
homogeneous clusters can emerge.

3. Thirdly, there are models with repulsive influence, which assume that individuals being
too dissimilar from one another can have a repulsive effect towards their opinions, such
that social influence causes their difference in opinion to increase. The trigger and/or
magnitude of the repulsive influence depends on the dissimilarity of their opinions
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Figure 2.2: This Figure shows typical opinion dynamics generated by ABM’s of social influ-
ence (Source: Flache et al. (2017, p. 5))

or on additional psychological mechanisms. These models again do not ensure con-
sensus but can lead to bi-polarized clusters, where two maximally opposing views are
adopted.

The typical effect on opinion dynamics of these prominent model classes is illustrated in
Figure 2.2.

Also, hybrid forms exist, having ingredients from multiple categories of the prominent
model classes. Flache et al. emphasize the need to relate to these categories and argue for
identification of different critical assumptions and model choices, as well as comparison of
and identifying relation to other models (Flache et al., 2017).

Where the previously discussed models of opinion dynamics include one variable of in-
terest as the outcome, also models exist which investigate multiple variables. For instance, in
addition to opinions on a given matter, one could investigate the individuals’ fear or happi-
ness with regards to that matter. As a result, the model has multiple dimensions of outcomes.
The model is in this thesis is multi-dimensional, because it aims to investigate opinions on
the COVID measures, willingness to follow the measures to prevent the virus from spread-
ing and the need for social contact. For this purpose, a framework is needed that can model
multi-dimensional simulation, as will be discussed in the following section.
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2.4 HUMAT framework

The approach for the model in this thesis will be mainly based on the HUMAT integrated
framework as described in Antosz et al. (2019). HUMAT was developed as a basic architec-
ture in which one can construct artificial populations, containing agent cognitions, decision-
making and social interactions based on social scientific theory. Related to HUMAT is the
CONSUMAT framework Jager (2000), which integrates consumer needs with decision strate-
gies. In contrast to HUMAT, CONSUMAT is mainly focused on individual consumer be-
haviour and therefore does not take into account phenomena such as cognitive dissonance
and certain social processes and influences. Consequently, given the nature of the topic in
this thesis, in which social interaction plays a big role, HUMAT seems like the better frame-
work for developing the model.

In real-world social dynamics, individuals are connected in social networks. Individuals
make decisions partly determined by their position in such a network, in which their own
behaviour is based on the behaviour of and communication with different individuals. These
interactions result in the diffusion of new behaviours, the formation of opinions groups, and
the emergence of tipping points giving dominance to particular norms. Moreover, the indi-
viduals have their own interests, share information with others and are susceptible to norms.
Taking these factors into account, HUMATs are repeatedly confronted with difficult choices,
such as trade-offs between short-term gratification, social impacts and personal values (An-
tosz et al., 2019, p. 14).

Furthermore, in HUMAT the network is not a fixed entity, but rather reflects dynamic
interactions between agents, where changes in interacting agents could lead to a change of
the network. Agents may change with whom they interact and bond with new agents to
interact with, based on opinions on a topic.

2.4.1 Needs

HUMAT agents’ activity is determined by different behavioural alternatives, which are cho-
sen based on the satisfaction of different needs. Three categories of needs are distinguished:

1. Experiential needs, relating to the immediate consequences of actions, such as costs
and comfort.

2. Social needs, relating to the (non-)conformity within a social group: Belongingness,
relatedness, social safety and social status within the network. For some agents, this
need corresponds to conforming to peers’ behaviour and behaving similarly, but for
others ’being unique’ could be a motivator not to conform.

3. Values, referring to values such as autonomy, biosphere and societal goals. These are
typically related to more long term consequences of actions.

Linking these to our case study, the following needs can be modelled:

1. Experiential needs: Human beings have the need to experience coming into contact
with friends in their network.
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Figure 2.3: This Figure shows how HUMATs take action (Source: Antosz et al. (2019, p. 14))

2. Social needs: Human beings have the need to conform (or not conform in some cases)
to others within their network, with regards to their opinion on the COVID measures.
(Descriptive norms in Cialdini & Goldstein (2004)). Humans may respond to contact
by attracting towards the opinions of the other, or by repulsion in some cases (Flache
et al., 2017). Moreover, humans may also communicate/show their behaviour in terms
of contact, which potentially differs from their opinion (Injunctive norms in Cialdini &
Goldstein (2004)).

3. Values: Humans have personal values, entailing inclination to follow the measures
in order to prevent the virus from spreading (Personal Norms in Cialdini & Goldstein
(2004)).

2.4.2 Action

HUMATs act by choosing a behavioural alternative in order to maximize satisfaction levels
of the individual categories of needs. HUMATs first evaluate the set of behavioural alterna-
tives and assess the satisfaction levels of each alternative, then they choose the preferred one
(the most satisfying alternative). After this, HUMATs experience the consequential effects,
leading to an update of their memory. This process is depicted in Figure 2.3.

In many cases the behaviour only benefits a single or a subset of the categories, intro-
ducing the possibility of trade-offs between need categories. This may result in the experi-
ence of cognitive dissonances impacting the agents’ information processing and chosen actions.
Distinguishing between different categories allows for variance in satisfaction-depletion dy-
namics, which may be relatively quick for experiential needs (1), but slower for social needs
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(2) and values (3). Decisions with regards to behaviour are made based on a weighted sum
of the overall expected (dis)satisfaction from behavioural alternatives, determined by both
expected satisfaction for a needs category, as well as the importance of that category for a
particular HUMAT (Antosz et al., 2019, p. 15).

Cognitive dissonance is experienced when a behavioural alternative evokes sufficient
levels for both satisfaction and dissatisfaction for one or more categories of needs, leading to
a dilemma. Given the type of trade-off between categories of needs, one can identify three
types of dilemmas, one for each category:

1. Experiential dilemma: Dissatisfaction on experiential needs and satisfaction of so-
cial needs and values or satisfaction on experiential needs and dissatisfaction of social
needs and values.

2. Social dilemma: Dissatisfaction on social needs and satisfaction of experiential needs
and values or satisfaction on social needs and dissatisfaction of experiential needs and
values.

3. Values dilemma: Dissatisfaction on values and satisfaction of experiential and social
needs or satisfaction on values and dissatisfaction of experiential and social needs.

Applied to our case, these dilemmas would correspond to the following examples, as an
expected outcome of an action:

1. An Experiential dilemma could take place if a person is doubting having social con-
tacts with friends in its network after seeing many friends. Continuing this behaviour
would lead to experiential satisfaction, but would lead to dissatisfaction in their value
need to prevent the virus from spreading. Also, their friends could show very differ-
ent behaviour by not having as much social contact, leading to social dissatisfaction.
Hence the expected dissatisfaction leads to a dilemma.

2. Someone could experience a Social dilemma when their behaviour and/or opinions
are very different than that of their network. For example, on the one hand, a person
is satisfied in their experiential and values needs, by balancing the number of social
contacts it sees. Their network, on the other hand, is very polarized with some friends
seeing many contacts, and others seeing none. Hence they experience social dissatis-
faction, as their behaviour does not conform to that of their network.

3. A Values dilemma could be the opposite of the example given for the Experiential
dilemma. On the one hand, the person could be satisfied with how well it is following
the COVID measures but feel unsatisfied by the fact that it has not had enough contact
with friends. Also, the friends show different behaviour by having lots of social con-
tacts, leading to social dissatisfaction. Hence a dilemma exists between having social
contact or not, because of this expected resulting dissatisfaction.
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3 |MODEL

In Section 2.4, the theoretical outline of the HUMAT framework was described. This chap-
ter discusses how the HUMAT framework was integrated in order to model the interaction
between the COVID visitors measure and the need to experience physical contact. Firstly,
in Section 3.1 a general overview is given in which the core elements of the model are dis-
cussed. Secondly, in Section 3.2 the algorithmic steps are described in-depth, followed by an
overview of the main variables and parameters in Section 3.3.

3.1 Overview

The core of the model in this thesis is a set of HUMAT agents (referred to as HUMATs)
that are connected in a network and act on the basis of different needs. On the one hand,
HUMATs have the experiential need to come into physical contact with friends with whom
they are connected. On the other hand, HUMATs have the values need to follow the visitors
measure, which is a rule restricting them to only come into physical contact with a maximum
number of friends each day in order to prevent COVID infections from spreading. Their
need to follow the rule depends on their opinion about the rule, which is represented by

Figure 3.1: Screenshot of the full NetLogo model
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an integer on a 0 to 100 scale. Here, a higher number represents stronger support for the
rule. The opinions can be empirically initialized according to findings in data from surveys
regarding support for the COVID measures from the RIVM (Dutch National Institute for
Public Health and the Environment). This opinion is influenced by coming into physical
contact with others. Furthermore, HUMATs feel the social need to conform to their networks
with regard to their opinion.

Every 24 ticks in the simulation represent a new day for the HUMATs, with each tick
representing one hour. It was chosen to model the simulation per hour since this provides
the freedom to model the different actions and choices of the HUMATs on a given day, and
many choices are dependent on inter-day rules and decision-making.

At the beginning of the day, HUMATs evaluate their experiential and values needs. Ac-
cording to this evaluation, the HUMATs decide whether their behaviour will be directed
towards trying to follow the visitors measure, which is the no-contact behavioural alternative
or to disregard the visitors measure, which is the contact behavioural alternative. If a HU-
MAT chooses the former, it will aim to adhere to the rule and try to not exceed the maximum
allowed visitors that day. However, they might still exceed the rule if they are convinced by
another HUMAT to make contact.

In each hour of the day, a HUMAT has a small chance to (online) inquire some of its
connected friends about their opinions on the visitors measure. If the HUMAT is unsatisfied
about how its own opinion relates to that of its friends, it can choose to adjust its own opinion
or attempt to persuade one of its friends in changing their opinion. Moreover, HUMATs can
request their friends to make physical contact with them, which has to be agreed upon by the
receiving end. HUMATs with the contact behaviour will accept these requests, and HUMATs
with the no-contact behaviour will only accept the request if they have not exceeded the al-
lowed visitors from the visitors measure by having this physical contact. However, there is
a probability that HUMATs with no-contact can be convinced to break this rule. Moreover,
every hour HUMATs can choose to stop any active physical contact. HUMATs change their
opinions such that it remains consistent with their behaviour: Breaking the rule by exceed-
ing the maximum number of contacts on a day will cause HUMATs to dislike the visitors
measure some more, which consequently leads to the HUMAT decreasing its support for
the visitors measure and lowering its opinion. Furthermore, while HUMATs are in active
contact, they socially influence each other concerning their opinions on the visitors measure.

At the end of each day, HUMATs will experience the effects of the social influence, as
well as their behaviour on that day. In contrast to HUMATs breaking the rule, HUMATs that
succeeded to follow the visitors measure increase their liking and consequently their support
for the visitors measure, thereby increasing the value of their opinion (to remain consistent
with their behaviour). These changes affect the needs of the HUMATs, which might cause
them to choose different behaviour the next day.

Figure 3.1 shows the full NetLogo interface in which the simulation can be run. Appendix
A displays additional screenshots of different parts of the model interface.

In the remainder of this section, the main components of the model are discussed in-
depth. A flowchart giving a visual overview of the model can be found in Figure 3.2.
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Initialize (3.2.1)

1. Evaluate and
choose behaviour:

contact or no-contact

2. Determine desired
amount of contact

3. Inquire opin-
ions of network

Satisfied?

4. Stop active
connections

5. Make new ac-
tive connections

Adjust own opinion or
attempt persuasion of
a connected HUMAT

6. Determine so-
cial influence

7. Apply daily
changes and effects

New day?

yes

no

yes

no

1 hour/tick

1 day / 24 ticks

Figure 3.2: This Figure shows an overview of the model. It illustrates the main algorithmic
steps and procedures that are executed within the model for every HUMAT. Note that some
parts of the procedures rely on probabilities and will not be executed each iteration. All steps
are further elaborated in Section 3.2.
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3.2 Algorithmic steps

This section describes the algorithmic steps of the model more in-depth. Firstly, the initial-
ization of the model is discussed. Afterwards, the different procedures that are executed
while running the model are described.

3.2.1 Setup/Initialization of the model

The model is initialized (Setup in NetLogo), consisting of the following steps:

1. Making and placing HUMATs:
n HUMAT agents are initialized and placed randomly within an 80x80 square (n = 100
by default).

Figure 3.3: HUMAT agents. The different colors represent the HUMAT’s opinion value (as
discussed in step 3 of initialization). From left to right, low opinion (red) to high opinion
(green).

2. Create social networks (connections between HUMATs):
Each HUMAT creates a number of links to other HUMATs, which represent their friends.
Firstly, a value is drawn from a normal distribution:

Fj = bN (µ, σ
2)e (3.1)

where:

• Fj : is the number of connections HUMAT j will make to others,

• bxe : x is rounded to the nearest integer (with halves being rounded up, so b1.5e=
2),

• µ = 2, and

• σ = 2.

This number is truncated between 1 and 10 and rounded to the nearest integer, with
halves being rounded up (For upcoming mentions of rounding, note that we round
halves up everywhere in the model). This number of connections will be made to other
HUMATs. Thus, HUMATs instantiate at least one connection and a maximum of 10.
Other HUMATs to connect with are searched for in proximity, for clear visualization
of the network. The connections are bidirectional and both ends of a connection count
as ’friends’, so which of the HUMATs instantiates the connection is irrelevant. The
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average number of friends per HUMAT will end up higher than the mean of µ = 2
in Equation 3.1. This is because µ = 2 represents the mean number of connections
that one HUMAT will form to other HUMATS, but consequently, also a friendship is
formed for the other end. Moreover, the normal distribution is limited to be at least 1,
while without this limit the average would be somewhat lower. Given these facts, on
average HUMATs have approximately 5 friends in the simulation. Figure 3.4 shows
connections between two HUMATs and a network of 100 HUMATs.

Figure 3.4: Two connected HUMATs (left) and a network of 100 HUMATs (right).

3. Set opinions of HUMATs:
HUMATs are initialized with opinions, representing the support they have for the vis-
itors measure. These are values between 0 and 100. The opinions can be initialized
using different waves of an RIVM survey (of which the data can be seen in Table 3.1).
In this survey, participants were asked to which extent they support the visitors mea-
sure. Their answers could be Geen mening (No opinion), Helemaal niet (Very opposed),
Niet (Opposed), Neutraal (Neutral), Wel (Supportive) and Helemaal Wel (Very support-
ive). The table entries show the proportion of participants that gave these answers over
several waves. In the model, the same distribution can be used, such that the entries
are probabilities for the HUMATs to fall under the respective categories. Consequently,
the distribution of opinions of the HUMATs in the model resembles the distribution of
opinions in the survey.
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Survey Wave and Date Vis/day Geen mening Helemaal niet Niet Neutraal Wel Helemaal wel
6: 19-23 aug 2020 6 0.9% 4% 7.3% 11.8% 27.9% 48.1%
7: 30 sep - 4 oct 2020 4 0.5% 3.1% 7.4% 11.9% 30.6% 46.5%
8: 11-15 nov 2020 2 0% 5.8% 10.5% 13.7% 28.9% 41.1%
9: 30 dec 2020 - 3 jan 2021 2 0% 3.3% 6.6% 10.9% 30.7% 48.5%
10: 10-14 feb 2021 1 0% 9.2% 18% 17.1% 27.2% 28.5%
11: 24-28 mar 2021 1 0% 10.4% 23% 19.3% 25.3% 22%

Table 3.1: This Table shows RIVM survey results, in which participants are asked to state to
which extent they support the measure of the maximum allowed contacts on a day (which we
call visitors measure). Each row displays a different wave in which the survey is conducted,
starting from august 2020 to march 2021. The column with Vis/day shows the allowed num-
ber of visitors according to the visitors measure. The percentages represent the proportion
of participants that answered with the answer displayed on the top of the column. The data
shows a decrease in support for the visitors measure as fewer visitors are allowed. More in-
formation regarding this survey can be found at https://www.rivm.nl/gedragsonderzoek/
maatregelen-welbevinden/draagvlak.

Since the model requires quantities as opinions, the survey categories are converted to
integers between 0 and 100, in which the higher the value of the opinion of a HUMAT
is, the more it supports the visitors measure. Moreover, every HUMAT should have
an opinion. Hence HUMATs that are initialized with the No opinion response get a ran-
dom opinion, thereby distributing these respondents over the other categories1. The
conversion from survey response to opinion value can be seen in Table 3.2:

RIVM Survey Response English Translation Opinion in model
Geen mening No opinion 0-100
Helemaal niet Very opposed 0-19

Niet Opposed 20-39
Neutraal Neutral 40-59

Wel Supportive 60-79
Helemaal wel Very supportive 80-100

Table 3.2: This Table shows the conversion from survey response to a continuous value for
HUMATs in the model.

Alternatively, the opinion values of all HUMATs can be initialized randomly between
0 and 100. Furthermore, while running the model, HUMATs are coloured according to
their opinion, as can be seen in Figure 3.3.

1We do not expect the responses with no opinion (’Geen mening’ in the survey) to have a major influence, as
the number of these responses is negligible
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4. Initialize importances of need-categories HUMATs:
Each HUMAT is initialized with an importance for the experiential and value need-
category. The value is drawn from a truncated normal distribution:

Ik, j = N (µ, σ
2) (3.2)

where:

• Ik, j : the importance of the k-th need category for HUMAT j,

• µ = 0.5, and

• σ = 0.14.

and the value is truncated between 0 and 1. Alternatively, it is possible to manually
parametrize the importances, such that all HUMATs are initialized with a certain value
for their experiential and values need.

5. Initialize satisfaction levels of HUMATs:
In contrast to the HUMAT model described in Antosz et al. (2019), here we choose
to model satisfaction levels similarly only with regards to the experiential and value
need categories. The social needs will be addressed separately, which is discussed in
step 3 of running the model. The satisfaction levels are applied to the two behavioural
alternatives, which are contact (c) and no-contact (n) and will be used to determine which
of these alternatives are chosen by the HUMATs. The satisfaction levels are values
between -1 and 1, and are initialized as follows:

• Quantifying initial satisfactions:
The satisfaction levels for the different needs for the two behavioural alternatives
require initial values, each with different considerations.
For experiential needs, on the one hand, individuals differ in their expected sat-
isfaction from experiencing physical contact, resulting in various expectations for
following the behavioural attitude of contact. On the other hand, depending on
factors such as an individual’s feeling of safety with regards to having no con-
tact, it will have a certain expectation from following the behavioural attitude of
no-contact.
For values needs, individuals differ in their satisfaction with respect to how they
act (or don’t act) in accordance with their norms and values. This results in differ-
ent expectations for contact and no-contact.
Here, we assumed that these feelings and considerations may differ per person
and that the quantified values representing these feelings and expectations are
normally distributed. Hence, for each HUMAT, a value is drawn from the fol-
lowing normal distribution for both contact and no-contact with respect to both the
experiential and values needs:

Sb,k, j = N (µ, σ
2) (3.3)

where:
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– Sb,k, j : the expected satisfaction for the k−th group of needs for HUMAT j
with respect to behavioural alternative b (contact or no-contact),

– µ = 0, and
– σ = 0.4.

The outcome is truncated between -1 and 1. This value partly determines the ex-
periential and values satisfaction a HUMAT expects from having the no-contact
attitude. In addition, some characteristics of the HUMATs will be considered in
evaluating behavioural alternatives, as will be discussed in step 1 of running the
model.

3.2.2 Running the model

After the model is initialized, the model can be run (Go (1 hour) or Go forever in NetLogo). In
each tick (or iteration), one hour progresses and the following procedures are executed:

1. Evaluate and choose behavioural alternatives: HUMATs first evaluate behavioural
alternatives and then choose the preferred one:

• Evaluate behavioural alternative per need category:
HUMATs begin the day by evaluating the different behavioural alternatives with
respect to the expected satisfaction of their different needs. For the experiential (e)
and value (v) need categories and evaluation is made, in which some characteris-
tics of the HUMATs are taken into account.

– Characteristics that influence experiential evaluation: For the evaluation of
the experiential evaluation, additional parameter η j is added to the initial
expected experiential satisfaction (determined in Equation 3.3), which con-
siders differences in desired hours of contact and actual hours of contact for
HUMAT j :

Eb,e, j = (Sb,e, j±η j)∗ Ie, j (3.4)

where:

* Eb,e, j : the evaluation for the experiential needs for HUMAT j with respect
to behavioural alternative b,

* Sb,e, j : the expected satisfaction for the experiential needs for HUMAT j
with respect to behavioural alternative b,

* Ie, j : the importance of the experiential needs for HUMAT j,

* η j : additional expected experiential satisfaction based on differences in
desired hours of contact and actual hours of contact for HUMAT j. For
contact, η j is added to the initial satisfaction, while for no-contact it is sub-
tracted. Initially η j is set to 0.
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Since the value for η j is determined at the end of each day, it is discussed in
step 7.

– Characteristics that influence values evaluation: For the evaluation of the
values evaluation, additional parameter ξ j is added to the initial expected
value satisfaction (determined in Equation 3.3), which considers the opinion
of HUMAT j:

Eb,v, j = (Sb,v, j±ξ j)∗ Iv, j (3.5)

where:

* Eb,v, j : the evaluation for the values needs for HUMAT j with respect to
behavioural alternative b,

* Sb,v, j : the expected satisfaction for the values needs for HUMAT j with
respect to behavioural alternative b,

* Iv, j : the importance of the values needs for HUMAT j,

* ξ j : additional expected values satisfaction based on the opinion of HU-
MAT j. Value determined by Equation 3.6.

Depending on the opinion a HUMAT has, ξ j is determined is determined by
converting the value of the opinion (which is between 0 and 100) to a -1 to 1
scale and multiplying it by a weight (ψ):

ξ j = ψ∗
O j ∗2−100

100
(3.6)

where:

* O j : the opinion of HUMAT j, and

* ψ j : a weight that determines the contribution of a HUMATs j’s opinion
to its value evaluation. It is set to 0.5.

Since a high opinion means larger support for following the rule, ξ j is sub-
tracted from (3.7) and added to (3.8) HUMAT j’s expected values satisfaction
for contact and no-contact respectively. Hence, Equation 3.4 will be executed
for contact by

Econtact,v, j = (Scontact,v, j−ξ j)∗ Iv, j, (3.7)

and for no-contact by

Eno−contact,v, j = (Sno−contact,v, j +ξ j)∗ Iv, j. (3.8)
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• Determine expected satisfaction per behavioural alternative:
For each need category, the expected satisfaction is multiplied by the importance
of that category. The sum of these results will be the overall expected satisfaction
for a behavioural alternative:

Sb, j =
(Sb,e, j±η j)∗ Ie, j +(Sb,v, j±ξ j)∗ Iv, j

2
=

Eb,e, j +Eb,v, j

2
(3.9)

where:

– Sb, j : the overall expected satisfaction for behavioural alternative b for HU-
MAT j,

– Sb,k, j : the expected satisfaction for the k−th group of needs for HUMAT j
with respect to behavioural alternative b,

– Ik, j : the importance of the k-th need category for HUMAT j, and
– Eb,k, j : evaluation of behavioural alternative b with respect to the k-th need

category for HUMAT j.

• Choose preferred behavioural alternative: Based on the values for Scontact, j and
Sno−contact, j HUMATs will choose their preferred behavioural alternative. In prin-
ciple, this is the behaviour with the highest expected satisfaction. However, if
Scontact, j and Sno−contact, j are very similar, HUMATs will experience a dilemma and
have difficulty choosing one of the behaviours. Specifically, if | Scontact, j - Sno−contact, j |
is lower than or equal to some threshold value κ, the satisfactions for the be-
havioural alternatives are so close that HUMAT j will experience a dilemma. As
a consequence, it will choose a behaviour randomly. The behaviour is determined
by Equation 3.10:

B j =


contact if Scontact, j > Sno−contact, j,

no− contact if Scontact, j < Sno−contact, j, and
dilemma→ random choice if | Scontact, j - Sno−contact, j |≤ κ.

(3.10)

where:

– B j : Behaviour choice of HUMAT j (contact or no-contact),
– Sb, j : the overall expected satisfaction for behavioural alternative b for HU-

MAT j, and
– κ : dilemma threshold. Set to 0.05.

As changes will be applied after 24 hours, the HUMATs will also only perform the
step of choosing a behaviour at the beginning of each day.
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2. Determine desired amount of contact:
With respect to the number of connections a HUMAT has, it will have the internal de-
sire for a certain amount of contact every day. In order to quantify this desire, at the
beginning of each day all HUMATs set a number of desired hours of contact for the
day. Note that these hours are aggregated per active contact, meaning that two hours
of contact are equal to one tick of being in an active connection with two different
friends. For HUMATs with more friends, we assume they are more extroverted and
gain a more positive effect from engaging in social interaction (Augustine & Hemen-
over, 2012). Therefore HUMATs with a higher number of connections will desire more
contact than HUMATs with a lower number of connections. Hence, the determined
amount of desired contact takes into account the number of connections a HUMAT
has by means of a sigmoid function. However, to vary this desire day by day, some
stochastics are included by means of a normal distribution. Equation 3.11 shows how
the number of hours is determined:

D j = N (µ, σ
2)+

2∗α

1+ e−(x j−x̄)
−α, (3.11)

where:

• D j : the desired number of hours of contact for HUMAT j,
• µ = 10,
• σ = 4,
• x j : the number of contacts of HUMAT j,
• x̄ : the average number of contacts of all HUMATs, and
• α : the range of the sigmoid function. It is set to 5, meaning this function will

add a number between -5 and 5, depending on the relative number of contacts
HUMAT j has.

The outcome of Equation 3.11 is truncated between 0 and 40 and rounded to the nearest
integer. At the end of the day, this value will be compared to their actual hours of
contact, which will influence their experiential needs with regards to contact, as will be
discussed in step 7.

3. Inquire opinions of network:
Regardless of their behavioural alternative, HUMATs have a 1% probability to inquire
about the opinions of a selection of their network. This probability is chosen as it will
result in HUMATs inquiring roughly every four days. We assume this is a process that
happens online and therefore has different effects from physical contact in step 6. In
this step, the aim is to capture the social need of conforming to the network, by letting
HUMATs investigate how their opinion relates to that of a selection of their friends. If
a HUMATs opinion is sufficiently different from the opinion of those friends, an action
to resolve the difference is triggered. Firstly, two measurements are discussed, along
with how they relate to the probability to act. Afterwards, the actions a HUMAT can
take to resolve differences are described. After a selection is made by taking a random
subset of HUMAT j’s network, the following two measurements are made:
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• The difference between HUMAT j’s opinion and the average opinion of the selec-
tion of HUMAT j’s network:

Difference from average j = Ō( j)−O j (3.12)

where:

– O j : HUMAT j’s opinion, and
– Ō( j) : the average opinion of the selection of HUMAT j’s.

• The mean difference between HUMAT j’s opinion and the individual opinions of
the selection of HUMAT j’s network:

Mean difference from selected friends j =
1
n

n

∑
m=1
|Om−O j| (3.13)

where:

– O j : HUMAT j’s opinion,
– Om : Opinion of HUMAT m from the selection of HUMAT j’s friends, and
– n : the number of friends in the selection of HUMAT j’s network.

The value for the mean difference from the selected friends from Equation 3.13
determines whether HUMAT j will perform an action to resolve differences. If
this value is 30 or higher, HUMAT j experiences cognitive dissonance from a so-
cial dilemma and will perform such an action. Below 30, the value is equal to the
probability HUMAT j will perform an action. With this method, we assume that
HUMATs that differ more from their network with regards to their opinion of the
visitors measure, feel a higher social need to resolve this difference, and hence are
more likely to act in order to resolve it.
If one of the aforementioned requirements is met and HUMAT j decides to per-
form an action, it can do one of two things, with an equal probability of 50%:

– Adjust own opinion:
HUMAT j adjusts its own opinion towards the mean of the selected friends. It
applies a proportion (ω) of the difference to the average (from Equation 3.12)
to its own opinion2:

∆O j = ∆O j +ω∗Difference from average j (3.14)

where:

* ∆O j : The difference in opinion this day for HUMAT j, and

2Note that opinion-changing effects are not applied immediately, but stored as a ’difference’ to be applied
after each day.
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* ω : the weight of the opinion change, set to 0.2.

– Attempt to persuade another HUMAT:
HUMAT j attempts to persuade another HUMAT from its selected friends to
change its opinion towards that of HUMAT j. Persuading can have two out-
comes: it either succeeds or fails, both with an equal probability of 50%3. A
persuasion success for HUMAT j will result in changing the opinion of the
other HUMAT towards it. We also assume that a persuasion fail will have the
opposite effect, i.e., that the other HUMAT will be more radical in its opinion
with regards to HUMAT j, by increasing the difference. The effects of persua-
sion success and failure are as follows:

Persuasion success: HUMAT j persuades HUMAT i, consequently HUMAT
i changes its opinion towards HUMAT j:

∆Oi = ∆Oi +ω∗ (O j−Oi) (3.15)

where:

* O j : HUMAT j’s opinion,

* Oi : HUMAT i’s opinion,

* ∆Oi : The difference in opinion this day for HUMAT i, and

* ω : the weight of the opinion change, set to 0.2.

Persuasion failure: HUMAT j fails to persuade HUMAT i, consequently HU-
MAT i changes its opinion away from that of HUMAT j:

∆Oi = ∆Oi−ω∗ (O j−Oi) (3.16)

where:

* O j : HUMAT j’s opinion,

* Oi : HUMAT i’s opinion,

* ∆Oi : The difference in opinion this day for HUMAT i, and

* ω : the weight of the opinion change, set to 0.2.

4. Stop active connections:
Each HUMAT can stop any active connection (which are made in the step 5) with a 15%
probability. Note that one connection can therefore be stopped by HUMATs on either
side. The 15% probability is chosen here, as it will result in connections remaining
active for approximately 3 to 4 hours on average.

3’Stubbornness’ could be a potential extension to make this more realistic.
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5. Make new active connections:
In contrast to step 3, which captures online contact, here active connections between
HUMATs are assumed to entail physical contact4. HUMATs can attempt to make con-
nections, but the other end has to accept the request in order to activate a connection:

• Requesting an active connection: In this step HUMATs attempt to activate a con-
nection with one of the friends in their network. HUMATs with the no-contact
behavioural alternative who have not yet reached the allowed number of contacts
this day and HUMATs who have the contact behavioural alternative (regardless of
the number of contacts it had this day) have a 10% probability to make a request
for making an active connection with another HUMAT in their network per tick.

• Accepting a request for an active connection: The HUMAT who receives a re-
quest for an active connection has to accept the request. HUMATs with no-contact
behavioural alternative who have not yet reached the allowed number of contacts
per day and HUMATs who have the contact behavioural alternative (regardless of
the number of contacts it had this day) will always accept the contact. For HU-
MATs with the behaviour no-contact who have reached the maximum contacts per
day allowed by the visitors measure, there is a probability of 80% that they deny a
request for contact. Hence, that leaves a 20% probability that such a HUMAT can
be convinced by the requesting HUMAT to still accept an active contact, despite
the fact that it will exceed the maximum allowed number of contacts. This proba-
bility, therefore, represents the chance a HUMAT who aims to follow the visitors
measure goes against its own principles.
If in any case the contact is accepted, the connection (called a link in NetLogo)
between the two HUMATs activates and turns green (see Figure 3.5).

Figure 3.5: Two HUMATs that are in an active connection.

After instantiating or accepting an active connection, HUMATs that break the rule
of the visitors measure by going over the limit of allowed contacts per day, slightly
reduce the value of their opinion:

4Note that for this thesis, we assume that the agents represent a group of young adults who live on their own.
In real life, many young adults might also live with roommates with whom they spontaneously meet and come
into contact, which potentially could satisfy their experiential need for social contact. In order to keep the model
simple, we assume no such spontaneous forms of social contact will happen, but that social contact between
HUMATs is always the result of two HUMATs that live apart and decide to physically meet. In other words, this
model specifically focuses on the need for external social contact.

34



Chapter 3. Model 3.2. Algorithmic steps

∆O j = ∆O j−ρ∗O j (3.17)

where:

• ∆O j : The difference in opinion this day for HUMAT j,

• O j : HUMAT j’s opinion, and

• ρ : the weight for breaking the rule, a random float with 0 <= ρ <= 0.02

By reducing the opinion percentage-wise, HUMATs with the no-contact behavioural al-
ternative that decide to break the rule they claim to support are relatively more affected.
This is because these HUMATs in general have a higher valued opinion in accordance
with their support for the visitors measure than HUMATs who already support the rule
to a lesser extent. From the perspective of consistency, it seemed that a percentage-wise
reduction is in its place here.

6. Determine social influence on active connections:
At each tick/iteration, the opinions of the HUMATs are influenced by the HUMATs
with whom they have an active connection. For this step, in addition to the first-
order connections, also higher-order connections are taken into account. Together, they
form a cluster of active connections. Figure 3.6 shows such a cluster and clarifies what is
meant5.

Figure 3.6: Cluster of active connections. In this Figure, HUMAT 3 has a first-order connec-
tion to HUMATs 1, 2 and 4. HUMATs 1 and 2 could have a first-order connection to each
other, but in this case are connected through a higher-order connection via HUMAT 3. Both
HUMAT 1 and 2 are connected to HUMAT 4 through a higher-order connection via HUMAT
3.

Each HUMAT in a cluster of active connections is assumed to be socially influenced
by each other HUMAT, meaning that their opinion is adjusted according to the other
HUMATs. The influence depends on parameters regarding the difference in opinion
between two HUMATs. It is modelled such that when this difference is lower than

5In the example of Figure 3.6, in principle HUMAT 1 and 2 could also have a connection. This would result
in exactly the same cluster, and therefore has no additional effect with regards to social influence.
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10, HUMATs will accept this difference, causing the opinions not to be affected by
each other, following from the assumption that human beings with minor differences
in opinion will tolerate one another. In other cases, attraction and repulsion will take
place (see Sherif & Hovland (1961) for a discussion on the role of assimilation and
contrast effects and their influence on processes of communication, persuasion and
social judgment):

• Attraction: For opinion differences higher than 25, but lower than or equal to
50, HUMATs in a cluster of active connections will have an attracting influence:
From the perspective of HUMAT j, if HUMAT j is in active contact with HUMAT
i and 25 < |O j−Oi|<= 50, HUMAT j changes its opinion towards HUMAT i, as a
proportion (γ) of the difference:

∆O j = ∆O j + γ∗ (Oi−O j) (3.18)

where:

– ∆O j : The difference in opinion this day for HUMAT j,
– O j : HUMAT j’s opinion,
– Oi : HUMAT i’s opinion, and
– γ : the weight for social influence per tick/iteration, set to 0.001.

• Repulsion: As an optional parameter, HUMATs can also have a repulsive effect
on each other’s opinions. For opinion differences higher than 50, HUMATs in a
cluster of active connections will have a repulsing influence, which has the op-
posite effect from Equation 3.18: From the perspective of HUMAT j, if HUMAT
j is in active contact with HUMAT i and |O j−Oi| > 50, HUMAT j diverges from
HUMAT i by changing its opinion away from that of HUMAT i:

∆O j = ∆O j− γ∗ (Oi−O j) (3.19)

where:

– ∆O j : The difference in opinion this day for HUMAT j,
– O j : HUMAT j’s opinion,
– Oi : HUMAT i’s opinion, and
– γ : the weight for social influence per tick/iteration, set to 0.001.

After this point, for each HUMAT the number of active contacts is counted and added
to the total of that day. In contrast to opinion influence where a cluster of active connec-
tions was considered, for determining the hours of contact we only consider first-order
connections. The hours are stored in order to compare it at the end of the day in step
7 to the desired hours of contacts from step 2. Note again that hours are aggregated
over different active contacts, meaning that two hours of contact are equal to one tick
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of having an active connection with two different friends. The hours of contact per tick
t for HUMAT j are determined by Equation 3.20:

H j = H j +Ht
j (3.20)

where:

• H j : the total hours of contact this day for HUMAT j, and

• Ht
j : the number of active contacts for HUMAT j at tick t.

7. Apply daily changes and effects:
In this step, which is executed at the end of each day (24 ticks/iterations), the effects
with regard to opinion changes and desired contacts for the day are determined.

• Opinion changes:
Firstly, HUMATs that have adhered to the visitors measure on a day have their
opinion slightly increased. This follows from the assumption that if a rule is com-
patible with the behaviour someone shows, one should be somewhat more sup-
portive of that rule. The difference is as follows:

∆O j = ∆O j + τ∗ (100−O j) (3.21)

where:

– ∆O j : The difference in opinion this day for HUMAT j,
– O j : HUMAT j’s opinion, and
– τ : the weight for adhering to the rule, a random float with 0 <= τ <= 0.04

In accordance with the opposite effect in Equation 3.17, the added opinion differ-
ence is percentage-wise on the inverse of a HUMATs opinion. Applying Equation
3.21 like this entails that HUMATs with the contact behavioural alternative (who
in general have a lower opinion) that decide to follow the rule they claim to op-
pose, have their opinion increased more than HUMATs who already support to
rule to a higher extent.
Afterwards, the opinion changes from Equations 3.14, 3.15, 3.16, 3.17, 3.18, 3.19
and 3.21 are applied to the HUMATs opinions. Changing opinions after a day
instead of immediately circumvents potential problems with applying opinion
changes to HUMATs in a certain order. For every HUMAT j the total stored dif-
ference in opinion that day is multiplied with a stubbornness weight ζ j, which
is a random float between 0 and 1 that determines the extent to which HUMAT
j allows changes to its opinion. The result of this multiplication is added to the
opinion of HUMAT j:

O j = bO j +ζ j ∗∆O je (3.22)
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where:

– ∆O j : The difference in opinion this day for HUMAT j,
– O j : HUMAT j’s opinion,
– ζ j : Stubbornness weight for HUMAT j, and
– bxe : x is rounded to the nearest integer (with halves being rounded up, so
b1.5e= 2)

As a consequence of the opinion change, the HUMATs’ expected satisfaction lev-
els for values needs are adjusted accordingly (by Equations 3.6, 3.7 and 3.8).

• Difference between desired and actual hours of contact:
The desired hours of contact D j from Equation 3.11 are compared to the actual
hours of contact H j. The difference between H j and D j will determine the addi-
tional satisfaction parameter η from Equation 3.4. This means it will be added
(3.23) and subtracted (3.24) to HUMAT j’s expected experiential satisfaction for
contact and no-contact respectively. Hence Equation 3.4 will be executed for contact
by

Econtact,e, j = (Scontact,e, j +η j)∗ Ie, j, (3.23)

where:

– Econtact,e, j : the evaluation for contact with respect to the experiential needs for
HUMAT j,

– Scontact,e, j : the expected satisfaction for contact with respect to the experiential
needs for HUMAT j,

– Ie, j : the importance of the experiential needs for HUMAT j, and
– η j : additional satisfaction parameter for experiential satisfaction for HUMAT

j.

and for no-contact by

Eno−contact,e, j = (Sno−contact,e, j−η j)∗ Ie, j. (3.24)

where:

– Eno−contact,e, j : the evaluation for no-contact with respect to the experiential
needs for HUMAT j,

– Sno−contact,e, j : the expected satisfaction for no-contact with respect to the expe-
riential needs for HUMAT j,

– Ie, j : the importance of the experiential needs for HUMAT j, and
– η j : additional satisfaction parameter for experiential satisfaction for HUMAT

j.
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In these function, η j is determined as follows:

η j =


η j−χ∗ (H j−D j) if H j > D j,

η j +χ∗ (D j−H j) if H j < D j,

η j otherwise

(3.25)

where:

– H j : the total hours of contact this day for HUMAT j,
– D j : the desired number of hours of contact this day for HUMAT j,
– η j : additional satisfaction parameter for experiential satisfaction of HUMAT

j, which is limited to a value between 0 and 1, and
– χ : weight for adjustments to η j per hour of difference between desired hours

D j of contact and actual hours of contact H j (set to 0.01).

In practice, η j will vary between 0 and 1 and increases while a HUMAT j has less
contact than it desires (H j < D j) and decrease while HUMAT j has less contact
than it desires (H j > D j). If η j increases, HUMAT j will expect more satisfaction
for contact and fewer satisfaction for no-contact. Hence, as a consequence of not
having as much contact as HUMAT j desires, it it more likely to choose contact as
its behaviour.
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3.3 Model Variables

This section gives an overview of the main variables in the model. Tables show names
of variables, their descriptions, types and value ranges. Table 3.3 displays the general ad-
justable model parameters and Table 3.3.2 displays HUMAT specific variables.

3.3.1 Adjustable Parameters

Parameter name Description Type Range

• N-HUMATs The number of agents INT [10, 150]
• initialization Determines initial distribution of opinions CHOOSER 7 Options

according to one of the RIVM survey waves
from Table 3.1 or a random uniform distribution.

• allowed_contacts_per_day Strength of the visitors measure, allowed number INT [1,10]
of activated connections for a HUMAT per day.

• max_attraction_dif Maximal difference in opinion between HUMATs INT [1,100]
(= max in next rows) in order for attraction of opinions to take place

• min_attraction_dif Minimal difference in opinion between HUMATs INT [0, max ]
in order for attraction of opinions to take place

• repulsion? Option to include repulsion effects BOOLEAN [0,1]
• repulsion_dif Minimal difference in opinion between HUMATs INT [max , 100 ]

in order for repulsion of opinions to take place
• make_contact_probability Probability for HUMATs to make contact at a INT [0,100]

given tick, when conditions are met (default = 10%)
• no_contact_accept_ Probability for HUMATs with no-contact INT [0,100]
probability behaviour to accept contact attempt (default = 20%)
• inquiry_probability Probability for HUMATs to inquire opinions from INT [0,100]

network (default 1%)
• social-influence-per-tick Value for γ (default = 0.001) FLOAT [0,0.01]
• inquiry-opinion-change Value for ω (default = 0.2) FLOAT [0,0.5]
• adhere-to-rule-effect Value for τ (default = 0.04) FLOAT [0,0.04]
• break-the-rule-effect Value for ρ (default = 0.02) FLOAT [0,0.02]
• extra_exp_satisfaction_ Additional expected satisfaction for contact based on FLOAT [0,0.2]
per_hour desires and actual contact. Value for η (default = 0.01)
• values_satisfaction_opinion_ Determines the extent to which the HUMATs’ opinions FLOAT [0,1]
contribution contribute to the values needs. Value for ξ (default = 0.5)
• dilemma_threshold Value for κ. Determines when | Scontact, j - Sno−contact, j | FLOAT [0,0.1]

invokes a dilemma.
• parametrize-importances? Determines whether importances are drawn from a BOOLEAN [0,1]

normal distribution or parametrized manually
• experiential-importance- Manually set experiential importance for all HUMATs FLOAT [0.1]
parameter (if parametrize-importances? is on)
• values-importance- Manually set values importance for all HUMATs FLOAT [0.1]
parameter (if parametrize-importances? is on)

Table 3.3: General adjustable model parameters.
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3.3.2 HUMAT Agents (nodes):

Variable name Description Type Range

• n_friends The number of friends a HUMAT has, active or not INT >= 1
• n_active_connections The number of active connections a HUMAT has INT >= 0

currently
• n_contacts_this_day The number of active connections a HUMAT has INT >= 0

had on a day
• hours_of_contact_this_day The aggregated number of hours a HUMAT had INT >= 0

active connections with other HUMATs on a day (H j)
• desired_hours_of_contact_ The desired number of hours a HUMAT has on INT >= 0
this_day a day (D j)
• opinion_measure The opinion on the COVID maximum visitors INT [0,100]

measure (O j)
• opinion_difference_this_day This variable stores the adjustments to a HUMAT’s FLOAT -

opinion that are made on a given day. The difference
is applied to the HUMAT’s opinion after each day (∆O j)

• behaviour Behavioural alternative. contact or no-contact (B j) STRING 2 options
• stubbornness Determines the extent to which a HUMAT allows FLOAT [0,1]

changes to its opinion (value for ζ)
• experiential-importance The importance for the experiential category (Ie,k) FLOAT [0,1]

This is a weighting factor, determining how important
a HUMAT finds experiential satisfaction.

• values-importance The importance for the values category (Iv,k) FLOAT [0,1]
This is a weighting factor, determining how important
a HUMAT finds values satisfaction.

• experiential-satisfaction- Expected satisfaction of HUMAT j’s experiential FLOAT [-1,1]
contact needs for contact behaviour (Scontact,e, j)
• values-satisfaction- Expected satisfaction of HUMAT j’s value FLOAT [-1,1]
contact needs for contact behaviour (Scontact,v, j)
• experiential-satisfaction- Expected satisfaction of HUMAT j’s experiential FLOAT [-1,1]
no-contact needs for no-contact behaviour (Sno−contact,e, j)
• values-satisfaction- Expected satisfaction of a of HUMAT j’s values FLOAT [-1,1]
no-contact needs for no-contact behaviour (Sno−contact,v, j)
• Satisfaction-contact Expected satisfaction for contact behaviour (Scontact, j) FLOAT [-1,1]
• Satisfaction-no-contact Expected satisfaction for no-contact behaviour (Sno−contact, j) FLOAT [-1,1]

Table 3.4: HUMAT specific variables.
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Chapter 3 described the implementation of the model. Now the model can be run to explore
different scenarios and observe how a simulated network of HUMATs responds to these
scenarios. More specifically, we can observe the effects of changes in the strictness of the vis-
itors measure and populations of HUMATS with different importances on phenomena such
as the distribution of opinions, the total number of active contacts, the number of dilemmas
the HUMATs experience and the decision making of individual HUMATs throughout time
as a result.

This chapter describes various experiments that have been performed with the model
and the results that follow from these experiments: Firstly, Section 4.1 describes a set of ex-
periments with RIVM data initializations, in which RIVM survey data is used to initialize the
HUMATs’ opinions and the allowed visitors is set to the number allowed during the time of
the survey wave. Secondly, in Section 4.2 the visitors measure is further explored. Here, an
experiment is performed to explore different effects as a result of varying the allowed num-
ber of visitors. For each of these experiments, the experiment is described and a hypothesis
is given, as well as the results of that experiment.

Finally, Section 4.3 describes a parameter sweep on the importances of the HUMAT pop-
ulation.
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4.1 Experiments with RIVM data initializations

4.1.1 Experiment description

A number of experiments were performed using the different initializations of opinions by
means of the RIVM survey data. In these experiments, all the adjustable parameters are set
to the values described in Chapter 3 (including repulsion effects and HUMAT importances
drawn from a normal distribution). For every wave of the survey, the HUMATs are initial-
ized using the distribution of opinions of that particular wave, according to Table 3.1. The
manner in which the opinions are initialized is described in Section 3.2.1 step 3. The num-
ber of allowed visitors per day is set to that of the government policy during that particular
wave.

Two questions of interest for these experiments are:

1. How does the distribution of opinions change over 100 days, given the different opinion initial-
izations by the RIVM survey data?

2. How does the amount of active contact between agents change over 100 days, given the different
opinion initializations by the RIVM survey data?

In order to answer these questions, the model is run for 100 days for each RIVM initial-
ization. Every day of the simulation, both the opinions of all 100 HUMATs and the number
of active contacts are measured. The choice to test for 100 days comes from the fact that we
are not necessarily interested in a final equilibrium after years of lockdown, but more in the
process of change within a limited time.

4.1.2 Hypotheses

1. For the opinions, we expect to see a strong effect from the allowed number of visitors
on the change and distribution of opinions, where a stricter measure (i.e. fewer allowed
visitors) will lead to a higher decrease of the HUMATs’ support for the policy than a
less stringent measure.

Moreover, the initialization of opinions plays a role in the fact that the model is run for
100 days, such that a population of HUMATs initialized with a higher average opinion
(i.e. more support) regarding the visitors measure might end up with a higher average
opinion after 100 days, given the same number of allowed visitors, than a population
that is initialized with a lower average opinion. If we would run both initializations
until the model converges, both initial situations would end up at a similar average
opinion.

2. Regarding the amount of contact, due to HUMATs with the no-contact behaviour aim-
ing to adhere to the rule, we expect to see a peak around the allowed number of visitors
every day. However, in situations where the support decreases, more HUMATs will
choose the contact behaviour, in which they disregard following the visitors measure.
In those cases, such a peak might be less emphasized and the distribution of contacts
may vary more. For the same reason, we expect the average number of daily contacts
to increase as support for the visitors measure decreases.

43



Chapter 4. Experiments & Results 4.1. Experiments with RIVM data initializations

Survey Wave and Date Vis/day Geen mening Helemaal niet Niet Neutraal Wel Helemaal wel
6: 19-23 aug 2020 6 0.9% 4% 7.3% 11.8% 27.9% 48.1%
7: 30 sep - 4 oct 2020 4 0.5% 3.1% 7.4% 11.9% 30.6% 46.5%
8: 11-15 nov 2020 2 0% 5.8% 10.5% 13.7% 28.9% 41.1%
9: 30 dec 2020 - 3 jan 2021 2 0% 3.3% 6.6% 10.9% 30.7% 48.5%
10: 10-14 feb 2021 1 0% 9.2% 18% 17.1% 27.2% 28.5%
11: 24-28 mar 2021 1 0% 10.4% 23% 19.3% 25.3% 22%

Table 4.1: This is a replicate of Table 3.1, which is placed here as a mnemonic for the reader
such that the results in Section 4.1.3 can be related to it. A more extensive description can be
found in the original table.

4.1.3 Results

The results of the experiments can be found in Figures 4.1 to 4.12 on the following pages. For
each of the six RIVM data initializations, there are two pages with results: Firstly, a page with
results regarding the opinion changes for that wave. Secondly, a page regarding the changes
in the amount of active contact for that wave. Both the pages for opinions and contacts results
contain three figures.

Opinion results: For the opinion results, the figure on the upper left displays the average
opinion of 100 HUMATs during a single run. The shaded area represents the standard de-
viation of the average opinion. The bottom figure illustrates a three-dimensional histogram
of the distribution of opinions over time, starting with the initial distribution given in Table
4.1 for each wave. The upper right figure shows the average of the mean opinion of 100 HU-
MATs over 100 runs, which can be used to compare how a single run relates to the average
of a number of runs. Here the shaded area represents the standard deviation between the
mean opinion of different runs.

Contacts results: For the contact results, the figure on the top illustrates a three-dimensional
histogram representing the distribution of the number of active contacts HUMATs have per
day. The figure on the bottom right displays the same histogram as a perspective from above.
In the bottom left figure, the green bars show the total number of contacts the HUMATs have
per day and the red line results from a smoothing function, to display the pattern of changes
in contact over time.
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Figure 4.1: Wave 6 - 19-23 aug 2020 - 6 visitors per day allowed - Opinions:
Upper left: Average opinion of 100 HUMATs over 100 days. Upper right: Average of 100
runs of the mean opinion of 100 HUMATs over 100 days. Bottom: 3D histogram of the
distribution of opinions over 100 days.
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Figure 4.2: Wave 6 - 19-23 aug 2020 - 6 visitors per day allowed - Contacts:
Top: 3D histogram of the distribution of the number of active contacts HUMATs have per
day. Bottom right: displays the same histogram as a perspective from above. Bottom left:
The total number of contacts the HUMATs have per day.
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Figure 4.3: Wave 7 - 30 sep - 4 oct 2020 - 4 visitors per day allowed - Opinions:
Upper left: Average opinion of 100 HUMATs over 100 days. Upper right: Average of 100
runs of the mean opinion of 100 HUMATs over 100 days. Bottom: 3D histogram of the
distribution of opinions over 100 days.
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Figure 4.4: Wave 7 - 30 sep - 4 oct 2020 - 4 visitors per day allowed - Contacts:
Top: 3D histogram of the distribution of the number of active contacts HUMATs have per
day. Bottom right: displays the same histogram as a perspective from above. Bottom left:
The total number of contacts the HUMATs have per day.
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Figure 4.5: Wave 8 - 11-15 nov 2020 - 2 visitors per day allowed - Opinions:
Upper left: Average opinion of 100 HUMATs over 100 days. Upper right: Average of 100
runs of the mean opinion of 100 HUMATs over 100 days. Bottom: 3D histogram of the
distribution of opinions over 100 days.
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Figure 4.6: Wave 8 - 11-15 nov 2020 - 2 visitors per day allowed - Contacts:
Top: 3D histogram of the distribution of the number of active contacts HUMATs have per
day. Bottom right: displays the same histogram as a perspective from above. Bottom left:
The total number of contacts the HUMATs have per day.
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Figure 4.7: Wave 9 - 30 dec 2020 - 3 jan 2021 - 2 visitors per day allowed - Opinions:
Upper left: Average opinion of 100 HUMATs over 100 days. Upper right: Average of 100
runs of the mean opinion of 100 HUMATs over 100 days. Bottom: 3D histogram of the
distribution of opinions over 100 days.
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Figure 4.8: Wave 9 - 30 dec 2020 - 3 jan 2021 - 2 visitors per day allowed - Contacts:
Top: 3D histogram of the distribution of the number of active contacts HUMATs have per
day. Bottom right: displays the same histogram as a perspective from above. Bottom left:
The total number of contacts the HUMATs have per day.
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Figure 4.9: Wave 10 - 10-14 feb 2021 - 1 visitors per day allowed - Opinions:
Upper left: Average opinion of 100 HUMATs over 100 days. Upper right: Average of 100
runs of the mean opinion of 100 HUMATs over 100 days. Bottom: 3D histogram of the
distribution of opinions over 100 days.
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Figure 4.10: Wave 10 - 10-14 feb 2021 - 1 visitors per day allowed - Contacts:
Top: 3D histogram of the distribution of the number of active contacts HUMATs have per
day. Bottom right: displays the same histogram as a perspective from above. Bottom left:
The total number of contacts the HUMATs have per day.
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Figure 4.11: Wave 11 - 24-28 mar 2021 - 1 visitors per day allowed - Opinions:
Upper left: Average opinion of 100 HUMATs over 100 days. Upper right: Average of 100
runs of the mean opinion of 100 HUMATs over 100 days. Bottom: 3D histogram of the
distribution of opinions over 100 days.
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Figure 4.12: Wave 11 - 24-28 mar 2021 - 1 visitors per day allowed - Contacts:
Top: 3D histogram of the distribution of the number of active contacts HUMATs have per
day. Bottom right: displays the same histogram as a perspective from above. Bottom left:
The total number of contacts the HUMATs have per day.
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4.2 Exploring the effects of different visitors measures

4.2.1 Experiment description

In this experiment, the effects of varying the strictness of the visitors measure are explored.
All the adjustable parameters are set to the values described in Chapter 3. In contrast to
the experiments described in Section 4.1, here the HUMATs are initialized with opinions
drawn from a random-uniform distribution every run. Consequently, the mean opinion of
the population will be approximately 50 at the start of every run. The varied parameter for
this experiment is the allowed number of visitors per day, which is varied from 1 to 10. The
aim of this experiment is to explore the effects of the visitors measure on three phenomena:

• The change of opinions of the HUMAT population over time,

• the number of contacts the HUMATs have, and

• the behaviour the HUMATs choose to follow.

Moreover, we are interested in the coherence between these phenomena. Therefore, the main
questions of interest for this experiment are:

1. How do differences in the strictness of the visitors measure affect the HUMATs’ support for the
measure (change in opinion) over time?

2. How do differences in the strictness of the visitors measure affect the number of contacts the
HUMATs have?

3. How do differences in the strictness of the visitors measure affect the behaviour HUMATs choose
to follow?

In order to answer these questions, for each number of allowed daily visitors (1-10), the
model is run for 100 times, in which a population of 100 HUMATs is investigated for 100
days. We measure the opinion of all HUMATs every day, as well as the number of contacts
the HUMATs have per day and the percentage of HUMATs with the no-contact behaviour.

4.2.2 Hypotheses

1. Similar to the hypothesis in Section 4.1.2, we expect a strong effect from the number of
allowed visitors on the change and distribution of opinions, where a stricter measure
(i.e. fewer allowed visitors) will lead to a higher decrease of the HUMATs’ support for
the policy than a less stringent measure.

2. For the contacts, we expect to see fewer contacts with stricter visitors measures. We
expect the differences to be stronger between stricter visitors measures. More lenient
measures could be closer to the experiential needs for the HUMATs, hence a lenient
measure might not limit the HUMATs in satisfying these needs, leading to less empha-
sized differences than when the measure does limit the satisfaction of their needs.

3. For the same reason as discussed above, we expect fewer HUMATs to choose following
the no-contact behaviour when the visitors measure is stricter.
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Given these expectations, we expect to see coherence in the effect of changing the visitors
measure on the three phenomena.

4.2.3 Results

The results of the experiments can be found on the following pages.
Figure 4.13 shows lines representing the average of the mean opinion of 100 HUMATs

over 100 runs for each allowed number of visitors per day (depicted by the different colours).
The shaded area represents the standard deviation from the average opinion of the 100 runs.
Figure 4.14 shows bar plots of the mean opinion during a run and the mean final opinion.
Here the error bars denote the standard deviation from the average opinion of the 100 runs.

Figure 4.15 shows two plots: a line plot representing the cumulative number of active
contacts over time per HUMAT, averaged over the 100 runs and a bar plot illustrating the
average number of active contacts over 100 days per HUMAT, both for each allowed number
of visitors per day (depicted by the different colours).

Figure 4.16 shows bar plots regarding the mean percentage of HUMATs with the no-
contact behaviour (i.e. with the aim to follow the measure) during 100 days and on the final
day.

Finally, Figure 4.17 shows a bar plot in which the mean opinion on the final day (in red)
and number of contacts per HUMAT over 100 days (in green) from Figures 4.14 and 4.15 are
shown in conjunction.
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Figure 4.13: This figure shows the average support over 100 days for the visitors measure for
different allowed numbers of visitors for 100 runs, given a random uniform initial distribu-
tion of opinions. The different colours depict the different allowed numbers of daily visitors.
The shaded areas represent the standard deviation from the mean opinion of the 100 runs.
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Figure 4.14: In this figure, the top plot shows bars representing the mean opinion during 100
days of a run and the bottom plot shows the mean final opinion after 100 days. The error
bars denote the standard deviation from the average opinion of the 100 runs.
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Figure 4.15: In this figure, the top (line) plot represents the cumulative number of active
contacts over time per HUMAT, averaged over the 100 runs. The different colours depict the
different allowed numbers of daily visitors (which colour denotes which can be extracted
from the bottom bar plot). The bottom bar plot illustrates the average number of active
contacts over 100 days per HUMAT, with the error bars showing the standard deviation
from the average total number of contacts of the 100 runs.
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Figure 4.16: This figure shows two bar plots: The top plot shows the mean percentage of
HUMATs with the no-contact behaviour during 100 days. The bottom plot shows the mean
percentage of HUMATs with the no-contact behaviour on the final day. The error bars de-
note the standard deviation from the average percentage of HUMATs with the no-contact
behaviour with of the 100 runs.
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Figure 4.17: This figure shows a combination of the mean opinion on the final day (in red)
and number of contacts per HUMAT per day (in green) from Figures 4.14 and 4.15. Note that
each color has its own y-axis.

4.3 Importances parameter sweep

4.3.1 Experiment description

A parameter sweep was performed on the importances of the HUMAT population, in which
experiments are run with different combinations of the Experiential Importance and Values
Importance on different visitors measure strictnesses. More specifically, both the experiential
and values importance are varied for the following six values: [0,0.2,0.4,0.6,0.8,1]. The
strictness of the visitors measure is varied for the values [2,4,6]. Consequently, in total there
are 6∗6∗3 = 108 different combinations of these parameters, which are all run 100 times. In
each of these runs, four categories of variables are measured at the end of every day. These
are the following:

• The average number of active contacts per HUMAT on that day,

• The average number of HUMATs that are in a dilemma on that day,

• The mean opinion on that day, and

• The standard deviation of the opinion on that day.
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4.3.2 Results

The results of the parameter sweep are aggregated over the 100 runs and are displayed in
Appendix B. Here, the results are distinguished into two sets, each with its own section:

1. The first set of results concerns the mean values for the aforementioned categories over
the full run (e.g., the mean opinion value averaged over all days of a run) and are
displayed in Section B.1.

In Figures B.1 to B.3, a number of heatmaps can be found for the first set of results.
The upper left heatmap, in blue, displays the average number of active contacts per
day per HUMAT. The upper right heatmap, in red, displays the average number of
dilemmas per day per HUMAT. The bottom left heatmap, in green, displays the mean
opinion of the HUMAT population during the runs. The bottom right heatmap, in
purple, displays the average standard deviation of the opinion during the runs.

2. The second set of results concerns the final values for the aforementioned categories
(e.g., the mean opinion value at the final day of the run) and are displayed in Section
B.2.

In Figures B.4 to B.6, the heatmaps display the same categories in the respective con-
figuration, but in contrast to Section B.1, here they consider the final values of each
category.
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This chapter firstly answers the research questions that were posed in Section 1.2, through
the insights and results obtained in Chapters 2 to 4. Afterwards, it offers some suggestions
and directions for future work, both improvements and extensions to the model. Finally, it
discusses the relevance of the work done for this thesis both for ABM and in general and
ends with a concluding section.

5.1 Research questions

1. Can we create an agent-based model in which the interaction between the support for the Dutch
COVID visitors measure and the need for social contact can be explored?

We believe the model that was developed captures some of the key elements of the
interaction between the support for the Dutch COVID visitors measure and the need
for social contact. The model appears to be stable, is relatively easy to understand and
can easily be adapted or extended. Hence, we were able to create an agent-based model
in which this interaction can be explored.

(a) Is the HUMAT framework (Antosz et al., 2019) a suitable cognitive framework to model
different agent needs and decision making for this case?

The agents in the model determine their behaviour, which determines whether
they intend to follow the visitors measure or not, on the basis of different needs.
Each of these needs seems plausible, as they all appear to exist in the real-life
case that is modelled. The HUMAT framework turned out to provide an excellent
architecture for constructing these needs in the model, because mapping them
onto the needs structure in the framework was very intuitive.
Moreover, the HUMAT framework was flexible in the sense that certain needs
could easily be utilized in a different manner while maintaining the foundations
in psychological and sociological theory as the basis of the framework. This flex-
ibility allowed, for example, the implementation of the social needs as a mecha-
nism outside of the evaluation and determination of behaviour, in contrast to the
original implementation of social needs in the HUMAT framework.
Additionally, the implementation of needs was very adaptable, such that it was
easy to make extensions to the HUMAT framework. For example, adding the
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difference between desired and actual hours of contact and the opinion to the
evaluations of behaviour was easily implemented.
Given these considerations, we conclude that the HUMAT framework was suit-
able for modelling the researched case in this thesis.

(b) To which extent can this model realistically capture the dynamics in this interaction?

Of course, a model is always an abstraction, meaning it can only be realistic up
to a certain extent. Some constraints to the model are that the network is fixed
and assumed to consist of individual agents who have to meet in order to fulfil
their experiential need to come into contact. Realistically, agents would both live
together and have other means of fulfilling their needs. However, implementing
all aspects that are realistic to the model would both result in a far too complex
model and be too time-consuming. Hence, it is chosen to implement some model
aspects as simplifications of real life. Despite these simplifications, the model does
show some behaviour that appears to be realistic with respect to the support for
the visitors measure and amount of contact that the HUMATs have, which can be
useful and insightful.

(c) Is the data from RIVM surveys1 sufficient to initialize the HUMATs’ opinions with?

Given the implementation of the model, the opinions will converge to a certain
mean over time, depending on the allowed number of visitors. So, in such an
end state, the initial opinions are not very relevant. However, the end state of the
model is not necessarily the point of interest for the model. If we consider the
behaviour of the model during 100 days, the RIVM survey data is relevant and
makes a difference in the behaviour of the model. For example, if the HUMAT
population is initialized with relatively supportive opinions, but with a strict visi-
tors measure, the model is able to show the transition to a less-supportive popula-
tion. It can also show the effects of very stubborn individuals, something that can
notably be seen in the 3D histogram in Figure 4.11, in the continuation of some
opinions as lines. From these perspectives, initializing the HUMATs’ opinions
with the RIVM survey data is very relevant and can be insightful.
Regardless, it can be said that initializing the opinions of the HUMATs according
to a distribution similar to empirical data is valuable in itself.

2. What can an agent-based model in which the interaction between the support for the Dutch
COVID visitors measure and the need for social contact is modelled teach us?

From running the model we observe some interesting behaviour in terms of the num-
ber of contacts and the opinion the HUMATs have during a run, and as the mean of
numerous runs. Figure 4.17 shows a divergence between the number of daily contacts

1see https://www.rivm.nl/gedragsonderzoek/maatregelen-welbevinden/draagvlak
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and mean opinion as the visitors measure becomes stricter. In the answer to the follow-
ing sub-questions, we will interpret these results and aim to explain why these effects
occur for support and efficacy respectively.

(a) How does the support for the visitors measure change as a result of the strictness of the
measure?

It can be observed in Figures 4.13 and 4.14 that the most lenient visitors measures
(8 to 10 allowed visitors per day) result in relatively minor differences in support.
In contrast, for stricter visitors measures, the decrease in support is increasingly
larger, with the largest differences in support between 1 and 2 allowed visitors.
Relating these results to real life, the displayed differences in support appear plau-
sible, as interacting with 8, 9 or 10 visitors on a day will make a minor difference
for the majority of people, while the difference between seeing 1 or 2 is much more
drastic. For the majority, high numbers of allowed visitors will most likely not in-
terfere too much with their desires and hence they are likely to accept it when the
visitors measure allows them to see one person less. However, as the measure be-
comes stricter, for more and more people their needs might not be satisfied within
the limitations, especially for the difference between 1 or 2 visitors2. Therefore the
support is increasingly lower for stricter measures.

(b) How does the amount of social interaction change as a result of the strictness of the visitors
measure?

In Figure 4.15 we find that the bar plot resembles an S-shape, in the sense that the
differences in total numbers of contacts are the smallest on the ends of the graph
(1 or 2, and 8 to 10 allowed visitors), but the largest in the middle (3 to 7 allowed
visitors).
Interpreting these results, it may be that 8 to 10 allowed visitors all lead to sim-
ilar numbers of total contacts for the aforementioned reason that 8 to 10 visitors
is already allows more than what many people desire on a day. When the visi-
tors measure becomes stricter, between 3 and 7 allowed visitors, more and more
people will find that their desires may not be met, but that their need to follow
the measure will lead to a reduction in their amount of contact. This is where
the visitors measure shows the largest effect. However, this effect stagnates as
the visitors measure becomes even stricter, with 1 or 2 allowed visitors a day. For
many people, this limitation subceeds their desires so much, that they are likely to
write off the visitors measure. As a result, it is not the case that they will go over
the allowed number of visitors by just a little, but rather they will no longer take
the visitors measure into account and simply act in accordance with their desires.
Therefore, we see that the visitors measure initially is effective, but that this effect

2This difference entails someone could not have a couple over for visit, but could only meet one of the pair,
which can be seen as impolite for some people.
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stagnates as the visitors measure gets increasingly strict.

5.2 Future work

Given the exploratory nature of this research in which a real-life situation is modelled from
scratch, many options can be further explored. During the development of the model, we
experienced a trade-off between making the agents as complete and realistic as possible on
the one hand and keeping the model simple to understand on the other hand. Also, with
regards to the allocated time for the research, some behaviour in the model is the result of
probabilities, which are chosen by doing an educated guess instead of grounding them in
theory. As a result, some potential options were not implemented. This section discusses
and suggests some improvements and extensions to the model.

5.2.1 Improvements

Currently, while running the model, the variety of opinions decreases over time as they draw
to a certain mean, given the allowed number of visitors. It is questionable whether this is
realistic, as the survey data in Table 3.1 shows a different pattern, in which opinions change
less drastically between survey waves in comparison to the model. Ideally, the model could
show the transitions in opinions between these survey waves. Adding stubbornness to the
HUMATs with regards to their opinions seemed like a plausible addition and it worked
effectively as an inhibitor of the opinion-changing effects, which therefore led to a bigger
variation of opinions over time. However, stubbornness weights have the downside of being
somewhat arbitrary, since they are random floats assigned to the agents. An improvement
would be to adjust the stubbornness mechanism to something less arbitrary or to implement
a new mechanism that maintains the variety of opinions while being grounded in scientific
theory.

Moreover, in their survey, RIVM has also asked the participants about their compliance
to follow the measures. An interesting improvement to the model could be to relate the
compliance as is shown by the HUMATs in the model to the compliance reported in the
survey data.

5.2.2 Extensions

For future work, two extensions to the model could be:

• Dynamic network/connections: The network of HUMATs is fixed, such that the same
connections remain over the course of a run. An interesting extension could be to
investigate how the model would behave if some connections could be broken (e.g.,
if two HUMATs differ sufficiently in their opinion while interacting over time) and
other connections could be formed. Adding a dynamic mechanism to the network
potentially adds interesting opinion clustering effects to the model.

• Fear: Right now, the model includes fear only implicitly, in the sense that a HUMAT’s
value need to maintain general health is related to a fear that loved ones might get
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sick from the virus. However, fear could be modelled more explicitly. We observe
that during the beginning of the pandemic, fear of the unknown initially played a role
for people to socially distance themselves from others. Over time, as more knowledge
regarding the virus was gained, this fear also decreased. A similar mechanism could
be added to the model, such that initially the HUMATs will experience more fear and
be more likely to act safely, while over time this fear decreases.

5.3 Relevance

Firstly, since the use of theoretically grounded agent-based models is a relatively new de-
velopment within the social sciences, this research contributes to the idea of integrating a
cognitive framework in an ABM. In general, using a psychologically founded framework as
the basis for the agents’ decision-making improves the probability that the simulation cap-
tures some phenomena that can be observed in reality. Moreover, it facilitates an architecture
that leads to intuitive choices during the development of a model and offers the possibility
to compare different implementations of the framework, while maintaining the same base
structure. The HUMAT framework turned out to be very suitable for this case since it was
easy to map the agents’ needs to the architecture. Given the fact that these needs are intu-
itively plausible, using the HUMAT framework led to a model that is understandable not
only to people who understand the code but also to social scientists in general and laymen.
Consequently, this work has shown the potential of applying the HUMAT framework to
ABM and can be applied to many other cases.

Secondly, regarding the specific topic of this thesis, namely, social interaction in times of
COVID restrictions. For many, this is the first time they experience a pandemic at this scale.
Unfortunately, with the current manner in which we manage livestock, we are creating an
environment in which the probability of another zoonosis is very high. Consequently, the
rate of pandemics at this scale is increasing. Given these predictions, it is not a matter of
if, but when the next pandemic will be. With a model based on historical data on epidemic
frequency and geographic distribution, researchers predict there is a 47-57 percent chance of
another global pandemic as deadly as COVID in the next 25 years (Smitham & Glassman,
August 2021). At the time the next pandemic will take place, we hope this work may con-
tribute to finding the optimal policy with regards to visitor-restricting measures, such that
both physical and mental health are maintained.

5.4 Conclusion

In this thesis, the development of a novel agent-based model was described that aims to
explore social interaction while it is constrained by visitor limitations. Specifically, this thesis
aimed to capture the interaction between the need for social contact and the support for
the visitors measure. The model was developed using the HUMAT integrated framework,
which offered a psychological and sociological foundation for the behaviour of the agents.

Considering the results throughout Chapter 4 and the answers to the research questions
in Section 5.1, we observe that the model shows a trade-off between efficacy and support
for the visitors measure. Initially, making the policy stricter will be effective in reducing the
amount of contact between HUMATs, while lowering the support for the policy relatively
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little. However, at a certain policy strictness, the effects to the amount of contact stagnate,
while the support for the policy continues to decrease.

Given the insights from this work, a sweet spot could exist in terms of the strictness of
the policy, in which the visitors measure is relatively effective, while the population remains
sufficiently satisfied. The current policy seems to be mostly aimed at reducing the amount of
contact at all costs. However, considering the overall happiness of the population may have
its benefits on reducing mental health issues.

Model documentation

The model presented in this thesis was implemented in NetLogo 6.2. The model (source code
and interface) can be found at https://github.com/boscy/SimulatingSocialInteraction.
The experimental setups can be found in BehaviorSpace of the NetLogo model and the data
gained from the experiments in the experimental_data folder. The repository also includes
a folder containing the R-scripts used for analyzing experimental data and a csv file of the
RIVM survey data on the support for the visitors measure, which can be used for the initial-
ization of the agents’ opinions.
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A |MODEL SCREENSHOTS

This chapter provides various screenshots of the NetLogo model interface.

Figure A.1: Screenshot of the full model’s NetLogo interface.
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Figure A.2: Input parameters section of the model’s NetLogo interface.
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Figure A.3: Model section of the model’s NetLogo interface.
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Figure A.4: Output section of the model’s NetLogo interface.
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B | RESULTS OF HUMAT IMPORTANCES PA-
RAMETER SWEEP

This appendix shows the results for the experiment described in Section 4.3

B.1 Mean values

The first set of results concerns the mean values during the runs. The following metrics are considered:

• The average number of active contacts per HUMAT during the runs,

• The average number of HUMATs that are in a dilemma during the runs,

• The mean opinion during the runs, and

• The standard deviation of the opinion during the runs.

81



B.1.1 2 allowed visitors per day

Figure B.1: Importance parameters sweep results for 2 allowed visitors per day: Mean values:
Upper left (blue): the average number of active contacts per day per HUMAT. Upper right (red): the
average number of dilemmas per day per HUMAT. Bottom left (green): the mean opinion of the HUMAT
population during the runs. Bottom right (purple): the average standard deviation of the opinion during
the runs.

82



B.1.2 4 allowed visitors per day:

Figure B.2: Importance parameters sweep results for 4 allowed visitors per day: Mean values:
Upper left (blue): the average number of active contacts per day per HUMAT. Upper right (red): the
average number of dilemmas per day per HUMAT. Bottom left (green): the mean opinion of the HUMAT
population during the runs. Bottom right (purple): the average standard deviation of the opinion during
the runs.
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B.1.3 6 allowed visitors per day:

Figure B.3: Importance parameters sweep results for 6 allowed visitors per day: Mean values:
Upper left (blue): the average number of active contacts per day per HUMAT. Upper right (red): the
average number of dilemmas per day per HUMAT. Bottom left (green): the mean opinion of the HUMAT
population during the runs. Bottom right (purple): the average standard deviation of the opinion during
the runs.
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B.2 Final-day values

The second set of results concerns the final-day values during the runs. The following metrics are consid-
ered:

• The average number of active contacts per HUMAT on the final day of the runs,

• The average number of HUMATs that are in a dilemma on the final day of the runs,

• The mean opinion on the final day of the runs, and

• The standard deviation of the opinion on the final day of the runs.
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B.2.1 2 allowed visitors per day

Figure B.4: Importance parameters sweep results for 2 allowed visitors per day: Final values:
Upper left (blue): the average number of active contacts on the final day per HUMAT. Upper right (red):
the average number of dilemmas on the final day per HUMAT. Bottom left (green): the mean opinion of
the HUMAT population on the final day. Bottom right (purple): the average standard deviation of the
opinion on the final day.
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B.2.2 4 allowed visitors per day:

Figure B.5: Importance parameters sweep results for 4 allowed visitors per day: Final values:
Upper left (blue): the average number of active contacts on the final day per HUMAT. Upper right (red):
the average number of dilemmas on the final day per HUMAT. Bottom left (green): the mean opinion of
the HUMAT population on the final day. Bottom right (purple): the average standard deviation of the
opinion on the final day.
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B.2.3 6 allowed visitors per day:

Figure B.6: Importance parameters sweep results for 6 allowed visitors per day: Final values:
Upper left (blue): the average number of active contacts on the final day per HUMAT. Upper right (red):
the average number of dilemmas on the final day per HUMAT. Bottom left (green): the mean opinion of
the HUMAT population on the final day. Bottom right (purple): the average standard deviation of the
opinion on the final day.
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