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Abstract: Previous research suggests the existence of small sub-networks within convolutional
neural networks which perform just as well as their original non-pruned counterpart. Such im-
plication has wide reaching impact, as it suggests that any neural network can produce such
sub-networks, known as winning lottery tickets. The existence of such winning tickets in all
fields of machine learning is a promising idea, as it could allow for the spacial and computational
reduction of any machine learning task. This paper aims to investigate the existence of such
winning lottery tickets within the field of deep reinforcement learning, specifically within deep
Q-networks.

1 Introduction

The lottery ticket hypothesis (Frankle and Carbin,
2018) encompasses the idea that small sub-
networks can be found within large neural networks
which can perform on a similar level. This sub-
network can be found by randomly initialising a
network and proceeding to train and prune it un-
til a considerable number of weights have been re-
moved without impacting the performance, leav-
ing the so called winning ticket of the network.
The implications of this hypothesis are promising,
as it could lead to an improvement of neural net-
work training performances as such winning tickets
might be found quickly, influence better network
design through learning from the structures of the
winning tickets and possibly being able to transfer
a winning ticket mask to other similar networks as
well as providing a general better theoretical un-
derstanding of neural networks. However, the orig-
inal paper of Frankle and Carbin (2018) focused on
fully connected and convolutional neural networks,
which are certainly useful for a variety of tasks, but
the utility of the lottery ticket hypothesis might be
as important in other branches of artificial intelli-
gence.

One such branch is reinforcement learning, in
which an agent learns an optimal behaviour within
an environment through repeated rewards and

penalties based on its actions. The agent there-
fore learns by attempting to maximise its cumu-
lative future reward or Q-function. Usually, within
value-based reinforcement learning methods, the Q-
function is estimated and used to determine an
agent’s policy, meaning which actions should be
taken. Such a Q-function is normally represented
as a Q-table consisting of values and their cor-
responding state and action pairs. However, such
value-based methods can run into the problem pre-
sented by the curse of dimensionality (Verleysen
and François, 2005). This can be overcome by using
deep Q-network methods instead, which approxi-
mate Q-values normally stored in a Q-table. This
will be elaborated upon in the methods section.

Since the Q-table can be approximated by a
neural network, it stands to reason that this net-
work should adhere to the lottery ticket hypothesis,
meaning that a smaller, equally efficient network
should be nested within the larger parent network.
The presence of such a winning ticket inside of deep
Q-networks, would be promising, as it would help
to further solidify the lottery ticket phenomenon as
a general feature of neural networks rather than an
aspect of only supervised learning.

This paper will attempt to answer whether the
lottery ticket hypothesis holds in the field of deep
reinforcement learning, specifically within deep
SARSA(Zhao, Wang, Shao, and Zhu (2016)) and
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deep Q-networks(Mnih, Kavukcuoglu, Silver, Rusu,
Veness, Bellemare, Graves, Riedmiller, Fidjeland,
Ostrovski, et al. (2015)), two approaches of using
Q-networks.

2 Related Work

Inspiration for this paper was drawn from multi-
ple previous works in similar fields. Yu, Edunov,
Tian, and Morcos (2019) wrote about the valid-
ity of the lottery ticket hypothesis within rein-
forcement learning and natural language process-
ing. Their aim was to expand the lottery ticket hy-
pothesis beyond the scope of Frankle and Carbin
(2018). They covered natural language processing
with the use of a recurrent LSTM (Long short term
model), Hochreiter and Schmidhuber (1997), ma-
chine translation using transformer models, clas-
sic control problems such as the problems tackled
in this paper and also ATARI games, Bellemare,
Naddaf, Veness, and Bowling (2013), which are
popular test environments within machine learning.
Their research served to be encouraging, as they
were able to conclude that the lottery ticket hy-
pothesis does hold true in the areas they explored.

Similarly, Vischer, Lange, and Sprekeler (2021)
investigated the existence of lottery tickets amongst
a variety of deep reinforcement learning problems
with a main focus on task representation and the
underlying mechanisms of the lottery ticket effect,
which gave insight into implementing deep rein-
forcement learning algorithms such as the deep Q-
network.

Morcos, Yu, Paganini, and Tian (2019) delve into
transfer learning using the lottery ticket hypothe-
sis within convolutional neural networks, similar to
those used by Frankle and Carbin (2018). Whilst
their focus lies more on transferring lottery tick-
ets to similar data sets, they provided a good in-
sight on different optimisers, which served as inspi-
ration to use the ADAM optimiser, Kingma and Ba
(2014), in this paper. Their findings suggest that
winning lottery tickets can be transferred across
similar datasets and optimisers, which is supported
also by the research of Sabatelli, Kestemont, and
Geurts (2020) which investigated the transferabil-
ity of winning lottery tickets obtained from datasets
in the natural image domain to datasets in non-
natural image domains.

Frankle, Dziugaite, Roy, and Carbin (2019) ex-
tended the original work of Frankle and Carbin
(2018) by investigating the stability and perfor-
mance of the lottery ticket hypothesis in deeper
networks. The original lottery ticket hypothesis pa-
per by Frankle and Carbin (2018) looked at super-
vised learning networks such as Lenet and Conv-6,
which have up to 6 different layers, whereas Fran-
kle et al. (2019) used Resnet-18 and VGG-19 net-
works, also supervised learning networks, which re-
spectively have 18 and 19 layers. Their research
found that iterative magnitude pruning, which will
be used in this paper, sometimes fails to find win-
ning tickets in such deep networks. Deep networks
equivalent to theirs will not be used here, but their
findings nonetheless influenced the decision for the
pruning process used later on.

Further inspiration about the pruning process
was drawn fromMalach, Yehudai, Shalev-Schwartz,
and Shamir (2020), whose paper focuses on the im-
portance of pruning in the lottery ticket hypothesis
as it draws comparisons between weight initialisa-
tion and weight pruning when trying to find win-
ning tickets.

3 Methods

This paper used python 3.9 to implement the ex-
periment alongside various helpful libraries. These
include numpy, tensorflow Abadi et al. (2015),
keras Chollet et al. (2015), gym and csv. Their uses
are explained throughout the methods section.

3.1 Environments

In order to investigate the lottery ticket hypoth-
esis within deep reinforcement learning, the first
thing that is needed is an environment which allows
the different approaches to be trained and evalu-
ated effectively. For this purpose, the OpenAi Gym
(Brockman, Cheung, Pettersson, Schneider, Schul-
man, Tang, and Zaremba (2016)) is used. The Ope-
nAi Gym is a toolkit filled with a number of tasks
specifically designed for developing and evaluating
a wide variety of reinforcement learning algorithms.
For the purpose of this paper, the CartPole-v0 and
Acrobot-v1 environments will be used as their ac-
tion spaces are similarly discrete but their tasks are
slightly different from each other.
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Figure 3.1: The Cartpole-v0 environment.

In the CartPole-v0 environment, shown in Fig-
ure 3.1 the agent has to balance a pole on a mov-
ing cart. The pole is attached at its lower end and
will tip to either side if the cart is not moved. The
state space of this environment includes the posi-
tion of the cart on track, the angle of the pole, the
velocity of the cart and the rate of change of the
angle, as described originally by Barto, Sutton, and
Anderson (1983). The possible actions in this envi-
ronment consist of two choices; to move right or to
move left. By moving in a correct fashion, the pole
will stay balanced on top of the cart. By keeping
the pole balanced for a longer amount of time, the
reward will be higher, increasing by a reward of 1
per time step, with a max of 200.

The Acrobot-v1 environment, shown in Figure
3.2 consists of two poles, originally described by
Sutton (1995). One is connected to a central point
around which it can move. The second pole is at-
tached to the first via a joint and can swing freely.
Moving the second pole therefore causes the first
to swing, but the first poles movement also impacts
the movement of the second. The goal is to swing
any part of the two poles above a threshold line
located at the top of the environment. The state
space of this environment includes the angles of
the first and second pole, as well as their veloci-
ties. The possible actions consists once again of left
or right movement of the first pole, or no move-
ment at all. The difference from the CartPole-v0

environment however comes from the fact that the
poles will sometimes counteract the movement of
the other, adding difficulty to the task of reaching
the threshold line. The reward of this environment

Figure 3.2: The Acrobot-v1 environment.

decreases with each time step it takes by -1 to reach
the threshold line with a minimum reward of -500,
at which an episode ends. A score closer to 0 is
therefore desirable.

3.2 Reinforcement learning

According to Sutton and Barto (2018), the aim of
reinforcement learning is to maximise the reward
function, given by equation 3.1, of a problem by
learning an optimal policy. The reward function re-
turns a scalar value r which is used in later equa-
tions. In equation 3.1, s represents a state and a
represents an action. Equation 3.2 displays the rep-
resentation of an environment, consisting of the set
of all possible states S, the set of all possible ac-
tions A, the transition function P and the reward
r.

ℜ(s, a, st+1) (3.1)

M = ⟨S,A,P, r⟩ (3.2)

A policy, π, can be seen as the strategy an agent
uses to reach a goal in an environment, shown in
equation 3.2. An optimal policy can be found using
different value functions. The first is the state-value
function, V π(s), shown in equation 3.4, which gives
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the utility value of a state as determined by the
discounted cumulative reward, see equation 3.3 in
which γ is the discount factor.

Gt =

∞∑
k=0

γkrt+k+1 (3.3)

V π(s) = E[Gt | st = s, π] (3.4)

The second value function is the state-action
value function, Q(s, a), shown in equation 3.5, gives
the utility value of a state-action pair, also deter-
mined by the discounted cumulative reward Gt.

Qπ(s, a) = E[Gt | st = s, at = a, π] (3.5)

3.2.1 Dynamic programming

Introduced by Bellman (1952), dynamic program-
ming (DP) refers to a set of algorithms that are
able to find optimal policies by using the Bellman
equations of value functions 3.4 and 3.5, shown in
equation 3.6 and 3.7, given a model of the environ-
ment p(st+1|s, a).

V π(s) =
∑
a

π(a|s)
∑
st+1

p(st+1|s, a)[r + γV π(st+1)]

(3.6)

Qπ(s, a) =
∑
st+1

p(st+1|s, a)
[
r

+ γ
∑
at+1

π(at+1|st+1)Q
π(st+1, at+1)

]
(3.7)

Optimal value functions are maximised versions,
returning the highest value given a policy, shown in
equations 3.8 and 3.9.

V ∗(s) = max
π

V π(s) (3.8)

Q∗(s, a) = max
π

Qπ(s, a) (3.9)

Such, the Bellman optimality equations that re-
sult are shown in equation 3.10 and 3.11.

V ∗(s) = max
a

∑
st+1

p(st+1|s, a)[r + γV ∗(st+1)]

(3.10)

Q∗(s, a) =
∑
st+1

p(st+1|s, a)[r

+ γmax
at+1

Q∗(st+1, at+1)] (3.11)

Whilst the Bellman optimality equations are able
to find the optimal policy mathematically, dynamic
programming uses generalised policy iteration to
find such an optimal policy. Generalised policy it-
eration is a combination of policy evaluation and
policy improvement steps. Policy evaluation uses
equations 3.6 and 3.7 to determine the utility val-
ues of the current policy. Policy improvement uses
equation 3.12 to compare policies and chose a new
policy, π′.

π′ = argmax
a∈A

Qπ(s, a) (3.12)

3.2.2 Monte Carlo methods

Dynamic programming has limitations in that the
environment, equation 3.2, is known. Once parts of
the environment are unknown, Monte Carlo (MC)
methods can be used to overcome a lack of envi-
ronment information through gathering experience,
which is done by sampling states, actions and re-
wards from the environment. MC can be used to
learn both V π(s) and Qπ(s, a). The value of each
state in an environment can be updated using the
MC update rule shown in equation 3.13, in which
α ∈ [0, 1] represents the learning rate and Gt is the
discounted cumulative reward from equation 3.3.
Similarly, the value of each state action pair can be
updated using equation 3.14.

V (st)← V (st) + α[Gt − V (st)] (3.13)

Q(st, at)← Q(st, at) + α[Gt −Q(st, at)] (3.14)

Equations 3.13 and 3.14 follow the current pol-
icy, π, until a learning episode terminates, at which
point, much like in DP, the policy is evaluated.
MC therefore follows the ideas of DP as it cycles
through policy evaluation and policy improvement,
which is handled in a similar way to equation 3.12.
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3.2.3 Temporal difference learning

A core concept of reinforcement learning is that of
temporal difference (TD) learning, which combines
ideas of Monte Carlo (MC) methods and dynamic
programming (DP). TD does not have to wait until
the end of an episode to update its value estimates
but rather only until the next time step, as at step
t + 1 a target for learning, the TD-target, already
exists. The update rule for TD learning is shown in
equation 3.15.

V (st)← V (st) + α[rt + γV (st+1)− V (st)] (3.15)

This equation, 3.15, is similar to the MC update
rule in equation 3.13 except that Gt is replaced by
the TD-target; an observed reward rt and a dis-
counted guess of a future state value, V (st+1), as
V π(s) is unknown. The entire section behind α in
equation 3.15 is known as a TD-error and is impor-
tant for later on and off-policy techniques.

3.2.4 Q-learning

Q-learning is a popular algorithm that builds on
TD learning, introduced by Watkins and Dayan
(1992). It is an off-policy version of TD learning
that is able to converge to the optimal state-action
pair value function Q∗(s, a) from equation 3.9. An
off-policy algorithm performs independently from
an agent’s actions, managing to figure out an op-
timal policy regardless of the agent’s behaviour. In
the case of Q-learning this is done by creating the
TD-error using max

a∈A
as this will ignore the current

policy to choose the best next action, meaning that
a Q-learning agent is always learning in a greedy
way. The update rule of Q-learning is shown in
equation 3.16.

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a∈A

Q(st+1, a)

−Q(st, at)] (3.16)

3.2.5 SARSA

SARSA, short for state action reward state ac-
tion, is another popular algorithm that builds on
TD learning, introduced by Rummery and Niran-
jan (1994). It is an on-policy version of TD learning

that is usually able to converge to a near optimal
state-action pair value function. An on-policy algo-
rithm attempts to evaluate and improve the policy
which has led it to the current action. In the case of
SARSA this is done by creating a TD-error with-
out using a max value, unlike Q-learning, as well
as taking the next action into account. The update
rule for SARSA is shown in equation 3.17. It is
strikingly similar to equation 3.16, however SARSA
learns depending on the next state and action pair
which may or may not be a greedy approach.

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)

−Q(st, at)] (3.17)

3.3 Deep Reinforcement Learning

3.3.1 Deep Q-networks

Using equation 3.16 an agent can create a large
table, known as a Q-table, of information listing
which actions in which states would give the highest
rewards, however such a table quickly becomes too
large to handle for complex problems. This is where
deep Q-networks can be used. A deep Q-network
adds a neural network to the Q-learning process to
replace the Q-table.

A problem with deep Q-learning is that the tar-
get, the final reward of the agent, is nonstationary,
as it changes with depending on yet unknown Q-
values. To counteract this problem, a target net-
work can be used to calculate the target value.
This target network should have the same archi-
tecture as the function approximator network for
the Q-table but its parameters should be frozen.
The Q-table network then updates the target net-
work every I iterations, where I is a predetermined
hyperparameter. The agent’s experiences also need
to be saved in order to calculate loss values, the dif-
ference between the target and predicted Q-values.
Such a marriage of Q-learning and neural networks
was introduced as a deep Q-network by Mnih et al.
(2015).

L(θ) = E<st,at,rt,st+1>∼U(D)[(rt+1+

γmax
a∈A

Q(st+1, a; θ
−)−Q(st, at; θ))

2] (3.18)
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The loss function for a DQN neural network, θ,
is shown in equation 3.18, in which the expected
values for st, at, rt and st+1 are sampled from the
experience replay buffer, U(D), and used to calcu-
late the loss between the target network, θ− and
the prediction network, θ.
The Q-network that is used here consists of a

flattened input layer, two dense layers of 24 nodes
and a rectified linear unit activation function and a
final dense output layer with 2 nodes, correspond-
ing to the movement options in the environments
used and a linear activation function. Details on the
hyperparameters can be found in table 3.1.

3.3.2 Deep SARSA-network

Like Q-learning, a SARSA agent would fill a Q-
table with relevant information, using equation
3.17, and use it to execute its actions, which
presents the same problem of dimensionality as
mentioned above, leading to a similar solution of
using a Q-network instead of a Q-table. This cre-
ates a deep SARSA agent, inspired by Xu, Cao,
Chen, Li, Zhang, and Lai (2018) and Zhao et al.
(2016).

L(θ) = E<st,at,rt,st+1,at+1>∼U(D)[(rt+1+

γQ(st+1, at+1; θ)−Q(st, at; θ))
2] (3.19)

The loss function for a deep SARSA-network, θ,
is shown in equation 3.19. Much like in the DQN
loss function, the values for st, at, rt, st+1 and at+1

are sampled from an experience replay buffer U(D).
The Q-network that is used for this agent is the

same as that of the deep Q-network agent, in that
it consists of a flattened input layer, two dense lay-
ers of 24 nodes and rectified linear unit activation
functions and a final output layer with 2 nodes and
a linear activation function. Details of the hyper-
parameters can be found in table 3.1

3.4 Pruning

For the experiment’s pruning, an iterative prun-
ing method is used. In iterative pruning, an agent
and its corresponding network is fully trained be-
fore a number of weights are pruned. The remain-
ing weights are then saved and loaded onto a new
agent and network sharing the same architecture as

Algorithm 3.1 Minimum weight pruning

Require: w = :Weight matrix
Require: b = :Bias matrix
Require: s = Sparsity

idx = store sorted indexes of w
num = get number of indexes
toP = num*s
idxP = store indexes to be pruned (idx[0 : toP ])
w[idxP ] = 0 set identified weights to 0
repeat above steps for b
return w
return b

Algorithm 3.2 Prune weights of model x

Require: m :A model
Require: s :A sparsity
w = Weights of model m
wN← [] List of new weights
for i in range length of w in steps of 2 do
wV als, bV als = MinWPrune(w[i],w[i+ 1], s)
append wV als to wN
append bV als to wN

end for
set weights of model m to wN
compile model m
return m

the old version and fully trained again. This pro-
cess is repeated until a desired sparsity of weights
is achieved.

The pruning itself is achieved via a minimum
weight pruning method. The paper by Molchanov,
Tyree, Karras, Aila, and Kautz (2016) gave exten-
sive insight into the inner workings of pruning neu-
ral networks and inspiration for the implementation
of this pruning method.

The pseudocode of algorithm 3.1 displays the
general implementation of minimum weight prun-
ing. This algorithm sorts the indexes of the weights
and biases by their absolute values, before set-
ting the values of entities with indexes within the
threshold, to zero. The threshold in this case is cal-
culated by multiplying the number of weights or
biases (lengths of index arrays) by the current de-
sired sparsity.

The pseudocode of algorithm 3.2 shows the gen-
eral process of pruning a model. Here it is impor-
tant to note that the for loop goes up in steps of 2.
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Algorithm 3.3 Reinitialise weights

Require: tm :Target model (to be reinitialised)
Require: bw :Baseline model weights
tw = weights of target model
for i in range length of tw in steps of 2 do
x, y = coordinates of non-zero weights in tw[i]
tw[i][x, y] = bw[i][x, y]

end for
set weights of tm to the new tw
compile tm
return tm

This is because the weights of a keras model are
saved alongside their biases. This becomes appar-
ent when looking atw, as the for loop accesses both
w[i] and w[i+1] at the same time. The function
MinWPrune refers to algorithm 3.1. Compilation
in this case means that the loss function, optimiser
and metrics for the model tm are defined.

3.5 Reinitialisation

As described by Frankle and Carbin (2018), in or-
der to find the winning ticket, weights should be
re-initialised to their original values after pruning.
This can be done by comparing the old and new
weights. The new weights will have many which
are set to 0, also called a mask. The indexes of this
mask can be found and used to copy and replace
only the weights which are not set to 0 by the mask,
allowing for relatively easy re-initialisation.
The pseudocode of algorithm 3.3 shows the pro-

cess of reinitialising the weights of a model to those
of the original network. In order to be able to do
this, it is important to save those original weights,
as shown in line 5 of algorithm 3.4.

3.6 Experiment

The pseudocode in algorithm 3.4 shows how the
main file of the experiment was implemented. As
shown, it starts with initialisation of the desired
environment and agent. In the case of this exper-
iment, the sparsity values, stored in the list spr,
range from 0 to 0.9 in steps of 0.1, except for the
last two values which are 0.95 and 0.99. This list
of sparsity values was decided upon after multiple
test runs, which consistently showed little change in
performance until around 90% of the weights were

Algorithm 3.4 Find winning ticket

create environment
build model bm (baseline model)
build agent ba with bm
train agent ba
save weights of bm
spr = list of sparsities
for i in range length of spr do
build temp model tmp
load weights of bm onto tmp
tmp = ModelPrune(tmp, spr[i])
tmp = Reinitialise(tmp, bm)
build temp agent ta with tmp
train ta
test ta
save weights of tmp
record performance

end for

cut, which is the reason for a half step from 90% to
nearly all of the weights, 99%.

In this pseudocode, 3.4, the ModelPrune function
refers to algorithm 3.2 and the Reinitialise func-
tion refers to algorithm 3.3. The for loop runs un-
til the last desired sparsity value is achieved. Since
the weights of every iteration are saved, the per-
formance drop off can be inspected and used to
determine at which point a winning lottery ticket
is present.

For all model compilations used in this exper-
iment, the Adam optimiser is used. This optimi-
sation algorithm, introduced by Kingma and Ba
(2014) is a widely used and popular optimiser as
it is able to quickly produce good results. An op-
timiser serves the purpose of updating the weights
of networks.

The following table presents the hyperparame-
ters that were used in this paper.

Table 3.1: Hyperparameters

Name Value Description
nb steps 5000 number of training steps
nb episodes 100 number of testing episodes
node num 24 number of nodes per layer
nb steps warmup 100 number of warm up steps
lr 1e-3 learning rate of Adam
memory 50000 replay buffer size
discount 0.99 discount factor γ
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These hyperparameters were set depending on a
variety of sources and prior experimentation.

3.6.1 Tickets

As mentioned by Frankle and Carbin (2018), a
winning ticket is found not only when it performs
highly even with high pruning, but also if it per-
forms better than a random ticket. A normal lot-
tery ticket can be defined as a function of x, as
seen in equation 3.20, in which the mask m and
the weights θ are taken into account. Such normal
tickets can become winning tickets when the above
mentioned criteria is satisfied.

f(x;m⊙ θ0) (3.20)

In which m is a mask found via the previously
described minimum weight pruning and θ0 is the
original set of initialised weights.

To serve as a comparison, a random ticket is pro-
duced, however instead of using the previously de-
scribed minimum weight pruning, it’s weights are
pruned randomly according to the desired spar-
sity. This way a random mask mRa is created. The
weights of the random ticket are also not reini-
tialised to the original network weights θ0, but in-
stead they are reinitialised to random values, giving
the random ticket random weights θRa.

f(x;mRa ⊙ θRa) (3.21)

4 The results

Results for this experiment were collected by run-
ning the experiment 5 times for each algorithm and
environment. The performance data was collected
each time an agent was tested in the correspond-
ing environment. It is important to note that the
small dotted line at y = 200 and y = 0 represent
the maximum scores in the environments.

In order to statistically analyse the results, two
tests were used. The first is the Shapiro-Wilk test
for normality, which determines if data is normally
distributed. This test is necessary to confirm that
the data collected is not normally distributed, in
order to confirm that the second test, the unpaired
Wilcoxon rank sum test, should be used. This test
can be performed on abnormally distributed data

Figure 4.1: Mean performance ±Standard de-
viation of the DQN agent in the CartPole-v0
environment.

of two groups to determine if the data is statisti-
cally different. Whilst visual inspection is a good
indication of whether a lottery ticket is a winning
one, these statistical tests can help in their inter-
pretation.

The first agent environment combination is that
of a DQN agent acting inside of the CartPole-v0 en-
vironment, the performance of which can be seen
in Figure 4.1. The graph shows that some varia-
tion in performance does occur but in general all
5 of the test runs seemed to manage to perform at
a high level until around 90% of their weights had
been pruned. The Shapiro-Wilks test for the lottery
ticket data resulted in a p-value of 4.223e−6, which
is much lower than the statistically significant p-
value of 0.05. In the context of the Shapiro-Wilks
test this means that the data is highly unlikely to be
normally distributed, meaning that the Wilcoxon
rank sum test can be used. The results of this test
are a p-value of 0.6614. In this case the p-value is
above the significant 0.05, but not quite a 1. This
suggests that the mean performances of the lottery
ticket and the random approach are slightly differ-
ent but not enough so to be significant. Visually,
it is also quite clear that the difference between
the lottery ticket and the random ticket is not very
large and that the lottery ticket does not necessarily
seem to outperform the random ticket. It therefore
does not categorise as a winning ticket.

The next agent environment combination is that
of a DQN agent acting inside of the Acrobot-v1 en-
vironment, shown in Figure 4.2. Similarly to per-
formance in Figure 4.1, all 5 of the runs seemed
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Figure 4.2: Mean performance ±Standard devi-
ation of the DQN agent in the Acrobot-v1 envi-
ronment.

to perform well with low pruning, which contin-
ues until about 80% of the weights have been
pruned. At this point performance drops, earlier
than in the CartPole-v0 environment. This is most
likely caused by the nature of the environment
being more difficult in nature than the CartPole-
v0 environment, meaning that cutting out too
many weights damaged the performance, as some
important weights were removed. Performing the
Shapiro-Wilk test on the lottery ticket data gives a
p-value of 0.001295, which is below 0.05, suggest-
ing that the data is not normally distributed and
the Wilcoxon rank sum test can be used. This test
resulted in a p-value of 0.8713, which is above 0.05,
meaning that the mean performances have a differ-
ence to them but not one that is statistically signif-
icant. Visually it once again becomes clear that the
lottery ticket did not outperform the random ticket,
even falling behind its performance at around 80%.
The lottery ticket in this case can therefore once
again not be categorised as a winning ticket.

The third agent environment combination is that
of the Deep SARSA agent acting inside of the
CartPole-v0 environment, displayed in Figure 4.3.
The performance is comparable to that of the DQN
agent in Figure 4.1, as it too manages to score
highly up until around 90% of its weights are
pruned, although the overall performance doesn’t
reach as consistently high scores as the DQN agent.
The Shapiro-Wilk test is once again performed, re-
sulting in a p-value of 0.0006986. This value is lower
than 0.05 suggesting that the data is not normally
distributed and the Wilcoxon rank sum test can

Figure 4.3: Mean performance ±Standard devi-
ation of the Deep SARSA agent in the CartPole-
v0 environment.

be used. This test resulted in a p-value of 0.01982,
which is lower than 0.05, suggesting that while the
mean performances could be considered statisti-
cally significantly different. Visual inspection backs
this up, as the mean performances seem to follow
similar trends, but with the lottery ticket outper-
forming the random ticket at nearly all sparsities.
This lottery ticket could therefore be considered as
a winning one.

Interestingly, whilst there is deviation in the per-
formances of the agents, the general trend that can
be observed is that of successful performance until
a high percentage of weights is pruned. This is true
for all of the three agent environment combinations.

5 Conclusions

This paper aimed to investigate whether the lottery
ticket hypothesis holds beyond the original scope of
supervised image classification by delving into the
domain of deep reinforcement learning. Both deep
Q-network agents and deep SARSA agents were
used to broaden the scope within deep reinforce-
ment learning. As described in the results section, a
general trend seemed to form, in which both agents
managed to perform at a high level in the different
environments, even after having a large percentage
of weights pruned. However the lottery tickets of
the DQN agent did not show a significantly bet-
ter performance than their random ticket counter-
parts. In their paper, Frankle and Carbin (2018)
state that they managed to create networks with
10-20% of the original network size while still per-
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forming as or nearly as well as the original network,
while outperforming a random counterpart. Whilst
the aspect of performance is true for both the Deep
Q-Network and the Deep SARSA agents that were
examined in this paper, the lottery tickets of the
DQN agent can not be classified as winning tickets
due to them not outperforming the random tick-
ets. Interestingly however, the lottery ticket of the
SARSA agent did seem to outperform a random
ticket, whilst also being pruned to a much smaller
size, meaning that the SARSA agent does seem to
produce a winning ticket.

This leads to the conclusion that the lottery
ticket hypothesis might hold true in deep reinforce-
ment learning, for some of the methods that were
explored in this paper. However it is likely that
more work is needed to find winning tickets in
the DQN agent, as these should outperform a ran-
dom pruning approach in high pruning sparsities.
This might be achieved by more advanced pruning
techniques such as mutual information pruning or
taylor expansion pruning, which are mentioned by
Molchanov et al. (2016).

Further improvements to this research could be
made by investigating yet larger deep reinforcement
learning networks and solving more difficult tasks.
Whilst the results of this paper point towards the
lottery ticket hypothesis holding true for deep re-
inforcement learning, it would be interesting to see
it applied and used for cutting edge tasks such as
autonomous vehicles.

Another interesting future work would be fur-
ther investigation into the interweaving of the lot-
tery ticket hypothesis in deep reinforcement learn-
ing and transfer learning, as this could have some
promising real life applications.
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