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ABSTRACT 

Reproductive values are a useful measurement of fitness and can lead to insights in 

evolutionary biology and population dynamics by comparing individuals or categories in a 

population. A new method, the pedigree-based method, of estimating this reproductive value 

(RV) is easier to perform but has not yet been properly validated in populations with sexes. 

We performed computer simulations based on different life history scenarios to assess 

individual and median estimates of the pedigree-based reproductive value (pRV) and 

compare these values to the theoretical reproductive values. We found that for the same 

simple life histories, the individual pRV estimates diverged significantly over time, while the 

median of the pRV estimates approached the theoretical RV. The median of the estimates 

was able to clearly show differences in the RV of different categories of individuals based on 

different ratios between the sexes and different life history parameters. The variation in the 

pRV estimates means a single pedigree-based estimate of the RV in the field, is not reliable. 
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INTRODUCTION 

An important concept in biology and studying populations is fitness. It tells how well an 

organism is adapted to its environment. Furthermore, fitness describes how successful an 

organism should be in passing on its genes (Kimbrough, 1980). To estimate fitness levels of 

organisms in the wild, is a harder task. Several parameters, such as survival rate and number 

of offspring are studied and mentioned as possible indicators of fitness (Roff, 1992). Such 

parameters do help in estimating fitness levels but are not complete, because there are 

multiple other factors that play a role too in determining fitness levels. 

Two proxies that are often used to estimate fitness are expected lifetime reproductive 

success and the reproductive value (Fisher, 1930). The first is described as the exact number 

of offspring that an individual produces during its life. Since this method only requires 

counting the offspring of individuals over their entire life, it is a relatively easy method. The 

downside of this method is that this value does not include the rate of reproduction and the 

possibility for different types of offspring. (Brommer et al., 2004) Reproductive value is 

defined as the expected relative contribution to the future gene pool of an individual of a 

certain class (Grafen, 2006; Taylor et al. 1974). It includes the specific life history of 

individuals but thus requires a lot of information about this life history, such as survival rates, 

fecundities, behavioral choices, and kind of offspring produced, before the reproductive value 

can be measured. Besides, these life history parameters are estimated and therefore not 

perfectly accurate and precise. This makes it a lot more complicated to obtain reproductive 

values compared to the estimated lifetime reproductive success. Also, incorporating all these 

values in a model to generate reproductive values is much harder than simply calculating the 

lifetime reproductive success. 

Recently, a new type of model came up to estimate the reproductive values of 

individuals. This model uses genetic pedigree data to construct the reproductive value 

(Barton and Etheridge, 2011; MacCluer et al, 1986). This method is increasingly used since 

then (Chen et al., 2019; Hunter et al., 2019). At the start of the measurements the DNA of the 

initial population, the ancestors, gets sequenced and a unique marker gene that is passed to 

future generations is assigned to each individual. After a few generations, the DNA of the 

descendants of these ancestors is sequenced as well. Now, it is possible to determine which 

unique marker genes are present in the current population and you measure the actual 

contribution of ancestors to future generations. This is called gene-dropping. The estimate for 

reproductive value in this model is stated as the average per capita number of descendants of 

the members of a certain class of individuals. As one can imagine, this method requires deep 

and complete pedigree data, but the advantage is that it does not need extensive life history 

parameter values.  

Borger et al. (2022) calculated reproductive values using this pedigree method with a 

simulation study and compared the results with reproductive values calculated from life 

history models and with the “true” reproductive values (used to setup the simulations). They 

found that reproductive values estimated from the pedigree method were often highly 

inaccurate and not precise. In their study, the model assumptions were purposely kept simple, 

focusing on simple life histories. They also made some more complex life histories including 

different variables to see if these yielded better results. They included fluctuating 

environments, sexual or asexual reproduction, extending the number of time steps, two- and 
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three-stage life histories, they extended the number of time steps to a large time scale, and 

they looked at the effect of RV estimations based on individuals versus groups.  

One parameter that was not included by Borger et al. (2022) yet, but is worth some 

further research, is the variable sex. Fisher (1930) explained that the sex ratio of most 

sexually reproducing species is 1:1. If this ratio is skewed, the reproductive value of the sex 

that is overabundant is lower. Offspring always have one father and one mother, so the 

reproductive value of all males must be equal to the reproductive value of all females. One 

can imagine that if there are 200 males and 400 females, the reproductive value of a single 

male therefore on average must be double the average RV of a single female. Furthermore, 

there are several examples of different sexes having different life history strategies, 

fecundities, survival and death rates due to genetical, morphological and behavioral 

differences (Clobert, 1988). Additionally, there can be differences between sexes in the 

hierarchy. Especially for males, dominant males might mate with a lot of females while 

subordinates do not. This makes sex as a variable an interesting addition for the model. This 

study will test the pedigree-based estimate of the reproductive value in individual-based 

simulations that include different sexes. The accuracy, precision, and the median of the pRV 

can be measured over multiple simulations. These simulations will allow us to answer the 

question: to what extent is the pedigree approach able to quantify the reproductive value for 

males and females? We will tackle this question by answering the following sub-questions. 

What is the effect of different sex ratios in a population on the pRV estimates? What is the 

effect of different life history parameters between the sexes on the pRV? How do differences 

in life history strategies concerning dominant and subordinate behavior by males affect the 

pRV? 

To answer these questions, we will add sex as a variable in Borger’s model. We will 

extend the model in C++ by adding the sex variable and generate a pedigree which will be 

used to calculate the pRV. We will track the individuals and their offspring using gene 

markers to form a pedigree. This pRV will then be compared to the theoretical “true” RV, 

which can be calculated using a mathematical approach with life history matrices. Life 

history parameters will be set by us in the model and will yield the “true” RV. These two 

reproductive values can then be analyzed and conclude if adding sex as a variable improves 

the accuracy and precision of the estimation of RV via pedigrees.  

 

METHODS 

All simulations are individual based and based on specific life history scenarios, as described 

in figure 1. Scenario 1 only exists of males and females. Scenario 2 has males and females of 

different age classes. These scenarios will be further explained below. 

Time proceeds in discrete time steps, where every time step matches one reproductive 

season. In our models we usually used 20 time steps, unless stated otherwise. In a 

reproductive season, an individual can reproduce and after that either survive and stay in their 

age class, survive and change age class or die.  
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Figure 1: Life history diagrams. Each circle represents a type of individual in the population. The 

arrows represent the expected fecundity (F) or survival (P) of individuals.  (a) Scenario 1: P is the 

density dependent survival probability and F is the average number of offspring produced per 

individual per reproduction event (b) Scenario 2: Pmy and Pfy are the probabilities  for young males 

and young females to survive to adulthood respectively. Ffy is the average fecundity of young 

females. Ffo is the average fecundity of old females. Po is the density dependent survival probability 

of old males and females. The fecundity of males depends on their mate. 
 

Reproduction occurs first. We used a reproductive system where all females always 

mate once. A female is assigned to a male which is picked randomly from the population. 

This means that some males mate once, some mate multiple times and some do not mate at 

all. The number of offspring produced per mating is determined by a Poisson distribution 

around a predetermined fecundity (F). All offspring survive at least until the next 

reproductive season and enter the population at t+1. Each offspring inherits one gene of its 

mother and one gene of its father. Which gene is inherited from the parent is determined has 

equal probability. The sex of the offspring is determined by a discrete distribution, using the 

probability p of producing a son (and 1-p for the probability of producing a daughter).  

After reproduction, survival occurs. The survival probabilities are determined so that 

the population remains stable in size. Which individuals survive is determined by a Bernoulli 

distribution with the survival probability as its mean. The survival probability can be density 

dependent, and it is then calculated by the following equation: 

 
1

1+α⋅𝑁
          1 

 

Here, N is population size and alpha is the intensity of the density dependence. We set the 

initial population size and then adjusted the parameter alpha depending on the model in such 

a way that the population remained stable around 1000 individuals.  

Different types of density dependent population were also investigated. Density 

dependency in the young population, density dependency in only one sex, and density 

dependency in the fecundity were investigated.  

The effect of the number of generations was also tested to see what happens to the 

pRV when more time passes. Simulations will be run with 100 generations instead of 20 

generations. 
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Every generation, the pRV is calculated using ‘gene-dropping’. The initial population 

started in a stable stage distribution. Therefore, there was no need to wait with gene-dropping 

until the populations were stable. At initialization of the populations, every individual was 

given 2 genes. These genes are unique per life history stage, and individuals in these stages 

were homozygous for this gene. For example, in the most basic scenario, all males were 

homozygous for gene ‘1’, and all females were homozygous for gene ‘2’. These genes spread 

throughout the population, through inheritance by the offspring. When a male and female 

mate, the offspring gets one of the genes of its mother and one of the genes of its father. 

There is an equal probability to get either gene from its parent. The pRV is then calculated by 

counting how many of each of the genes of the original population are present in the current 

population. This count is then divided by 2 as every individual has 2 genes and the theoretical 

reproductive value is measured on the individual level. To further scale this count back to the 

individual level, this count is divided by the number of individuals of that age class at the 

start of the simulation, to calculate the number of offspring per original individual in each age 

life history stage. The reproductive value is always relative, therefore, the pRV of the 

youngest male population is always set to 1. The pRV of the other stages is then calculated by 

dividing the number of offspring per original individual of that stage by the number of 

offspring per original individual of (young) males. 

Stochasticity in individual reproductive success is extensive. Estimating RV based on 

single individuals hence is highly unreliable (Borger, 2022; Chen, 2019). Therefore, we base 

our estimates of RV on populations rather than individuals. One simulation is comparable to 

field situations. The pRV will be calculated for 100 simulations per life history and parameter 

setting.  To easily be able to see the variation between simulations we will make graphs that 

shows the median, the 50% central values and the 90% central values of these 100 

simulations.  

 

Scenario 1: 

This scenario is the simplest scenario. There is a male population and a female population. 

The density dependent survival rate is determined solely on the size of the adult population, 

not on the number of offspring that was just born. Each simulation was done for twenty 

generations and was repeated a hundred times. The RV of the males was set as one, and the 

female RV was calculated using Fisher’s Principle. For simplicity, we assumed that all 

offspring from 1 female came from the same male individual, and that the initial population 

was homozygous. 

We used Fisher’s Principle to estimate the true reproductive values. This principle 

states that because offspring have one father and one mother, in a population the total RV of 

all males and females is the same. This means that when there are more males than females, 

the RV of a single female individual is on average higher than the RV of a single male 

individual. We used set ratios and proportional start population sizes so that the true RV was 

equal to the sex ratio. For example, when there are 3 times as many males as females, the RV 

of a female is 3 compared to the RV of a male which is set to 1. 
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Scenario 2: 

This scenario has four life history states. Males and females can be young or old. Both young 

and old individuals reproduce, but can have different fecundities. Old females can mate with 

young and old males, as so can young females.. The fecundity is solely determined by the age 

of the female. The survival probability of young individuals is fixed and can differ between 

the sexes, Pmy for males and Pfy for females. The survival probability of old individuals is 

density dependent and is the same for both males and females. 

In scenario 2 it is not possible to use Fisher’s principle to calculate the true RV. 

Therefore, recurrence relations were used (see appendix A). Equations including the life 

history parameters were made to calculate the stable stage distributions and the reproductive 

values and were solved in Excel. The life history parameters that were fixed, such as 

fecundity and death rate of young individuals were put in directly. The survival probability of 

adult individuals was calculated by solving the density dependent formula (1) for the alpha 

used in the model and N = 1000. 

 

Technical note 

Simulations were written in C++. Figures were made in R3.4.1, with the packages ggplot2 

and cowplot. 

 

RESULTS 

Scenario 1: 

When looking at multiple simulations of a population with the same life history and the same 

life history parameters, there is a significant variation in the pRV (see figure 2) . The 

variation arises due to the stochastic effects in the population, which can outweigh the effects 

of the true reproductive value of an individual. This variation is partly dependent on the 

values of the life history parameters. For example, when the fecundity and the death rate are 

both higher, there is more variation in the pRV compared to a population with a low 

fecundity and death rate. Individual simulations usually have a pRV that is either 

significantly lower or higher than the true RV. They also do not stabilize over time. The 

median of the pRV’s does approach the theoretical value of the RV. The accuracy of  the 

pRV estimates consequently seems fine. The average sometimes also reflects the theoretical 

RV, but in other cases is a multiple of the true RV because there are very large estimates of 

the pRV in the simulations. This implies that the precision of the pRV seems systematically 

incorrect. 

The results of the one generation model clearly reflect Fisher’s principle. When the 

population ratio is skewed, one sex gets a higher reproductive value (see figure 2). At first 

glance it looks like there is more variation in the scenario with a 3 to 1 male to female ratio. 

However, as the RV is higher for this ratio compared to the other ratios, the variation is also 

higher. The relative variation is equal for the different ratios. 

The variation becomes larger with a smaller population size. The graphs in figure 3 

show population sizes that are more realistic for field-work. Here the variation is significantly 

larger than in the larger population sizes, even for this relatively simple life history. 
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Figure 2. Example simulations of scenario 1, for three different male:female ratios, our one-stage 

model. Dashed horizontal lines represent the true RV. Dotted lines indicate the medians of the 100 

simulations per time step. The dark blue (light blue) bands represent the 50% (90%) confidence 

intervals of the simulations. Parameter values: F=1 for all graphs, alpha is 0.001 for a,  0.00033 for b, 

0.003 for c. (a). Reproductive value of females in a population with a 1F:1M ratio. (b) Reproductive 

value of females in a population with a 1F:3M ratio. (c) Reproductive value of females in a population 

with a 3F:1M ratio.  

 

Figure 3. Simulations of scenario 1, one-stage model. Dashed horizontal line represent the true RV. 

Dotted line indicate the medians of the 100 simulations per time step. The dark blue (light blue) band 

represents the 50% (90%) confidence intervals of the simulations. Parameter values: F = 1.0 for both 

graphs (a). Reproductive value of females in a population with a 1F:1M ratio and a population size of 

100 individuals and an alpha of 0.01. (b) Reproductive value of females in a population with a 1F:1M  

 

In the beginning of the simulations the variation is the smallest but in most cases it is 

not yet near the theoretical reproductive value. Over time, variation in the pRV increases and 

the median comes closer to the theoretical value. How fast this happens differs between life 

histories and parameter settings. Usually, the estimate is best after 5 to 10 generations. 

However, sometimes the best estimate is earlier, but can even be as late as 12 generations.  

Increasing the time horizon from 20 to 100 generations did not change the results. 

 

a) b) 
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ratio and a population size of 1000 individuals and alpha of 0.001. 
 

Figure 4. Simulations of scenario 2, the four-stage model. The population has 1000 individuals and 

the offspring sex ratio is 1F:1M.  Dashed horizontal lines represent the true RV. Dotted lines indicate 

the medians of the 100 simulations per time step. The dark blue (light blue) bands represent the 50% 

(90%) confidence intervals of the simulations.  (a) Equal survival probability for young males and 

young females. Parameter values: Fy=0.5, Fo=1.5, Pmy = 0.5, Pfy =0.5, alpha = 0.001 (b) Different 

survival probability for young males and young females. Parameter values: Fy=0.5, Fo=1.5, Pmy = 

0.6, Pfy =0.4, alpha = 0.000667 

 

Scenario 2: 

The results from the life history with 2 age classes are similar to the results of 1 age class. 

Again, the median of the simulations corresponds well with the theoretical RV. Variation 

arises over time and appears similar to scenario 1 (see figure 4.a).  

 

None of the different types of density dependent population size control gave different results 

than the scenario with density dependency in the adult survival probability. 

When the survival probability of males is higher than females, the median of the 

pRV’s still coincides with the theoretical value. However, this came with an increase in the 

variation (see figure 4.b). 

 

DISCUSSION 

Reproductive value is a proxy to measure fitness. This can represent individuals or 

populations (Grafen, 2006). The reproductive value is the expected contribution to future 

generations of individuals. The pedigree based reproductive value is increasingly used and 

a) 

b) 
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researched by us. We find that estimates of the reproductive value are unprecise, also when 

adding sex in the life history. Our estimates of the reproductive value are somewhat more 

accurate than models that did not included sex as a variable. Still, there is too much variation 

to consider the pedigree-based method reliable. 

Previous research of Borger et al (2022) showed that the method has some severe 

drawbacks. Now, our research shows approximately the same results as Borger’s. Pedigree 

based reproductive value estimates are unprecise. She argued as well that the traditional way 

of model-based pedigree estimates is better. The median of 100 simulations does reflect the 

true RV in our study, so it seems a bit more accurate than models without sexes, but still the 

variation is huge, especially for realistic population sizes (N = 50 – 100). Thus, using this 

method for a single population in the wild is not reliable. When the population size is 

increased a lot (N=1000), the variation seems to drop, but this is an unrealistic population 

size because the pedigree has about 100000 individuals each year. Additionally, individual 

simulations differ a lot from each other, and this divergence is even stronger when the time 

span increases. Individual estimates of the reproductive value can be a multiple of the true 

reproductive value. Since one simulation reflects one empirical study population, the 

pedigree estimate is normally not a good indication of the true RV, if it is based on one study. 

The individual estimates of the RV did not improve in populations with different sex ratios. 

In populations with different age classes and different survival parameters between the sexes, 

the median was again able to closely reflect the true reproductive values but did not cause a 

decrease in the variation of the individual estimates.  

Other studies done on pedigree reproductive values (pRVs) also indicate these results 

of too much variation in pedigree-based estimates of the RV. In Chen’s (2019) research, 

different genetic contribution to future generations were made, and different estimates for 

pRVs were measured for different cohorts in the same population. Chen suggested this was 

caused by stochastic effects and high mortality in young individuals. In Hunter’s (2019) 

research she shows a high amount of variation in the pRV of sparrow populations, also 

caused by stochastic effects. Interestingly, our study did not show the zigzagging pattern at 

the start of the simulations that Borger et al (2022) found. In our results, this zigzag is a curve 

that moves towards the median. The time it took for the median to converge to the true RV 

remained approximately the same as in the study of Borger et al (2022). 

The large variation of RV estimates arises due to the stochastic effects that occur in a 

population. These effects are likely even larger in real populations, as in real life, life 

histories are more complex than the ones we used. For example, emigration or immigration is 

not included in our models, but are happening in real populations. Another limitation for the 

pedigree-based method is that it is expensive to map a whole population, let alone the fact to 

catch and sample a whole population. Furthermore, emigration might take place, and could 

cause problems because it is unknown if an organism has emigrated or died. Real populations 

are also more dynamic than our model populations, so numbers per population will change 

more over time, and it is unlikely that they will stay in a stable stage distribution over many 

generations. 

Our model was kept simple, focusing on a few life histories. In more complex life 

histories, estimates might vary even more. On the other hand, different life histories could 

also improve the accuracy and precision of the RV estimates. For example, a life history with 
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low stochasticity might dampen the variation. However, all the different life histories and 

parameter combinations we tried resulted in imprecise estimates. RV estimates probably 

would get worse in more complex life histories. For example, if survival probabilities for 

males are lower than that of females, and species have a high lifespan. This is the case in 

many species but was not yet included in our models. This might be a relevant subject for 

future research. The research question we did not answer is how the pRV is affected by a 

population with dominant and subordinate males, and a consequently different number of 

mates per male. We suspect that this will only increase variation more, since fewer 

individuals contribute to the future generations in that case, and hence the pRV will be more 

susceptible to stochasticity. 

To conclude, our results that the pedigree-based method for calculating the RV is not 

accurate and precise, may disappoint some biologists. The traditional way of calculating the 

RV with life history parameters still is more accurate and precise than the pedigree estimates. 

However, these history parameters can be hard to estimate, which influences the reliability of 

the model-based RV estimates. 
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APPENDIX 

A: Equation for calculating the theoretical RV in scenario 2 

The following formulas were used to calculate the stable stage distributions and the 

theoretical reproductive value in scenario 2. The input values were taken from the simulation 

parameters. When there was density dependency, equation 1 was used to calculate the 

survival probability where the α was taken from the simulation and $N$ was assumed to be 

1000. 

 
2. 𝑛𝑓,𝑜 = 𝑃𝑓,𝑦 ⋅ 𝑛𝑓,𝑦 + 𝑃𝑓,𝑜 ⋅ 𝑛𝑓,𝑜 

3. 𝑛𝑚,𝑜 = 𝑃𝑚,𝑦 ⋅ 𝑛𝑚,𝑦 + 𝑃𝑚,𝑜 ⋅ 𝑛𝑚,𝑜 

4. 𝑛𝑓,𝑦 = 𝐹𝑓,𝑦 ⋅ 𝑛𝑓,𝑦 ⋅ (1 − 𝑠) + 𝐹𝑓,𝑜 ⋅ 𝑛𝑓,𝑜 ⋅ (1 − 𝑠) 

5. 𝑛𝑚,𝑦 = 𝐹𝑓,𝑦 ⋅ 𝑛𝑓,𝑦 ⋅ 𝑠 + 𝐹𝑓,𝑜 ⋅ 𝑛𝑓,𝑜 ⋅ 𝑠 

6. 𝑉𝑓,𝑦 = 𝑃𝑓,𝑦 ⋅ 𝑉𝑓,𝑜 +
1

2
⋅ 𝐹𝑓,𝑦 ⋅ 𝑠 ⋅ 𝑉𝑚,𝑦 +

1

2
⋅ 𝐹𝑓,𝑦 ⋅ (1 − 𝑠) ⋅ 𝑉𝑓,𝑦 

7. 𝑉𝑓,𝑜 = 𝑃𝑓,𝑜 ⋅ 𝑉𝑓,𝑜 +
1

2
⋅ 𝐹𝑓,𝑜 ⋅ 𝑠 ⋅ 𝑉𝑚,𝑦 +

1

2
⋅ 𝐹𝑓,𝑜 ⋅ (1 − 𝑠) ⋅ 𝑉𝑓,𝑦 

8. 𝑉𝑚,𝑦 = 𝑃𝑚,𝑦 ⋅ 𝑉𝑚,𝑜 +
1

2
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+

1
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𝑛𝑓,𝑦

𝑛𝑚,𝑦+𝑛𝑚,𝑜
+

1

2
⋅ 𝐹𝑓,𝑜 ⋅ 𝑠 ⋅ 𝑉𝑚,𝑦 ⋅

𝑛𝑓,𝑜

𝑛𝑚,𝑦+𝑛𝑚,𝑜
+

1

2
⋅ 𝐹𝑓,𝑜 ⋅ (1 − 𝑠) ⋅ 𝑉𝑓,𝑦 ⋅

𝑛𝑓,𝑜

𝑛𝑚,𝑦+𝑛𝑚,𝑜
 

9. 𝑉𝑚,𝑜 = 𝑃𝑚,𝑜 ⋅ 𝑉𝑚,𝑜 +
1

2
⋅ 𝐹𝑓,𝑦 ⋅ 𝑠 ⋅ 𝑉𝑚,𝑦 ⋅

𝑛𝑓,𝑦

𝑛𝑚,𝑦+𝑛𝑚,𝑜
+

1
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⋅ 𝐹𝑓,𝑦 ⋅ (1 − 𝑠) ⋅ 𝑉𝑓,𝑦 ⋅

𝑛𝑓,𝑦

𝑛𝑚,𝑦+𝑛𝑚,𝑜
+

1

2
⋅ 𝐹𝑓,𝑜 ⋅ 𝑠 ⋅ 𝑉𝑚,𝑦 ⋅

𝑛𝑓,𝑜

𝑛𝑚,𝑦+𝑛𝑚,𝑜
+

1

2
⋅ 𝐹𝑓,𝑜 ⋅ (1 − 𝑠) ⋅ 𝑉𝑓,𝑦 ⋅

𝑛𝑓,𝑜

𝑛𝑚,𝑦+𝑛𝑚,𝑜
 

 
Where 𝑛𝑓,𝑦 is the number of young females,  𝑛𝑚,𝑦 is the number of young males,  

𝑛𝑓,𝑜 is the number of old females,  𝑛𝑚,𝑜is the number of old males, 𝑠 is the sex ratio 

(proportion of males), 𝑃𝑓,𝑦 is the probability the a young females survives and becomes old, 

𝑃𝑓,𝑜 is the probability that an old female survives, 𝑃𝑚,𝑦 is the probability the a young males 

survives and becomes old, 𝑃𝑚,𝑜 is the probability that an old male survives 𝐹𝑓,𝑦 is the average 

fecundity of a young female, and 𝐹𝑓,𝑜 is the average fecundity of an old female. 


