
On the presence of Winning Tickets in

Reinforcement Learning

Bachelor’s Project Thesis

Tom Kosters, s3228592, t.h.b.kosters@student.rug.nl,

Supervisor: Dr. Matthia Sabatelli

Abstract: The lottery ticket hypothesis suggests that randomly-initialized neural networks con-
tain smaller sub-networks that can be trained to perform at least as well as the full network.
This project demonstrates that such winning tickets can be found in shallow neural networks
used for function approximation in simple reinforcement learning tasks, and that they are found
across environments, algorithms and pruning strategies.

1 Introduction

The lottery ticket hypothesis (LTH) states that
randomly initialized artificial neural networks con-
tain smaller sub-networks that can be trained from
scratch to match the performance of the full net-
work after training for the same number of itera-
tions (Frankle and Carbin, 2019).

These tickets are obtained by iteratively prun-
ing and re-training neural networks (Frankle and
Carbin, 2019). Different iterative pruning methods
have been shown to uncover different winning tick-
ets for the same supervised learning task (Paganini
and Forde, 2020).

Most research on the LTH has been done in the
context of supervised learning, but recent work has
also found tickets in Natural Language Processing
and Reinforcement Learning tasks (Vischer et al.
2021, Yu et al. 2020). The neural networks used are
often heavily overparameterized, and tickets have
mostly been shown for a single algorithm and a
single pruning strategy per environment.

This project aims to learn whether winning tick-
ets generally occur in neural networks used for func-
tion approximation in reinforcement learning. To
this end, three different algorithms trained on two
simple control problems are iteratively pruned us-
ing three different pruning strategies to see whether
such tickets can be found in small single-hidden-
layer neural networks approximating state-value
and state-action value functions.

2 Background

2.1 Reinforcement Learning

Reinforcement learning (RL) agents learn how to
interact with their environment so as to maximize
a numerical reward signal over time. The agent and
environment interact at each of a series of discrete
time steps as the agent is presented with a state
St ∈ S and selects an action At ∈ A, after which
it receives a numerical reward Rt+1 and transitions
to state St+1. Actions are selected according to a
policy π, which maps states to probabilities of se-
lecting actions. π(s|a) is the probability that At = a
if St = s. The goal is to learn an optimal policy π∗

that maximizes future rewards (Sutton and Barto,
2018).

The expected return when starting in state s un-
der policy π is given by its state-value function vπ:

vπ(s) = E

[∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s, π

]
, (2.1)

where γ is the discount factor in (0, 1] that scales
the relative preference for earlier rewards over later
ones.

The expected return for taking action a in state
s under policy π is given by its state-action value
function qπ:

qπ(s, a) = E

[∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s,At = a, π

]
.

(2.2)

1

An optimal policy π∗ maximizes the state-value
and state-action value functions for all s ∈ S and
all a ∈ A, leading to optimal state-value function
v∗ and optimal state-action value function q∗.
Temporal difference (TD) learning is a popular

class of RL methods that approximate a value func-
tion by bootstrapping from a working estimate of
that function (Sutton, 1988). The simplest such
method, TD(0), makes the following update to its
estimated state-value function V :

V (St)← V (St) + α
[
Rt+1 + γV (St+1)− V (St)

]
,

(2.3)
where α is the learning rate. Updating its estimated
utility of a state using the reward received as well
as its estimated utility of the state at the next time
step allows for learning to start very quickly as use-
ful updates can be made at every time step.
The RL methods used in this project are all

based on the popular TD learning algorithm Q-
learning (Watkins, 1989, Watkins and Dayan,
1992) which updates its estimated state-action
value function Q as follows:

Q(St, At)← Q(St, At) + α
[

Rt+1 + γmax
a∈A

Q(St+1, a)−Q(St, At)
]
. (2.4)

Q-learning is an off-policy algorithm, as it di-
rectly approximates q∗ by updating Q using the
maximum estimated return at each step, regardless
of whether the current policy would obtain that re-
turn.

2.2 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) uses artificial
neural networks to represent value functions in or-
der to deal with state-action spaces that are too
large for tabular RL methods such as those men-
tioned above. The Deep Q-Network (DQN) algo-
rithm (Mnih et al., 2015) is a variant of Q-learning
that uses a neural network paramaterized by θ to
approximate the optimal state-action value func-
tion q∗. This addition of function approximation
adds further instability to Q-learning, and DQN
introduced two methods to improve training sta-
bility:
Experience replay de-correlates the experi-

ences used for training by storing experiences

⟨St, At, Rt+1, St+1⟩ in a replay memory buffer D,
from which mini-batches are then sampled uni-
formly at random during training.

A target network is a second neural network, pa-
rameterized by θ−, that is used to compute the TD-
targets used for training the online network θ. The
target network parameters θ− are kept stable be-
tween training iterations of θ, and are updated by
copying the θ parameters every C time steps.
DQN adapts the Q-learning update rule seen

in 2.4 to a differentiable loss function that can
be minimized using stochastic gradient descent to
train the neural network parameterized by θ that
represents the state-action value function (the Q-
Network):

L(θ) = E⟨St,At,Rt+1,St+1⟩∼U(D)

[
(
Rt+1 + γmax

a∈A
Q(St+1, a; θ

−)

−Q(St, At; θ)
)2]

. (2.5)

2.3 Lottery Ticket Hypothesis

The Lottery Ticket Hypothesis states that a
randomly-initialized, dense neural network contains
a subnetwork that is initialized such that - when
trained it isolation - it can match the test accuracy
of the original network after training for at most
the same number of iterations (Frankle and Carbin,
2019).

Such a sparse subnetwork is called a winning
ticket, and it consists of a dense feed-forward neu-
ral network f(x; θ), its parameters at initialization
θ0, and a mask over its parameters m ∈ {0, 1}|θ|
indicating which of them are zeroed. A full ticket
can be specified as f(x;m⊙ θ0).

Tickets are found through iterative pruning :

1. Randomly initialize a neural network f(x; θ0).

2. Train for j iterations to obtain parameters θj .

3. Prune p% of parameters in θj to obtain mask
m.

4. Set neural network parameters θ ← m⊙ θ0.

5. Train for j iterations to obtain parameters θ′.

6. Prune p% of remaining parameters in θ′, ob-
taining mask m′.

2

7. Set m← m′.

Steps 4-7 can be repeated to find increasingly
sparse tickets. Tickets f(x;m ⊙ θ0) that match
or exceed the performance of the original network
f(x; θ0) are winning tickets.

Recent work has shown that multiple winning
tickets can exist within a neural network, and that
different pruning techniques can uncover different
winning tickets (Paganini and Forde, 2020).

3 Method

The goal of this project is to determine whether
winning tickets are generally present in neural net-
works approximating value functions for deep RL,
and to do so with limited time and computational
resources. To this end, experiments consisted of de-
termining whether winning tickets could be found
in any or all combinations of three different deep
RL algorithms trained on two simple RL problems
using three different iterative pruning strategies: a
total of 18 experiments repeated 20 times each.

3.1 Environments

The RL problems used are cartpole (Barto et al.,
1983) and acrobot (Sutton, 1996). The versions
used in this project are those made available
through the OpenAI Gym toolkit (Brockman et al.,
2016).

Figure 3.1: CartPole-v0

The CartPole-v0 environment is a slightly sim-
plified version of the pole-balancing problem de-
scribed by Barto et al. (1983) that does not take
cart friction into account and runs for a maximum

of 200 time-steps. The goal is to keep the pole up-
right (within 15 degrees of vertical) for as long as
possible without moving the cart too far from its
central starting point.

The observation space consists of four floating
point numbers: cart position, cart velocity, pole an-
gle, and pole angular velocity. At each time step the
two possible actions are pushing the cart leftwards
or pushing the cart rightwards. The reward is +1
for each time step, including the terminal state.

Figure 3.2: Acrobot-v1

The Acrobot-v1 environment uses the imple-
mentation from Geramifard et al. (2015) of the ac-
robot as described by Sutton (1996). The acrobot
consists of two joints and two links (see 3.2); the
goal is to swing the tip of the outer link above
the line in as little time as possible by varying the
torque on the joint connecting the two links.

The observation space consists of six floating
point numbers: the cosine, sine, and angular ve-
locity of both the angle of the inner link Θ1 (where
an angle of 0 means pointing straight down) and
the relative angle of the outer link to the inner link
Θ2 (where a relative angle of 0 means they form a
straight line). At each time step there are 3 possi-
ble actions to modify the torque on the connecting
joint: apply positive torque, apply negative torque,
or do not apply torque. An episode lasts for a maxi-
mum of 500 time steps, or until the goal is achieved;
the reward is -1 for each time step that the goal is
not reached, and 0 when the goal is reached.

3

3.2 RL algorithms

DQN

The first algorithm used is DQN, which is described
in Section 2.2. The Q-networks used for both the
cartpole and acrobot problems are fully connected
feed-forward neural networks with a single hidden
layer of 128 nodes; their input- and output-layer
sizes correspond to the observation space and ac-
tion space of their respective environments, which
are described in Section 3.1.

The hyperparameters used were only set and ad-
justed to yield acceptable performance after train-
ing the full DQN model. Acceptable performance
here means reaching a mean cumulative reward
greater than 195 over 100 testing episodes after
training for at most 1000 episodes of cartpole, and
a mean cumulative reward greater than -100 over
100 testing episodes after training for at most 500
episodes of acrobot. The hyperparameters found
satisfactory for DQN were used for all three al-
gorithms because the relative performance of the
algorithms is not important for this project. The
target network parameters are updated at the end
of every training episode. A full specification of the
hyperparameters can be found in Appendix A.

Double DQN

Double DQN (van Hasselt et al., 2016) adapts DQN
to reduce overestimation of state-action values us-
ing insights from Double Q-learning (van Hasselt,
2010).

The use of the max operator in Q-learning (see
2.4) and DQN (see 2.5) can lead to overestima-
tion because it leads to the same values being used
when selecting and evaluating an action. Double
Q-learning deals with this by learning two indepen-
dent Q-functions that are used symmetrically and
alternately so that one function’s updates use the
other function’s state-action value estimates.

Double DQN instead uses the target network θ−

that is already part of DQN, using its estimated
value when evaluating the policy selected by the
online network θ:

L(θ) = E⟨St,At,Rt+1,St+1⟩∼U(D)

[
(
Rt+1 + γQ(St+1, argmax

a∈A

Q(St+1, a; θ); θ
−)

−Q(St, At; θ)
)2

]
.

The target network used in Double DQN is not
fully independent from the online network, because
it does not alter its own weights through learn-
ing. Instead, its weights are updated by copying the
weights of the online network every C time steps,
just like in DQN.

Deep Quality-Value Learning

Deep Quality-Value Learning (DQV) (Sabatelli
et al., 2020) is based on QV(λ) (Wiering, 2005).
Like QV(λ) it approximates both the state-value
(V) function and the state-action value (Q) func-
tion, using state-value estimates to update the Q-
function, but in DQV these functions are approxi-
mated by (separate) neural networks.

The neural network paramaterized by Φ approx-
imates the V-function and uses the following loss
function:

L(Φ) = E⟨St,At,Rt+1,St+1⟩∼U(D)

[
(
Rt+1 + γV (St+1; Φ

−)− V (St; Φ)
)2

]
,

and the neural network parameterized by θ uses
the value function estimates to approximate the Q-
function:

L(θ) = E⟨St,At,Rt+1,St+1⟩∼U(D)

[
(
Rt+1 + γV (St+1; Φ

−)−Q(St, At; θ)
)2

]
.

Both neural networks use experience replay for
training, and the V-function network uses a target
network Φ−.

3.3 Finding tickets

In each experiment three types of pruned sub-
networks are considered, here called ’winning

4

ticket’ (WT), ’mask-only’ (MO) and ’random
ticket’ (RT). The ’winning ticket’ uses a mask ob-
tained through iterative magnitude pruning and
the set of initialization values the full network
started with (as described in 2.3), whereas a ’mask-
only’ network uses the same mask but not the ini-
tialization values (it instead re-initializes to ran-
dom values before re-training). A ’random ticket’
also re-initializes before re-training, but uses a ran-
domly pruned mask with the same sparsity as the
winning ticket and mask-only network. The random
ticket is used as a baseline to evaluate the impact of
the structure (mask) and weights (winning ticket)
found through iterative magnitude pruning.
In the specific case of DQV, both networks are

pruned and a winning ticket thus consists of a pair
of masks and initialization weight vectors. These
subnetworks will be referred to in the singular, just
like the winning ticket, mask-only subnetwork and
random ticket of the other two algorithms.
All networks are pruned and re-trained for 20 it-

erations, with 20% of remaining weights (or as close
to 20% as possible) being pruned at each iteration.
Biases are set to 0 after (re-)initialization or re-
setting of network parameters, and are not pruned.
The pruning strategies used are as described by Pa-
ganini and Forde (2020) and implemented in Py-
Torch. Each method can be employed to prune
based on weight magnitude (WT & MO) or to
prune weights indiscriminately (RT).
Global unstructured pruning considers all re-

maining weights in the neural network regardless
of which layer they belong to. The magnitude-
based version prunes the 20% that individually
have the lowest absolute values. The random ver-
sion of global unstructured pruning prunes 20% of
remaining weights indiscriminately.
Local unstructured pruning prunes 20% of re-

maining weights per layer, so that all layers end up
with similar proportional sparsity. The magnitude-
based version prunes the weights with the lowest
absolute values, and the random version prunes
20% of a layer’s remaining weights indiscriminately.
Local structured pruning prunes 20% of a

layer’s remaining nodes, zeroing all weights in their
weight vectors (i.e. all weights connected to that
node in the layer being pruned). The magnitude-
based version used here prunes the nodes with the
lowest L2-norm, the square root of the sum of its
squared weights. The reason for using the L2-norm

rather than the L1-norm (the sum of the weights’
absolute values) is that the sum of squares dis-
proportionately favours weights with higher mag-
nitude, so that nodes with one or two very strong
connections are more likely to be retained than
nodes with several average-magnitude connections
that may be less important. The random version
of this pruning strategy prunes 20% of remaining
nodes indiscriminately.
The networks used in this project are shallow and
have few input nodes [4-6] and output nodes [1-
3], so both the first (input-to-hidden) and second
(hidden-to-output) layers prune the hidden nodes
(of which there are 128 at the start) and no full
input- or output-nodes are pruned.

3.4 Evaluation

After each iteration of pruning and re-training the
tickets were evaluated by taking the mean cumu-
lative reward over 100 testing episodes of cartpole
or acrobot. After 20 runs of 20 iterations the mean
cumulative scores and standard deviations for each
type of ticket were plotted and compared.

The relative performance of different types of
pruned sub-network (WT, MO and RT) at differ-
ent levels of sparsity can be compared visually in
graphs. Additionally, a threshold is used to high-
light when performance deteriorates significantly
compared to the unpruned model; this threshold is
full model performance minus 10 for cartpole and
full model performance minus 25 for acrobot, and is
indicated by a grey dotted line in the graphs (Sec-
tion 4, Appendix B).

4 Results

Graphs of all results can be found in Appendix B;
results tend to vary across environments and prun-
ing strategies more than between algorithms.

4.1 Relative performance

Tables 4.1 and 4.2 show at what stage of pruning
performance falls below the threshold (see section
3.4) for the winning ticket (WT), mask-only (MO)
network and random ticket (RT) in each of the ex-
periments.

5

Table 4.1: Percentage of weights remaining
when ticket drops below threshold (Cartpole).

Experiment WT MO RT
DQN - GU 10.7% 13.4% 26.2%
DQN - LU 8.6% 6.9% 21.0%
DQN - LS 8.6% 5.5% 21.0%
DDQN - GU 10.7% 8.6% 21.0%
DDQN - LU 6.9% 6.9% 21.0%
DDQN - LS 8.6% 8.6% 21.0%
DQV - GU 8.6% 8.6% 21.0%
DQV - LU 10.7% 8.6% 21.0%
DQV - LS 5.5% 6.9% 21.0%

Table 4.2: Percentage of weights remaining
when ticket drops below threshold (Acrobot).

Experiment WT MO RT
DQN - GU 13.4% 32.8% 26.2%
DQN - LU 10.7% 26.2% 26.2%
DQN - LS 16.8% 26.2% 41.0%
DDQN - GU 16.8% 26.2% 26.2%
DDQN - LU 21.0% 26.2% 26.2%
DDQN - LS 16.8% 10.7% 41.0%
DQV - GU 21.0% 41.0% 26.2%
DQV - LU 21.0% 26.2% 32.8%
DQV - LS 10.7% 16.8% 41.0%

Figure 4.1: Acrobot, DQN, LU pruning

The winning ticket outperformed the random
ticket in all 18 experiments, always reaching a lower
percentage of weights remaining before falling be-
low the threshold. Figure 4.1 shows the winning
ticket dropping below the threshold at 10.7% of

Figure 4.2: Cartpole, DQV, LS pruning

weights remaining, while the random ticket and
mask-only network both drop below the threshold
at 26.2% remaining. Figure 4.2 shows WT and MO
performing similarly.

Figure 4.3: Acrobot, DQV, GU pruning

The mask-only network outperformed the ran-
dom ticket in 13 experiments, and matched or out-
performed the winning ticket in 8 of those. In 3
other experiments, the mask-only network matched
the random ticket’s performance instead, and in
the 2 remaining experiments it dropped below the
threshold quicker than the random ticket. All ex-
periments in which the mask-only network per-
formed similarly or worse than the random ticket
were in the acrobot environment. Figure 4.3 shows
the mask-only network falling below the threshold

6

before the random ticket, but decaying in perfor-
mance less rapidly afterwards.

4.2 Resulting input layer masks

Tables 4.3 and 4.4 show the mean percentage of
weights remaining for each input node in the iter-
atively pruned mask of the Q-network of the DQN
algorithm after the 10th pruning iteration of local
unstructured pruning (when 10.7% of total weights
remain in each layer).

Table 4.3: Percentage of weights remaining for
each observation parameter (cartpole).

Observation RT WT Difference
Cart position 10.5% 8.1% −22%
Cart velocity 10.1% 7.6% −25%
Pole angle 11.1% 14.0% +25%
Pole ang. vel. 11.3% 13.3% +18%

Table 4.4: Percentage of weights remaining for
each observation parameter (Acrobot).

Observation RT WT Difference
cos(Θ1) 10.6% 15.6% +47%
sin(Θ1) 11.1% 14.8% +33%
cos(Θ2) 10.6% 14.0% +31%
sin(Θ2) 10.9% 10.0% −8%
ω(Θ1) 10.8% 6.8% −37%
ω(Θ2) 10.0% 2.8% −71%

ω: angular velocity

5 Discussion

Winning tickets seem to occur across all combi-
nations of environments, algorithms and pruning
strategies. The random ticket does not match the
winning ticket’s performance in any of the experi-
ments. Some cases are a lot more convincing than
others, however, and performance can be especially
close when unstructured iterative pruning strate-
gies are used while re-training on the acrobot prob-
lem.
Neural networks using only the mask of the win-

ning tickets and not the weights reach similar levels
of sparsity as the full winning ticket before drop-
ping off in performance on the cartpole problem.

In the acrobot environment they often drop below
the threshold quicker, but then maintain a simi-
lar rate of performance degradation as the winning
ticket. This is largely in line with recent findings
by Vischer et al. (2021) demonstrating that the
mask explains most of the winning ticket effect for
MLP-based RL agents such as the ones used in this
project.

The relatively aggressive pruning of some input
nodes compared to others (see Tables 4.3 and 4.4)
suggests that the corresponding observations are
more or less important in solving the problem. Vis-
cher et al. (2021) have used the same kind of differ-
ences in input layer pruning to form ’minimal task
representations’; interestingly, they found a similar
pattern for cartpole - preference given to maintain-
ing connections related to pole angle and angular
velocity - but a very different pattern for acrobot :
they found that the input nodes for angular veloc-
ity were best maintained, whereas in this project
those were the ones most heavily pruned.
Part of the reason for this difference could be the
much smaller networks and lower amount of train-
ing steps used here compared to that paper.

Further research could vary the neural network
architecture within the same RL algorithm to see
whether this has an impact on the presence of
winning tickets. Another interesting line of inquiry
would be to see whether winning tickets and mask-
only subnetworks for DQV can be de-coupled,
e.g. seeing how switching out the state-value net-
work mask and keeping the state-action value mask
would affect performance.

References

Andrew G. Barto, Richard S. Sutton, and
Charles W. Anderson. Neuronlike adaptive el-
ements that can solve difficult learning con-
trol problems. IEEE Transactions on Sys-
tems, Man, and Cybernetics, SMC-13(5):834–
846, 1983. ISSN 2168-2909.

Greg Brockman, Vicki Cheung, Ludwig Pet-
tersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. OpenAI Gym.
arXiv:1606.01540 [cs], 2016.

Jonathan Frankle and Michael Carbin. The lottery
ticket hypothesis: Finding sparse, trainable neu-

7

ral networks. International Conference on Learn-
ing Representations, 2019.

Alborz Geramifard, Christoph Dann, Robert H.
Klein, William Dabney, and Jonathan P. How.
RLPy: A Value-Function-Based Reinforcement
Learning Framework for Education and Re-
search. Journal of Machine Learning Research,
16(46):1573–1578, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran,
DaanWierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

Michela Paganini and Jessica Zosa Forde. Be-
spoke vs. Prêt-à-Porter Lottery Tickets: Exploit-
ing Mask Similarity for Trainable Sub-Network
Finding. arXiv preprint arXiv:2007.04091, 2020.

Matthia Sabatelli, Gilles Louppe, Pierre Geurts,
and Marco A. Wiering. The Deep Quality-Value
Family of Deep Reinforcement Learning Algo-
rithms. In 2020 International Joint Conference
on Neural Networks (IJCNN), pages 1–8. IEEE,
2020.

Richard S. Sutton. Learning to predict by the
methods of temporal differences. Machine Learn-
ing, 3(1):9–44, 1988.

Richard S Sutton. Generalization in Reinforcement
Learning: Successful Examples Using Sparse
Coarse Coding. NeurIPS Proceedings, 1996.

Richard S. Sutton and Andrew G. Barto. Rein-
forcement Learning: An Introduction. MIT Press,
2018.

Hado van Hasselt. Double Q-learning. Advances
in Neural Information Processing Systems, 23:
2613–2621, 2010.

Hado van Hasselt, Arthur Guez, and David Silver.
Deep Reinforcement Learning with Double Q-
learning. Thirtieth AAAI Conference on Arti-
ficial Intelligence, 2016.

Marc Aurel Vischer, Robert Tjarko Lange, and
Henning Sprekeler. On Lottery Tickets and Mini-
mal Task Representations in Deep Reinforcement
Learning. arXiv preprint arXiv:2105.01648,
2021.

C. J. C. H. Watkins. Learning from Delayed Re-
wards. PhD thesis, University of Cambridge,
1989.

C. J. C. H. Watkins and P. Dayan. Q-learning.
Machine Learning, 8(3–4):279–292, 1992.

Marco A. Wiering. QV(λ)-learning: A New On-
policy Reinforcement Learning Algorithm. Pro-
ceedings of the 7th European Workshop on Rein-
forcement Learning, pages 17–18, 2005.

Haonan Yu, Sergey Edunov, Yuandong Tian, and
Ari S. Morcos. Playing the lottery with rewards
and multiple languages: lottery tickets in RL and
NLP. arXiv preprint arXiv:1906.02768, 2020.

8

A Appendix - Implementation Details and Hyperparameters

Table A.1: ANN details.

Cartpole Acrobot
Activation function hyperbolic tangent ReLU
Input nodes 4 6
Hidden nodes 128 128
Output nodes (Q-net) 2 3
Output nodes (V-net) 1 1

Table A.2: Hyperparameters.

Cartpole Acrobot
Action selection epsilon-greedy epsilon-greedy
Discount factor 0.99 0.99
Learning rate 0.0025 0.001
Optimizer Adam Adam
Epsilon (start) 1 1
Epsilon decay factor 0.95 / episode 0.999 / step
Epsilon (minimum) 0.01 0.01
Replay batch size 32 64
Replay memory size 1000 2000
Replay start 200 transitions 1000 transitions
Target network update every episode every episode
Training episodes1 max. 1000 max. 500
Early stopping threshold 200 -100
1 Early stopping was used to save time and computational re-
sources. Early stopping occurs after 10 consecutive training
episodes where a cumulative score equal to or greater than
the threshold mentioned in the table above.

9

B Appendix - Iterative Pruning Results

Figure B.1: DQN iterative pruning results

10

Figure B.2: Double DQN iterative pruning results

11

Figure B.3: DQV iterative pruning results

12

	Introduction
	Background
	Reinforcement Learning
	Deep Reinforcement Learning
	Lottery Ticket Hypothesis

	Method
	Environments
	RL algorithms
	Finding tickets
	Evaluation

	Results
	Relative performance
	Resulting input layer masks

	Discussion
	Appendix - Implementation Details and Hyperparameters
	Appendix - Iterative Pruning Results

