
.

.

.

.

.

.

Solving Constraint Satisfaction
Problems in a Distributed Setting
.
.
.
.
.
.
.

Master thesis
.
.
.

by
.
.

Wouter Menninga
s2315556

Supervisor
Prof. Dr. Alexander Lazovik

Second supervisor
Drs. Michel Medema

Contents

1 Introduction 1

2 Background 3
2.1 Constraint Satisfaction Problems . 3
2.2 Constraint Optimization Problems . 5
2.3 Solving constraint problems . 5
2.4 Constraint graphs . 6
2.5 Decompositions . 6
2.6 Actor Model . 7

3 Related Work 9
3.1 BTD . 9
3.2 Embarrassingly parallel search . 11
3.3 Multi-agent search . 12
3.4 Distributed constraint satisfaction and optimization 13
3.5 Hypertree Decompositions . 13
3.6 Distributed COP solver . 14

4 Design & Implementation 16
4.1 Distributed BTD algorithm . 16
4.2 Constraint Optimization Problems . 19

4.2.1 Objective function . 20
4.2.2 Good recording and Nogood recording 22

4.3 Tree Decomposition . 22
4.3.1 Jdrasil . 22
4.3.2 H-TD-WT . 23

4.4 Deployment Strategies . 24
4.4.1 Random deployment . 25
4.4.2 Branch deployment . 26
4.4.3 Search space size weighted deployment 27
4.4.4 Separator-based deployment . 27

4.5 Implementation . 30
4.5.1 Deployment process . 30

CONTENTS CONTENTS

4.5.2 Algorithm pseudo-code . 30

5 Experiments & Analysis 33
5.1 Constraint problems . 33

5.1.1 Random Graph Coloring . 33
5.1.2 Random Geometric Graph Coloring 34
5.1.3 Tree-shaped graph coloring . 34
5.1.4 RLFAP . 35

5.2 Environment . 36
5.3 Benchmarking decomposition methods . 37

5.3.1 Setup . 37
5.3.2 Results . 38

5.4 Benchmarking deployment strategies . 40
5.4.1 Setup . 40
5.4.2 Results . 41

5.5 Evaluating the scalability . 46
5.5.1 Setup . 47
5.5.2 Results . 47

6 Conclusion 50

7 Future Work 52

Acknowledgements 54

List of Figures 55

List of Tables 57

Bibliography 58

Glossary

BTD Backtracking with Tree-Decomposition.

CELAR Centre d’Electronique de l’Armement.

COP Constraint Optimization Problem.

CSP Constraint Satisfaction Problem.

DCOP Distributed Constraint Optimization Problem.

DCSP Distributed Constraint Satisfaction Problem.

EPS Embarrassingly Parallel Search.

H-TD-WT Heuristic Tree Decomposition Without Triangulation.

JVM Java Virtual Machine.

MAC Maintaining Arc Consistency.

RLFAP Radio Link Frequency Assignment Problem.

SAT Boolean satisfiability problem: the problem of determining whether a given
boolean formula can be satisfied.

Abstract

Solving constraint satisfaction problems (CSPs) is an NP-complete problem. Many
algorithms exist for solving CSPs, some of which make use of parallelization. However,
such algorithms are restricted by the amount of resources that can be available on a
single machine. Therefore, this thesis implements a distributed approach for solving
a CSP, using the actor model.

In our work, an adapted, distributed version of the BTD algorithm was implemented
using the actor model. Experiments using the implemented algorithm show that the
solve time for a problem is reduced logarithmically when increasing the number of
cores, while it grows linearly when increasing the number of nodes. The original CSP
is decomposed into subproblems by means of tree decomposition. Different strategies
for deploying these subproblems among the cluster nodes are explored. We found
that the deployment strategy has a large impact on the solve time. The best strategy
is dependent on the structural properties of the problem being solved. Moreover, we
found that taking into account the separator size during the deployment, by deploying
nodes in the tree decomposition that share a large separator to the same machine,
has a considerable beneficial impact on the solve time of up to 24%. Finally, we show
that the method of decomposition has a high impact on the achieved scalability.

Chapter 1

Introduction

Constraint Satisfaction Problems (CSPs) are a class of problems that can be used
to model a variety of different problems from a range of differing domains. A CSP
consists of a number of variables, each having its own domain of values that can
be assigned to it, and constraints, which limit the values that can be assigned to
combinations of variables. Solving a CSP consists of finding an assignment of values
for the variables, such that all of the constraints are satisfied.

A variation on constraint satisfaction problems are Constraint Optimization Problems
(COPs). Optimization problems are similar to satisfaction problems, but introduce
a function which assigns a value to a solution. In the optimization variant, the goal
is to find an optimal solution, i.e. a solution that either minimizes or maximizes the
value assigned by this function.

Solving generic CSPs (and COPs) is an NP-complete problem, which means that
the solve time increases exponentially with respect to the input size. There has
been a lot of study towards discovering algorithms that increase the performance of
solving CSPs. For example, some of this research exploits structural properties of the
constraint problem [1], such as the BTD algorithm, introduced by Jégou et al. [2].

Most of the presented algorithms and techniques focus on local performance improve-
ments, and are limited to the resources of a single machine. A means of overcoming
this restriction is by using a distributed cluster of multiple machines that work on
solving the same problem. Using this distributed approach, the problem is divided
over multiple machines and removes the limitation of the resources of a single ma-
chine, making it possible to find a solution faster. Some research has also focused
on using such a distributed cluster of machines for solving constraint problems, such
as by using a work-splitting approach [3]. A less researched area is that of the de-
ployment of the (sub-)problems over the cluster of machines and the effects of the

1

Chapter 1: Introduction

deployment on the performance of the distributed search.

This thesis aims to add to the existing research, by building and evaluating a solver
that combines techniques for distributed solving with the BTD algorithms structural
performance improvements and the opportunities that algorithm offers for paralleliza-
tion. Moreover, it explores the effects of different deployment strategies on the per-
formance of the search process.

The main research question is formulated as:

How can a constraint satisfaction problem be solved using a distributed cluster
of machines?

Additionally the following two sub-questions are asked:

Which strategy for dividing the constraint satisfaction problem over a distributed
cluster of machines minimizes the search time?

Is the optimal deployment strategy different for different categories of constraint
satisfaction problems?

This research builds on the Master thesis of R. Kip [4], in which a distributed solver
for a specific constraint optimization problem (namely a version of graph coloring) was
developed, which was capable of solving such problems when derived from a generated
tree decomposition. In the accompanying experiments, different configurations of tree
decompositions were tested, in order to asses the performance and scalability behavior
of the algorithm. In Section 3.6, a more comprehensive summary of this work is
described.

This thesis expands on the aforementioned Master thesis with a more general imple-
mentation, which is capable of solving a large range of more general satisfaction and
optimization problems. For the experiment, the focus lies more on how this algo-
rithm performs and scales for problems more akin to the problems encountered in the
real world and benchmarks, allowing for a more meaningful comparison with other
algorithms and methodologies for solving constraint problems.

This thesis is structured as follows. First, a background is provided about CSPs, COPs
and related concepts. Then, an overview of the relevant related work is provided.
Next, the concepts and design of the distributed algorithm are introduced, as well
as the different decomposition methods and deployment strategies. Afterwards, the
different types of problems used in the experiments are introduced, and, for each of
the experiments, the methodology followed by the presentation and analysis of the
results. Finally, we present the conclusion and list the potential for future work.

2

Chapter 2

Background

In this chapter, the background knowledge is provided for the context of this the-
sis. An introduction to constraint satisfaction and optimization problems is provided
alongside a formal description of those. Moreover, background information regarding
decomposition methods and the actor model is given.

First, constraint satisfaction problems are introduced and a formal description is
provided. After this, the same is done for constraint optimization problems. Some
basics regarding constraint solving are then provided, after which the concepts of the
constraint graph and decompositions are introduced. Finally, some information about
the actor model is provided as well.

2.1 Constraint Satisfaction Problems

Constraint satisfaction problems are a generic class of problems that can be used to
model a variety of different problems from widely differing domains.

Formally, a constraint satisfaction problem can be defined as a triplet P = ⟨X,D,C⟩,
where X = {x1, x2, ... xn} a finite set of variables, D = {D1,D2, ... Dn} a finite
set of domains (where Di contains all values in the domain of variable xi), and
C = {C1,C2, ... Cm}, a finite set of constraints. Each constraint Ci is a predicate,
Ci(xi1 , ... xiji), taking ji number of arguments (one for each variable involved in that
constraint), and returns true if and only if the combination of the assignments of the
variables involved in that constraint satisfy that constraint. More formally, a con-
straint is a tuple Ci = ⟨Vi,Ri⟩, where Vi = {xi1 , xi2 , ..., xiji}, is the set of variables in-
volved in that constraint, and Ri is a relationship containing a subset of the Cartesian
product of the domains of the variables involved in that constraint: Ri ⊆Di1×...×Diji

.
This relation represents the combinations of values for the involved variables for which

3

Chapter 2: Background Section 2.1

WA NT Q

NSWSA

V

Figure 2.1: A planar graph representing the states of Australia (except Tasmania).

the constraint is true.

The problem of solving P can then be described as finding a set of values from the
domains (one for each variable), such that all constraints are satisfied. Formally, this
means finding a function f ∶X → ⋃n

i=1Di, such that ∀i,1 ≤ i ≤m, ⟨f(xi1), f(xi2), ...,
f(xij)⟩ ∈ Ri [2].

Example 1. An uncomplicated example of a problem that can be described as a
CSP is that of cryptharithmetic puzzles. An example of such a puzzle can be seen in
(2.1). The goal of this puzzle is to assign a digit to all the letters in the equation,
such that the equation is correct.

In this case, some extra variables are introduced to represent the carry. The variables
are then: S,E,N,D,M,O,R,Y,X1,X2,X3,X4. Each of these variables having the
domain [0,9], except for S and M , which have the domain [1,9].
The constraints are:

C1 ∶ (D +E) = Y + 10 ⋅X1,

C2 ∶ (N +R +X1) = E + 10 ⋅X2,

C3 ∶ (E +O +N +X2) = N + 10 ⋅X3,

C4 ∶ (S +M +X3) = O + 10 ⋅X4,

C5 ∶M =X4

SEND

+ MORE

MONEY

(2.1)

Example 2. Another example is the map coloring problem: given a planar graph G
(representing a map with states), and a set of colors K, find an assignment of colors

4

Section 2.2 Chapter 2: Background

for the vertices of the graph (i.e. the states), such that no two neighboring vertices
have the same color. This problem can be formulated as a CSP in which, for each
vertex in the graph, there exists a variable. Initially, the domain for all of the variables
consists of all the colors (e.g. {red , green, blue}). Then, for each edge in the graph,
there is a constraint which is satisfied if and only if both variables associated with the
nodes at either end of the edge have a different value. Formally, the relationship which
describes the possible values for the constraint is Ri = {⟨x, y⟩∣x ∈Dj , y ∈Dk, x ≠ y}, or

concretely Ri = {⟨red, green⟩, ⟨red, blue⟩, ⟨green, red⟩, ⟨green, blue⟩, ⟨blue, red⟩, ⟨blue,
green⟩}. For brevity, the symbol ≠ will be used to denote this relationship. In the
case of the map coloring for the graph in Figure 2.1, the set of constraints C would
look as follows: C = {⟨{WA,NT},≠ ⟩, ⟨{WA, SA},≠ ⟩, ⟨{NT,Q},≠ ⟩, ⟨{NT,SA},≠
⟩, ⟨{Q,SA},≠ ⟩, ⟨{Q,NSW },≠ ⟩, ⟨{NSW , SA},≠ ⟩, ⟨{NSW , V },≠ ⟩}.

2.2 Constraint Optimization Problems

Related to constraint satisfaction problems are constraint optimization problems. In
these problems, the objective is not just to find a solution to the problem, but to find
an optimal solution. In order to compare different solutions, an objective function
is defined, which can be a cost function or energy function, depending on whether it
should be minimized or maximized respectively.

Formally, an optimization problem is defined similar to a satisfaction problem, but
adds an objective function, φ ∶ D1 × ... ×Dn → R. This function assigns an objective
value to every assignment in the solution space. The optimal solution to a constraint
optimization problem is the solution that either minimizes this score (in case of a
cost function) or that maximizes it (in case of an energy function). Formally, given
the solution space S = D1 × ... × Dn, for the optimal solution sopt, it holds that
∀s∈S ∶ φ(sopt) ≤ φ(s) in the case of minimization, or ∀s∈S ∶ φ(sopt) ≥ φ(s) in the case
of maximization of the objective function.

In this thesis, we will from now on focus on the case of minimization of the objective
function. However, the case of maximization is symmetrical, and all findings can be
applied equally to the case of maximization.

2.3 Solving constraint problems

Finding an (optimal) solution to a constraint problem is NP-complete. A common
method for solving constraint satisfaction and optimization problems is the use of
backtracking. In backtracking, values are assigned to variables sequentially and after
each assignment the constraints are checked. When one of the constraints fails, the
algorithm will backtrack to the last assignment and assign a different value for that
variable. Backtracking has a theoretical time complexity which is exponential, namely

5

Chapter 2: Background Section 2.4

O(m ⋅ dn), where m is the number of constraints, d is the largest domain size and n
is the number of variables [5].

Another technique used, often alongside backtracking, is forward-checking. In forward-
checking, after assigning a value to a variable and checking the constraints, the do-
mains for all neighbouring variables (i.e. all other variables that share a constraint
with the assigned variable) are reduced, such that they only contain legal values. If a
domain for a variable becomes empty due to this step, then backtracking will occur.

Another widely used technique is Maintaining Arc Consistency (MAC). A variable X
is said to be arc consistent with respect to a variable Y if for all values in the domain
of X, there exists at least one legal value in the domain of Y . When using MAC,
after assigning a value to a variable and performing forward-checking, the domains are
made arc consistent. Similar to forward-checking, whenever a domain becomes empty,
backtracking occurs. This technique detects failures earlier than forward-checking.

2.4 Constraint graphs

A method of representing a CSP graphically is by using a graph representation of the
variables and constraints. This is done in a constraint graph. Multiple graphical mod-
els exist to represent the CSP as a graph, each dealing with higher-arity constraints
in a different way. For this thesis, we use the primal constraint graph.

The primal constraint graph is defined as G = ⟨V,E⟩, where V is the set of vertices

(the variables) and E the set of edges. The edges are defined as: E = {(xi, xj)∣xi, xj ∈
V ∧ i < j ∧ (∃ck ∈ C ∶ xi ∈ Scope(ck) ∧ xj ∈ Scope(ck)), where Scope(constraint) is a
function that returns all variables that are involved in the passed constraint. In other
words, there exists an edge between two variables, if both of those variables occur in
the scope of the same constraint.

2.5 Decompositions

Solving a constraint satisfaction problem is known to be NP-hard. Much research
has been done towards identifying tractable classes of CSPs. In general, the methods
for obtaining these tractable classes can be separated in two groups [1], namely those
which are tractable due to restrictions on the structure of the problem, and those
which are tractable due to restrictions on the constraints. Different polynomially
tractable classes of CSPs can be defined based on different structural properties of
the constraint problem. Usually, these are graph-theoretic properties of the constraint
graph (or constraint hypergraph in case of CSPs with constraints of an arity higher
than 2).

It is known that CSPs with constraint (hyper)graphs which are acyclic, can be solved

6

Section 2.6 Chapter 2: Background

in polynomial time [6]. The properties of the constraint graph that lead to poly-
nomially tractable classes are all based on some generalization of this acyclicity [7].
Methods exist for converting an arbitrary constraint satisfaction problem into a binary
and acyclic problem. Such methods are called decomposition methods. An overview
and comparison of different CSP decomposition methods was compiled by Gottlob et
al. in [7]. Each decomposition method specifies some concept of width, which can be
seen as a measure of the cyclicity of the constraint graph. All CSPs for which the tree
width of the primal graph is bounded by some constant k, are solvable in polynomial
time [8, 9].

One such decomposition method is tree decomposition [10]. A tree decomposition is a
representation of an original graph as a tree, in which every node (called bags) can be
mapped to a set of variables from the original graph. The following three properties
need to hold:

1. Every variable in the original graph needs to appear in one of the bags.

2. If two variables are connected by an edge in the original graph, then they need
to appear together in at least one bag.

3. If a variable occurs in two bags in the tree, then every bag on the path between
those needs to contain that variable.

Formally, a tree decomposition of a graph G = ⟨X,E⟩ is a pair ⟨T,B⟩, where T is

a tree (T = ⟨I,F ⟩) and B = {Bi ∶ i ∈ I} is a family of subsets (called bags) of X,
mapping each node in the tree to a set of variables from the original graph. Each
subset is a node in the tree T and satisfies the following three conditions:

1. ⋃i∈I Bi =X

2. for all edges ⟨x, y⟩ ∈ E, there exists i ∈ I, for which ⟨x, y⟩ ⊆ Bi.

3. for all x, y, z ∈ I, if z is in a path from x to y in tree T , then Bx ∩By ⊆ Bz.

The width of a tree decomposition is the size of the largest bag minus 1.

2.6 Actor Model

The actor model [11], [12], is a model of parallel computation. In this model, so-
called actors are the primitive unit of concurrency. These actors communicate with
one another by sending and receiving messages between them. Based on a message,
an actor can make local decisions, send more messages, create additional actors and
change its behavior for the next incoming message. An actor can only modify its
own state, and therefore, the states of other actors can only be influenced by sending
messages.

7

Chapter 2: Background Section 2.6

This higher level of abstraction relieves developers from the need to manage lower
level concepts, such as threads and explicit locking. Moreover, the design of the actor
model is location transparent, such that the distribution of an application consisting
of actors is not fixed or hard-coded, but can be dynamic or configured at runtime.

8

Chapter 3

Related Work

A signification amount of study has gone into the field of constraint satisfaction and
optimization. In this section, some of the work relevant to this thesis is discussed. The
focus lies mainly on related work in which the distributed or parallelization aspect
plays a significant role.

3.1 BTD

One of the approaches to solving constraint satisfaction problems leverages the struc-
tural properties of the decomposition. One such algorithm is Backtracking with Tree-
Decomposition (BTD), introduced by Jégou et al. [2]. In BTD, a new way is in-
troduced to provide bounds on the theoretical complexity of a CSP. Conceptually,
in BTD, the method of backtracking search is guided on its choice of variables by
an ordering on the variables based on the structure of the tree decomposition of the
constraint graph.

The ordering on the variables, combined with the structural guarantees provided by
the tree decomposition, allows for the use of so-called “structural nogoods”, which is
the same as regular nogoods (i.e. an assignment of some of the variables which cannot
be extended to a complete solution [13]). However, in this case, it can be derived from
structural properties. These structural nogoods are used in order to prune parts of
the search-tree for which it is known that no consistent solution exists.

Moreover, “structural goods” are defined, which are assignments of variables for which
it is known that they can be extended to a solution for an identified remaining part
of the problem. Again, these are detected using structural properties of the problem.
The structural goods are used to skip parts of the search-tree (also called forward-
jumping), whenever it is known that a consistent solution exists.

9

Chapter 3: Related Work Section 3.1

By analysis, it is shown that the theoretical time complexity isO(n.s2.m. log(ds).dw+1),
where n is the number of variables, m is the number of constraints, d is the maxi-
mum domain size, s is the size of the largest separator and w is the tree width. The
space complexity is shown to be O(n.s.ds), where s is the maximum size of minimal
separators of the tree decomposition.

After obtaining a tree decomposition, BTD explores the search space using a com-
patible order based on this tree decomposition. In other words, each bag in the tree
decomposition is visited in a way compatible with this order. Within a bag, the
enumeration of the variables in the search space is not restricted by this order.

When a consistent instantiation is found for all the variables in a bag (Bi), the search
goes on with the variables of the first son of this bag (Bi+1), if such a son exists. At
that moment, the algorithm checks if the assignment for the variables in the separator
of those two bags (i.e. variables which exist in both of the bags, A[Bi ∩Bi+1]), has
been recorded as a good or a nogood. In case of a nogood, the search continues for a
different instantiation of Bi. In case of a good, the enumeration skips a part of the
search space by means of “forward-jumping”. In this case, the enumeration continues
with the first variable after the Desc(Bi+1). In case it has not been recorded as either
a good or nogood, then A[Bi ∩Bi+1] must be extended towards a consistent solution,
and the enumeration continues with the variables of Bi.

In their experiment, they compared implementations of BTD (coupled with forward-
checking and MAC respectively) to non-BTD implementations. They also compared
an implementation of BTD with goods and nogoods to an implementation of BTD
without good and nogood recording. An experiment was done for both generated
CSPs and real-world instances. For the generated CSPs, the performance of all the
implementations was tested for classical random CSPs with networks with a tree
width that is not necessarily small, in order to validate that BTD does not perform
worse on such problems. Then they continue testing with structured random CSPs
(with a small tree width), for which it is expected that BTD can perform better due
to the structural properties of the tree decomposition.

They observed that for classical random CSPs, the implementations of BTD with and
without good and nogood recording achieved very similar results. Moreover, they
observed that, for the classical random CSPs, the BTD implementations achieved
similar results to the non-BTD versions and in some cases performs slightly better.

For the case of structured random CSPs it was observed that the BTD implementa-
tion with good and nogood recording performed significantly better. Moreover, the
implementations of BTD were significantly faster than the non-BTD versions.

Finally, the results of the comparison for real-world instances is that the BTD version
receives either better or similar results.

The BTD algorithm serves as the basis of the algorithm used in this thesis. However,

10

Section 3.2 Chapter 3: Related Work

some adaptations are made. In particular, the algorithm has been adapted to also
work for optimization problems, whereas the original paper focuses exclusively on
satisfaction problems. Moreover, our implementation exploits opportunities in the
algorithm for parallelization (and, as an extension of that, also to make it distributed).

3.2 Embarrassingly parallel search

One approach to solve CSPs in a (massively) parallel way has been proposed by Régin
et al. [3, 14]. In this approach, called Embarrassingly Parallel Search (EPS), the
search space, i.e. the domains of the variables, is split into a huge number of disjoint
parts. This is done by means of a depth-bounded depth-first search (i.e. a depth-first
search that never visits nodes located at a depth greater than a given value). The
depth-bound is increased until the right number of subproblems is generated. Every
worker then receives a list of these disjoint parts, which effectively assigns a different
portion of the search space to every worker. Each worker can then explore its assigned
search space independently and without communication with the other workers.

It is shown that when a sufficiently large number of subproblems is generated (30
times the number of workers), and if these subproblems are not trivially detected as
being inconsistent (using the propagation mechanism of a solver), then the division
of the work will be balanced.

Since embarrassingly parallel search splits the domains, the time-complexity of solving
CSPs using backtracking can be reduced from O(e.dn) to O((e.d/w)n), where w is the
number of workers.

While the original work by Régin et al. [3] only focuses on the case of parallel
solving, this technique may also be used for solving in a distributed manner. This
approach was tested by Malapert et al. [14]. They found that the EPS algorithm
can be adapted with reasonable effort to a distributed version, where the jobs for the
subproblems are submitted to a batch scheduler. However, it increases the overhead
as a new worker is created for each subproblem. Additionally, some early work [15] is
also being undertaken in the development of a portable implementation of EPS which
can be used on different machine architectures. In the future, this work can be used
to solve constraint satisfaction problems in a distributed manner. In this approach,
Akka is used in combination with an existing solver, namely Choco solver.

While between our work and EPS, the idea of dividing the problem into smaller
subproblems and using workers to solve these problems in parallel is similar, one
major difference is that our work looks at the structural properties in order to divide
the problem into smaller subproblems. Due to the use of these structural properties,
the size of the total search space (i.e. the product of the domain sizes of the variables
in the subproblems) is smaller than the size of the search space of the undivided
problem. This means that solving the subproblems, even when done so in a non-

11

Chapter 3: Related Work Section 3.3

parallel way, is expected to provide a performance gain over solving the full problem
– a key motivation for the BTD algorithm. In the case of EPS, such structural
properties are not leveraged and the search space itself gets split into a large number
of smaller parts, where the sum of the search space of all these parts adds up exactly
to the search space size of the undivided problem.

3.3 Multi-agent search

Another approach for solving CSPs in a distributed way is that of multi-agent search.
Some of the early work applying this method is provided by Clearwater et al. [16].
In this approach, there are numerous problem solving agents. Each agent is capable
of solving the problem on its own and every agent may use a different technique to
solve the problem. All the agents work on a copy of the complete problem, and may
also communicate with each other.

In an experiment, Clearwater et al. [16] showed that a number of cooperating compu-
tational agents were able to solve a set of cryptarithmetic problems with a super-linear
speedup. The agents in the experiment wrote ‘hints’ to a central ‘blackboard’. In the
case of the cryptarithmetic problems, the hints were lists of letter-to-digit assignments
that added up correctly modulo 10 (in order to account for the carry-over) for at least
one of the columns.

One of the assumptions made by this approach is that the hint-blackboard access is
cost-free. However, once the number of agents grows to a size that no longer fits on
a single machine, this blackboard access will have to go over a network for most of
the agents, which makes it relatively expensive, in turn limiting the scalability of this
approach.

The conceptual ideas from multi-agent search were used in the SAT community. An
example of where this was used is ManySAT [17]. Instead of sharing ‘hints’ on a
blackboard, the agents share so-called nogoods, which are parts of the search space
where a solution cannot exist.

The work from this thesis is similar in approach with respect to there being numerous
communicating agents that are working to solve the problem. However, unlike with
multi-agent search, there is no central blackboard (the good- and nogood stores are
not centralized, but local to each agent). Moreover, the agents do not have a copy of
the complete problem, but instead work on a dedicated subproblem.

12

Section 3.4 Chapter 3: Related Work

3.4 Distributed constraint satisfaction and optimiza-
tion

In the literature, extensive research has been performed into Distributed Constraint
Satisfaction Problems (DCSPs) and Distributed Constraint Optimization Problems
(DCOPs). A formalized description of a DCSP was first provided by Yokoo et al. in
[18]. A DCSP is a constraint satisfaction problem where the variables are distributed
among a set of automated agents. The agents are capable of solving subproblems and
can communicate with each other in order to arrive at a global solution.

An example of an application of DCSP is that of tracking in sensor networks [19] and
distributed meeting scheduling [20].

A crucial difference between DCSPs and conventional CSPs (also called centralized
CSPs) is that in a DCSP, no single agent has access to the complete problem. Each
agent has some variables, and constraints exist between variables assigned to different
agents. Communication between agents may be necessary for an agent to learn about
the existence of some of those constraints.

It should be noted that there is a distinction between the case of solving a DCSP
(a distributed problem) and solving a centralized CSP using distributed techniques.
The latter is the focus of this thesis.

This distinction notwithstanding, it may still be the case that algorithms or methods
used for solving DCSPs are also applicable and useful for solving centralized CSP in a
distributed fashion and vice versa. However, much of the research into DCSP focuses
on a distributed problem, while one of the major challenges in solving a centralized
CSPs is finding a means of decomposing or distributing that centralized problem [21].

3.5 Hypertree Decompositions

A hypergraph is a graph where edges, called hyperedges, can connect more than 2
vertices. Formally, a hypergraph H is a tuple (V,E), where V is a set of vertices
and E a set of hyperedges. A hypertree of a hypergraph H is a triple ⟨T,χ, λ⟩,
where T = (VT ,ET) is a rooted tree, and χ and λ are labeling functions which as-
sociate each vertex p ∈ VT to a set of variables (χ(p) ⊆ var(H)) and a set of edges
(λ(p) ⊆ edges(H)) respectively. The width of a hypertree is the maximum number of
hyperedges in any of its nodes, i.e. max(∀p∈VT

∶ ∣λ(p)∣).

Hypertree decomposition is the process of converting a hypergraph into a hypertree.
Computing a hypertree decomposition with a width less than or equal to some con-
stant k for a given hypergraph can be done in polynomial time [22].

In 2017, Liu et al. [23] proposed a new approach for mapping constraint networks

13

Chapter 3: Related Work Section 3.6

on multi-core processors by means of hypertree decomposition. In their proposed
procedure, the hypergraph of the original constraint network is decomposed into a
hypertree with the number of tree nodes equal to the number of available CPU cores.
Then each sub-problem on each node of the decomposition tree is solved in parallel,
which results in a decomposition tree where each node consists of the tuples that are
the outcomes of solving these sub-problems. To arrive at a global solution, directional
arc-consistency is performed along a topological ordering of the decomposition tree.
Subsequently, all solutions of the subproblems are combined along the topological
ordering, starting from the root node.

The approach of this thesis is similar in the sense of using a tree decomposition,
although this thesis does not use the hypertree decomposition. However, unlike the
work from Liu et al, where the solutions of all the subproblems are computed and then
merged to find a global consistent solution, in our work there is an ordering (guided
by the tree structure) which determines which nodes can be solved in parallel.

3.6 Distributed COP solver

Earlier work has been undertaken by R. Kip [4] to develop a distributed version
of the BTD algorithm. In his work, the BTD algorithm was adapted for solving
COPs and the actor model was used to introduce parallelism and the option for
distributed execution. For answering the question of how to deploy the actors over a
cluster of machines, different deployment strategies were implemented and compared:
a random, workload-based and a structure-based deployment strategy.

An implementation was developed where a tree decomposition could be generated
with specific structural properties, after which a constraint graph was derived from
this tree decomposition. The derived constraint graph then served as the basis for
an instance of the graph coloring problem, which could then be solved using the
distributed BTD algorithm. The implementation and experiments showed that the
BTD algorithm can be successfully distributed using the actor model.

The scalability of the distributed implementation was assessed experimentally and it
was found that increasing the number of cluster nodes (with the same total number of
CPU cores) seemed to linearly decrease the performance, while increasing the amount
of CPU cores (with the same total number of cluster nodes) increased the performance
logarithmically. Additionally, it was found that the deployment strategy used can have
a considerable influence on the performance of up to 30 percent when compared to a
random deployment. The success of a deployment strategy was shown to be highly
dependent on the structure of the tree decomposition, and hence different problems
benefit from a different deployment strategy. Overall, the weight-based deployment
had the most stable performance. In short, this deployment strategy assigns weights
to the bags of the decomposition based on the depth in the tree. Bags positioned at
a lower level in the tree (closer to the leaves) get a higher weight assigned than bags

14

Section 3.6 Chapter 3: Related Work

higher up in the tree. The deployment strategy then tries to evenly divide the bags
over the nodes based on this weight.

This thesis builds on top of the concepts and ideas from the work by R. Kip. However,
instead of generating a tree decomposition and then deriving a constraint optimization
problem from this tree, this thesis implements several algorithms for computing the
actual tree decomposition of an input problem. This allows for a more realistic assess-
ment of the performance of the algorithm when given a tree decomposition computed
with a state of the art decomposition technique. Additionally, this approach makes
the implemented distributed solver from this thesis more generic and extendable, be-
cause other CSPs and COPs can easily be added to the set of supported problems.
Lastly, this thesis continues the research into the optimal deployment strategy by
implementing multiple new deployment strategies.

15

Chapter 4

Design & Implementation

In this chapter the design of the developed constraint solver is presented. This chapter
focuses mostly on the higher-level design of the solver. Some considerations and details
regarding the implementation are also provided.

4.1 Distributed BTD algorithm

Solving large and complicated CSPs and COPs on a single machine is constrained by
the limited and finite resources of this single machine. Distributing, by scaling the
solving process to multiple machines, offers an opportunity for increasing the amount
of resources available.

The developed distributed BTD algorithm from this thesis is based on the BTD-
algorithm from Jégou et al. [2] and uses a network of actors, which are distributed
over a cluster of machines in a network. Each actor gets assigned to a subproblem,
and is responsible for solving this subproblem by means of local computation and
communication with the other actors. Conceptually, in the adapted BTD-algorithm,
each actor in this network (also called tree node actor) receives an assignment from
its parent, and then tries to find a solution for its local subproblem that extends this
assignment. After finding a solution to the local subproblem, the tree node actor will
send an assignment for all the variables in the separator (i.e. all variables which are in
both the parent and child node) to all of its children, which will then in turn perform
the same solving process. Once a solution is found by an actor that represents a leaf
node, a consistent path has been found and the solution is send back to the parent.
A parent that has received a solution from all its children will merge these solutions
and, in turn, send this merged solution to its own parent. This way, the solutions get
merged all the way up the tree, until it reaches the root node, where it gets merged
into a global solution. If any of the children cannot extend a given assignment, then

16

Section 4.1 Chapter 4: Design & Implementation

Figure 4.1: The assignments and (sub-problem) solutions that are passed during the
solve process.

the parent tree node actor will search for another solution to its local subproblem,
after which the process of sending the separator assignment to the children repeats
again. This continues, until no more local solutions are found, after which the tree
node actor will inform its parent that the given assignment could not be extended to
a solution.

For solving the local subproblem, each actor uses an instance of an existing solver,
namely Choco solver1 [24]. This is an open-source library for modeling and solving
constraint satisfaction and optimization problems. A variety of techniques is imple-
mented in this solver. However, no means of exploring the solution space in parallel
is provided by Choco solver itself.

The search process is kicked off in the top-level actor and works as follows. A tree node
actor receives a Solve-message with a partial assignment which should be extended to
a complete solution. This partial assignment is a mapping from variables to concrete
values for the variables in the separator of child bag and parent bag. The actor then
uses the local Choco solver to set the assigned variables and to iterate over all the
solutions for its local subproblem. For each solution, it sends a Solve-message to the
child actors, containing again the assignment for the variables in the separator. When
it concerns a leaf node (i.e. a tree node actor without children), this means a path
with solutions has been found all the way down from the root node. The solution of
the leaf node will be send back to the parent actor.

After sending a Solve-message, the actor will wait for the solutions of all children.
If one or more of the children was unable to extend the assignment to a complete
solution, then the actor will continue with the next local solution. If all children

1https://choco-solver.org, version 4.10.6 was used

17

Chapter 4: Design & Implementation Section 4.1

Figure 4.2: An example of a constraint graph of a random graph coloring problem

were able to extend the assignment to a complete solution, then those solutions are
merged together and send to the parent. This process of merging solutions when
all children are able to extend the local solution, is repeated up the tree, such that
these solutions of the subproblems are aggregated together to form the solution to
the complete problem in the root node. An illustration of the messages being send
during this process can be seen in Figure 4.1. The arrows pointing downwards are
the Solve-messages being sent from parent to child and contain the assignment in the
separator (i.e. the values for the variables which are present in both the parent and
the child). These values are the outcome of the local solve process using the Choco
solver. The arrows pointing upwards represent the responses from the children that
are send to the parent, after they have found a local solution that could in turn be
extended by their children. These responses contain the merged solution. The root
node merges the solutions of its children into a global, complete solution. In the case
of the example, the complete solution can be seen in Figure 4.3.

The actors also implement a good store and nogood store. Whenever a tree node actor
receives a Solve-message, these local stores are first checked. When an assignment
is registered as a good or nogood, the solution can immediately be send back to the
parent.

Dividing the CSP or COP into subproblems is not trivial. The developed algorithm
uses a tree decomposition of the (primal) constraint graph to achieve this. The
resulting tree decomposition, which consists of nodes containing the subproblems,
is then used for deploying the actors, where every node in the tree is assigned to an
actor. The problem is then solved using the BTD-algorithm, which has been adapted
for use in the actor network and for solving constraint optimization problems. In
order to obtain a tree decomposition with the subproblems, the implemented solution
first creates a (primal) constraint graph from the model of the problem. This is
done by creating a graph where the vertices represent the variables and two vertices

18

Section 4.2 Chapter 4: Design & Implementation

Figure 4.3: A example of a solution of the graph coloring problem in Figure 4.2.

are connected by an edge whenever a constraint exists where both these vertices are
involved in. For example, in Figure 4.2, the constraint graph of an instance of a graph
coloring problem can be seen. In this graph the vertices represent the variables (in
this case labeled with a letter) and the edges represent the constraints (in this case
inequality constraints).

After the construction of the constraint graph, a decomposition algorithm is used
to compute a tree decomposition of this graph. Finding a tree decomposition of
minimum width is NP-complete. Therefore, in order to find a decomposition within
polynomial time, the algorithm used does not guarantee a minimum width. A suite
of different algorithms which try to approximate this minimum, or otherwise good
tree decompositions, has been implemented and are described in Section 4.3.

On top of performance improvements due to leveraging structural properties of the
constraint graph by using the tree decomposition, additional performance can be
gained by introducing parallelization into the algorithm. This parallelization occurs
when, after finding a local solution, Solve-messages are sent to the children nodes in
parallel. This leads to parallel execution of the distributed solve process, because the
child nodes all run as a separate actor in the actor network. This parallelization step
occurs each time the solve process moves down a level, for a maximum parallelism
bounded by the amount of leaf nodes.

4.2 Constraint Optimization Problems

If the problem being solved is an optimization problem, the algorithm functions
slightly differently.

There are two general approaches for implementing optimization:

19

Chapter 4: Design & Implementation Section 4.2

1. Each tree node finds an optimal solution for the given separator assignment.
An assignment is send to a (child) tree node, which will then find an optimal
solution. This optimal solution is the solution for the sub-tree rooted in that
tree node.

2. Each tree node finds an optimal solution, which costs less than a provided
maxCost parameter. When propagating the search to the children, the maxCost

for those children is reduced, to take into account the cost of the local solution
that is being extended.

An advantage to the second approach is that it allows aborting a search, once the
cost becomes larger than this maxCost parameter. However, we may have to search
a particular separator assignment more than once if, later on, a search is done with
a larger value for maxCost, which happens when a (grand)parent is exploring a less
optimal local solution, which may potentially be extendable to a more optimal global
solution. The second approach was implemented in the developed distributed solver.

In the case of an optimization problem, the implemented BTD algorithm behaves
slightly differently then for satisfaction problems. First, a constraint gets added to
the Choco model for the local subproblem, which restricts valid solutions to have a
cost no greater than the maxCost parameter. Secondly, the tree node actor keeps track
of the best (optimal) extended solution found up to that point for the given separator
assignment. After finding a solution to the local subproblem, a Solve-message gets
send to the child actors with the maxCost parameter reduced by the cost of the local
solution (except for the separators).

4.2.1 Objective function

In order to allow for decomposition of the problem and optimization of the perfor-
mance of the solver, a number of restrictions are applied to the objective function.

The first property that should hold for the objective function is that it is arbitrarily
decomposable. We define this, similar to Modi et al. [25], as the objective function
being decomposable, for any partitioning of the variables, into a sum of local objective
functions φI , such that:

1. Each φI is defined for one of the partitions of variables (called I)

2. Each partition of variables has a φi defined for it

3. Each φI maps assignments to a natural number (N0).

4. An aggregation operator exists, such that for a complete assignment, the total
value is the aggregation of the sub-values. This is typically a sum-operator.

Formally, the partitions are a subset of the set of all variables, i.e. I = {xi, ..., xj} and

20

Section 4.2 Chapter 4: Design & Implementation

2

1 2 3 2 4 5

Figure 4.4: A (partial) tree decomposition

I ⊆X and φI ∶Di × ... ×Dj → N0.

A second property that should hold for the objective function is that of ‘distributivity ’.
In the context of the objective function, we mean with this that when the cost values
of two sub-problem solutions are equal, then this implies that those sub-problem solu-
tions can substitute each other in a larger problem, without the total costs changing
due to this substitution.

Formally, we can define this as the following criteria:

φI(X) = φI(Y) Ô⇒ ∀J⊃I∀A∈S[J∖I] ∶ φJ(A ∪X) = φJ(A ∪ Y).

In the equation above, S is the complete solution space (i.e. D1 × ... ×Dn) and the
notation S[Z] refers to the solution space of only the variables in Z. The criteria
mandates that whenever, for a local objective function, the costs values of two assign-
ments are the same, this implies that for every local objective function that concerns a
larger partition containing the original, both of those assignments can be substituted
for one another in the larger assignment.

This distributivity property does not hold for all constraint problems. Take for ex-
ample the optimization problem of finding the chromatic number for a graph whose
(partial) tree decomposition can be seen in Figure 4.4. In this instance, the left
hand child may return {1=red,2=green,3=blue} as the optimal solution. A bag
may have more than one solution which has the same value for the cost function, so
the right child may have as its optimal solutions: {2=green,4=yellow,5=cyan} and
{2=green,4=red,5=blue}. While both of these solutions are equally optimal locally,
it can be observed that the global solution would be more optimal if the second local
solution for this right child bag was used, as that would limit the number of colors
used to 3 instead of 5. Specifically, this problem occurs because the cost function
for finding the chromatic number is not distributive: φ{1,2,3}(< red,green,blue >
) + φ{2,4,5}(< green,red,blue >) ≠ φ{1,2,3,4,5}(< red,green,blue,red,blue >).

From a theoretical point of view, it is possible to allow such non-distributive cost
functions. However, this would require the implemented solution to have the child
bags send all the optimal solutions to the parent bag. The parent bag would then have
to evaluate the cost function for all possible combinations of the solutions returned
by the children, in order to find the optimal of the combined solution. To limit the
complexity of the algorithm, this was not done for this thesis.

21

Chapter 4: Design & Implementation Section 4.3

The final restriction on the cost function is that it is assumed to be monotonically
increasing, i.e. ∀X∀Y ∶ X ⊆ Y Ô⇒ ∀A∈S ∶ φX(A[X]) ≤ φY (A[Y]). This implies
that when a partial solution is extended by another assignment, the cost function of
this assignment cannot decrease. This assumption is required due to an implemented
optimization, where the solver will stop exploring a solution once the cost exceeds the
cost of a previously found complete solution.

4.2.2 Good recording and Nogood recording

For the good stores and nogood stores to work correctly in the case of optimization
problems, some changes are applied to them. First, nogoods are stored along with
the maximum cost for which no solution could be found. This is done, because it is
possible that at a later moment in the search, a higher and less restrictive maximum
cost parameter gets passed, for which a solution could potentially be found.

On top of this modification, the good store has also been adapted to store the most
optimal solution with the given assignment. When consulting the good store, an extra
check is done to see if the solution retrieved from the good store does not exceed the
maximum cost parameter. If it does not, then this stored solution can be send to the
parent, otherwise the good is ignored and the actor continues with the local choco
solve process as if no good was found.

4.3 Tree Decomposition

In order for the distributed implementation of the BTD algorithm to leverage the
structural properties of the constraint satisfaction problem, a tree decomposition first
needs to be obtained. In this section, the different methods that are used for obtaining
a tree decomposition are elaborated on.

4.3.1 Jdrasil

Jdrasil2 is a Java library for computing tree decompositions [26]. It supports both
exact and heuristic methods for computing tree decompositions.

Jdrasil uses some heuristics to determine how a tree decomposition for a given graph
will be computed. Specifically, for graphs with less than 1000 vertices, Jdrasil will
compute an exact tree decomposition, i.e. the resulting tree decomposition will have
a minimum width.

In case of more than 1000 vertices, Jdrasil uses a stochastic greedy permutation
heuristic. This heuristic eliminates a vertex v which minimizes some function γ(v). In
case of a tie, this will be decided randomly. Six different functions γ are implemented

2Available on https://maxbannach.github.io/Jdrasil/

22

Section 4.3 Chapter 4: Design & Implementation

in the heuristic, they are described in [27]. As the ties are decided randomly, different
runs will produce different results, which allows for performing a stochastic search
by using the heuristic multiple times and using the best result. Jdrasil performs ten
thousand iterations of this algorithm, while different functions γ are used in different
runs.

4.3.2 H-TD-WT

As finding an optimal tree decomposition is an NP-complete problem, Jdrasil is often
not fast enough in finding a decomposition. Even in cases where it uses heuristics
instead of computing an exact decomposition, it still takes relatively long due to the
large number of iterations used in the stochastic algorithm. Moreover, Jdrasil focuses
on reducing the width of a tree decomposition, while indications exist that the best
tree decomposition for constraint solving, and for the BTD algorithm in particular, is
not necessarily the one with the smallest tree-width [28] [29]. The size of the largest
separator seems to be an important factor for the solving efficiency using the BTD
algorithm [28].

In 2015, Jégou et al. introduced a new algorithmic framework for graph decompo-
sition, called Heuristic Tree Decomposition Without Triangulation (H-TD-WT) [30].
It is based on traversal of the graph and uses properties of the separators and the
associated connected components. Moreover, it allows for the implementation of sev-
eral heuristics deciding on the choice of the next cluster. These heuristics can guide
the structure of the final tree decomposition, using criteria like separator size, cluster
size and connectedness of the clusters.

The algorithm starts with computing a first cluster, for which several methodologies
exist. The implementation in this thesis uses the maximal clique of the constraint
graph as the first cluster. The implementation of the algorithm used for finding the
maximal clique is based on the implementation provided by Samudrala and Moult
[31], which is based on the clique-finding algorithm design developed by Bron and
Kerbosch [32].

The H-TD-WT algorithm keeps track of a list of already visited vertices. At the
start of the algorithm, this list is initialized to be the first cluster. Additionally,
the algorithm also keeps track of the connected components one gets when removing
the already visited vertices from the graph. After establishing the first cluster, the
algorithm uses a heuristic for finding the next cluster. Several heuristics are described,
each of which works similar: the next cluster starts from a subset of the visited
vertices, that neighbor one of the connected components, and then iteratively, the
neighbors of those vertices which are a part of the connected component get added
to the set of vertices that make up the next cluster. This ‘expansion’ of the cluster
continues until some criteria is met. In the original paper [30], four heuristics are
described for choosing the next cluster:

1. H1-TD-WT, which minimizes locally the size of the next cluster.

23

Chapter 4: Design & Implementation Section 4.4

2. H2-TD-WT, which imposes a restriction on the choice of the next cluster, where
this next cluster has to be a single connected component.

3. H3-TD-WT, tries to identify and separate independent parts of the graph.

4. H4-TD-WT, builds on top of H3, but additionally aims to limit the size of
the separators in the tree decomposition by imposing an upper-bound on the
maximum size of the separators for the clusters which are added as a next
cluster.

After the criteria is met, or whenever the entire connected component gets consumed,
the next cluster is known and gets added to the list of already visited vertices. This
process then repeats until all of the connected components have been assigned to a
cluster. This results in a list of all the clusters. A tree decomposition is then com-
puted, similar to [33], by computing a maximum spanning tree of a graph whose
vertices are the clusters and edges link two clusters that share at least one vertex.
The edges are labeled with the sizes of these intersections (i.e. the separator sizes).
The resulting maximum spanning tree is then the tree decomposition. In the imple-
mentation of this thesis, Prim’s algorithm [34–36] is used for computing this spanning
tree, which has a time complexity of O(n3).

In order to evaluate the different heuristics, Jégou et al. [30] performed experiments to
test how well the different heuristics perform with respect to solving a set of constraint
satisfaction problems within a fixed amount of time. From their experiments, the
heuristic H4 performs the best.

The H-TD-WT algorithm is implemented and incorporated into the distributed solver,
together with heuristics H1, H3 and H4. For the first cluster, the maximal clique of
the constraint graph is used, after which one of the heuristics is used to find the
remaining clusters.

Besides the heuristics for determining the first and next cluster, the choice of the
root node of the tree decomposition from all the clusters can have a high impact
on the quality of the decomposition. The implementation from this thesis chooses
the root cluster that maximizes the following ratio: bi

∣Bi∣−1 , where bi is the number

of constraints in the cluster and ∣Bi∣ is the number of variables in the cluster. This
method for choosing the root node was introduced by Jégou et al. in [37].

4.4 Deployment Strategies

In order to solve the CSP or COP in a distributed manner, the sub-problems need
to be divided over all the machines in the cluster. In the case of the distributed
BTD-algorithm, this means deploying the bags of the tree decomposition over the
different machines. Since there is communication between the search processes that
are assigned to the bags, and the workload generated by the different bags is not

24

Section 4.4 Chapter 4: Design & Implementation

uniform, it is expected that the manner in which the bags are divided will affect
the performance and in particular the time needed to solve the problem. Several
different strategies for deploying the bags have been designed and implemented in
the distributed BTD-solver, in order to compare different deployment strategies. For
the design of the deployment strategies, the assumption was made that all of the
machines in the cluster are homogeneous, i.e. all of them possess the same type of
CPU, amount of memory and network capabilities.

Formally, a deployment strategy produces a set of partitions P, one for each machine
in the cluster, of the tree decomposition ⟨T ,B⟩, such that ⋃Q∈P Q = B, and ∀Q,R∈P ∶
Q ≠ R Ô⇒ Q ∩R = ∅. In other words, all bags in the tree decomposition are inside
of a partition and there exist no two partitions that have bags in common. Note that
there is no requirement for nodes in any of the partitions to be connected by an edge
in the tree decomposition.

The following different deployment strategies have been implemented:

� Random deployment, which randomly assigns bags to the different nodes.

� Branch deployment, which aims to deploy long uninterrupted chains of bags to
the same node.

� Search-space-size weighted deployment, which aims to equally divide the search
space over the different nodes.

� Separator-based deployment, which aims to prevent large separators from span-
ning between two different nodes.

It is worth observing that deployment strategies can be roughly divided into two
groups with different approaches: those that try to minimize communication overhead
by placing bags that are expected to communicate on the same node (separator-based
and branch deployment), and those that try to distribute the workload that a bag is
expected to generate in such a way as to maximize the potential for parallelism (such
as search-space-size weighted deployment).

In the next sections, a more detailed motivation as well as a formal description for
each deployment strategy will be given.

4.4.1 Random deployment

The random deployment serves as a baseline to compare with. For the communication
aspect, it is expected that this deployment performs poorly, as many of the bags that
communicate will not be on the same node.

This deployment strategy creates equal-size partitions. For each partition, bags are
randomly chosen from a set of all remaining bags, until the partition has reached the

25

Chapter 4: Design & Implementation Section 4.4

Figure 4.5: An example of a random deployment.

maximum size of (nr of bags
nr of nodes

), after which the process repeats for the next partition.

The remaining bags, in case nr of bags
nr of nodes

does not divide to a whole number, get added
to the last partition.

Figure 4.5 shows an example of a random deployment. Colors represent the distribu-
tion over the cluster nodes, numbers in the nodes represent number of variables and
numbers along the edges represent the separator size

4.4.2 Branch deployment

The distributed BTD algorithm is parallel in the branches of the tree decomposition.
On any path from a bag in this decomposition towards the root, there will be only
one bag that is, at that moment, computing the solution to a subproblem, while all
the bags above it are waiting for child solutions. Moreover, communication happens
along the branches, i.e. a bag communicates only with its children and its parent.

Therefore, to minimize communication between cluster nodes and simultaneously
maximize parallelism on the different cluster nodes, one strategy is to deploy the
longest connected branches of bags.

This deployment works by keeping track of the nodes that have been visited. The
algorithm starts at a leaf node, assigns that leaf node to a partition and then iteratively
does the same to the parent, until either the root node or a node that is already visited
is reached. This process is repeated for all the leaf nodes.

In the end, this leads to a set of partitions, which are all linked bags without any
branching. Some of these will be significantly longer than other ones. The partitions

26

Section 4.4 Chapter 4: Design & Implementation

Figure 4.6: An example of a branch deployment.

are then evenly divided over the cluster nodes based on the number of nodes in the
partition. Figure 4.6 shows an example of a branch deployment.

4.4.3 Search space size weighted deployment

For a weighted deployment, a weight is assigned to each vertex in the tree decompo-
sition, using a function of the bag: φ(B). The deployment then creates partitions by
assigning vertices to the partition with the lowest total weight, while traversing the
tree in a breadth-first manner.

The size of the search space is the number of possible candidate solutions, i.e. the
product of all the sizes of the domains of variables in a bag. Therefore, for the
search-space-size weighted deployment, the weight function is this product of domain
sizes.

When a bag consists of more variables or the variables in a bag have a larger domain,
then this means the search space for that bag is expected to be larger. Consequently,
it is expected that it will take more time to find a solution. Therefore, this search-
space-size weighted deployment aims to find a division where an equal amount of
search space is assigned to each node. Figure 4.7 shows an example of a search space
size weighted deployment.

4.4.4 Separator-based deployment

As shown by Jégou et al. in [2], the time complexity of BTD is O(n ⋅ s2 ⋅m ⋅ log(ds) ⋅
dw

++1), where s is the size of the largest separator (i.e. the largest intersection between

27

Chapter 4: Design & Implementation Section 4.4

Figure 4.7: An example of a search space size weighted deployment.

bag Bi and its son Bj). In this separator-based deployment, the goal is to divide the
bags over the nodes in such a way that pairs of bags with a large separator are always
assigned to the same node, such that communication between these two bags does
not span a network.

This deployment strategy is parameterized with a parameter S, which indicates the
largest allowed separator size before two bags will be deployed to the same node.

The algorithm first generates a tree of bags from the tree decomposition, where all
pairs of bags in the original tree decomposition with a separator larger than S are
joined in this generated tree. After this, the generated tree is passed to one of the
other deployment strategies, which divides the trees vertices over the different nodes
in the cluster. In Figure 4.8 an illustration is provided of this process. The process
of joining bags with a separator larger than S is visible as the differences between
the top-left and top-right decompositions. After this join process, one of the other
deployment strategies gets applied to the joined decomposition, the result of which
can be seen in the bottom-left. After this step, the result is used to deploy the bags
of the original (unjoined) decomposition, which can be seen in the bottom-right.

28

Section 4.4 Chapter 4: Design & Implementation

Figure 4.8: LT: the original tree decomposition. RT: after joining bags with
separator > S, in this case S = 4. LB: after applying branch deployment to joined
decomposition. RB: end result after applying the deployment to the original decom-
position

29

Chapter 4: Design & Implementation Section 4.5

4.5 Implementation

This section briefly describes some implementation details of the algorithm.

4.5.1 Deployment process

The first, and therefore top-level, actor that is created in the actor system is
the ClusterNodeActor. This actor is responsible for joining the other nodes to
form the cluster. Moreover, this actor keeps track of the other members of the
cluster and whom of these is the leader. Every ClusterNodeActor spawns a
TreeNodeManagerActor to manage all the tree nodes on that cluster node. Addi-
tionally, the leader ClusterNodeActor kicks off the deployment by sending a message
to the TreeNodeManagerActor on the same machine.

Each machine in the cluster has one active TreeNodeManagerActor, which keeps
track of all the TreeNodeActors (i.e. the bags in the tree decomposition) de-
ployed on a machine. It is also responsible for kicking off the deployment phase (by
spawning a new TreeDeploymentActor) when receiving a message from the leader
ClusterNodeActor and for spawning new TreeNodeActors when a message is re-
ceived from a TreeDeploymentActor during the deployment phase.

The TreeDeploymentActor is spawned after the leader ClusterNode has established
that all the members have joined the cluster and is responsible for computing the
tree decomposition and then deploying all the tree nodes (i.e. the bags) to the dif-
ferent machines in the cluster. This is done by sending messages to the respective
TreeNodeManagerActors. Because all the tree nodes need to have a reference to the
actors that represent the children tree nodes, the spawning process starts at the leaf
nodes of the tree decomposition and then deploys the tree nodes level by level until
the root node is reached.

4.5.2 Algorithm pseudo-code

For each bag in the tree decomposition, a TreeNodeActor is created and deployed.
These actors together run the distributed BTD algorithm. For reference, pseudocode
for this actor can found in Listing 4.1.

At the start of the algorithm the GlobalSolutionActor sends a Solve-message to
the top-level tree node actor. When receiving a Solve-message from the parent tree
node actor, a check is first done against the good- and nogood-store. In case the
assignment is already present in this store, then an answer can be sent back to the
parent immediately. When the assignment has not been seen before and is therefore
not present in the store, the tree node actor will start with setting the assignment
passed by the parent in the Choco solver model of the local subproblem for the bag
assigned to that actor (line 16 in the pseudo code). After setting the assignment, the
solve process of the local Choco solver will be invoked. This occurs in a while-loop,

30

Section 4.5 Chapter 4: Design & Implementation

which finds new local solutions using Choco solver, until either a solution could be
extended (in the case of a satisfaction problem), or (in the case of an optimization
problem) whenever there are no more local solutions.

If the Choco solver returns no solution, then for the case of an optimization problem,
the best found extended solution is recorded and returned to the parent (lines 20-22).
When no solution was found at all for an optimization problem and in the case of a
satisfaction problem, the assignment is recorded as a nogood and this outcome is sent
back to the parent (lines 24-25).

For every solution found by the Choco solver, the tree node actor will send a Solve-
message to the children tree node actors, asking them to extend this solution, and
wait for the reply (lines 28-31). These child actors will run in parallel. When all the
child actors have returned a reply with a solution, then this means the local solution
could be extended, and the merged assignments from all the child solutions are stored
in the good-store and send to the parent (lines 33-37). If at least one of the child
actors could not extend the local solution, then an abort message is send to all the
other child actors, as this means the local solution cannot be extended. For brevity,
this part has been left out of the pseudocode.

In the case of a constraint satisfaction problem, once a solution was extended by all
of the child actors, the process stops after sending this merged solution to the parent
and storing it in the good-store. When a local solution cannot be extended, then
the local Choco solver is invoked again to find the next local solution. This process
continues until no more local solutions are found. In the satisfaction case, this means
the assignment could not be extended to a solution. It will then be stored in the
nogood-store and send back to the parent.

As opposed to constraint satisfaction, in the case of an optimization problem, after
receiving the child solutions, the solve process of the local Choco solver is invoked
again to find the next local solution. Meanwhile, the tree node actor keeps track
of the best extended solution found up to that point (lines 38-39). When the local
Choco solver cannot find any more solutions, this best found solution is returned to
the parent tree node actor (lines 20-22).

31

Chapter 4: Design & Implementation Section 4.5

1 Input: variables , the variables belonging to this bag

2 Input: children , the children tree node actors

3

4 nogoods = ∅
5 goods = ∅
6 variables =

7 optimal_solution = ∅
8

9 Receive A from parent ◻ A is the assignment in the separator

10 if A ∈ nogoods:

11 Send ∅ to parent ◻ inform parent there is no solution

12 else if A ∈ goods:

13 solution = goods[A]
14 Send solution to parent ◻ send solution back to parent

15 else:

16 set assignment in choco model

17 while True:

18 local_solution = findSolution () ◻ invoke local choco solver

19 if local_solution = ∅:
20 if problem is optimization problem AND optimal_solution ≠ ∅:
21 goods += < A,optimal solution >
22 Send optimal_solution to parent

23 else:

24 nogoods += A
25 ∅ → parent

26 break

27 else:

28 for each child in children:

29 separator = local solution[variables ∩ child.variables]
30 separator → child

31 CS ← wait for child solutions ◻ children execute in parallel

32 if ∅ ∉ CS:
33 extended_solution = ⋃S∈CS S ∪ local solution

34 if problem is a satisfaction problem:

35 goods += < A,extended solution >
36 Send extended_solution to parent

37 break

38 else if φ(extended solution) < φ(optimal solution): ◻ φ is cost function

39 optimal_solution = extended_solution

Listing 4.1: Pseudo code for tree node actor

32

Chapter 5

Experiments & Analysis

This chapter presents the methodology, results and analysis of the experiments. First,
the different types of problems which were tested are described. After this, for each
experiment, the setup is discussed, followed by the presentation and analysis of the
results.

5.1 Constraint problems

In this section, a brief description will be provided on the different constraint satis-
faction problems which are used in the benchmarks. The problems can be divided
into two categories, namely structured and unstructured.

5.1.1 Random Graph Coloring

For this instance, an adapted version of the graph coloring problem is used. In the
traditional graph coloring problem, a connected graph has to be colored with a finite
number of colors in such a way that no two vertices connected by an edge have the
same color. In the optimization case, traditionally a solution is scored based on the
number of different colors that are used. However, such a cost function would not
satisfy the assumption of distributivity required by our implementation, as explained
in Section 4.2.1. For this reason, the cost function used in this thesis assigns distinct
numbers to each color and then computes the sum of those numbers as the cost.

In the Random Graph Coloring problem, a random graph is created by creating N
vertices, linked in a long chain where each vertex is connected to the next one, in
order to guarantee that the graph consists of a single connected component. Every
node has a probability of being connected to any of the other nodes. This probability

33

Chapter 5: Experiments & Analysis Section 5.1

is configurable using the connectedness (cn) parameter, having a value between 0
and 100. A value of 100 means a complete graph and 0 leads to a linked chain of
vertices with no further edges.

5.1.2 Random Geometric Graph Coloring

A random geometric graph is constructed by randomly placing nodes in a metric
space, and then connecting two nodes when they are within a certain range. One
of the properties of random geometric graphs is that they display a high amount of
community structure [38], meaning that they consist of densely connected clusters
which are sparsely connected in between.

As one of the constraint optimization problems used in the benchmark, a graph-
coloring problem will be used, for which the underlying graph is a random geometric
graph. For graph coloring, the constraint graph is exactly the same as the graph that is
being colored. Consequently, due to the properties which allow the random geometric
graph to be decomposed, this will mean that a more favorable tree decomposition can
be found. The random geometric graphs used in this thesis are based on the 2D space
and euclidean distance. The parameters for this problem are: the number of nodes
(n), the size of the grid (g), the range (r) and the number of colors used (c).

It is also worth mentioning that the graph coloring problem for random geometric
graphs is closely related to the frequency assignment problem [39] (p. 109), which is
the problem described in Section 5.1.4.

5.1.3 Tree-shaped graph coloring

In order to test the implementation, a specific constraint optimization problem is
used, which is highly suited for the BTD algorithm due to its structure (consisting
of many branches) offering a significant opportunity for parallelism. This is the tree-
based random graph coloring problem: a graph coloring problem where the underlying
graph is a tree of clusters, as can be seen in Figure 5.1. Each cluster is a small random
graph, similar to the one from Section 5.1.1. The problem is parameterized in such a
way that different values can be provided for the cluster size (cs), number of children
for all the nodes (b), the cluster connectedness (cc) (i.e. the probability of two vertices
within a random cluster to be connected by an edge), the separator size (s) and the
depth of the tree (d).

In the first experiment, this problem is used in order to evaluate the performance of
the different decomposition methods. All four implemented decomposition algorithms
(i.e. h1tdwt, h3tdwt, h4tdwt and jdrasil) were compared to each other. In the case
of the clusters being complete graphs (i.e. with a value of 100 for the connectedness),
a ‘perfect’ tree decomposition can be derived from the constraint graph, as can be
seen in the bottom in Figure 5.1. A decomposition method for deriving this ‘perfect’
tree decomposition was implemented, in order to compare the performance of this

34

Section 5.1 Chapter 5: Experiments & Analysis

Figure 5.1: Tree-based constraint graph (top) and associated tree decomposition (bot-
tom)

ideal tree decomposition with the other deployment methods. In an ideal scenario,
when the clusters in the tree are fully connected, a decomposition algorithm is able
to arrive at the result of this ‘perfect’ tree decomposition, which provides the lowest
overhead and maximum opportunity for parallelization. For smaller values for the
connectedness, the random graphs that form the clusters in the tree, in many cases,
will contain some structure that can be exploited by a tree decomposition method,
allowing for a potentially more optimal decomposition.

5.1.4 RLFAP

The Radio Link Frequency Assignment Problem (RLFAP) is a set of constraint opti-
mization problems made available by the French “Centre d’Electronique de l’Armement”
(CELAR)1.

The RLFAP problem has as its objective to assign frequencies to a set of radio links
between pairs of locations in a way that avoids radio interference. Each radio link
is a variable in the COP and the domain of the variable represents the set of all
frequencies that can be assigned to that link. The constraints that should hold are
described by the equation:

∣F1 − F2∣ > k12

This equation mandates that the difference in the frequencies assigned to two radio
links which are close to one another, is larger than some pre-defined constant k12. A

1instances can be retrieved from https://miat.inrae.fr/schiex/rlfap.shtml

35

Chapter 5: Experiments & Analysis Section 5.2

list of pairs of radio links with the associated k12 constants is provided as a part of
the problem description.

In order to facilitate addition of new radio links later on, a choice of frequencies is pre-
ferred which leaves room for later additions. Therefore, several different criteria can
be added to the satisfaction problem described above, turning it into an optimization
problem. Two criteria are typically considered:

1. Minimization of the maximum frequency used: in this case one of the frequencies
higher than the maximum used can be used for new radio links

2. Minimization of the number of frequencies used: in this case the unused fre-
quencies can be considered for new radio links

Due to the assumption of distributivity (explained in Section 4.2.1), the second one
cannot be used in the distributed solver from this thesis. For this reason, we will be
using the first optimization criteria.

5.2 Environment

The experiments from this thesis are performed on the Peregrine2 cluster, ran by the
Center of Information Technology of the University of Groningen. The machines used
in the experiments from this thesis have the following specifications per node:

� 24 cores at 2,5 GHz (2x Intel Xeon E5 2680v3 CPUs)

� 128 GiB memory

� 1 TiB of internal disk space

Additionally, the internal network is also relevant to mention, because it is used to
communicate between different nodes in the cluster. The Peregrine cluster makes use
of a 56 Gbps non-blocking Infiniband network.

The Peregrine cluster runs CentOS 7 as its operating system. The distributed solver
from this thesis has been developed in version 2.13.1 of the Scala programming lan-
guage, using version 2.6.12 of the Akka typed framework for the actors. For solving
the local sub-problems version 4.10.6 of the Choco solver was used. During the ex-
periments we use the JVM from OpenJDK, more specifically version 11.0.2.

2https://wiki.hpc.rug.nl/peregrine/introduction/cluster_description

36

Section 5.3 Chapter 5: Experiments & Analysis

5.3 Benchmarking decomposition methods

The goal of the first experiment is to find out which decomposition method performs
the best on a set of instances of constraint satisfaction and optimization problems
described in Section 5.1. Primarily, we focus on finding the decomposition method
that solves the largest number of instances, and only look at the solve time as a
secondary quality metric. The decomposition methods described in Section 4.3 are
compared in this experiment. For the H4-TD-WT method, two variations for the
threshold for the separator size (namely 5 and 15) are tested. Concretely, the following
methods are compared:

� Jdrasil

� H1-TD-WT

� H3-TD-WT

� H4S5-TD-WT

� H4S15-TD-WT

5.3.1 Setup

The set of problems which are used is a selection of instances without structure (the
random graphs), instances with structure (geometric random graphs and RLFAP)
and instances with a tree-like structure (tree-clustered graphs). These instances are
run on a setup with 1 node having 8 CPU cores. The following instances are used:

� Random Graph Coloring

– RG-N21-C10-CC3

– RG-N25-C10-CC3

� Radio Link Frequency Assignment Problem:

– Scene 05

– Scene 11

� Random Geometric Graph Coloring

– RGG-N79-G750-R80-C7

– RGG-N1000-G2675-R50-C7

– RGG-N2000-G8000-R35-C10

37

Chapter 5: Experiments & Analysis Section 5.3

� Tree-shaped Random Graph Coloring

– TRG-B2-D3-CS6-CC100-C6-S2

– TRG-B2-D4-CS7-CC33-C6-S2

To give an idea about the size of the problems described above, Table 5.1 below
provides the number of variables, constraints and the size of the domains of the
variables.

Instance # variables # constraints domain size
RG-N21-C10-CC3 21 23 10
RG-N25-C10-CC3 25 29 10

RLFAPSAT-05 400 2598 7 - 49
RLFAPSAT-11 680 4103 7 - 49

RGG-N79-G750-R80-C7 79 122 7
RGG-N1000-G2675-R50-C7 1000 1099 7
RGG-N2000-G8000-R35-C10 2000 2005 10

TRG-B2-D3-CS6-CC100-C6-S2 42 117 6
TRG-B2-D4-CS7-CC33-C6-S2 105 192 6
TRG-B5-D4-CS4-CC100-C4-S3 624 1401 4

Table 5.1: Different metrics of the problem instances

5.3.2 Results

Table 5.2 lists the results from the experiment. A cross in one of the cells indicates
that the problem was not solved within 25 minutes, which is the maximum time per
job available to us on the Peregrine cluster.

Instance Jdrasil H1 H3 H4S5 H4S15

RG-N21-C10-CC3 1010s 0s 141s 106s 114s
RG-N25-C10-CC3 28s × × × ×
RLFAPSAT-05 × × × 2s ×
RLFAPSAT-11 × 11s 35s 40s 36s

RGG-N79-G750-R80-C7 × 276s × × ×
RGG-N1000-G2675-R50-C7 × 254s × 222s 328s
RGG-N2000-G8000-R35-C10 × 87s 76s 96s 130s
TRG-B2-D3-CS6-CC100-C6-S2 × 86s × 84s 90s
TRG-B2-D4-CS7-CC33-C6-S2 109s 132s 361s 25s 231s
TRG-B5-D4-CS4-CC100-C4-S3 110s × × × ×

Solved 4 7 4 7 6

Table 5.2: Results for decomposition method experiment

38

Section 5.3 Chapter 5: Experiments & Analysis

In Table 5.2, the results can be seen when trying to solve the instances using the tree
decompositions from the different decomposition methods that were implemented.
Jdrasil solves the lowest number of instances (only 4), even though it does man-
age to solve one of the unstructured instances and one of the tree-shaped instances
(RG-N25-C10-CC3 and TRG-B5-D4-CS4-CC100-C4-S3), which were not solved using
any of the other decomposition methods.

H1-TD-WT and H4S5-TD-WT solve the highest number of tested instances. For the
remaining experiments, we are focusing on solving structured instances, and therefore
we decide to use H4S5-TD-WT as the decomposition method for these experiments,
because the average solve time for the structured instances that are solved by both H1-
TD-WT and H4S5-TD-WT is faster for H4S5-TD-WT (114.0 and 93.4 for H1-TD-WT
and H4S5-TD-WT respectively).

Figure 5.2: Solve times when using different methods for tree decomposition with an
increasing number of cores on a single machine of the TRG-B5-D4-CS5-CC100-C5-S3

instance (logarithmic scale).

In order to show the performance of the different decomposition methods when the
number of cores increases, an experiment was done where an instance of the tree-
shaped random graph coloring, TRG-B5-D4-CS5-CC100-C5-S3, was solved with all
decomposition methods. This instance was also solved using the tree-based decom-
position method, which is the optimal tree decomposition where every cluster in the
constraint graph matches with exactly one bag in the tree decomposition. Using this
setup, we can compare the performance of the different decomposition methods with
an optimal tree decomposition. The results can be seen in Figure 5.2. For this in-
stance, the performance of Jdrasil is actually quite close to that of the tree-based
decomposition. The performance of H4 and H1 is quite similar, with both performing

39

Chapter 5: Experiments & Analysis Section 5.4

around a factor 10 worse than the tree-based decomposition. H3 performs the worst
on this instance: with 8 cores or more the solve time is over a 100 times larger. This
is a good illustration of how large the impact of the decomposition method is on the
total solve time.

5.4 Benchmarking deployment strategies

The goal of the second experiment is to compare the performance of the different
deployment strategies.

5.4.1 Setup

In order to measure and compare the different deployment strategies, an experiment
is done where a set of instances is ran initially on a single node with many cores.
Then, this is repeated on configurations where the cores are scaled more horizontally,
up to a configuration of many nodes with one core each. The total number of cores in
the cluster varies in each of the experiments and is based on the maximum observed
number of cores where adding more cores no longer decreases the solve time. As an
example, in the case of an instance that shows improvements in the solve time up to
16 cores, this would concretely mean the following configurations:

� 1 node with 16 cores each

� 2 nodes with 8 cores each

� 4 nodes with 4 cores each

� 8 nodes with 2 cores each

� 16 nodes with 1 core each

The goal of the experiment is to measure the overhead of running the solving process
with the cores spread over multiple machines, and the expected associated networking
overhead, for each of the deployment strategies. It is expected that some deployment
strategies perform better than others. For this experiment, the decomposition method
chosen in Section 5.3 is used (i.e. H4S5-TD-WT), unless mentioned otherwise.

40

Section 5.4 Chapter 5: Experiments & Analysis

5.4.2 Results

Figure 5.3: Results when scaling the number of cores for RLFAPSAT-11

Figure 5.4: Results for different deployment strategies for RLFAPSAT-11

RLFAP For the radio-link frequency assignment problem, we can see in Figure 5.3
that on a single machine, the parallelization of the algorithm can improve the solve
time up to 16 cores. For this reason, the experiment was run starting at 1 machine
with 16 cores, and then gradually adding more machines, up to 16 machines (each
with one core).

In Figure 5.4, it can be seen that initially, when increasing the number of nodes to 2

41

Chapter 5: Experiments & Analysis Section 5.4

and 4, the overhead increases considerably. However, when continuing to increase the
number of nodes, this overhead decreases again for some of the deployment strategies
and stabilizes after 8 nodes. This can be explained by the relatively small size of
the decomposition. The tree decomposition for this problem instance, which consists
of only 27 tree nodes (when using H4S5-TD-WT as decomposition method) is quite
small. This can also be seen in the total solve time (less than 60 seconds), which is
lower than the other problems being tested. When dividing such a small number of
bags over a growing number of (up to) 16 machines, each machine contains a smaller
number of bags, making it easier to evenly distribute them.

Figure 5.5: Solve times of RGG-N79-G750-R80-C7 for different deployment strategies
when increasing the nr. of nodes with a constant total nr. of cores

RGG-N79-G750-R80-C7 In Figure 5.5, the performance of the deployment strate-
gies for a relatively small but constrained instance of the Random Graph Coloring
problem can be seen. From this chart, we can observe that for a larger number of
nodes, the random deployment performs the worst. The separator-limited branch
deployment performs the best most of the time (except at 4 nodes).

42

Section 5.4 Chapter 5: Experiments & Analysis

Figure 5.6: Solve times of RGG-N1000-G2675-R50-C7 for different deployment strate-
gies when increasing the nr. of nodes with a constant total nr. of cores

RGG-N1000-G2675-R50-C7 This instance is considerably larger in terms of vari-
ables, but is less constrained, and has a comparable solve time to the previous RGG
instance. In Figure 5.6, we see that the solve time, while keeping the total number
of CPU cores in the cluster constant, actually leads to a lower solve time for cluster
sizes of 4 or larger.

Initially the random deployment performs the worst and both the branch and search
space strategies perform considerably better. For more than 4 nodes, the branch
deployment starts performing the worst and the search space deployment strategy
become the best one.

43

Chapter 5: Experiments & Analysis Section 5.4

Figure 5.7: Solve times of RGG-N2000-G8000-R35-C10 for different deployment strate-
gies when increasing the nr. of nodes with a constant total nr. of cores

RGG-N2000-G8000-R35-C10 In Figure 5.7 we can observe again that the ran-
dom deployment adds the most overhead, which is most visible at 2 nodes. The
differences between the other deployment strategies are a lot smaller. The separator-
based search space strategy appears to perform the best for this problem, although
branch deployment strategy performs very similar when the number of nodes exceeds
4. The separator-based restriction on the deployment of the bags (i.e. bags with
large separators are deployed on the same node), seems to have a positive impact
on the solve time. So much so in fact, that the search space strategy goes from the
second slowest to the fastest strategy up to 6 nodes. The separator-based strategy
ensures that bags which share a large separator, and therefore are expected to com-
municate more often between each other, are deployed on the same machine, such
that the communication does not have to span a network. This reduction in network
communication overhead causes the separator-based search space deployment to be
faster than the regular variant. This effect is however not noticeable for the branch
deployment. Most likely, this is due to the structural nature of this deployment.
The branch deployment strategy aims to deploy long branches on the same machine.
This means that many combinations of child-parent bags are already deployed to the
same machine, because they will be part of the same branch, making the effect of the
separator-based approach a lot less noticeable.

44

Section 5.4 Chapter 5: Experiments & Analysis

Figure 5.8: Solve times of TRG-B5-D4-CS5-CC100-C5-S3 for different deployment
strategies when increasing the nr. of nodes with a constant total nr. of cores

TRG-B5-D4-CS5-CC100-C5-S3 As can be seen in Figure 5.8, in this instance
of the tree-based random graph coloring problem, the random deployment strategy
performs the worst once again. The branch deployment strategy performs the best
in this instance. This can be explained due to the homogeneous tree structure of
the underlying constraint graph. This underlying graph is a tree of clusters, and the
amount of clusters and size of the clusters is the same in each of the branches. This
leads to the branches having a very similar workload. The branch deployment aims
to evenly divide the branches, which for this instance, leads to a deployment where
the workload is very evenly divided amongst the machines.

There does not appear to be a significant difference between the separator-based and
non-separator based deployments. This is because this instance only has separators
lower than the threshold used by this strategy.

45

Chapter 5: Experiments & Analysis Section 5.5

Figure 5.9: Solve times of TRG-B5-D4-CS4-CC100-C7-S3 for different deployment
strategies when increasing the nr. of nodes with a constant total nr. of cores

TRG-B5-D4-CS4-CC100-C7-S3 This is a larger tree-based graph coloring prob-
lem consisting of 624 variables. We are solving this problem using the tree-based
decomposition method described in Section 5.1.3, because this instance cannot be
solved within the 25 minutes time limit using the other decomposition methods.

In Figure 5.9, we can see that initially, out of all deployment strategies, the search
space (and the associated separator-based search space) strategy performs the worst,
but is overtaken when scaling to more than 6 nodes by the random deployment. The
differences between the separator-based and regular deployments is negligible for this
instance, because all of the separators in this instance are of size 3 and fall below the
threshold the separator-based deployment method uses.

5.5 Evaluating the scalability

For the last experiment, we set out to evaluate the scalability of the developed dis-
tributed solver. Additionally, we will also compare the solve time of the implemented
BTD algorithm when running locally using a single core to running the Choco solver
without our BTD algorithm in order to assess how much performance is gained from
leveraging the structural properties of the graph alone without taking parallelism into
account.

46

Section 5.5 Chapter 5: Experiments & Analysis

5.5.1 Setup

Initially, a set of instances is solved on a local version of the Choco solver. This is the
same set of instances as the first experiment from Section 5.3. Next, an experiment
is done to measure the performance of the distributed BTD algorithm on a single
machine with one core. This is done to get a benchmark of the performance gained
due to only the leveraging of the structural properties that the BTD algorithm of-
fers, without taking into account parallelism that can be leveraged due to the actor
model implementation. Finally, another experiment is done to measure the perfor-
mance of the distributed algorithm on a single machine with 8 cores, to assess the
performance gain of parallelism for each of those instances. H4S5-TD-WT is used as
the decomposition method, except those instances where this method does not lead
to a decomposition that solves the problem within 25 minutes (according to the first
experiment), in which case the fastest decomposition method according to the result
from Section 5.4.2 is used.

Next to a comparison of the performance against a local solver, we are also interested
in evaluating the scalability of the algorithm for increasingly larger cluster sizes in
order to evaluate the horizontal scalability. This is done by attempting to solve a
relatively large tree-structured instance, TRG-B5-D4-CS4-CC100-C7-S3, consisting of
624 variables and 1401 constraints. For this instance, the tree-based decomposition
method is used, to take any loss of parallelism as a consequence of a sub-optimal tree
decomposition out of the equation.

5.5.2 Results

Instance Choco Dist-BTD 1 core Dist-BTD 8 cores
RG-N21-C10-CC3 1s 84s 105s
RG-N25-C10-CC3 1s 37s 338s
RLFAPSAT-05 1s 3s 2s
RLFAPSAT-11 341s 47s 43 s

RGG-N79-G750-R80-C7 × 226s 295s
RGG-N1000-G2675-R50-C7 × 169s 209s
RGG-N2000-G8000-R35-C10 × 80s 117s

TRG-B2-D3-CS6-CC100-C6-S2 × 6s 3s
TRG-B2-D4-CS7-CC33-C6-S2 × 42s 27s
TRG-B5-D4-CS4-CC100-C4-S3 × 324s 104s

Table 5.3: Results of evaluating local distributed-BTD against local solving.

First, in Table 5.3, a comparison is offered between the solve times of the local Choco
solver, distributed BTD on a single core, and distributed BTD on 8 cores. From this,
we can conclude that for the unstructured problems (the RG instances) and those with
a low structure, the local Choco solver manages to solve the instance faster. This is
probably due to heuristics and optimizations that the Choco solver can leverage due

47

Chapter 5: Experiments & Analysis Section 5.5

to having access to all of the variables and constraints, whereas the BTD algorithm
gains very little advantage (if any) from instances with little to no structure.

For the structured instances, we see that the distributed BTD algorithm can solve
all of the tested instances, which the local Choco solver cannot solve within the 25
minutes time limit. Furthermore, for those instances which have a high amount of
tree-shaped structure (the TRG instances), we see considerable speed gains between the
1-core and 8-core distributed BTD algorithm, which indicates that a notable amount
of parallelism was achieved. However, for the RGG and RLFAP instances this speedup
is negligible or absent.

Interestingly, for the unstructured instances, the distributed BTD algorithm performs
worse on the 8-core configuration than the 1-core configuration. Possibly this is caused
by the high amount of backtracking that happens in these unstructured instances,
when multiple child nodes are searching for a local solution and one of them does
not find a solution. In the 8-core case, these child nodes are searching in parallel and
when one of them does not find a solution, the search process in the other children
may have already propagated further down (to the grandchildren). Additionally, since
actors only process a single message at a time, the message that prevents the other
child actors from further propagating the search (i.e. the abort message), cannot
be processed until the local search has finished, leading to search work being done
unnecessarily. In the 1-core case, only 1 of the child nodes is searching for a local
solution at a time, and therefore the other children have not yet propagated the search
to their children in case a local solution cannot be found.

Figure 5.10: Solve times of TRG-B5-D4-CS4-CC100-C7-S3 when increasing the number
of nodes with 1 and 2 CPUs per node

48

Section 5.5 Chapter 5: Experiments & Analysis

The results of solving the instance of the tree-based random graph coloring problem,
TRG-B5-D4-CS4-CC100-C7-S3, using the tree-based decomposition method, can be
seen in Figure 5.10. It shows, for all of the deployment strategies, the solve time
for cluster sizes between 1 and 16 machines, and configurations of 1 and 2 cores per
machine. From this, it can be observed that adding more nodes initially leads to a
higher solve time, due to the added communication overhead. Adding more nodes,
reduces the solve time again, as more computational resources are available in the
cluster. This decrease in solve time seems to be roughly linear and stabilizes around
a solve time of (for this instance) 500 seconds. The best solve time for the 1 core
per machine configuration is the branch deployment, which took 423 seconds. This
means a reduction of 47% when compared to the solve time on 1 machine (which was
805 seconds).

The configuration with 2 cores per machine follows a very similar trend as the one core
per machine configuration, except the solve times are roughly halved. This is logical,
because twice the amount of computational resources are available in the cluster for
the same number of machines. The best deployment strategy in this case reduces the
total solve time by 14%, considerably less than the 47% of the 1 core per machine
configuration. In Figure 5.11, we can see that extra parallelism does not provide more
speedup after 12 cores, also not on a single machine. This means there is very little
room to make up for the added communication overhead by adding more cores, before
this maximum parallelism is reached.

Figure 5.11: Solve time of TRG-B5-D4-CS4-CC100-C7-S3 on a single machine when
increasing the number of cores

49

Chapter 6

Conclusion

In this thesis, we presented an algorithm for solving constraint satisfaction problems
using a distributed cluster of machines. We explored the state of the art algorithms,
such as embarrassingly parallel search, multi-agent search and the BTD algorithm.
Out of all of these, we decided to use the BTD algorithm as the basis for a distributed
implementation. In this thesis, an adapted version of the BTD algorithm was designed
and implemented using the actor model. Furthermore, the algorithm was adapted to
solve constraint optimization problems as well, for which the BTD algorithm was not
originally designed.

The CSP (or COP) is divided into subproblems by means of tree decomposition. We
implemented and compared several heuristic algorithms for computing a tree decom-
position. We found large differences (up to a 100 times) in the solve time between the
different decomposition algorithms when using the produced tree decompositions for
solving CSPs/COPs using the distributed BTD algorithm, both in terms of number
of instances which could be solved (within 25 minutes) and the time required to solve
these instances.

We have done an experimental evaluation of the scalability of the implemented algo-
rithm for several instances of structured CSPs and COPs. From the experiments, it
becomes clear that using the algorithm on a cluster of machines adds a considerable
amount of communication overhead when compared to running the algorithm on a
single machine. A linear reduction in solve time can be observed when continuing
to increase the number of machines in the cluster up to some upper-bound. When
this upper-bound for the number of machines in the cluster is reached, adding more
machines to the cluster no longer decreases the solve time. In the tested instances, the
scalability achieved by parallel execution of the branches in the tree decomposition
is limited, with an observed upper-bound of at most 16 cores. Taking into account
the added communication overhead, a decrease in solve time (when compared with a

50

Chapter 6: Conclusion

single machine) is only observed when scaling to more than 4 machines (in the case of
1 core per machine). This makes the effective cluster size (i.e. the size of the cluster
where a speedup can be expected when adding more machines) quite small, namely
between cluster sizes of 4 and 16 machines. This range is made even smaller when
increasing the number of cores per machine.

The design, reference implementation and the experiments performed using the de-
veloped distributed BTD algorithm allow us to answer the first and main research
question. We can conclude that a CSP can be solved using a distributed cluster of
machines by decomposing the CSP using a tree decomposition and using a distributed
version of the BTD algorithm (based on the actor model) for the solving process, al-
though the scalability of this solution is limited by the structural properties of the
CSP.

In this thesis we also did exploratory research and an experimental comparison of dif-
ferent deployment strategies. Random, branch and search space deployment strategies
were implemented. Additionally, separator-based variants of the branch and search
space strategies were designed, where pairs of bags with a large separator between
them are deployed to the same machine. From the experiments, it becomes clear that
the random deployment, in general, has the worst performance. The branch deploy-
ment and separator-based branch deployments perform the best overall, especially
for the tested tree-shaped random graph coloring instances. Out of all instances, the
search space strategy (and the associated separator-based search space strategy) has
the most stable performance when changing the number of machines in the cluster.
In all but one of the tested instances, the separator-based variants of the branch and
search space deployment performed equal or better than their regular counterparts,
with a speedup of up to 24%.

51

Chapter 7

Future Work

In this work, parallelism is achieved during the phase of propagating the search process
from the parent to the child actors. Every time a parent actor with more than one
child sends an assignment to all of its children, the parallelism increases. However,
another possible opportunity exists for adding parallelism: instead of a tree node actor
waiting for the responses from all of its children after propagating the search to them,
a tree node actor could immediately continue with finding a subsequent local solution
and also propagate that one. This has the potential to massively increase the amount
of searching being performed in parallel. However, a possible downside is that parts
of the search space may be visited which would otherwise have been pruned due to
the constraint on the objective function. Research is needed to determine whether the
extra parallelism would lead to finding the solution faster despite potentially searching
some parts of the search space that would otherwise have been pruned.

In the experiments, several heuristic tree decomposition algorithms were compared by
using them in combination with the developed distributed BTD algorithm. We found
large differences in the solve times, not just between different decomposition methods,
but also for solving different instances using the same method. More research is needed
to understand the impact of different properties of the tree decomposition on the solve
time, especially when solving in parallel, and how an algorithm can be designed which
finds tree decompositions having favorable properties for parallelism.

Several different deployment strategies were implemented and compared experimen-
tally in this work. However, these do not cover all possible strategies and other
strategies for deployment of the bags exist that may potentially lead to a shorter
solve time. Additionally, all the developed strategies were static in the sense that
all bags remained deployed on the same machine during the entire search process.
It is hard to predict beforehand which bags in the tree decomposition will gener-
ate the most workload, so potentially a dynamic deployment, where bags are moved

52

Chapter 7: Future Work

to different cluster nodes after the initial deployment, is another possible avenue of
research.

In this thesis, the scope of the experiment was limited to relatively small problems,
which can be solved in under 25 minutes. Testing the algorithm for larger problems,
which have a larger tree decomposition consisting of more bags, and for which it takes
longer to find a solution, could potentially yield interesting results. For example, the
optimal deployment strategy for a larger problem could be different or it can become
more clear which strategy is the best. In particular, it would be interesting to see
the performance of the distributed BTD algorithm for the optimization cases of the
RLFAP instances. Furthermore, all problems tested in the experiments contain only
binary constraints. For problems with higher-arity constraints, a tree decomposition
could potentially be less optimal, as some of this information gets lost when creating
the primal constraint graph on which the tree decomposition is based, because 3
binary constraints cannot be distinguished from a single ternary constraint on the
same variable. Further testing with problems containing higher-arity constraints is
needed, to evaluate if the performance is impacted by this.

The experiment was performed on the Peregrine high-performance cluster. This clus-
ter makes uses of a very fast Infiniband network between the different machines that
make up the cluster. A consequence of this is that the networking overhead for the
communication between nodes is lower than it may be in other types of clusters, such
as clusters in a private or public cloud environment. This could have a major im-
pact on which deployment strategy performs the best. The impact of the deployment
strategy comes in two different ways: impact on the parallelism/workload (when one
machine is very busy and another is idle), and impact on the communication overhead
(when placing bags that communicate a lot on different machines). Due to the fast
inter-node networking speeds in the experimental setup from this thesis, the impact
on the communication overhead is relatively low compared to the impact on work-
load. Therefore, the results may not be fully representative of every compute cluster,
and may not carry over to environments with a slower network. For this reason, it
is necessary to do more research and experiments for setups with a slower internal
network.

53

Acknowledgements

First and foremost, I would like to thank my supervisor, Michel Medema, for all of
his valuable input, feedback and guidance throughout the project.

Furthermore, I would like to thank Prof. Dr. Alexander Lazovik for his ideas and
feedback, not just during this thesis, but throughout my entire studies.

I want to thank the Center for Information Technology of the University of Groningen
for providing access to the Peregrine high performance computing cluster, without
which the experiments of this thesis would not have been possible.

And lastly, but not least, I would like to thank all of my family, friends and colleagues,
for providing me with the support and motivation needed to complete my studies.

54

List of Figures

2.1 A planar graph representing the states of Australia (except Tasmania). 4

4.1 The assignments and (sub-problem) solutions that are passed during
the solve process. 17

4.2 An example of a constraint graph of a random graph coloring problem 18
4.3 A example of a solution of the graph coloring problem in Figure 4.2. . . 19
4.4 A (partial) tree decomposition . 21
4.5 An example of a random deployment. 26
4.6 An example of a branch deployment. 27
4.7 An example of a search space size weighted deployment. 28
4.8 LT: the original tree decomposition. RT: after joining bags with separator >

S, in this case S = 4. LB: after applying branch deployment to joined
decomposition. RB: end result after applying the deployment to the
original decomposition . 29

5.1 Tree-based constraint graph (top) and associated tree decomposition
(bottom) . 35

5.2 Solve times when using different methods for tree decomposition with
an increasing number of cores on a single machine of the TRG-B5-D4-CS5-CC100-C5-S3
instance (logarithmic scale). 39

5.3 Results when scaling the number of cores for RLFAPSAT-11 41
5.4 Results for different deployment strategies for RLFAPSAT-11 41
5.5 Solve times of RGG-N79-G750-R80-C7 for different deployment strate-

gies when increasing the nr. of nodes with a constant total nr. of
cores . 42

5.6 Solve times of RGG-N1000-G2675-R50-C7 for different deployment strate-
gies when increasing the nr. of nodes with a constant total nr. of cores 43

5.7 Solve times of RGG-N2000-G8000-R35-C10 for different deployment
strategies when increasing the nr. of nodes with a constant total nr. of
cores . 44

5.8 Solve times of TRG-B5-D4-CS5-CC100-C5-S3 for different deployment
strategies when increasing the nr. of nodes with a constant total nr. of
cores . 45

55

LIST OF FIGURES LIST OF FIGURES

5.9 Solve times of TRG-B5-D4-CS4-CC100-C7-S3 for different deployment
strategies when increasing the nr. of nodes with a constant total nr. of
cores . 46

5.10 Solve times of TRG-B5-D4-CS4-CC100-C7-S3 when increasing the num-
ber of nodes with 1 and 2 CPUs per node 48

5.11 Solve time of TRG-B5-D4-CS4-CC100-C7-S3 on a single machine when
increasing the number of cores . 49

56

List of Tables

5.1 Different metrics of the problem instances 38
5.2 Results for decomposition method experiment 38
5.3 Results of evaluating local distributed-BTD against local solving. 47

57

Bibliography

[1] J. Pearson and P. G. Jeavons, “A survey of tractable constraint satisfaction prob-
lems,” tech. rep., Technical Report CSD-TR-97-15, Royal Holloway, University
of London, 1997.

[2] P. Jégou and C. Terrioux, “Hybrid backtracking bounded by tree-decomposition
of constraint networks,” Artificial Intelligence, vol. 146, no. 1, pp. 43–75, 2003.

[3] J. Régin, M. Rezgui, and A. Malapert, “Embarrassingly parallel search,” in
International conference on principles and practice of constraint programming,
pp. 596–610, Springer, 2013.

[4] G. R. Kip, “Optimal Deployment of Actors in a Distributed Setting.” http:

//fse.studenttheses.ub.rug.nl/id/eprint/26124, 2021.

[5] P. Jégou, S. N. Ndiaye, and C. Terrioux, “Computing and exploiting tree-
decompositions for solving constraint networks,” in International Conference on
Principles and Practice of Constraint Programming, pp. 777–781, Springer, 2005.

[6] R. Dechter, “Constraint networks,” pp. 276–285, 1992.

[7] G. Gottlob, N. Leone, and F. Scarcello, “A comparison of structural CSP de-
composition methods,” Artificial Intelligence, vol. 124, no. 2, pp. 243–282, 2000.

[8] R. Dechter and J. Pearl, “Tree clustering for constraint networks,” Artificial
Intelligence, vol. 38, no. 3, pp. 353–366, 1989.

[9] E. C. Freuder, “A sufficient condition for backtrack-bounded search,” Journal of
the ACM (JACM), vol. 32, no. 4, pp. 755–761, 1985.

[10] N. Robertson and P. Seymour, “Graph minors. II. Algorithmic aspects of tree-
width,” Journal of Algorithms, vol. 7, no. 3, pp. 309–322, 1986.

[11] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor formalism
for artificial intelligence,” in Advance Papers of the Conference, vol. 3, p. 235,

58

BIBLIOGRAPHY BIBLIOGRAPHY

Stanford Research Institute Menlo Park, CA, 1973.

[12] I. Greif, Semantics of communicating parallel processes. PhD thesis, Mas-
sachusetts Institute of Technology, 1975.

[13] T. Schiex and G. Verfaillie, “Nogood recording for static and dynamic con-
straint satisfaction problems,” International Journal on Artificial Intelligence
Tools, vol. 3, no. 02, pp. 187–207, 1994.

[14] A. Malapert, J. Régin, and M. Rezgui, “Embarrassingly parallel search in
constraint programming,” Journal of Artificial Intelligence Research, vol. 57,
pp. 421–464, 2016.

[15] S. B. Dersarkissian and A. Malapert, “Flexibility and Portability for Embarrass-
ingly Parallel Search,” tech. rep., EasyChair, 2020.

[16] S. H. Clearwater, B. A. Huberman, and T. Hogg, “Cooperative solution of con-
straint satisfaction problems,” Science, vol. 254, no. 5035, pp. 1181–1183, 1991.

[17] I. P. Gent, C. Jefferson, I. Miguel, N. C. Moore, P. Nightingale, P. Prosser, and
C. Unsworth, “A preliminary review of literature on parallel constraint solving,”
in Proceedings PMCS 2011 Workshop on Parallel Methods for Constraint Solving,
pp. 499–504, 2011.

[18] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara, “The distributed con-
straint satisfaction problem: Formalization and algorithms,” IEEE Transactions
on knowledge and data engineering, vol. 10, no. 5, pp. 673–685, 1998.

[19] R. Bejar, C. Domshlak, C. Fernández, C. Gomes, B. Krishnamachari, B. Selman,
and M. Valls, “Sensor networks and distributed CSP: communication, compu-
tation and complexity,” Artificial Intelligence, vol. 161, no. 1-2, pp. 117–147,
2005.

[20] A. Meisels and O. Lavee, “Using additional information in DisCSP search,” in
Proc. 5th workshop on distributed constraints reasoning, DCR, vol. 4, Citeseer,
2004.

[21] I. P. Gent, I. Miguel, P. Nightingale, C. McCreesh, P. Prosser, N. C. Moore, and
C. Unsworth, “A review of literature on parallel constraint solving,” Theory and
Practice of Logic Programming, vol. 18, no. 5-6, pp. 725–758, 2018.

[22] G. Gottlob, N. Leone, and F. Scarcello, “Hypertree decompositions and tractable
queries,” Journal of Computer and System Sciences, vol. 64, no. 3, pp. 579–627,
2002.

[23] K. Liu, S. Löffler, and P. Hofstedt, “Using hypertree decomposition for parallel
constraint solving,” INFORMATIK 2017, 2017.

59

BIBLIOGRAPHY BIBLIOGRAPHY

[24] C. Prudhomme, J.-G. Fages, and X. Lorca, “Choco solver documentation,”
TASC, INRIA Rennes, LINA CNRS UMR, vol. 6241, 2016.

[25] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo, “Adopt: Asynchronous dis-
tributed constraint optimization with quality guarantees,” Artificial Intelligence,
vol. 161, no. 1-2, pp. 149–180, 2005.

[26] M. Bannach, S. Berndt, and T. Ehlers, “Jdrasil: A Modular Library for Com-
puting Tree Decompositions,” in Experimental Algorithms 16th International
Symposium, SEA 2017, London, England, June 21 23, 2017, Proceedings, 2017.

[27] H. L. Bodlaender and A. M. Koster, “Treewidth computations i. upper bounds,”
Information and Computation, vol. 208, no. 3, pp. 259–275, 2010.

[28] P. Jégou, S. N. Ndiaye, and C. Terrioux, “Computing and exploiting tree-
decompositions for (max-) csp,”

[29] P. Jégou, H. Kanso, and C. Terrioux, “Towards a dynamic decomposition of CSPs
with separators of bounded size,” in International Conference on Principles and
Practice of Constraint Programming, pp. 298–315, Springer, 2016.

[30] P. Jégou, H. Kanso, and C. Terrioux, “An algorithmic framework for decompos-
ing constraint networks,” in 2015 IEEE 27th International Conference on Tools
with Artificial Intelligence (ICTAI), pp. 1–8, IEEE, 2015.

[31] R. Samudrala and J. Moult, “A graph-theoretic algorithm for comparative mod-
eling of protein structure,” Journal of molecular biology, vol. 279, no. 1, pp. 287–
302, 1998.

[32] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an undirected
graph,” Communications of the ACM, vol. 16, no. 9, pp. 575–577, 1973.

[33] P. Jégou and C. Terrioux, “Combining restarts, nogoods and bag-connected de-
compositions for solving CSPs,” Constraints, vol. 22, no. 2, pp. 191–229, 2017.

[34] V. Jarńık, “O jistém problému minimálńım,” 1930.

[35] R. C. Prim, “Shortest connection networks and some generalizations,” The Bell
System Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957.

[36] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[37] P. Jégou and C. Terrioux, “Tree-decompositions with connected clusters for solv-
ing constraint networks,” in International Conference on Principles and Practice
of Constraint Programming, pp. 407–423, Springer, 2014.

[38] J. Dall and M. Christensen, “Random geometric graphs,” Physical review E,

60

BIBLIOGRAPHY BIBLIOGRAPHY

vol. 66, no. 1, p. 016121, 2002.

[39] M. Penrose et al., Random geometric graphs, vol. 5. Oxford university press,
2003.

61

