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Abstract: The variability of the interval between two heartbeats, known as the heart rate
variability, has been found to be an indicator of many physiological conditions. The methodology
of analysis of it consists recording a raw ECG signal and annotating the individual Q-, R-, or
S-, peaks within the signal, and then through a discrete Fourier transform on the interbeat
interval the power spectrum analysis is executed. The stage of annotating the individual peaks
has become partially automated, but still requires manual labour. Threshold based algorithms,
such as PreCar , partially automate the annotation of the individual peaks, but such algorithms
can be faulty when faced with artifacts in the signal. This paper sets out to assess whether
an echo state network is a suitable method to fully automate this process, in comparison to the
threshold based algorithm. It was found that the F1-scores of the echo state network (M = 0.715,
SD = 0.054) were significantly lower than the F1-scores of the threshold based algorithm (M =
0.886, SD = 0.135). Therefore it is concluded that the tested echo state network is not a more
accurate tool in automatically annotating ECG signals than PreCar.

1 Introduction

An electrocardiogram (ECG) is a recording of elec-
trical changes in voltage at the skin, due to the
contractions in the heart muscles. In this record-
ing it is possible to detect each individual heart-
beat, and the timing between two beats, the inter-
beat interval. Mulder (1992) found that the amount
of fluctuations in the interbeat interval, presented
as heart rate variability (HRV), is equal to, if not
more accurate than, most other physiological in-
dices. Using the HRV, Mulder (1980) found HRV
to be strongly correlated to the mental workload,
where with increased task load, the heart rate in-
creased, but HRV decreased.

Li et al. (2019) concludes that the most com-
mon method of processing HRV is through power
spectrum analysis, using fast Fourier transform and
autoregressive models, with Sassi et al. (2015) not-
ing more novel methods for HRV analysis. To apply
any of these methods, the interbeat interval must
be extracted from the ECG data. But as Li et al.
(2019) also mentions, this process is thwarted by
artifacts, ectopic beats, and arrhythmic events. Af-

ter correcting for these artifacts, the interbeat in-
terval is extracted by taking the interval between
to periodic points in an ECG time series. These
periodic points can be either the Q-peak, R-peak,
or S-peak. Finding and annotating these points in
the ECG time series can be done through multiple
ways. One option is through manual labour, this is
slow but relatively accurate. A second option is us-
ing threshold based software such as PreCar (van
Roon & Mulder, 2017), programs like these process
the ECG time series by finding where the signal ex-
ceeds a set threshold, and automatically annotat-
ing them. This is much quicker than manual labour,
but also much more prone to mistake due to arti-
facts in the time series. The software can either miss
peaks (false negative), or annotate peaks at points
where there is no actual peak (false positive). This
results in manual inspection and correction being
required, even when using automated software.

This paper sets out to find whether an echo
state network (ESN) is a more accurate alterna-
tive to threshold systems such as PreCar. An ESN
is a specific type of reservoir computing (RC), and
encompasses the functionality of a recurrent neu-
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ral networks (RNN) at a reduced training cost
(Lukoševičius, 2012). Connor et al. (1994) found
that RNN had advantages over feedfoward neu-
ral networks with respect to predicting time series,
making them very suitable for matter relating to
ECG data. Jaeger (2007) laid out how both a RNN
and an ESN are identical in structure (visible in
figure 2.1) during the initialisation of the network,
but differ when it comes to training the weights be-
tween the input layer and hidden layer, the weights
between the hidden layers, and the weights between
the hidden layer and the output layer. Whereas
with a RNN all these weights are adjusted during
the training phase, with an ESN only the weights
between the hidden layer and output layer are ad-
justed, and the remaining weights are left at their
initialised values. Boedecker et al. (2009) discusses
methods of correctly initialising the reservoir as this
is imperative to have a functional model without
adjusting the weights in the reservoir during the
training phase. Tanaka et al. (2019) discuss how RC
technology and networks, including ESNs, in part
due to their low training cost, are making quick
strides in development. This has resulted in explo-
ration of ESNs implemented in other physical sys-
tems than traditional computers, which is promis-
ing for wearable ECG monitoring devices utilizing
ESNs.
RNN are at their core predictive models, and

thus using them as a time series classifier (TSC)
poses additional challenges. There are mutliple ap-
proaches of TSC tasks using an ESN. Lukoševičius
and Jaeger (2009) detail a straightforward solution
of having real-valued output for each class, creating
class probabilities. Ma et al. (2019) adds convolu-
tional and pooling layers after the echo state layer
to classify a sequence of points in a time series.
Skowronski and Harris (2007) classified time series
by having multiple output predictions of each suc-
cessive point in a time series, and then classifying
based on which output had the smallest error to the
actual time series. Lukoševičius (2012) covers more
ways of classifying a time series, among which is the
approach of classifying each point in a time series,
aggregating the classification of all the points, and
from that reach a final classification of the entire
time series.
Sodmann et al. (2018) already found that a

convolutional neural network shows significant im-
provements over threshold based software in an-

notating ECG data (F1-score=0.82, 9th overall in
the PhysioNet/CinC Challenge 2017), however the
used approach required the data to be preprocessed
by resampling and signal denoising beforehand.

This paper sets out to answer the question ”can
an echo state network achieve higher performance
rates than a threshold based algorithm on automat-
ically annotating raw ECG signals” and it is hy-
pothesized that the ESN will achieve better perfor-
mance rates than a threshold based algorithm (i.e.
PreCar). The research question will be answered
by comparing the F1-scores of the ESN in correctly
predicting the locations of R-peaks in the ECG sig-
nal, against the F1-scores of a threshold based al-
gorithm performing the same task. The employed
data pre-processing steps will be limited to normal-
izing and reshaping the data to make it suitable for
the ESN.

2 Methodology

2.1 Dataset

To train and test the ESN, the ECG dataset gath-
ered, annotated, and provided by MD/Phd candi-
date I.M. Reijmerink will be used. The dataset was
collected in 2019 using a Cortrium C3 Holter ECG
monitor (sampling rate = 250 Hz), and collected
from 28 participants, gender unkown, over the span
of two working days. All the participants are sur-
geons, that during the first day of data collection
performed active surgery, and during the second
day were present at an outpatient clinic. The data
was collected for HRV analysis purposes, and to
assess the mental stress and workload of the par-
ticipants during their surgeon-related duties.

The Cortrium C3 Holter ECG monitors record
the ECG signal to BLE files which, by means of the
Cortrium Converter Tool, are converted to comma
seperated value (.CSV). The .CSV files contain the
raw, un-annotated data of three ECG signals, of
the same person at the same time. The manual an-
notation process starts by feeding PreCar the .CSV
files, and letting PreCar automatically annotate the
desired peaks within the signals, generating event
(.EVT) files. After this, the automatic annotation
needs a final manual visual inspection and correc-
tion of interbeat interval artifacts. The manually
corrected data will serve as the ground truth, which
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will be used for training the ESN and assessing the
performance of the ESN and the threshold based
algorithm.
Because each ECG signal recording is of varying

length, timestamps were noted during the record-
ing of the raw ECG signal, indicating the begin-
nings and ends of 5 minute blocks. For testing, the
dataset exclusively of participant 010 when they
were on active operating duty was used, which con-
sists of a 115 five minute blocks. The data of each 5
minute block is then split to segments with a length
of 0.12 seconds, containing either a QRS complex,
or noise. To train the ESN and assess both the
ESN and the threshold based algorithm, the data
set was divided in two parts, a training split and
testing split. The training split consists of 196959
segments (a randomly sampled selection of 25%
of 787837 segments), with 32,6% of the segments
containing a QRS complex. The test split consists
of 183408 segments, with 27,7% of the segments
containing a QRS complex. This means that the
training data:test data ratio is roughly 1.07:1.00.
These are the final datasets (excluding all data pre-
processing required to make the data suitable for
the ESN) used for training the ESN, and testing
the ESN and PreCar.

2.2 Data pre-processing

To have the ESN be able to process the ECG data,
the data must first go through a pre-processing
stage. This pre-processing stage consists normaliz-
ing the signal in the segments, reshaping the data
and the manual annotation into training and test
data and targets for the ESN. All the data pre-
processing, training and testing the ESN was done
within the Python 3.8.10 and require the following
packages: EchoTorch 0.2.3, torch 1.10.0, torchvision
0.11.1, numpy 1.21.4, scipy 1.7.3, scikit-learn 1.0.1,
sphinx-bootstrap-scm 0.8.0, future 0.18.2, pandas
1.3.5.
The first phase in the pre-processing process is

normalizing the signal in the segments. This is done
by taking an inverted version of the signal around
the x-axis, effectively multiplying all values in a
segment by -1. After that, the lowest value, local
minima, of the inverted signal is found. Since this
is the highest point in the original signal, this is
the R-peak in the QRS complex. The signal is then
normalized by subtracting the lowest value in the

Figure 2.1: The structure of an echo state net-
work (Lukoševičius, 2012)

sequence from the entire signal, resulting in the low-
est point having a value of 0.

The second phase in the pre-processing process is
to reshape the data segments and the annotation so
that they are fit for the ESN. First, the annotation
of the peak are turned into two dimensional numpy
arrays: [x y] where x is the class probability that the
value at that index in the array is noise, i.e. not a
R-peak, and y is the class probability that the value
at that index in the array is a R-peak. This means
that all points have an annotation of [1 0], except
for the exact indices where there are R-peaks, these
have an annotation of [0 1]. The training/testing
data will be reshaped into a one dimensional numpy
array with a length of 30, and a corresponding set
of target data, which is a two dimensional numpy
array containing the class probabilities. Both the
data and target arrays are then transferred to torch
tensor (multi-dimenstional matrix) which are then
passed to the ESN.

2.3 Data exclusion

Earlier research with this dataset has encoun-
tered an anomaly with block 6, 7 and 8 from file
’5C75A4C8.EVT’ during collection of results of the
threshold-based algorithm. This prompted a man-
ual inspection of the respective .EVT file, which
was found to contain characters that do not ap-
pear in any of the other .EVT files, and should not
be present in any .EVT file, indicating data cor-
ruption. For this reason, block 6, 7, and 8 from file
’5C75A4C8.EVT’ are excluded from further statis-
tical analysis.
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Algorithm 2.1 ESN validation/testing stage

Require: Yval

Require: Xval

for yval ∈ Yval do
Xpred ←ESN(yval)
for xpred ∈ Xpred do

if xpeak
pred > xnoise

pred and xpeak
pred > threshold then

if xpeak
val = true then
case : true positive

else if then
case : false positive

end if
else if xpeak

val = true then
case : false negative

else if then
case : true negative

end if
end for

end for

2.4 Model

The model is a leaky-integrated echo state network
(ESN), retrieved from the Schaetti (2018) package,
with tunable (hyper)parameters. These tunable pa-
rameters are: spectral radius, reservoir size, leaky
rate, connectivity, and input scaling. The effects
and details of these parameters are discussed in
section 2.5. An ESN is much like any other neu-
ral network, the model is passed on the input data,
and the target data. The ESN consists of an input
layer, a hidden reservoir, and an output layer. An
ESN is a type of recurrent neural network (RNN).
The ESN differs from the RNN during the train-
ing phase, when all the weights (between the input
layer and the reservoir, between hidden layers in
the reservoir, and between the reservoir and the
output layer) are adjusted. With an ESN only the
weights between the reservoir and output layer are
adjusted during training (Y(n) in figure 2.1). The
remaining weights are left are their initialised val-
ues. These initialised values (including the initial
value of the weights between the hidden layer and
the output layer) are calculated by a normal matrix
generator of the Schaetti (2018) package. The input
dimension of the ESN is 1 as the input data is a sin-
gle datapoint, taken from the segment, containing a

one dimensional value. The output dimension of the
ESN is 2, as the output is a twodimensional array
containing the class probabilities of the respective
input data point. The class probabilities are then
stored in an array, equal in length to the segment
from which the input values are taken, and passed
on to a comparison algorithm (as visible in algo-
rithm 2.1) to assess whether the segment contains
a R-peak, and whether the predictions of individual
points are correct with respect to the true labels.
This algorithm functions by taking the all the pre-
dicted class probabilities (Xpred), and then looping
through each point (xpred) containing the probabil-

ity that a point is either a R-peak (xpeak
pred), or noise

(xnoise
pred ). The class probability of a point being a

R-peak is compared against the class probability of
the point being noise, and against a set threshold.
The final value used during testing for the thresh-
old variable is 0.35, and was determined through
experimentation. If the class probability of a point
being a R-peak passes both comparisons (i.e. xpeak

pred

is larger than xnoise
pred , and larger than the set thresh-

old), the algorithm compares it against the valida-

tion data for that individual point (xpeak
val ).

As mentioned in section 2.1, the model is trained
for one epoch on a randomly selected sample of
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25% of all data allocated for training, using a least-
squares training algorithm. The selection of seg-
ments selected for training is determined by gen-
erating a pseudo-random distribution, using the
built-in-python random module. A desired selec-
tion of segments can be obtained by setting a seed
before generating the randomly selected sample.

2.5 Hyper-parameter Tuning

The ESN has six parameters, of which are five that
can be tuned. The spectral radius, the leaky rate,
the reservoir size, the connectivity, and the input
scaling. From these five, Lukoševičius (2012) rec-
ommends to prioritize the manual tuning of the in-
put scaling, spectral radius, and leaking rate. To
optimize the performance of the ESN, these hyper-
parameters must be tuned. Hyper-parameters can
be tuned based on the nature of the dataset, based
on relevant research by others, or through experi-
mentation. These hyper-parameters do not directly
dictate the behaviour of the weights, but rather
guard the distribution of the weights. This means
that the ESN can display unique results with the
same hyper-parameters. However, this variation in
performance is minimal. The hyper-parameters of
the ESN were tuned based on the performance of
the ESN while validating on a randomly selected
subsample of 25% of the data allocated for training.
The ESN is trained on a randomly selected quarter
of the training dataset split to further prevent over-
fitting of the ESN. This is because the training and
validation splits are randomized after each epoch
of adjusting the hyper-parameters.
The spectral radius hyper-parameter is used in

the calculation of the reservoir connection matrix.
Lukoševičius (2012) notes the domain of values
of the spectral radius hyper-parameter to ensure
the echo state property of the ESN, i.e. after a
long enough input, the initial state of the reser-
voir should no longer be recognizable and fully de-
pend on the input series. It is recommended to tune
this hyper-parameter based on how long the input
should remain in the reservoir. Larger values ensure
that inputs are kept in the reservoir for longer, and
smaller values result in inputs fading out of the
reservoir more quickly.
The leaky rate hyper-parameter is the speed

of the reservoir update dynamics discretized in
time. This hyper-parameter is advised to be tuned

Table 2.1: Used hyper-parameters

spectral radius 0.50
leaky rate 0.90
reservoir size 600
connectivity 0.50
input scaling 0.70

through experimentation, as it is difficult to esti-
mate based on dataset characteristics.

The reservoir size hyper-parameter describes the
size of the reservoir. The tuning of this hyper-
parameter are task specific, hardware specific, and
dataset specific. More complex and challenging
tasks require a larger reservoir as that makes it
more likely for the reservoir to contain a linear com-
bination of the input signal to approximate the tar-
get output. However, too large reservoirs are prone
to overfitting, and the computational limits of the
hardware (which in turn is task specific again) must
be taken into consideration as an upper limit for the
reservoir size. A minimum reservoir size can be es-
timated by taking the number of unique real values
of the input that should be stored in the reservoir
to approximate the target.

The connectivity hyper-parameter, which is also
known as the sparsity of the reservoir, describes
how well connected the nodes in the reservoir are
to the input layer, to each other, and to the output
layer. Although it is advised to keep the connec-
tions of the ESN sparse, i.e. a low value for connec-
tivity, this hyper-parameter has a small impact on
performance.

The input scaling hyper-parameter determines
the factor with which the input matrix scales the
input. The input scaling regulates both the amount
of nonlinearity represented in the reservoir, and the
relative effect the input has on the state of the
reservoir. This hyper-parameter can be found by
estimating the linearity of the task, but for tasks
containing more nonlinear dynamics, experimenta-
tion is advised.
The final parameters that were used for the final
evaluation of the ESN can be found in table 2.1.

2.6 Evaluating the ESN

The model performance is evaluated by means of
calculating the F1-score (see equation 2.1) for the
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recognition of R-peaks in the test set. This perfor-
mance measure will be compared against the F1-
score of the threshold-based algorithm used within
the PreCar environment.

F1 = 2 ∗ precision ∗ recall
precision+ recall

(2.1)

precision =
truepositives

truepositives+ falsepositives
(2.2)

recall =
truepositives

truepositives+ falsenegatives
(2.3)

The performance of the ESN starts by pre-
processing the testing ECG signal in the same man-
ner the training data is pre-processed (see section
2.2). The final pre-processed segments of ECG data
are passed to the ESN for prediction, the predicted
annotation of the ESN is then subjected to the com-
parison algorithm (as visible in algorithm 2.1).
If the model classifies a point in a segment as a

R-peak, and the true labels confirms that there is a
R-peak at that point in the segment, it is counted
as a true positive. If the model classifies a point in
a segment as a R-peak, but the true labels does not
have a R-peak at that point, it is counted as a false
positive. In the case that the model passes through
a segment without classifying a single point as a
R-peak, but the testing data does indicate that the
segment contains a R-peaks, it is counted as a false
negative. All other cases result in a true negative,
which is the metric with the largest size. The per-
formance of the ESN is assessed by calculating the
F1-score per five minute block, over a total of 112
blocks. The total data pipeline used for the ESN
and PreCar can be seen in figure 2.2 and 2.3 re-
spectively. These figures also show important dif-
ferences between the datapipeline used for the ESN
and for PreCar. The ESN needs both the training
and testing data first to be split up in five minute
blocks, which in turn gets split into segments. The
segments need to be normalized, before being able
to train and test the ESN with the segments. From
testing the ESN, a list containing the predicted R-
peak locations is then compared against the true la-
bels, from which results are gathered. PreCar takes
a single .CSV file containing the raw ECG signal at
a time, giving .EVT files containing the predicted
R-peak locations. Only then are these .EVT files
split up into the same 112 five minute blocks which

in turn are compared against the true labels, from
which results are gathered.

Figure 2.2: The data pipeline used for the ESN

Figure 2.3: The data pipeline used for PreCar

The performance of the threshold-based algo-
rithm used within the PreCar envorinment is as-
sessed over the same testing data set, distributed
over the same five minute blocks and segments.
The exact parameters used for threshold-based al-
gorithm are a theshold level of -500 and a delay of
300.
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The threshold-based algorithm outputs an .EVT
file, containing the timestamps of the suspected R-
peaks. These are then split up into the same 112
blocks as for the ESN, and tested against the manu-
ally corrected and annotated .EVT file. This testing
process follows a method of comparing the times-
tamps of .EVT file generated by the threshold-
based algorithm, and checking whether they coin-
cide with the true labels. These metrics are then
used to calculate the F1-score per five minute block,
finally resulting in each five minute block hav-
ing paired F1-scores, reflecting the performance of
both the ESN and the threshold-based algorithm.
To determine whether there is a significant differ-
ence between the performance of the ESN and the
threshold-based algorithm, a paired t-test is used.

3 Results

The final results gathered from the ESN from test-
ing a total of 112 five minute intervals of ECG sig-
nal. The mean F1-score of the ESN is 0.652 with
a standard deviation of 0.054. The mean F1-score
of the threshold based algorithm is 0.886 with a
standard deviation of 0.135. These results can be
seen in figure 3.3. All the individual F1-scores re-
spective to their five minute block, of both the ESN
and the threshold based algorithm, can be found in
Appendix A, table A.1. Figure 3.1 and figure 3.2
hold the true positive (predicted and validated R-
peak), false negative (predicted noise but validated
as R-peak), false positive (predicted R-peak but
validated as noise), and true negative (predicted
and validated noise) numbers of both the ESN and
the threshold based algorithm respectively. From
these figures, the precision and recall of both the
ESN and the threshold based algorithm can be de-
termined. The ESN has a precision of 0.695 and a
recall of 0.737 and the threshold based algorithm
has a precision of 0.876 and a recall of 0.888. These
figures also show that the ESN has higher amounts
of both false positives and false negatives than the
threshold based algorithm. However, the ESN and
the threshold based algortihm are similar in the
amount of true positives.

Figure 3.1: Confusion matrix containing the re-
sults from the ESN

Figure 3.2: Confusion matrix containing the re-
sults from the threshold based algorithm

As noted in section 2.3, the mean F1-scores
and standard deviation of both systems have
been calculated excluding 6, 7, and 8 from file
’5C75A4C8.EVT’. It is found that the F1-scores of
the ESN (M = 0.715, SD = 0.054) are significantly
lower than the F1-scores of the threshold based al-
gorithm (M = 0.886, SD = 0.135), t(112) = -12.388
(p<.001).
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Figure 3.3: F1-score of both the ESN (blue) and
the threshold-based algorithm (orange)

4 Discussion

The developed methodology sets out to employ
an ESN to classify R-peaks in a QRS complex
from raw ECG signals without needing extensive
or manual pre-processing. The ESN and the thresh-
old based algorithm were tested on 112 five minute
blocks of ECG signal and achieved a mean F1-score
of 0.715 and 0.886 respectively, which means that
the ESN did not yield more accurate results than
the threshold based algorithm. From figure 3.1 and
3.2 we can deduce that the ESN and the threshold
based algorithm are similar in their true positive
rates, but the ESN having higher amounts of both
false positives and false negatives than the thresh-
old based algorithm. Since the number of false pos-
itive and false negative classifications by the ESN
are similar to each other, future improvements on
the model must be designed such that the recall
of the model improves without having an adverse
effect on the precision (e.g. lowering the threshold
described in section 2.4 would result in less false
negatives but more false positives), and vice versa.

While working out the methodology of this pa-
per, potential issues that could undermine the con-
clusion were identified. During early exploration of
the data, it became apparent that the data qual-
ity could be come an limiting factor of the perfor-
mance of the ESN. For early tuning of the hyper-
parameters of the ESN, it is recommended to take
a smaller sample of the total training data set to
speed up the training process, and be able to ad-
just the hyper-parameters more quickly. As long as
this sample is representative of the entire data set,

training on bigger samples should not affect results
gravely. However, while initial training started out
with just a 1/16 share of the entire data split allo-
cated for training as part of early experimentation,
results started to decline harshly after training on
more than a 1/4 of the training data split. Since the
distribution of the datapoints that were trained on
are randomly and evenly distributed across the en-
tire dataset, we can still assume that it is represen-
tative (given that the data is heterogenic). How-
ever, rare random selections of the training data
split would result in very low performance scores.
While testing the ESN over multiple random selec-
tions of the training data split, it was found that
the results discussed in section 3 were not rare or
unrepresentative, and thus the designed method-
ology and the ESN may be valid. An alternative
to compensate for the concern of the data quality
would be to apply the developed methodology to
the standardized MIT-BIH arrhythmia database,
to determine whether the low performance can be
attributed to the dataset or the model.

A second concern is that the exact shape of the
QRS complex is unique on a personal basis, and
that the used approach for training and testing pos-
sibly undermines the true capability of the method-
ology. A different training and testing approach
could be to train the ESN on a split of a partic-
ipant’s data, and test on the remaining split of the
participant’s data. Then for the next participant,
the ESN would be retrained and re-tested. How-
ever, for this approach to be valid, it would require
enough data of each participant to adequately train
and test the ESN each time, which could result in
unrepresentative results in case the participants’ do
not have enough data on an individual basis. For
that reason, this methodology opted for classifying
the data of one participant with a model trained
on the data of multiple other participants. Future
endeavours that employ the methodology laid out
in this paper but focus on a personalized dataset,
could determine whether unique personalized fea-
tures in a QRS complex has an effect on the per-
formance of the model.

A third point of concern is the methodology used
for training and validating the ESN. As noted in
section 2.1, the model is first trained on a random
selection of 25% of all the data allocated for train-
ing, and then validated of another random selection
of 25% of all the data allocated for training. It is
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unavoidable that these two unique selections con-
tain the same datapoints, which might cause over-
fitting. A possible approach to counteract this could
be to validate the ESN on the data of a partici-
pant on which it will never train. However, this in
turn might cause overfitting to that dataset (and to
an extent, the QRS complex of that participant),
thus shifting the problem instead of solving it. This
could be solved by validating on fewer samples of
the participant, and randomizing the selection of
those samples per epoch.

5 Conclusions

This paper set out to assess whether an ESN is
a suitable tool to automatically annotate ECG
signal without the need for extensive or manual
pre-processing of the signal. The performance of
the ESN, measured in an average F1-score, was
compared to that of threshold based algorithm
found within PreCar. It was hypothesized that the
ESN would outperform the threshold based algo-
rithm. From the results it was found that the F1-
scores of the ESN were significantly lower than the
F1-scores of the threshold based algorithm. This
means that we have to reject our hypothesis, and
thus conclude that this implementation of an ESN
does not outperform the threshold based algorithm.
However, even though the ESN did not outper-
form the threshold based algorithm, it still showed
promising results. Further fine tuning of the hyper-
parameters, or utilising a more powerful low level
architecture could lead to an automated ESN-based
ECG annotation tool.
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A Appendix

Table A.1: The F-scores of the ESN and the
threshold based algorithm

filename block number F-score ESN F-score threshold
based algorithm

5C74ECD8.CSV 1 0.77122 0.99031
5C74ECD8.CSV 2 0.73019 0.99708
5C74ECD8.CSV 3 0.68768 0.99371
5C74ECD8.CSV 4 0.77321 0.99842
5C74ECD8.CSV 5 0.75000 0.99000
5C74ECD8.CSV 6 0.77054 0.99197
5C74ECD8.CSV 7 0.76923 1.00000
5C74ECD8.CSV 8 0.56386 0.92623
5C74ECD8.CSV 9 0.64320 0.99404
5C74ECD8.CSV 10 0.74458 0.95466
5C75A4C8.CSV 1 0.74405 0.98666
5C75A4C8.CSV 2 0.72624 0.87292
5C75A4C8.CSV 3 0.72298 0.93591
5C75A4C8.CSV 4 0.71638 0.75514
5C75A4C8.CSV 5 0.72129 0.74051
5C75A4C8.CSV 6 0.69468 0.01855
5C75A4C8.CSV 7 0.70485 0.00705
5C75A4C8.CSV 8 0.72530 0.04192
5CC93EE3.CSV 1 0.77098 0.99750
5CC93EE3.CSV 2 0.71949 0.85319
5CC93EE3.CSV 3 0.71317 0.98882
5CC93EE3.CSV 4 0.67526 0.93224
5CC93EE3.CSV 5 0.73639 0.94031
5CC93EE3.CSV 6 0.73940 0.99155
5CC93EE3.CSV 7 0.65233 0.95471
5CC93EE3.CSV 8 0.64495 0.91236
5CC93EE3.CSV 9 0.74175 0.97058
5CC93EE3.CSV 10 0.71602 0.94689
5CC93EE3.CSV 11 0.68341 0.96936
5CC93EE3.CSV 12 0.72421 0.97371
5CC93EE3.CSV 13 0.75632 0.99303
5CC93EE3.CSV 14 0.74175 0.99412
5CC93EE3.CSV 15 0.70909 0.97549
5CC93EE3.CSV 16 0.71582 0.92325
5CC93EE3.CSV 17 0.69976 0.95945
5CC93EE3.CSV 18 0.71848 0.97111
5CC93EE3.CSV 19 0.74383 0.98461
5CC93EE3.CSV 20 0.78800 0.99059
5CC93EE3.CSV 21 0.73567 0.98071
5CC93EE3.CSV 22 0.75303 0.97400
5CC93EE3.CSV 23 0.74975 0.95045
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Table A.1: continued from previous page

filename block number F-score ESN F-score threshold
based algorithm

5CC93EE3.CSV 24 0.70478 0.97520
5CC93EE3.CSV 25 0.74166 0.97520
5CC93EE3.CSV 26 0.74894 0.97963
5CC93EE3.CSV 27 0.72553 0.87605
5CC93EE3.CSV 28 0.76202 0.95015
5CC93EE3.CSV 29 0.76701 0.91772
5CC93EE3.CSV 30 0.71285 0.86855
5CC93EE3.CSV 31 0.75383 0.93248
5CC93EE3.CSV 32 0.70669 0.85482
5CC93EE3.CSV 33 0.68915 0.88056
5CC93EE3.CSV 34 0.73642 0.86591
5CC93EE3.CSV 35 0.71281 0.83054
5CC93EE3.CSV 36 0.71883 0.88959
5CC93EE3.CSV 37 0.72222 0.81673
5CC93EE3.CSV 38 0.69216 0.86424
5CC93EE3.CSV 39 0.69614 0.88659
5CC93EE3.CSV 40 0.74147 0.83603
5CC93EE3.CSV 41 0.73580 0.96963
5CC93EE3.CSV 42 0.77788 0.94545
5CC93EE3.CSV 43 0.76600 0.96982
5CC93EE3.CSV 44 0.71204 0.91173
5CC93EE3.CSV 45 0.73452 0.96436
5CC93EE3.CSV 46 0.68537 0.99475
5CC93EE3.CSV 47 0.68186 0.94079
5CC93EE3.CSV 48 0.75665 0.97007
5CC93EE3.CSV 49 0.73664 0.98996
5CC93EE3.CSV 50 0.77454 0.91053
5CC93EE3.CSV 51 0.78389 0.82109
5CC93EE3.CSV 52 0.68500 0.79731
5CC93EE3.CSV 53 0.74297 0.85018
5CC93EE3.CSV 54 0.69094 0.96296
5CC93EE3.CSV 55 0.74745 0.97320
5CC93EE3.CSV 56 0.73526 0.96907
5CC93EE3.CSV 57 0.71901 0.94478
5CC93EE3.CSV 58 0.70188 0.89252
5CC93EE3.CSV 59 0.72233 0.95351
5CC93EE3.CSV 60 0.72294 0.92864
5CC93EE3.CSV 61 0.77272 0.97689
5CC93EE3.CSV 62 0.74928 0.97492
5CC93EE3.CSV 63 0.75098 0.91609
5CC93EE3.CSV 64 0.68686 0.87649
5CC93EE3.CSV 65 0.74799 0.91050
5CC93EE3.CSV 66 0.74751 0.86586
5CC93EE3.CSV 67 0.59238 0.78178
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Table A.1: continued from previous page

filename block number F-score ESN F-score threshold
based algorithm

5CC93EE3.CSV 68 0.62379 0.75939
5CC93EE3.CSV 69 0.71209 0.75963
5CC93EE3.CSV 70 0.74657 0.76294
5CC93EE3.CSV 71 0.77256 0.77389
5CC93EE3.CSV 72 0.65139 0.77959
5CC93EE3.CSV 73 0.68405 0.87194
5CC93EE3.CSV 74 0.70329 0.93251
5CC93EE3.CSV 75 0.62882 0.87984
5CC93EE3.CSV 76 0.66171 0.59725
5CC93EE3.CSV 77 0.66666 0.33237
5CC93EE3.CSV 78 0.68487 0.61325
5CC93EE3.CSV 79 0.67329 0.92579
5CC93EE3.CSV 80 0.78250 0.70985
5CC93EE3.CSV 81 0.73985 0.86385
5CC93EE3.CSV 82 0.69071 0.69152
5CC93EE3.CSV 83 0.72268 0.87527
5CC93EE3.CSV 84 0.73800 0.93501
5CC93EE3.CSV 85 0.78396 0.87148
5CC93EE3.CSV 86 0.76527 0.74027
5CC93EE3.CSV 87 0.73990 0.64
5CC93EE3.CSV 88 0.71229 0.63551
5CC93EE3.CSV 89 0.69988 0.62803
5CC93EE3.CSV 90 0.72572 0.66737
5CC93EE3.CSV 91 0.70071 0.66807
5CC93EE3.CSV 92 0.66062 0.96875
5CC93EE3.CSV 93 0.69747 0.88396
5CC93EE3.CSV 94 0.69836 0.98748
5CC93EE3.CSV 95 0.67452 0.94868
5CC93EE3.CSV 96 0.51418 0.98519
5CC93EE3.CSV 97 0.39613 0.98176
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