
Application of the Ant Colony Algorithm in the Identification
of Globular Clusters
Bachelor’s Project Thesis

Jördis Hollander, s2956543, j.hollander.6@student.rug.nl

Supervisors:
Prof. Dr. H. Jaeger

Dr. E. Balbinot

May 23, 2022



Abstract

Globular clusters (GCs) are stellar agglomerates of about 10 000 to 100 000 stars. They provide
an interesting ground to study stellar evolution. The complexity of the Universe makes the precise
identification and classification of stellar structures challenging. In this paper, a pipeline for the
identification of GCs is developed based on work by M. Mohammadi et al.∗ This pipeline consists of
excluding candidate regions through the use of a blob-detection technique. The remaining regions
are then processed by the Ant Colony random-walk algorithm. This algorithm investigates a region
and provides information on its stellar density in the form of pheromone values. Finally, these results
are fed into a gravity-inspired clustering algorithm that was developed to interpret the pheromone
values to determine potential GCs.

The aim of the research is to determine the accuracy of the pipeline in classifying GCs and
investigate possible improvements. This pipeline is then applied on the Gaia DR2 data-set. Different
areas consisting of a variety of stellar objects are selected. Some of these areas contain known GCs
(Area 1, 2, and 3), while some do not. Each of these areas is split via a rasterization process into
evenly distributed rasters. The accuracy of the pipeline is explored by running it on these different
rasters and considering firstly if it finds all known GCs and secondly by considering what other
stellar structures it classifies as GCs.

For the blob-detection technique a cutoff point for the constant representing the minimal accept-
able blob size was identified to be 0.2. Under this cutoff point the blob-detection technique filters
away 87.5 % (813 out of 929) of the candidate rasters and maintains 76.9 % (20 of the 26) rasters
that contain known GCs. For the three areas containing known GCs this is:

ä Area 1: 7 out of 12 rasters containing GCs

ä Area 2: 1 out of 1 rasters containing GCs

ä Area 3: 16 out of 17 rasters containing GCs

The Ant Colony algorithm coupled with the clustering algorithm applied across the same rasters
leads to varying results per execution. Across 5 experiments, an average of 51± 4 clusters are found.
The combined results over all experiments show that the clustering maintains 43.3 % (13 out of 30)
of the known GCs:

ä Area 1: 7 out of 12 GCs

ä Area 2: 1 out of 1 GCs

ä Area 3: 5 out of 17 GCs

The results of the full pipeline identifies 41 clusters of which 27 could be identified as known stellar
structures. These clusters are (31.7 %) 13 GCs, (12.2 %) 5 Open Clusters, (9.8 %) 4 Galaxies, (4.9 %)
2 Dwarf Galaxies, (2.4 %) a Molecular Cloud, (2.4 %) an Absorption Nebula, and (2.4 %) an Emission
Nebula. In addition, it finds (34.1 %) 14 clusters that do not correspond to a known stellar structure.
For Areas 1, 3, and 4 most of the clusters are found consistently across the experiments. However,
in Area 2 the clusters are only found sporadically, with each cluster being found only in at most two
experiments.

It is evident from these results that the blob-detection operates as an effective exclusion criteria
but with the current constant it does not yet maintain all known GCs. While the pipeline does not
identify the majority of the GCs that exist, for those that it is able to identify, it can pinpoint their
locations accurately. Further research in tuning the parameters and steering the behavior of the ants
is expected to expand the number of GCs identified by the pipeline and to solidify the Ant Colony
as a useful tool for exploring the Universe. With further refinement of the process and the synergy
of the initial blob filtration and clustering applied on the Ant Colony pheromones, this pipeline can
likely be made robust.

∗M. Mohammadi, N. Petkov, K. Bunte, R. Peletier, and F.M. Schleif, “Globular Cluster Detection in the Gaia Survey,”
Neurocomputing, vol. 342, pp. 164–171, 2019.
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Chapter 1

Introduction

The speed of light in a vacuum is constant. This fact has enabled us to look into the past and
observe how the Universe has evolved over time. From the cosmic soup, to the emergence of the
first stars, to the formation of galaxies; the evolution of the Universe has been a perennial source
of fascination for mankind. One area of particular interest is the evolution of galaxies. Early on
most galaxies were small, but gradually these smaller galaxies merged and amalgamated to form
larger galaxies [1]. Over time, as they continued to evolve, they began to manifest a great variety
of galactic structures. However, this begins to raise a fundamental question: How does one classify
the stages of evolution for a galaxy or determine where it is in its evolution?

Hubble’s Tuning Fork was the first classification scheme that sought to answer this, based on
a galaxy’s structure and size [2]. However, this scheme proved to be insufficient in the face of
the complexity of the Universe and the variety of possible galactic formations [2]. An alternative
approach to this classification scheme is to attempt to determine the age of galaxies based on their
composition and not their overall shape. One such method involves determining the ages of various
clusters of stars within a galaxy, thereby providing insight into the origin of the stars that constitute
it.

Of the various cluster types, the globular cluster (GC) is on average the oldest [3], and thus, the
most significant in gauging the age of galaxies. These types of clusters are stellar agglomerates [4]
which formed in one of the following two ways [5]:

1. Through the compression of halo gas in the cosmic re-ionization phase early on in the formation
of the Universe.

2. In the collapse of enormous molecular clouds triggered by events such as the collision of gas-rich
galaxies.

They are typically composed of around 10 000 to 100 000 stars [6] bound tightly by gravity into a
spherical formation. Some GCs are among the oldest objects in the Universe [7] and are, thus, an
interesting foundation for studying galactic evolution [8]. These older GCs manifest some specific
properties such as low metallicity [9], and through a combination of techniques, such as horizontal
branch morphology, analysis of white dwarf cooling sequences, and comparisons using the main-
sequence turn-off location [7], [10], may have their age accurately determined, thereby setting the
bounds for the age of the galaxy they are contained within. The question remains: How are these
GCs found?

1.1 Existing Methods of Identifying GCs
Astronomy is primarily an observational science, which, for most of its history, has gleaned infor-
mation by looking up to the night sky with nothing but the naked eye. It was in this manner that
the first GC, Messier 22, was discovered. It was observed by Abraham Ilhe on August 6th, 1665
and as may be seen in Figure 1.1 demonstrates an unusually dense core [11]. This GC became
the subject of much research across the 1900s and the statistics it has provided have been a basis
for the identification of GCs today. The primary method for detecting new GCs has involved sta-
tistical analysis of photometric data across the Universe. Properties such as mean luminosity and
metallicity are extracted from known GCs and are used to filter regions based on this spectroscopic
information [12], [13]. To date, over 150 GCs have been discovered in our Milky Way, using such
techniques [14].

1



Figure 1.1: Crammed Center of Messier 22 taken by ESA/Hubble [15]

As a brief interlude, the advent of the large-scale tools used in modern astronomy have allowed
for the collection of enormous amounts of information within our galaxy and far beyond. Telescopes
(refractory, reflector, radiography, spectrography, and x-ray) allow us to extract a variety of infor-
mation all without leaving the Earth’s surface [16]. To collect information without the interference
of the Earth’s atmosphere we make use of satellites and space observatories that have been launched
into orbit around our planet [17]. Occasionally, a space probe will be sent beyond our orbit to
collect information from asteroids, planets, or their moons within our solar system [17]. However,
for stellar observations, the use of telescopes becomes necessary due to the sheer distances involved.
Thus, the techniques used for the identification of GCs were predominantly limited to the evaluation
of photometric data and performing statistical analysis.

However, this has changed with the first Gaia data release in September 2016. In this data-
set stars are represented by IDs and are coupled with a variety of astrometric, photometric, and
spectroscopic readings [18] (see Chapter 2 for details). This allows processing to occur on a per-star
basis and allows for a greater variety of techniques to be employed. The state-of-the-art in GC
detection across such data-sets is described by Mohammadi et al. in 2018 [8]. In their paper, they
make use of 3D kernel density estimations (KDE) across subdivisions of the data-set. Using these
estimations they then evaluated two different techniques:

• Nearest-neighbors search.

• Kernel based anomaly detection through the training of a support-vector machine on random
portions of the sky to search for outliers.

For both techniques, they then use a blob-detection technique based on Difference of Gaussian, as
a post-processing method to further filter the regions.

1.2 Objectives
The research in this paper follows from the work of Mohammadi et al. and seeks to automate the
discovery of potential GCs using data from stellar catalogs such as the Gaia data-set. The objective
is to produce a pipeline using:

1. Blob-detection: based on Difference of Gaussian (BlobDoG), as a crude initial filter that reduces
the number of candidate regions for further inspection.

2. Ant Colony random-walk algorithm: to compute density information in the form of pheromone
values.

3. Clustering: via an algorithm which pools these pheromone values in 3D space gravitationally
to determine clusters.

This pipeline is optimized and tested on data from the Gaia DR2 data-set [18], [19]. Different
regions consisting of a variety of stellar objects are selected. Some of these regions contain previously
found GCs, while some do not. Since we cannot state with absolute certainty the total number of
GCs (for any given region, more may yet be found), the accuracy of the pipeline is explored by
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running it on these different regions and then evaluating it in two ways. First, we determine if it
finds all known GCs, and second we consider what other stellar structures (if any) it classifies as
GCs.

A robust classifier for GCs would be a useful addition to the tool-set for exploring the Universe
and its utility could be further evaluated with the full publication of the Gaia DR3 data-set slated
for release in the first-half of 2022 [20].

It is important to note that due to the scope of this project, the emphasis does not lie in precisely
optimizing the parameters associated with the pipeline. The aim is to identify the effectiveness and
shortcomings of the individual stages of the pipeline, as well as to identify potential parametric
relationships between the different stages.

1.3 Summary
The rest of this paper is structured as follows:

First, we take a closer look at the Gaia Data Release 2 in Chapter 2. We begin by depicting the
stellar regions under evaluation. This is followed by a description of various astronomical objects
that will be of interest in the analysis. Additionally, the parameters that will be made use of from
the data-set are scrutinized.

In the chapter on methodology, Chapter 3, the overview of the pipeline is provided. This is
coupled with in-depth descriptions of the three techniques in use, namely, Difference of Gaussian,
the Ant Colony algorithm, and the Gravitational Clustering algorithm.

The results are explored in Chapter 4, which discusses the findings for the individual components
of the pipeline. Additionally, it includes the statistical results and plots which reveal interesting
characteristics of the pipeline. The results for the regions are compared and contrasted to explore
the differences.

In Chapter 5, conclusions are drawn about the effectiveness of the pipeline based on the results
and discusses how they compare against the objectives that were set forth.

In Chapter 6, the results are interpreted and evaluated to provide an insight into how well the
individual components of the pipeline have worked, and attempts to learn from the successes and
shortcomings. It also describes worthwhile avenues for further research.
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Chapter 2

Data

The stellar data selected for this project is a subset of the Gaia DR2 data-set [19]. This data,
collected during the Gaia satellite mission [19], is approximately 500 GB and consists of a variety
of parameters collected on a per-star basis. This is in great contrast with typical telescopic data
which is primarily raw radiometric imagery and greatly expands the types of processing that may be
conveniently applied. The subset of the parameters that are of interest to the pipeline are described
in Section 2.1. As a result of hardware constraints, the investigation has been limited to a set
of smaller regions from within the Gaia data-set. Four distinct areas were selected, bounded by
by right ascension (RA) × declination (Dec), and represent regions of interest with varying stellar
distributions. Table 2.1 sets out the cosmic ranges as well as the number of stars within these
areas.

Table 2.1: Areas Under Investigation

Area RA Dec Number of Stars
A1 120° up to 246° −2° up to 60° 25 486 556
A2 295° up to 308° 15° up to 25° 23 470 239
A3 0° up to 75° −90° up to −30° 16 781 316
A4 0° up to 45° 30° up to 70° 32 333 936

Rationale for the choice of these four regions:

Area 1 (A1): This region was used in the precursor work of Mohammadi et al. [8]. It is the
largest region of the four in terms of their span across RA and Dec. Conversely, it also has the lowest
density of stars across the region. This results in large areas that contain very few stars. These
dark regions are very apparent in Figure 2.1a. It contains several known GCs, including a number
in these dark regions, which are expected to be identified easily as they stand out from their dark
and void stellar surroundings.

Area 2 (A2): The region was chosen because it is a much smaller area with a very high-density
of stars across the whole span. Additionally, it contains only one GC. This is useful as a testing
ground to see how the pipeline would handle regions featuring a high amount of stars.

Area 3 (A3): This area was also used in the paper by Mohammadi et al. and though its
overall density is less than for A2, it features specific regions with an extremely high density of
stars. Additionally, it contains 17 GCs, the Magellanic Clouds (the name given to a specific pair
of Dwarf galaxies), a supernova remnant, open clusters, and galaxies. The Magellanic Clouds are
the two extremely bright, very densely packed regions that may be seen in Figure 2.1c. These two
very bright regions also contain some GCs and it would be useful to see how the pipeline handles
classifying these clusters with the interference of the Magellanic clouds.

Area 4 (A4): This area has no GCs, but contains the nearby and very bright Andromeda and
Triangulum galaxies. These galaxies lie across the range of 30°–50° Dec, and it would be illuminating
to see if the pipeline detects them and classifies them as GCs. The remaining range, from 50°–70°
contains a large number of nebulae (large regions of very bright loosely-packed stellar gas).
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(a) A1 (b) A2

(c) A3 (d) A4

Figure 2.1: Stellar Distribution Heat-maps for the Four Areas

Figure 2.1 depicts heat-maps of the four regions synthesized from the stellar information in the
Gaia DR2 data-set. It provides an insight into the population and density of the stars found within
the four areas. The brighter areas (yellow–white) contain more stars than the darker areas (red–
black). From these heat-maps, the spots of increased stellar density are very evident. However, it
is not immediately apparent whether these spots are GCs, Open Clusters (OC), galaxies (Gal), or
some other stellar structure. Figure 2.2, provides an example of some of these stellar structures for
Area 1 and further highlights the difficulty in classifying these stellar structures by eye alone.

OC1

OC2

GC1 GC2

Gal1

Gal2

◦: Open Clusters ◦: Globular Clusters ◦: Galaxies
OC1: Messier 44 GC1: NGC4147 Gal1: The Whirlpool Galaxy
OC2: Messier 67 GC2: NGC5024 and NGC5053 Gal2: Malin 1

Figure 2.2: Stellar Structures Present in A1
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Area 1 contains more than the three GCs encircled in Figure 2.2. It contains an additional nine
GCs (for a total of 12), Area 2 contains just one known GC, and Area 3 contains 17 GCs [21],
[22]. See Table 2.2 for information on the RA, the Dec, and the angular diameter (DIA) for these
globular clusters where this information has been published. Note that the DIA is represented in
arcminutes (′) which is a measure of angular distance where 1′ = 1

60 ° and is useful to provide an
expectation of the size of a GC.

Table 2.2: Known GCs

GC RA (°) Dec (°) DIA (′)

Area 1
Palomar 3 151.°382 92 00°04′18 .′′0 1.′6
Willman 1 162.°35 51°03′00 .′′0 7′
Palomar 4 172.°319 99 28°58′24 .′′9 1.′3
Koposov 1 179.°827 09 12°15′36 .′′0 —
NGC 4147 182.°526 26 18°32′33 .′′5 4.′4
NGC 5024 198.°229 45 18°01′05 .′′4 13′
NGC 5053 199.°112 88 17°42′00 .′′5 10′
M3 205.°548 42 28°22′38 .′′2 18′
NGC 5466 211.°363 71 28°32′04 .′′0 9′
Palomar 5 229.°021 87 00°06′41 .′′8 8.′0
M5 229.°639 62 02°04′54 .′′9 21.′6
GCI 38 242.°752 47 14°57′28 .′′0 2.′2

Area 2
M71 298.°44 18°46′45 .′′1 7.′2

Area 3
47 Tucanae 06.°023 63 −72°04′52 .′′6 50′
NGC 121 06.°701 04 −71°32′08 .′′4 —
NGC 362 15.°809 42 −70°50′55 .′′6 14′
NGC 1049 39.°968 75 −34°16′08′′ —
NGC 1261 48.°067 54 −55°12′59 .′′2 6.′85
NGC 1466 56.°1375 −71°40′17 .′′0 —
Arp Madore 1 58.°761 25 −49°36′52 .′′0 —
NGC 1629 67.°404 17 −71°50′18′′ —
NGC 1651 69.°386 25 −70°35′08′′ —
NGC 1644 69.°415 00 −66°11′49′′ —
NGC 1652 69.°595 42 −68°40′23′′ —
NGC 1841 71.°346 25 −83°59′49′′ —
NGC 1696 72.°125 00 −68°14′35′′ —
NGC 1756 73.°707 92 −69°14′15′′ —
NGC 1786 74.°782 91 −67°44′43′′ —
NGC 1783 74.°786 67 −65°59′07′′ —
NGC 1795 74.°945 83 −69°48′05′′ —

It is these GCs that are used in the evaluation of the results of the pipeline.
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2.1 The Parameters
The Gaia DR2 data-set provides up to 88 parameters per star [19]. Of these parameters, there are
six that are required for the pipeline:

1. Apparent Magnitude: This is a unitless quantity and is the measure of a star’s brightness when
observed from Earth (N.B.: A higher apparent magnitude corresponds to a less bright star).
This is under the key phot_g_mean_mag within the data-set.

2. Right Ascension (RA): This quantity is represented in degrees (◦) and when coupled with the
declination it provides a position for an astronomical body in the equatorial coordinate system.
This is under the key ra within the data-set.

3. Declination (Dec): This quantity is represented in degrees (◦) and when coupled with the right
ascension it provides a position for an astronomical body in the equatorial coordinate system.
This is under the key dec within the data-set.

4. Parallax: This quantity is measured in milliarcseconds (mas) and is the difference in the
apparent position of an object when viewed along two different lines of sight [23]. This is
under the key parallax within the data-set.

5. Proper Motion of Right Ascension (PMRA): Expressed in mas yr−1 and is the motion of an
astronomical body from the frame of the center of mass of the solar system in right ascension.
This is under the key pmra within the data-set.

6. Proper Motion of Declination (PMDec): Expressed in mas yr−1 and is the motion of an astro-
nomical body from the frame of the center of mass of the solar system in declination. This is
under the key pmdec within the data-set.

The details underlying the selection of these parameters alongside statistical analysis is provided in
the sections that follow.

For the development of the pipeline, it is important to note, that the Gaia DR2 data-set does not
include the parallax, PMRA, or PMDec for all stellar objects [24]. Additionally, the Gaia data-set
contains some spurious negative values for the parallax [25]. Since these parameters are required
for the pipeline, the stars that are missing valid values for these parameters have been filtered out.
The details on how many stars are filtered per area and the percentage that remain are given in
Table 2.3.

Table 2.3: Filtered Stars

Area Total Number of Stars Remaining Stars Percentage Remaining
A1 25 486 556 17 933 864 70.4%
A2 23 470 239 14 268 513 60.8%
A3 16 781 316 9 961 034 59.4%
A4 32 333 936 22 243 660 68.8%

2.1.1 Apparent Magnitude
The apparent magnitude provides information on the brightness of a star. In isolation this is influ-
enced by the mass of the star and the proximity of the star to the observer. The closer the star is,
the brighter it will appear. The more massive the star, the higher its black-body radiation; thus,
the more energy it releases in the form of brighter light.

This parameter is used alongside, RA and Dec, to create the 2-dimensional mapping that is fed
into the Difference of Gaussian filters to detect blobs. Histograms of the apparent magnitude across
the four areas may be seen in Figure 2.3. Note that the frequency is presented on a logarithmic axis
and that a larger apparent magnitude corresponds to a less bright star.
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Apparent Magnitude
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Figure 2.3: Distribution of Apparent Magnitude Across the Four Areas

In Figure 2.3 it is apparent that as the stars grow dimmer, the distribution of stars between the
four areas become more uniform. It is also evident that Area 1 contains the most bright stars out
of the four regions and that Area 2 contains the least amount of bright stars. However, this does
not reveal the full story as each of the four areas contain a differing total number of stars. Thus, it
is also necessary to consider the proportion of stars that lie within a specific apparent magnitude
against the total number of stars contained within that area. This proportional distribution for each
of the four areas may be seen in Figure 2.4.
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Figure 2.4: Proportional Distribution of Apparent Magnitude Across the Four Areas

Figure 2.4 shows that the areas are predominantly composed of dim stars. All four areas have
at least 50 % of their stars being of a magnitude of 19 or over.
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2.1.2 RA, Dec, and Distance (via Parallax)
The RA and Dec are provided as part of the data-set and are easy to retrieve. Together, these
two quantities provide 2-dimensional spherical coordinates for a star. However, two stars that may
appear to overlap in terms of their RA and Dec may be many thousands of light-years apart. Thus,
to be able to effectively cluster stars it is important to determine the third dimension representing
the distance from the Earth. By making use of trigonometry and the angular shifts present in
parallax, astronomers were able to determine a method to estimate the distance of an object from
the Earth. This distance is measured in parsecs and, as may be seen in Figure 2.5, works by virtue
of our orbit around the Sun.

Earth's motion around Sun

Distant stars

Near star

Apparent parallax
motion of near star

Parallax angle
= 1 arc second

p

1
 P

a
rs

e
c

1AU

Figure 2.5: Depiction of Parallax Measurement [26]

To determine the distance to some nearby star, we measure the angular shift in the position of
a distant star relative to the nearby star at opposite points in our planet’s orbit. This angular shift
is the parallax and using this we may compute the distance in parsecs:

distance =
1

parallax (2.1)

The distributions of the parallax values across the four areas may be seen in the density plot in
Figure 2.6.
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Figure 2.6: Distribution of Parallax Across the Four Areas
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It is evident that the parallax values for the stars across the four regions span similar ranges and
that they are all predominantly centered within 0.01 mas to 50.0 mas.

2.1.3 Proper Motion
It is also of interest to explore the spread of the data with respect to proper motion of right ascension,
and proper motion of declination. Together they describe the angular shift that a star experiences
over time, essentially representing the drift that the star is undergoing. In some cases this drift can
be quite significant. Figure 2.7 highlights this by showcasing the apparent shift in the position of
Barnard’s Star across the years 1991 to 2007.

Figure 2.7: Proper Motion of Barnard’s Star from 1991–2007 [27]

GCs are characterized by stars that are gravitationally bound to each other and are likely to be
experiencing similar drift [4]. Thus, the proper motion values provide a useful metric in identifying
potential GCs. The Gaia data-set displays unprecedented accuracy in the proper motion values,
with uncertainty in the range of [24]:

• 0.06 mas yr−1 for apparent magnitudes < 15.

• 0.2 mas yr−1 for apparent magnitudes of 17.

• 1.2 mas yr−1 for apparent magnitudes of 20.

Density plots providing information on the distribution of PMRA and PMDec may be seen in Fig-
ure 2.8.
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Figure 2.8: Distribution of Proper Motion Across the Four Areas

The plots show a great variety in the motion of the stars. It is evident that the motion of PMRA
is larger than PMDec for all areas. Additionally, the stars within Area 2 are experiencing drift within
a tighter bound for both PMRA and PMDec when compared to the other areas. The remaining three
areas share a similar distribution in their stellar motion for RA, but Area 4 seems to have less drift
in Dec than either Area 1 or Area 3. The largest movement in the direction of RA is in Area 3 with
5750 mas yr−1, and the largest movement in the Dec is in Area 1 with 1350 mas yr−1.

10



Chapter 3

Methodology

With each requisite parameter being described in Chapter 2, we may now describe the process of
identifying GCs. The central pipeline consists of three stages:

1. Initial exclusion via blob-detection based on the Difference of Gaussian algorithm.

2. Pheromone-based density mapping using the Ant Colony random-walk algorithm.

3. Gravitational clustering using the pheromones from the previous stage to pool related stars.∗

Note that, as the Ant Colony is an algorithm that incorporates randomness, subsequent executions
on the same input data will give rise to different results. Since the gravitational clustering is also
based directly on the output of the ant colony, these two portions of the pipeline are tested across
multiple experiments.

However, before any of these steps may be applied, it is first necessary to rasterize the data,
this subdivides it into smaller windows to operate across. This is necessary because the Any Colony
algorithm functions better on smaller regions. The pipeline then provides information, per raster, on
the clusters contained within that raster. An overview of this process is shown in Figure 3.1.

Figure 3.1: Overview of GC Identification
∗The algorithm used for this stage was developed by the author for this paper.
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3.1 Rasterization
Rasterization involves splitting an area into smaller equally sized regions. Theoretically, rasterization
could occur across any set of parameters. However, in this instance the rasterization is applied across
the equatorial coordinate system, and so the splitting is based on the RA and Dec.

The largest known GC spans a RA×Dec of 1.5°× 1.5° [21] which defines the minimum possible
bound of the rasters. In, the work of Mohammadi et al., rasters of 3.0°×3.0° were used [8]. However,
to account for the extraordinary case of two globular clusters of size 1.5° × 1.5° being next to each
other, rasters of size 4.0° × 4.0° were chosen. Note, Area 2 is an outlier due to its size and its
stellar density. Thus, to explore the impact of the denseness of the region on the results, Area 2 is
investigated with rasterization in RA×Dec of both 2.0°× 2.0° and 4.0°× 4.0°. Figure 3.2, shows an
example of rasterization applied across the Small Magellanic Cloud in Area 3.

Figure 3.2: Example of Rasterization Across the Magellanic Cloud in Area 3

Rasterizing each area into smaller windows brings several benefits.

1. The Ant Colony algorithm functions better on smaller regions as it is more easily able to
explore the state space (see Section 3.3 for more information).

2. The sheer size of the data-set means that a substantial amount of computer memory is required
to completely load one of the four areas. The smaller regions generated by the rasterization
significantly lowers the operating memory requirements.

3. Smaller regions are more likely to be empty, and get marked as such by the blob detection.
This means that the more computationally expensive stages of the pipeline need to process
less data.

4. Lastly, since each raster is considered independently across the future stages of the pipeline,
they may be operated on in parallel. This reduces the amount of time needed to execute the
pipeline.

However, this fixed rasterization scheme raises the issue of splitting a GC apart at the raster bound-
ary. This shortcoming and possible solutions are elaborated on in Chapter 6.
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3.2 Raster Exclusion Using BlobDoG
The rasterization results in many smaller regions, upon which, the central pipeline runs. However,
the stellar distribution across these rasters is obviously non-uniform. Figure 3.3 displays three
different scenarios which dominate the description of the rasters.

(a) Dark Region (b) Dark Region with Bright Spot (c) Bright Region

Figure 3.3: Three Types of Rasters

Given the time complexity of the Ant Colony algorithm and the clustering algorithm, it is
prudent to reduce the number of rasters to be processed. This is done by filtering out the dark
regions similar to the region presented in Figure 3.3a. Previous research by Mohammadi et al.
made use of a blob-detection technique based on the Difference of Gaussian (BlobDoG) as a post-
processing method [8]. However, for this research, the blob detection technique is instead applied as
a pre-processing step.

The BlobDoG algorithm is provided a grayscale image and then reports information on the
coordinates and size of blobs contained with that image. For a given raster, the RA, Dec, and
Magnitude of stars are used to construct its grayscale representation. This results in an image
where each pixel of the image has a grayscale luminance corresponding to the magnitude. BlobDoG
is then applied on each of these images. Rasters for which BlobDoG reports no blobs correspond to
dark regions and are filtered away.

3.2.1 Components of the BlobDoG Algorithm
Gaussian Filters

BlobDoG makes use of Gaussian filters [28]. This technique is fundamental to edge detection and
involves the application of a Gaussian kernel on some 2-dimensional grayscale image I(x, y) to result
in a blurred image [29]. The Gaussian kernel used for this blurring may be seen in Eq (3.1).

G(x, y, σ) =
1

(
√
2πσ)2

exp
(
−x2 + y2

2σ2

)
(3.1)

In Eq (3.1):

• x and y together, represent the coordinates of a specific pixel within the image I(x, y) [30],

• σ represents the standard deviation of the Gaussian distribution, characterizing the width of
the Gaussian kernel [30].

This kernel is then applied on some image via the convolution operation (represented by ∗), i.e.

Iblurred(x, y) = I(x, y) ∗G(x, y, σ)

Upon application, each pixel within the image receives a weighted average of the pixels around
it. The initial weights for these surrounding pixels are determined by the Gaussian distribution
parameterized by σ. The higher the σ value, the higher the weights allocated to (further-away)
neighbors, which ultimately results in a stronger blur. Figure 3.4 is an example of the application
of this Gaussian blurring on a well-known standard test image of Lenna Forsén [31].
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(a) I(x, y) (b) I(x, y) ∗G(x, y, σ = 2.5) (c) I(x, y) ∗G(x, y, σ = 5.0)

Figure 3.4: Gaussian Blurring applied on I(x, y) = Lenna

Regions within the image that have a sharp contrast have a more pronounced blur, and regions
that are more uniform are affected less by the blurring. This results in a blur that preserves bound-
aries and edges. It is this property that makes Gaussian filters effective in edge detection.

Difference of Gaussian

The technique used for edge detection based on Gaussian filters is the Difference of Gaussian (DoG).
As the name implies, DoG is simply the difference between the application of two different Gaussian
filters on the same image, I(x, y). The formula for a DoG filter may be seen in Equation (3.2).

DoG(x, y, σ) = I(x, y) ∗G(x, y, kσ)− I(x, y) ∗G(x, y, σ)

= I(x, y) ∗ (G(x, y, kσ)−G(x, y, σ)) Convolution distributes over subtraction
(3.2)

The two filters are differentiated by the presence of k, a constant multiplicative factor operating
on the σ. As this factor increases, the strength of the blur that the corresponding Gaussian filter
manifests, also increases. The difference between these two different applications of the Gaussian
filters, then causes [32]:

• the more uniform regions which maintain their similarity to be inhibited,

• the more distinct regions which demonstrate a stronger blur to be excited.

Fundamentally, it may be viewed as a band-pass filter that attenuates the spatial frequencies within
the original image [30]. Figure 3.5 demonstrates the application of DoG on the image of Lenna and
highlights the utility of DoG for edge detection.

Figure 3.5: Difference between Gaussian Blurring of Figure 3.4b and Figure 3.4c

DoG provides a mechanism to emphasize the edges of the blobs contained within a stellar raster.
By identifying these boundaries at different scales the blob detection is able to report on the existence
of blobs within a raster.

Blob Detection

The implementation of BlobDoG which was used for this paper comes from the Python library
SciKit [33]. Their implementation is based on the work of Lowe [28] and uses DoG to evaluate the
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frequency response of each pixel within an image at different scale-factors. The values for these scale-
factors are proportional to the k present in Eq (3.2). The subsequent applications of DoG at these
different scale-factors form a cube of sorts [28], a depiction of which, may be seen in Figure 3.6.

(a) Pixel-by-Pixel Evaluation of BlobDoG Cube (b) Maximal Frequency Response

Figure 3.6: Application of BlobDoG

The cross within Figure 3.6a represents the current pixel being evaluated. Its maximal frequency
response is determined by comparing its response, against the 26 surrounding neighbors represented
by the circles [28]. The scale that results in the overall maxima for a pixel corresponds to the
size of the largest cohesive blob that contains that pixel. The radius of the resulting blob equates
to [33]:

radius =
√
2 ∗ scale (3.3)

The process in Figure 3.6b is akin to finding the right focus for a pair of binoculars when looking
at some specific point. The clarity of the image is analogous to the frequency response. As the
frequency response increases, the clarity of the image increases. This continues until the maximal
clarity is reached for that point at some specific focus level (the scale). Past this point the frequency
response decreases and the clarity of the image begins to go down. This essentially identifies the
scale at which each point becomes of interest.

Finally, the implementation uses a threshold to prune away blobs whose maximal frequency is
deemed too low, as this corresponds to a blob that is too small [33]. This threshold is represented
by Bthreshold and its value is elaborated on in Section 3.5.

3.2.2 Interpreting the Results of BlobDoG
BlobDoG provides information on the position and scale of any blob that is sufficiently large (based
on Bthreshold). If no blobs are detected then that raster may be filtered away. Using Eq (3.3) the
radii of any blobs are determined and this is used to plot the results. Figure 3.7 shows the results
of BlobDoG when applied on the exemplar rasters that were shown in Figure 3.3.

(a) Dark Region (b) Dark Region with Bright Spot (c) Bright Region

Figure 3.7: DoG Applied to the Three Types of Rasters

Since Figure 3.7a contains no blobs, its corresponding raster will be filtered away. Figure 3.7b
and Figure 3.7c contain one or more blobs and their rasters should be processed by the future stages
of the pipeline.
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3.3 Density Mapping Via the Ant Colony
With the initial filtration handled by BlobDoG, what remains is the task of identifying potential
GCs in the rasters that have persisted. It is difficult to precisely encode the properties of GCs such
that an exhaustive search algorithm could identify them in a timely fashion. Instead we aim to
produce density mappings and cluster the densest regions in a fashion similar to what was done in
the previous work by Mohammadi et al. [8].

Since GCs are an agglomerate structure, when identifying them, it is necessary to consider the
attributes of individual stars, as well as, the relationship between stars. To this end, it is possible to
re-frame the scenario and represent the stars on a graph, with the stars representing the nodes and
the relationships between the stars represented as edges. Encoding these edges with weights based
on the similarities between the pairs of stars provides a foundation for the use of the Ant Colony
random-walk algorithm.

This algorithm is based on the swarm behavior that manifests in biological ant colonies [34].
A swarm of ants explores a region by (randomly) discovering the shortest routes to a desirable
resource and then leaving pheromone trails for other ants to follow. As other ants follow this path
and also discover this same resource, the pheromone trail becomes stronger, continuing to attract
more and more ants until the resource is consumed. These pheromone values naturally decay over
time and allow the ant colony to dynamically optimize their routes based on their environmental
context [34].

After the ants have been provided a sufficient amount of time to explore, these pheromone
values will result in a random path that approximately describes the network substructure of their
environment [35]. The strength of these pheromone trails provide us the density mapping which will
be used to cluster candidate GCs (as described in Section 3.4).

3.3.1 Components of the Ant Colony Algorithm
The core algorithm for the Ant Colony may be seen in Alg. 1. Note that the values that were selected
for the constants Ngens, Nants, and Nsteps may be found in Section 3.5.

Algorithm 1 Ant Colony [36]
Output: The pheromone vector: f = [f1, f2, . . . , fNstars ]

f0 = [0, 0, . . . , 0] ▷ Length of Nstars.
for t = 1, . . . , Ngens do

Nt−1
visitations = [0, 0, . . . , 0] ▷ Length of Nstars.

for ant = 1, . . . , Nants do
star← Random initial position for the ant, based on a uniform random distribution.
Nt−1

visitations [star] += 1
for step = 1, . . . , Nsteps do

star← Random next position for the ant, weighted by the transition probability: Eq. (3.6) ▷ This uses
star (the current position) and ft−1.

Nt−1
visitations [star] += 1

Update ft−1 to ft using the pheromone update function: Eq. (3.7) ▷ This uses t, ft−1, Nt−1
visitations, Nants, and

Nsteps.
return fNgens

Before any ants can take their first steps, the feature vector f containing a pheromone value
for each star is initialized. The main logic of the algorithm is comprised of a triple nested loop.
The outermost loop represents an iteration over a number of generations (Ngens). Each subsequent
generation is able to make use of the information from the previous generation thereby thoroughly
exploring the state space and allowing for more accurate, average pheromone values. This outer
loop executes three steps:

1. The initialization of Nvisitations keeps track of the number of visits to each star.

2. The inner loop where a number of ants corresponding to Nants are set loose randomly within
the stellar raster.

3. The transitioning of the pheromone values between each experiment using the pheromone
update function described by Eq. (3.7).

The inner loop iterates across each ant and executes the random-walk for that ant. First, the ant is
spawned at a random starting position. The visitation for that starting position is updated and then
the ant proceeds to walk around for a number of steps (corresponding to a total of Nsteps). This
is represented by the innermost loop, where the ant determines its next step in a random fashion
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biased by the distribution of pheromones in its neighborhood. This allows it to determine its best
path based on the knowledge left behind by previous ants. This step is governed by Eq. (3.6).

Finally, after all the ants have performed their random-walks, the pheromone values for that
experiment may be updated. The updating of the pheromone values marks the end of one experiment,
after which, the next experiment may begin. From this description, it is evident that the core of
the Ant Colony algorithm is fairly simple. However, its strength hinges on the transition probability
driving the core decision making process of the ants.

To compute this transition probability it is necessary to compute additional information on the
relationship between stars. However, it is not feasible to compute the relationship between all pairs
of stars due to the sheer number of stars. Additionally, it is not even useful to compute this data for
stars that are too far apart. Thus, from a given star, xi an ant will only consider a limited amount
of neighboring stars (Nneighbors). These neighboring stars correspond to the stars that are closest by
Euclidean distance. This distance is based on the RA, Dec, and Distance and for two stars xi and
xj is computed as follows:

Euclidean Distance Between xi and xj =
{(

RAxi
− RAxj

)2

+(
Decxi

− Decxj

)2

+(
Distancexi

− Distancexj

)2
} 1

2

(3.4)

For the star xi, the list of its nearest neighbors is represented as Nxi and this list is assumed to be
sorted in ascending order by Euclidean distance from xi.
3.3.2 Transition Probability
The first step in computing the transition probability is to compute the weights between each star
and its nearest neighbors. This weight should be proportional to how rewarding it would be for
an ant to make a transition from its current star to some neighboring star. For two stars, xi and
xj , their weight is represented by w(xi, xj). Since the main aim is to identify stars with certain
similar features that may make them part of the same GC, the weight must constitute the similarity
between a pair of stars. Stars within GCs are relatively near to each other and manifest similar
motion characteristics. Thus, the parameters used to compute the weights are:

• the RA, Dec, and Distance as these parameters encode the position,

• the PMRA and PMDec as these parameters encode the motion.
Computing the Weights
The algorithm used to compute the weights is as follows:

Algorithm 2 Computing Weights Between All Stars and Their Neighbors [33]
Initialization: The stars where for each star, xi, the following are accessible:

• The relevant parameters of xi: RAxi , Decxi , Distancexi , PMRAxi
, and PMDecxi

• The (Nneighbors) nearest neighbors of xi: Nxi

Output: A lookup table for the weights, w, where the weight from xi to xj may be looked-up via w(xi, xj).

w =

Nxi
[1] Nxi

[2] . . . Nxi
[Nneighbors]


x1 0 0 . . . 0
x2 0 0 . . . 0
...

...
...

. . .
...

xNstars 0 0 . . . 0

▷ Initialize the lookup table for the weights to 0.

for xi ∈ stars do

D =

RA Dec Distance PMRA PMDec


Nxi

[1] RANxi[1]
DecNxi[1]

DistanceNxi[1]
PMRANxi[1]

PMDecNxi[1]

Nxi
[2] RANxi[2]

DecNxi[2]
DistanceNxi[2]

PMRANxi[2]
PMDecNxi[2]

...
...

...
...

...
...

Nxi
[Nneighbors] RANxi[Nneighbors]

DecNxi[Nneighbors]
DistanceNxi[Nneighbors]

PMRANxi[Nneighbors]
PMDecNxi[Nneighbors]

▷ Assign the parameters from each neighbor to the feature matrix, D.

D = D − µ(D) ▷ Center the data by subtracting column-wise means so the mean of each column is 0.
U,Σ, V ⊺ = SVD(D) ▷ Get the singular values and singular vectors from the Singular Value Decomposition.

D̂ =
D

∥D∥
▷ Compute the correlation coefficient for each star.

weightsNxi
= |D̂ ∗ V | ∗ Σ ▷ weightsNxi

is of length Nneighbors and has one element for each neighbor of xi.
Insert weightsNxi

into row for xi in w

return w
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The aim in the weight initialization is to compute a single metric capable of uniformly represent-
ing the differences between the 5 different parameters across a pair of stars. This problem requires
a form of dimensionality reduction which is done using Singular Value Decomposition (SVD) [37].
SVD may be used to generate an orthogonal projection to the original dimensions which minimizes
the mean-squared distance of the observed points from the new basis axes. In effect this produces
a linear combination of the original parameters which maintains the maximal variance of the con-
stituent dimensions [38].

Computing the Transition Probability

With the weights in place the ants have an initial basis for forming their decisions. However, the
ants should also take into account the pheromone trails left by previous ants. By combining the
underlying weights with the previous pheromone values the ants may determine a probability for
transitioning to the neighboring stars [36].

f̂ t(xj) =
f t(xj)∑

xk∈Nxi

f t(xk)
Normalize the pheromone value of
xj (a neighbor of xi) based on the
neighborhood of xi.

(3.5)

f̂ t(xj) is the normalized pheromone value of xj at generation t. It is normalized by evaluating f t(xj)
(the pheromone value of xj at generation t) and then dividing it by the sum of the pheromone values
of the all the stars in the neighborhood. The transition probability between xi and xj is then simply
computed by mixing the weight between xi and xj and the normalized pheromone value of xj in the
previous generation.

P t(xi, xj) =

(
w(xi, xj)

)γ(
f̂ (t−1)(xj)

)1−γ

∑
xk∈Nxi

(
w(xi, xk)

)γ(
f̂ (t−1)(xk)

)1−γ Compute the transition probability
of going from xi to xj.

(3.6)

P t(xi, xj) is the transition probability from xi to xj computed for generation t. In the equation,
γ is a control parameter that simply determines the relative impact of the weights versus the
pheromone values (see Section 3.5 for information on the value selected for γ). The range for γ
is 0 ≤ γ ≤ 1.

• γ = 0 describes a scenario where the pheromone values are all that are involved in determining
the transition probability.

• γ = 1 describes a scenario where the weights are the only factor contributing to the transition
probability.

Finally the result is then normalized through dividing by the summation of the equation applied
in the numerator across the whole neighborhood. This brings the transition probability within the
range of [0, 1] and ensures that the sum of all the transition probabilities in the neighborhood
is 1.

3.3.3 Updating Pheromone Values
With the ants able to compute their transition probabilities, all that remains is to update the
pheromone values between generations. The equation to compute the pheromone values for genera-
tion t from t− 1 is as follows [36]:

f (t)(xi) =
Nt−1

visitations[xi]

Nants ×Nsteps︸ ︷︷ ︸
Fresh Pheromone Trails

+ (1− ρ)f (t−1)(xi)︸ ︷︷ ︸
Preexisting Pheromone

Trails

(3.7)

For the fresh pheromone trails, Nants×Nsteps corresponds to the total number of visitations made by

the ants across a single generation. Thus, Nt−1
visitations[xi]

Nants ×Nsteps
is simply the proportion of the visits that

were made to xi of the total number of visitations for that generation. These fresh pheromone
trails are then combined with the preexisting pheromone trails. ρ is within the range of 0 ≤
ρ ≤ 1 (see Section 3.5 for the value) and controls the evaporation of these preexisting pheromone
values [36].
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3.3.4 Interpreting the Results of the Ant Colony Algorithm
The results of the algorithm are a pheromone vector f which contains the pheromone values left by
the ants after traversing the raster. Figure 3.8 plots the resulting pheromone heat-maps of the Ant
Colony algorithm for the exemplar rasters shown in Figure 3.3.

(a) Dark Region (b) Dark Region with Bright Spot (c) Bright Region

Figure 3.8: Results of the Ant Colony Applied to the Three Types of Rasters

The brighter stars (yellow-white) correspond to stars with higher pheromone values than the
darker stars (red-black). The rasters depicted in Figure 3.8a and Figure 3.8c are both relatively
uniform with the first being mostly devoid of stars and the second being completely saturated with
stars. As a result, it seems that the ants have not highlighted any major region of interest. However,
for Figure 3.8b the ants have been able to pinpoint the cluster that is present within the raster.
While, this cluster is apparent by eye alone, it is not always so evident from a pheromone heat-map
that a cluster has been identified.

As a result, it is necessary to perform further processing to effectively extract potential clusters
from the pheromone values. It is expected that the pheromone values within clusters will be high
and the values outside of (and between clusters) will be low. This provides a boundary separating
a cluster from other stellar structures. This forms the basis of the clustering algorithm.
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3.4 Gravitational Clustering Based on Pheromone Mapping
The pheromone values encode the plethora of information related to the RA, Dec, Distance, PMRA,
and PMDec of the stars. They provide a strong heuristic for identifying the boundaries between
dense regions of similar stars. The next step is to then perform clustering such that stars with high
pheromone values are grouped together. While the raw pheromone values do provide information on
the density of the stars, it is quite possible for two stars in different but equally dense regions to have
the same pheromone values. Thus, the clustering algorithm must also make use of the position of
the star coupled with the pheromone values to determine which cluster a star may belong to.

To explain the clustering algorithm, it is necessary to reformulate the problem at hand. There
are a number of points distributed in 3-dimensional space with a (pheromone) parameter attached to
them that describes the strength of the attraction they feel to other points. In addition, points that
are closer to each other should experience a stronger attractive force than points that are farther
apart. This formulation reveals the similarity of this problem to the basic description of gravitational
attraction. Newton’s equation which governs gravitational attraction is as follows:

Fgravity = g
MxiMxj

r2
(3.8)

In Eq. (3.8), g represents the gravitational constant, Mx represents the mass of some object
x, and r represents the distance between the center-of-gravity (CoG) of xi and xj . The clustering
algorithm uses this as its foundation but uses the pheromone values in place of the mass to determine
the attraction between the stars. Stars which are sufficiently attracted to each other will pool to
form a cluster which in turn may continue to grow and attract more stars.

3.4.1 Components of the Clustering Algorithm
In the pheromone-based gravitational clustering, an initial cluster will form out of single star. Stars
within the field of attraction of this cluster will be absorbed. The strength of this attraction is based
on the pheromone mass of both the cluster and the star and is defined as follows:

Pxi = f[xi] The pheromone mass for a single star. (3.9)

PC =
∑
xk∈C

f[xk] The pheromone mass for a cluster. (3.10)

The force of attraction between the cluster (C) and the star (xi) is then defined as follows:

Fpheromone =
PCPxi

r2
The pheromone attraction force between
a cluster C and a star xi.

(3.11)

In Eq. (3.11):

• PC represents the pheromone mass of the cluster C.

• Pxi represents the pheromone mass of some star xi.

• r represents the Euclidean distance between the CoG of the cluster C and the star xi.

This is effective for stars with a pheromone value > 0. However, across a given raster there may be
stars that were never visited by the ants. These stars would have a pheromone value = 0 and even
if they were geometrically contained within a cluster, by Eq. (3.11) they would have an attraction
force equal to zero. So, stars with a non-zero pheromone value should be clustered differently than
stars with a zero pheromone value. Thus, the basic algorithm for the pheromone clustering, Alg. 3,
is composed of these two steps as well as a final filtration step based on a minimum accepted number
of stars contained within a GC, NGCmin (see Section 3.5 for the value that was selected).

Algorithm 3 Pheromone Clustering
Initialization: • The stars where for each star, xi the following are available: RAxi , Decxi , and Distancexi .

• The pheromone values for the stars, f where for some star, xi its pheromone value may be
accessed by f[xi].

Output: The set of clusters present across the stars.

(starsf=0, starsf̸=0)← Partition stars by f ▷ Stars with a zero pheromone value must be processed separately.
clustersinitial ← Cluster the stars with non-zero pheromone values using Alg. 4 ▷ This uses starsf ̸=0.
clustersall ← Cluster the stars with zero pheromone values using Alg. 5 ▷ This uses clustersinitial and starsf=0.
clustersfiltered ← Filter out clusters from clustersall that contain fewer than NGCmin stars
return clustersfiltered
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To perform the clustering using the non-zero pheromone values it is necessary to compute the
center-of-gravity based on these pheromone values. The equation for this is as follows:

CoGC =

∑
xi∈C

(
positionxi

×Pxi

)
|C|×

∑
xi∈C

Pxi

(3.12)

The CoGC is the average position of the stars in C where the contribution of each star is weighted
by their pheromone mass. This provides a coordinate in (RA,Dec,Distance) which may then be
used as part of the non-zero pheromone clustering.

Algorithm 4 Non-Zero Pheromone Clustering
Initialization: The stars with non-zero pheromone values (starsf̸=0)
Output: The clusters from starsf̸=0

clusters← Create an empty set to contain the clusters that are found
starsto process = starsf̸=0

while starsto process is not empty do
C ← Create an empty cluster
star← Pop the star with the greatest pheromone value from starsto process
Insert star in C
repeat

clusterchanged = false
for all xi ∈ starto process do

CoGC ← Compute the center-of-gravity of C using Eq. (3.12)
r ← Compute the Euclidean distance between CoGC and the position of xi

Fpheromone =
PCPxi

r2
▷ Based on Eq. (3.11).

if Fpheromone ≥ Fmin attraction then
Remove xi from starsto process
Insert xi in C
clusterchanged = true

until clusterchanged == false
Insert C in clusters

return clusters

In this algorithm, every star under consideration is added to a list of stars to be processed. While
stars remain to be processed, a cluster is generated and populated with the star with the highest
pheromone mass of the stars that remain. Then this cluster is grown within the repeat-until
loop until the cluster ceases to grow. Within this loop all the stars that remain have their position
compared with the center-of-gravity of the cluster.

The resulting distance is then used alongside the pheromone mass of the star and the cluster
to compute the pheromone attractive force (Fpheromone). If this force is sufficiently high the star
is absorbed into the cluster, thereby increasing the pheromone mass of the cluster and shifting its
center-of-gravity. These clusters are generated and grown repeatedly in this fashion until every star
has been assigned to a cluster (even if it is simply a cluster containing that one star).

After this algorithm has run all potential clusters are now found. It is now necessary to incorpo-
rate the stars with the zero pheromone values whose positions overlap with the clusters. In essence
these stars correspond to objects without a gravitational field. Thus, it is necessary to consult the
centroid of the clusters instead of their center-of-gravity.

centroidC =

∑
xi∈C

positionxi

|C| (3.13)

The centroid is the average position of the stars in C. With this, the zero pheromone clustering is:
Algorithm 5 Zero Pheromone Clustering
Initialization: • The stars with zero pheromone values (starsf=0)

• The clusters based on the initial non-zero clustering from Alg. 4 (clustersinitial)
Output: The clusters incorporating starsf=0 across clustersinitial

clustersall = clustersinitial
for all xi ∈ starsf=0 do

clustersclosest ← clustersall sorted in ascending order by Euclidean distance from centroid of cluster to xi

for all cluster ∈ clustersclosest do

if
CRAmin ≤ RAxi ≤ CRAmax ∧

CDecmin ≤ Decxi ≤ CDecmax ∧
CDistancemin ≤ Distancexi ≤ CDistancemax

then ▷ Check if xi is within the bounds of the cluster.

Insert xi into the cluster
break Out of inner loop

return clustersall
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In the zero pheromone clustering, each star in the set of zero pheromone stars is considered. The
preexisting clusters are then searched through in order of closest to farthest based on the Euclidean
distance between the centroid of the cluster and the position of the star. The star is then absorbed
by the first cluster that has the star within its bounds. If no cluster contains the star it is simply
left unclustered.

3.4.2 Interpreting the Results of the Clustering
With all these steps in tow, the results are a set of clusters each of which contain a set of stars.
The information of these stars within the clusters may be plotted alongside the rest of the stars
to provide a visualization of the clusters contained within a raster. Of the three exemplar rasters,
only the dark region with the bright spot shown in Figure 3.3b is identified as containing clusters.
A 2-dimensional plot of the pheromone heat-map and the clustering of the raster may be seen in
Figure 3.9.

Figure 3.9: Clustering of Dark Region with Bright Spot

Additionally, in this instance only one cluster is identified. However, it is possible for multiple
clusters to be involved and for these clusters to overlap in RA and Dec. To provide visualization in
such cases 3-dimensional plots have also been used, such as the plot in Figure 3.10 which focuses
the region containing the GC.

Figure 3.10: 3D Plot of Cluster in Dark Region with Bright Spot
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3.5 Constants
There are a variety of constants whose values impact the functioning of the pipeline. They are pre-
sented in Table 3.1 with their descriptions, their values, and how those values were determined.

Table 3.1: All Constants

Name Value Algorithm Explanation

Bthreshold 0.2 BlobDoG This threshold represents the smallest blob scale that should be
considered a valid blob. The value for this constant was deter-
mined through experimentation described in Table 4.1.

Ngens 5 Ant Colony Number of generations in the execution of the Ant Colony algo-
rithm. Each generation incorporates the results of the previous
generation to uncover network substructure. This value was set
based on work by Mohammadi on the Ant Colony algorithm [36].
Future experimentation should be done to optimize this value.

Nants 30 Ant Colony Number of ants exploring a given raster across a single generation.
This value was set based on work by Mohammadi on the Ant
Colony algorithm [36]. Future experimentation should be done to
optimize this value.

Nsteps 2000 Ant Colony Number of steps each ant is allowed to take across a given genera-
tion. This value was set based on work by Mohammadi on the Ant
Colony algorithm [36]. Future experimentation should be done to
optimize this value.

Nneighbors 20 Ant Colony The number of neighbors an ant should consider when transition-
ing between stars during one step. This is an optimization taking
advantage of the fact that the ants’ choice of their next star is
weighted in part by the distance to that star from the current
star. Setting this parameter too low will prevent the ants from
spontaneously considering stars further afield. Setting it too high
will simply increase the time taken for the execution of the al-
gorithm. This value was determined through trial-and-error and
should be experimented on further to identify the lowest bound.

γ 0.9 Ant Colony This value represents a ratio in the mixture of the pre-existing
pheromone values from previous generations and the results from
the current generation. At γ = 1, the ants only incorporate the re-
sults of the current generation in determining their next transition.
At γ = 0, the ants only incorporate the results from the previous
generation in determining their next transition. This value was set
based on work by Mohammadi on the Ant Colony algorithm [36].
Future experimentation should be done to optimize this value.

ρ 0.1 Ant Colony Across each generation of the Ant Colony algorithm the
pheromone values from the previous generation are combined with
the results of the current generation. This parameter controls how
strong of an influence the previous pheromone values are on the
new pheromone values. A value of 0 means that the previous
pheromone values do not contribute to the new pheromone values.
This value was set based on the work by Mohammadi on the Ant
Colony [36] and requires further experimentation.

Fmin attraction 0.01 Clustering The minimum force constituting a valid attraction between con-
centrations of pheromone mass. This value was determined
through trial-and-error and should face more thorough experimen-
tation in the future.

NGCmin 100 Clustering Each cluster identified by the clustering contains a set of stars.
This value represents the minimum number of stars that should
be present in the set for it to be considered a valid cluster and
maintained. The smallest stellar cluster consists of 100 stars [39]
and thus this was used as the value.
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Chapter 4

Results and Findings

This chapter presents the results of the GC detection applied across the areas described in Chapter 2.
They consist of a number of tables and plots which correspond to:

1. The three stages of the pipeline:

i. Raster Exclusion Using BlobDoG (in Section 4.1)

ii. Ant Colony (in Section 4.2)

iii. Gravitational Clustering (in Section 4.3)

2. The full pipeline (in Section 4.4)

Note that each stage of the pipeline may depend on the results from the previous stages. Thus,
the parametric variation that provides the best results for a given stage is carried forward as the
basis for the future stages of the pipeline.

4.1 Raster Exclusion Using BlobDoG
To determine a sufficient value for Bthreshold, the BlobDoG filter was run across all rasters for all
areas while varying the threshold. Table 4.1 shows the number of rasters that remained in each area
for the different threshold values.

Table 4.1: Rasters Remaining After the Execution of BlobDoG for Various Values of Bthreshold

Area Number of Rasters Remaining
(All Rasters & Rasters Containing Known GCs)

Total
Number of

Rasters
Bthreshold

0.1 0.2∗ 0.3 0.4 0.5 0.6

All GCs All GCs All GCs All GCs All GCs All GCs All GCs

Area 1 512 12 8 7 8 7 7 7 7 7 7 7 512 12
Area 2: 2.0° × 2.0° 35 1 28 1 10 1 7 1 3 1 2 1 35 1
Area 2: 4.0° × 4.0° 12 1 9 1 8 1 7 1 7 1 5 1 12 1
Area 3 285 12 39 11 29 10 19 9 18 9 16 9 285 12
Area 4 120 0 60 0 10 0 9 0 6 0 4 0 120 0
Total 964 26 144 20 65 19 58 18 41 18 34 18 964 26

When the threshold is set too low one or more blobs are detected in every raster (as is the case
with Bthreshold = 0.1). As this value increases the number of blobs detected in each area is reduced.
For these various thresholds Bthreshold = 0.2 provides the largest reduction in the number of rasters
while still maintaining the most of the rasters that contain known GCs. Thus, this threshold is
selected as the basis for the future steps of the pipeline. The results of applying BlobDoG with this
threshold across each area may be seen in Figure 4.1. This presents the rasters that are kept for this
threshold and highlights which GCs are among those kept and among those removed.
∗This was the threshold that was used for the future stages of the pipeline.
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No Blobs Found
Missing Known GCs
Found Known GCs
Other Blobs

(a) Area 1

No Blobs Found
Missing Known GCs
Found Known GCs
Other Blobs

(b) Area 2: 2.0° × 2.0°

No Blobs Found
Missing Known GCs
Found Known GCs
Other Blobs

(c) Area 2: 4.0° × 4.0°

No Blobs Found
Missing Known GCs
Found Known GCs
Other Blobs

(d) Area 3

No Blobs Found
Missing Known GCs
Found Known GCs
Other Blobs

(e) Area 4

Figure 4.1: BlobDoG Raster Classification with Bthreshold = 0.2

Each area in this figure is represented as a raster plot where BlobDoG finds known GCs, other
blobs (corresponding to other stellar structures such as galaxies, dwarf galaxies, and open clusters),
and no blobs. In these plots, rasters containing known GCs that were not maintained by BlobDoG
(missing known GCs) are also highlighted. To provide a clear depiction of where these blobs are
located, the results have been overlaid on the stellar distribution heat-map for each area.

It is evident that rasters in regions with a high number of stars or regions with a large variation
in their stellar density have blobs detected by BlobDoG. Figure 4.1b and 4.1c depicting Area 2
and 4.1e depicting Area 4 find blobs mainly at the bright dense regions within those areas. Area 3
represented by Figure 4.1d has most of its blobs detected at the locations of the Magellanic Clouds.
Additionally, the dark regions within this area have no blobs detected except in the one raster that
contains a known GC. Area 1 finds blobs mainly around the GCs, but does not seem to find any
blobs in the brightest regions in the corners of Figure 4.1a.
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Table 4.2 lists the GCs present across the areas and specifies whether the raster they are contained
within was maintained by BlobDoG.

Table 4.2: Known GCs detected at Bthreshold = 0.2

Area 1 Area 2 Area 3
GC Present After

BlobDoG?
GC Present After

BlobDoG?
GC Present After

BlobDoG?
Palomar 3 No M71 Yes 47 Tucanae Yes
Willman 1 No NGC 121 Yes
Palomar 4 No NGC 362 Yes
Koposov 1 No NGC 1049 Yes
NGC 4147 Yes NGC 1261 Yes
NGC 5024 Yes NGC 1466 Yes
NGC 5053 Yes Arp Madore 1 No
M3 Yes NGC 1629 Yes
NGC 5466 Yes NGC 1651 Yes
Palomar 5 Yes NGC 1644 Yes
M5 Yes NGC 1652 Yes
GCI 38 No NGC 1841 Yes

NGC 1696 Yes
NGC 1756 Yes
NGC 1786 Yes
NGC 1783 Yes
NGC 1795 Yes

Proportion Maintained 7/12 1/1 16/17

This table shows that after the raster exclusion by BlobDoG, 7 of 12 known GCs are maintained
in Area 1, 1 of 1 known GCs are maintained in Area 2 (for both the 2.0°× 2.0° rasterization and the
4.0° × 4.0° rasterization), and that 16 of 17 known GCs are maintained for Area 3. Thus, BlobDoG
maintains 80% of the known GCs.
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4.2 Density Mapping Via the Ant Colony
The Ant Colony algorithm is an intermediary step to the final clustering. The primary result is the
distribution of pheromone values across the rasters of each area. Since the Ant Colony algorithm
makes use of a random-walk the results are non-deterministic and may differ between runs. As a
result, to more accurately explore its behavior, 5 experiments were performed.

Table 4.3 shows statistics from the Ant Colony algorithm for each area across each experiment.
It displays the mean pheromone values across the set of stars that were visited by at least one ant
as well as the mean pheromone values across all of the stars in that area. In addition, it shows the
number of stars that were visited by at least one ant across that experiment which is then used to
compute the percentage of stars that were visited out of all the stars within an area.

Table 4.3: Pheromone Statistics and Visitations for Each Area Across Each Experiment

Area 1

Experiment µpheromone (visited stars) µpheromone (all stars) #stars visited % #stars visited
Total = 17 933 864

1 4.268 × 10−4 233.9 × 10−6 9 829 764 54.81 %
2 4.258 × 10−4 233.9 × 10−6 9 852 113 54.94 %
3 4.272 × 10−4 233.9 × 10−6 9 821 846 54.77 %
4 4.257 × 10−4 233.9 × 10−6 9 855 991 54.96 %
5 4.274 × 10−4 233.9 × 10−6 9 817 422 54.74 %

Area 2: 2.0° × 2.0°

Experiment µpheromone (visited stars) µpheromone (all stars) #stars visited % #stars visited
Total = 14 268 513

1 1.731 × 10−4 20.10 × 10−6 1 656 651 11.61 %
2 1.739 × 10−4 20.10 × 10−6 1 648 789 11.56 %
3 1.745 × 10−4 20.10 × 10−6 1 644 010 11.52 %
4 1.704 × 10−4 20.10 × 10−6 1 682 903 11.79 %
5 1.748 × 10−4 20.10 × 10−6 1 641 042 11.50 %

Area 2: 4.0° × 4.0°

Experiment µpheromone (visited stars) µpheromone (all stars) #stars visited % #stars visited
Total = 14 268 513

1 1.377 × 10−4 6.892 × 10−6 714 099 5.00 %
2 1.304 × 10−4 6.892 × 10−6 754 141 5.29 %
3 1.368 × 10−4 6.892 × 10−6 718 842 5.04 %
4 1.383 × 10−4 6.892 × 10−6 710 776 4.98 %
5 1.304 × 10−4 6.892 × 10−6 754 194 5.29 %

Area 3

Experiment µpheromone (visited stars) µpheromone (all stars) #stars visited % #stars visited
Total = 9 961 034

1 4.721 × 10−4 234.5 × 10−6 4 946 519 49.66 %
2 4.710 × 10−4 234.5 × 10−6 4 958 073 49.77 %
3 4.700 × 10−4 234.5 × 10−6 4 969 384 49.89 %
4 4.729 × 10−4 234.5 × 10−6 4 938 536 49.58 %
5 4.735 × 10−4 234.5 × 10−6 4 932 100 49.51 %

Area 4

Experiment µpheromone (visited stars) µpheromone (all stars) #stars visited % #stars visited
Total = 22 243 660

1 2.150 × 10−4 44.20 × 10−6 4 573 861 20.56 %
2 2.149 × 10−4 44.20 × 10−6 4 576 483 20.57 %
3 2.141 × 10−4 44.20 × 10−6 4 592 141 20.64 %
4 2.153 × 10−4 44.20 × 10−6 4 566 856 20.53 %
5 2.145 × 10−4 44.20 × 10−6 4 584 464 20.61 %

Area 1 and Area 3 manifest similar statistics even with a significant difference in the total
sum of their stars. Conversely, even with the same total number of stars, the ants visited double
the amount of stars in Area 2: 2.0° × 2.0° as compared to Area 2: 4.0° × 4.0°. Additionally, the
ants traversing Area 4 visit a similar number of stars as in Area 3 even though Area 4 has double the
quantity of stars. Thus, it is evident that the pheromone results are impacted by more than just
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the total number of stars and must also be influenced by the distribution of stars present within the
rasters of an area.

To explore the distribution of the pheromone values across each area, Figures 4.2 to 4.6 show the
histograms and density plots generated for each experiment.
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Figure 4.2: Plots of Pheromone Values for Experiment 1
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Figure 4.3: Plots of Pheromone Values for Experiment 2
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Figure 4.4: Plots of Pheromone Values for Experiment 3
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Figure 4.5: Plots of Pheromone Values for Experiment 4
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Figure 4.6: Plots of Pheromone Values for Experiment 5

The distribution of pheromone values across each experiment are similar with only minor variations
in the outliers present. The bulk of the pheromone values lie between 0.00 and 0.01. Area 1 and
Area 3 have similar pheromone distributions despite having a significant difference in both their
total amount of stars and the amount of stars visited by at least one ant. Additionally, Area 2:
2.0° × 2.0° has a wider distribution of pheromone values than Area 2: 4.0° × 4.0°.
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4.3 Gravitational Clustering Based on Pheromone Mapping
The clustering algorithm is deterministic and so the same input will always result in the same
output. However, the clustering directly relies on the results from the Ant Colony. Thus, the
clustering phase was also tested across five experiments with each experiment using the results of
one of the experiments from the Ant Colony phase.

The results of the clustering phase are sets of stars identified across each raster which constitute
the clusters identified within that raster. The raw results detailing the statistics on every cluster
identified across every experiment may be seen in Appendix 6.3 in Tables C.1 through Table C.4
and Figures B.1 through B.5. These results were aggregated by combining clusters that overlapped
in both their RA bounds and their Dec bounds. Raster plots for these combined results may be seen
in Figure 4.7.

(a) A1

(b) A2: 2.0° × 2.0° (c) A2: 4.0° × 4.0°

(d) A3 (e) A4

Figure 4.7: Clustering Raster Classification
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Similar to the plots for BlobDoG in Figure 4.1, the results for the clustering have been overlaid on
the stellar distribution heat-map for each area. However, while the results for BlobDoG are simply
a binary decision for each raster, the results for the clustering are a set of clusters contained within
each raster. Thus, Figure 4.7 does not represent the full results for the clustering and is instead
provided to depict the general scope of where known GCs are Found or Missing, and where Other
Clusters are detected. It is evident from the figure that a significant amount of the rasters identified
contain GCs. The counts for the total number of clusters alongside how many rasters were involved
are shown in Table 4.4.

Table 4.4: Number of Clusters Detected Per Area Across Each Experiment

Area Experiment
1 2 3 4 5

# of
Clusters

In # of
Rasters

# of
Clusters

In # of
Rasters

# of
Clusters

In # of
Rasters

# of
Clusters

In # of
Rasters

# of
Clusters

In # of
Rasters

Area 1 16 11 19 13 18 12 16 11 15 10
Area 2: 2.0° × 2.0° 3 3 1 1 5 5 5 5 3 4
Area 2: 4.0° × 4.0° 0 0 0 0 0 0 0 0 0 0
Area 3 27 22 28 23 29 24 29 23 28 22
Area 4 2 2 2 2 3 3 3 3 1 1
Total 48 38 50 39 55 44 53 42 47 37

Due to the difference between the number of clusters and the number of involved rasters it is
clear that in some cases multiple clusters are found within the same raster. Across the different
experiments there is a variety in the number of clusters that were found. However, these differences
hover aroud the same ballpark figure, a total of 51±4 clusters. Additionally, across each experiment
the arrangement of areas by the number of clusters found remains the same (Area 3 finding the
most, followed by Area 1, Area 2: 2.0° × 2.0°, Area 4, and finally Area 2: 4.0° × 4.0°). The results
compared against the list of known GCs is as follows:

Table 4.5: Known GCs Detected by Clustering

Area 1 Area 2 Area 3
GC Present After

Clustering?
Experiments GC Present After

Clustering?
Experiments GC Present After

Clustering?
Experiments

Palomar 3 No M71 Yes 1 4 47 Tucanae No
Willman 1 No NGC 121 No
Palomar 4 No NGC 362 No
Koposov 1 No NGC 1049 Yes 1 2 3 4 5
NGC 4147 Yes 1 2 3 4 5 NGC 1261 Yes 1 2 3 4 5
NGC 5024 Yes 1 2 3 4 5 NGC 1466 Yes 1 3 4 5
NGC 5053 Yes 1 2 3 4 Arp Madore 1 No
M3 Yes 1 2 3 4 5 NGC 1629 No
NGC 5466 Yes 1 2 3 4 5 NGC 1651 No
Palomar 5 Yes 1 2 3 4 5 NGC 1644 No
M5 Yes 2 NGC 1652 No
GCI 38 No NGC 1841 Yes 1 2 3 4 5

NGC 1696 No
NGC 1756 No
NGC 1786 No
NGC 1783 Yes 1 2 3 5
NGC 1795 No

Proportion Identified 7/12 1/1 5/17

Most of the GCs that are identified were consistently found across the experiments. The ex-
ceptions are the GCs M5 and M71, which were only identified in 1 and 2 experiments respectively.
When aggregating the results across all the experiments, the same GCs are discovered in Area 1
and Area 2 as kept by the BlobDoG filter. However, only 5 of the 17 are identified for Area 3 as
compared to 16 of the 17 maintained by BlobDoG.
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4.4 Full Pipeline
The full pipeline constitutes the initial raster filtration by BlobDoG, followed by the pheromone
mapping by the Ant Colony algorithm, which finally culminates in the Gravitational Clustering of
the stars based on their pheromone values. This section presents the results of this full pipeline and
reframes the results of the previous stages in the context of the full pipeline.

(a) A1

(b) A2: 2.0° × 2.0° (c) A2: 4.0° × 4.0°

(d) A3 (e) A4

Figure 4.8: Pipeline Raster Classification

Figure 4.8 combines the results of BlobDoG and the clustering. It showcases the rasters that
contain Found Known GCs or contain Missing Known GCs as well as Other Clusters. In addition,
it shows the rasters that the clustering phase would have identified as containing a stellar structure
but which were preemptively filtered away by BlobDoG (Filtered Out Clusters).

Table 4.6 describes the clusters that were identified by the clustering but had been filtered away

32



by BlobDoG. In Table 4.8 the remaining clusters that were identified by the clustering are shown.
Additionally, it describes the experiments that the clusters were identified in. Finally, any cluster
whose bounds contained an existing stellar structure according to Stellarium [40] has been marked
with the name of the structure and its type. Clusters that did not corresponding to an existing
stellar structure were given the type of Nothing.

Table 4.6: All BlobDoG’s Cluster Removals

Type Name Experiments

Area 1
OC Golden-Eye Cluster 1 2 3 4 5
Galaxy NGC 3286 NGC 3288 4
Galaxy NGC 3770 NGC 3795 2
Galaxy NGC 3838 PGC 36398

PGC 36585 PGC 36655
PGC 36877

1 2 3 4 5

Galaxy Box Galaxy 1 2 3 4 5
Galaxy Whirlpool Galaxy 1 2 3 5
Galaxy Pinwheel Galaxy 1 2 3 4 5

Area 3
Nothing N.A. 1 2 3 4 5
Galaxy PGC 993 2 3 4 5
Nothing N.A. 1 2 3 4 5
Galaxy PGC 3533 1 2 3 4 5
Galaxy PGC 216800 1 2 3 4 5
Nothing N.A. 1 2 3 4 5
Galaxy PGC 5780 1 2 3 4 5
Nothing N.A. 1 2 3 4 5
Galactic Cluster Abell 3037 1 2 3 4
Nothing N.A. 1 2 3 4 5
Nothing N.A 1 2 3 4 5
Nothing N.A. 2 3 4
Nothing N.A. 1 3 4 5
Nothing N.A. 1 3 4 5
Nothing N.A. 1 2 3 4 5
Nothing N.A. 4 5
Galactic Cluster Abell 3333 1 2 3 4 5

For Area 1, there were 6 galaxies and 1 OC which was filtered away by BlobDoG. For Area 3,
there were 6 galaxies and 11 clusters that were identified as nothing. The average and maximum
bounds across the filtered clusters is as follows:

Table 4.7: Statistics on the RA Bounds and the Dec Bounds for the Filtered Clusters

Average Max
RA Bounds 01.°12 01.°88
Dec Bounds 00.°97 01.°55

The RA bounds and the Dec bounds reveal that the clusters that BlobDoG have a diameter of
approximately 1.°0. This is in contrast to the bounds corresponding with the results of the clusters
identified by the clustering that were also maintained by BlobDoG. Additional information on the
stellar coordinates of each cluster and their bounds may be found in Table A.1 in Appendix A.
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Table 4.8: Clusters Found in All Experiments

Type Name Experiments

Area 1
Dwarf Galaxy Regulus Dwarf Galaxy 1 2 3 4 5
GC NGC 4147 1 2 3 4 5
GC NGC 5024 1 2 3 4 5
GC NGC 5053 1 2 3 4
GC M3 1 2 3 4 5
GC NGC 5466 1 2 3 4 5
GC Palomar 5 3
GC M5 2

Area 2
Nothing N.A. 1
Nothing N.A. 5
Nothing N.A. 5
Nothing N.A. 3
Nothing N.A. 4
Nothing N.A. 4
Nothing N.A. 3
Molecular Cloud LDN 758 3
OC NGC 6827 2
Nothing N.A. 1
Nothing N.A. 4
Absorption Nebula LDN 787 5
GC M71 1 4
Nothing N.A. 5
Nothing N.A. 4
Nothing N.A. 3
Nothing N.A. 3
Nothing N.A. 5

Area 3
Galaxy String of Pearls 1 2 3 4 5
Galaxy Southern Pinwheel Galaxy 1 2 3 4 5
Dwarf Galaxy Sculptor Dwarf Galaxy 1 2 3 4 5
OC NGC 419 2
GC NGC 1049 1 2 3 4 5
Galaxy Fornax Dwarf Galaxy 1 2 3 4 5
GC NGC 1261 1 2 3 4 5
GC NGC 1466 1 3 4 5
GC NGC 1841 1 2 3 4 5
OC NGC 1777 1 2 3 4 5
GC NGC 1783 1 2 3 5

Area 4
HII region NGC 7822 1 2 3 4
Galaxy Triangulum Galaxy 1 2 3 4 5
OC Double Cluster 3
OC NGC 1027 4
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This table shows that the full pipeline identifies 13 GCs, 5 OCs, 4 Galaxies, 2 Dwarf Galaxies,
a Molecular Cloud ∗, an Absorption Nebula †, and an Emission Nebula ‡. In addition, it finds 14
clusters that do not correspond to a known stellar structure. For Areas 1, 3, and 4 most of the
clusters are found consistently across the experiments. However, in Area 2 the clusters are only
found sporadically, being found in at most two experiments.

Table 4.9: Statistics on the RA Bounds and the Dec Bounds for the Identified Clusters

Average Max
RA Bounds 00.°25 01.°03
Dec Bounds 00.°27 01.°07

The statistics on the bounds the clusters that were identified by the full pipeline are substantially
lower than the bounds for those filtered away by BlobDoG. Additional information on the stellar
coordinates of each cluster and their bounds may be found in Table A.2 in Appendix A.

∗A dense region of interstellar gas and dust.
†A very dense region within a molecular cloud whose density obscures the light from stars behind it. These regions
are known as stellar nurseries as they have the characteristics permitting the formation of new stars.

‡The formation of a young star from an absorption nebula. The gravitational force of the gas and dust causes the
region to heat up to the point of emitting light in the visible spectrum.
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Chapter 5

Conclusion

For BlobDoG with a Bthreshold = 0.2, 7 out of the 12 rasters containing known GCS are maintained
in Area 1, the 1 containing a known GC is maintained in Area 2, and 16 out of 17 are maintained
in Area 3. It is evident from these results that BlobDoG with this Bthreshold does not work perfectly
as a pre-processing method, as it filters out known GCs. However, it does keep 80% (24 out of 30)
of the known GCs. Furthermore, no raster filtered away by BlobDoG contained any known GCs as
identified by the clustering phase that follows. A total of 21 rasters which would have been identified
by the clustering as containing a stellar structure were filtered away by BlobDoG, 7 of which are in
Area 1 and 14 in Area 3.

From Table 4.6 the stellar structures that are removed by BlobDoG are predominantly galaxies
(10 of 24) or do not correspond to any identifiable stellar structure (11 of 24). These clusters that have
no known stellar structures, are either a failure of the Ant Colony algorithm or represent potentially
undiscovered GC candidates. It is possible that the Bthreshold may be too large (especially as it
discards known GCs) and thus some of these clusters that were filtered away may be on the cusp
for BlobDoG. However, lowering the Bthreshold to 0.1 results in no rasters being filtered away. Thus,
the ideal Bthreshold lies between 0.1 – 0.2. To summarize BlobDoG operates as an effective exclusion
criteria but it is not yet perfect in maintaining all known GCs.

For the Ant Colony algorithm, the amount of stars per raster influence the µpheromone as well
as the distribution of stars across that raster. These quantities also influence the percentage of the
visited stars in that raster, which can be observed from Table 4.3, when comparing Area 2: 2.0°×2.0°
versus Area 2: 4.0° × 4.0°. The µpheromone values, the distribution of the pheromone values, and
the stars’ visitation percentage in Area 1 and Area 3 are quite similar despite the areas having very
different characteristics. Area 1 has the lowest density of stars across a region while Area 3 features
regions with an extremely high density of stars. Exploring the behavior of the Ant Colony algorithm
with respect to the total number of stars and the density of the stars with the rasters is pivotal to
optimizing the clustering phase that follows.

From Table 4.3 and Figures 4.2 to 4.6 it can be observed that the ants behave similarly across
each of the experiments. However, it becomes clear from the results of the Clustering that even the
small variations in the ants behavior can result in distinct clusterings. This is evident in Table 4.4
where the results of visitation percentage and pheromone distribution were similar but the number
of clusters found in each experiment per area were different. Additionally the sporadic results from
the clustering of Area 2 reveals that it is necessary to run the algorithm many times to identify the
different clusters present and to gauge the certainty with which the ants discover it.

All areas find clusters except for Area 2: 4.0° × 4.0°, which highlights the relationship between
the functioning of the Ant Colony algorithm and the amount of stars contained within the rasters.
Table 4.4 shows that some rasters contain multiple clusters. The known GCs found in Area 1 and
Area 2 are the same as found by BlobDoG but Area 3 only finds 5 out of 17 known GCs. These
results show promise but highlight the need to fine tune the control parameters of the Ant Colony
and the clustering. In Area 1 and Area 3 many clusters were detected in rasters corresponding to the
darker regions of the areas which were subsequently filtered by BlobDoG. This shows that the Ant
Colony may have a predisposition to identifying clusters more easily in regions with less stars.

Across the full pipeline, the system is able to identify 13 GCs out of the 30 known GCs and
identifies a total of 13 rasters out of the 27 rasters containing known GCs. From Table 4.8, 27 out of
the 41 clusters that were identified by the pipeline corresponded to a known stellar structure. 13 of
these corresponded to GCs and 14 corresponded to some other pre-existing stellar structure.
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While the pipeline does not identify the majority of the GCs that exist, for those that it is able to
identify, it can pinpoint their locations quite accurately. Further research in tuning the parameters
and steering the behavior of the ants is expected to expand the number of GCs identified by the
pipeline and to solidify the Ant Colony as a useful tool for exploring the Universe.
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Chapter 6

Evaluation

In this chapter, the results are examined in closer detail to provide an insight into the inner working
of the algorithms. The questions raised during the course of the paper are answered, shortcomings
and possible improvements are discussed, and the work is contrasted to pre-existing research. This
evaluation is performed for each of the three phases of the pipeline:

• Raster Exclusion Using BlobDoG (in Section 6.1)

• Ant Colony (in Section 6.2)

• Gravitational Clustering (in Section 6.3)

6.1 Raster Exclusion Using BlobDoG
What is the behavior displayed by BlobDoG?
To examine the behavior of BlobDoG, results for various rasters across the areas are displayed in
Figure 6.1. These rasters span from dark to bright regions and contain GCs, other clusters, and
galaxies.

(a) NGC 4147 (A1) (b) Palomar 5 + M5 (A1)

(c) M71 (A2: 4.0° × 4.0°) (d) M71 (A2: 2.0° × 2.0°)
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(e) Small Magellanic Cloud (A3) (f) Large Magellanic Cloud (A3)

(g) Andromeda Galaxy (A4) (h) Triangulum Galaxy (A4)

Figure 6.1: Interesting Examples of the Blobs Found by BlobDoG

The rasters in Area 1 (Figures 6.1a and 6.1b) show GCs that stand out visibly against their dark
stellar background. These blobs are easily found and identified even in the scenario for M5 where
the GC is only partially contained within the raster. The rasters in Area 2 (Figures 6.1c and 6.1d)
both show the same region containing the GC M71. This GC is highlighted by BlobDoG across
both rasterization schemes but at different scales. Additionally, it is evident that the many smaller
blobs identified in Figure 6.1d are not present in Figure 6.1c. The rasters in Area 3 (Figures 6.1e
and 6.1f) show the bright and busy Magellanic Clouds. No GCs are present in the Small Magellanic
Cloud shown in Figure 6.1e. Nevertheless, it is still a busy area with many blobs being identified.
The raster containing the Large Magellanic Cloud contains four GCs (NGC 1696, NGC 1756, NGC
1786, and NGC 1795). While these GCs are identified in Figure 6.1f, it is difficult to distinguish
them due to the amount of other blobs that are also highlighted. The rasters in Area 4 (Figure 6.1g
and 6.1h) contain the Andromeda Galaxy and the Triangulum Galaxy. These galaxies are identified
as many smaller blobs rather than a single continuous blob.

It is evident from the plots in Figure 6.1 that BlobDoG is able to identify blobs across a wide
range of scenarios. The results in Area 2: 4.0° × 4.0° and the Magellanic Clouds reveal that Blob-
DoG is more responsive in bright busy areas. This behavior is beneficial as brighter areas containing
many stars are more likely to contain clusters. Additionally, the difference in the blob detection
between A2: 2.0°× 2.0° and A2: 4.0°× 4.0° reveals that the rasterization scheme directly influences
the results of BlobDoG. Thus, more research should be performed on identifying any possible para-
metric relationship between the Bthreshold and the size of the rasters generated by the rasterization
scheme.
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Why are rasters containing known GCs filtered out at Bthreshold = 0.2?
BlobDoG fails to identify all known GCs and filters away some rasters containing known GCs. Ta-
ble 6.1 lists these GCs and provides additional information to aid with identifying a trend underlying
these failures.

Table 6.1: Known GCs that are Not Detected with Bthreshold = 0.2

Area 1
Koposov 1 A low-luminosity GC with a distance of 48.3 kpc [41].
Palomar 3 A distant GC at 96 kpc with an apparent magnitude of 14.26 [42].
Palomar 4 A distant GC at 109 kpc with an apparent magnitude of 15.65 [21].
GCI 38 A distant GC at 74.7 kpc with an apparent magnitude of 74.7 [21].
Willman 1 An ultra low-luminosity GC with a distance of 38 kpc but with a very

low brightness corresponding to an apparent magnitude of 15.2 [43].

Area 3
Arp Madore 1 A very distant GC at 123.3 kpc [44].

All of these GCs that were not maintained are either very distant, have a low-luminosity, or
manifest both of these attributes. It is these factors that lead to BlobDoG failing to identify these
clusters. This becomes apparent visually when considering Figure 6.2.

(a) Koposov 1 (A1) (b) Palomar 3 (A1) (c) Palomar 4 (A1)

(d) GCI 38 (A1) (e) Willman 1 (A1) (f) Arp Madore (A3)

Figure 6.2: Known GCs Not Detected with Bthreshold = 0.2

These GCs are barely visible or correspond with a very small blob (which would then be discarded
by the Bthreshold = 0.2). It might be feasible to resolve this by reducing the Bthreshold further. In
addition, it may be possible to make use of an alternate rasterization scheme which also rasterizes
across the distance. It would then be possible to augment the rasters that are further away to better
account for these distant clusters at the cost of accuracy.
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What would be the optimal Bthreshold?
BlobDoG filters away 85 % of the rasters with a Bthreshold of 0.2, while maintaining 80 % of the known
GCs. In ideal circumstances BlobDoG would filter away many empty rasters while still maintaining
every raster containing a GC. Through the testing performed in Section 4.1, it is evident that if an
optimal Bthreshold were to exist within the rasterization scheme that was tested, it must lie between
0.1 to 0.2. However, it is possible that there is no Bthreshold which is able to maintain all known
GCs while still filtering away a majority of the rasters. Further experimentation is required to test
this.

How could BlobDoG be improved?
It is important to identify the relationship between the Bthreshold and the size of the rasters generated
by the rasterization scheme. Furthermore, the information provided by BlobDoG could be used to
provide better direction to the Ant Colony algorithm. The locations of the blobs that were identified
by BlobDoG could be used to provide the initial weights for the stars processed by the Ant Colony.
Thus, the initial generation of ants would be predisposed to evaluate the regions containing those
blobs.

In addition, the possibility of rasterizing in RA, Dec, as well as distance should be evaluated. By
rasterizing across distance as well, it may be possible to enhance the rasters that are further away
to better capture distant low-luminosity clusters.

BlobDoG is unable to account for distance in its results. This is in contrast to the clustering
algorithm which is able to classify multiple clusters overlapping in RA and Dec. In the work by
Mohammadi et al. [8], BlobDoG was used as a post-processing step. If the rasterization is applied
across distance, this raises an interesting proposition for the use of BlobDoG in place of the gravita-
tional clustering algorithm. For this final step, BlobDoG would be applied across RA and Dec with
the luminosity for each pixel being determined by the pheromone value of the star at that pixel. An
example of BlobDoG being applied as a post-processing mechanism may be seen in Figure 6.3.

(a) Magnitude based (b) Pheromone based

Figure 6.3: Blobs Identified by BlobDoG In the Same Raster Under Different Parameters

As may be seen in this figure, the results of BlobDoG when applied on the absolute magnitude
of the stars within the raster are very different to the results when it is applied to the pheromone
values of the stars within the raster. In this instance, BlobDoG is able to precisely identify the
pheromone clusters left by the Ant Colony. This highlights its potential as a mechanism to cluster
pheromone values. Incorporating this step would result in the pipeline being as follows:

1. Rasterize based on RA, Dec, and Distance.

2. Apply BlobDoG on the rasters based on their apparent magnitude.

3. Generate the pheromone maps using the Ant Colony algorithm.

4. Apply BlobDoG on the pheromone values.

41



Since BlobDoG operates with a lower time complexity than the clustering algorithm, this reformu-
lation may provide sufficient results while operating substantially faster.
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6.2 Density Mapping Via the Ant Colony
What is the behavior displayed by the Ant Colony algorithm?
To examine the behavior of the Ant Colony algorithm, results for various rasters across the areas
are displayed in Figure 6.4. The rasters that are examined are the same as those that were used
for the evaluation of the behavior of BlobDoG. To compare the distribution of the stars across
the rasters against the network substructure discovered by the Ant Colony algorithm, the stellar
distribution heat-maps of the rasters (indicated by †) are positioned alongside the pheromone heat-
maps (indicated by ‡).

(a) NGC 4147 (A1)† (b) NGC 4147 (A1)‡ (c) Palomar 5 +
M5 (A1)†

(d) Palomar 5 +
M5 (A1)‡

(e) M71 (A2: 4.0°× 4.0°)† (f) M71 (A2: 4.0° × 4.0°)‡ (g) M71 (A2: 2.0°× 2.0°)† (h) M71 (A2: 2.0°×2.0°)‡

(i) Small Magellanic
Cloud (A3)†

(j) Small Magellanic
Cloud (A3)‡

(k) Large Magellanic
Cloud (A3)†

(l) Large Magellanic
Cloud (A3)‡

(m) Andromeda
Galaxy (A4)†

(n) Andromeda
Galaxy (A4)‡

(o) Triangulum
Galaxy (A4)†

(p) Triangulum
Galaxy (A4)‡

Figure 6.4: Stellar Distribution Heat-maps (†) vs. Pheromone Heat-maps (‡) for Various Rasters

The algorithm functioning as intended should result in pheromone mappings honed in on stellar
clusters and other dense regions. From the plots of the rasters in Area 1 and Area 4, it is evident that
the algorithm works well at identifying concentrated clusters of stars surrounded by regions of very
low concentration. The structure of these rasters is directly observable in the density map uncovered
by the Ant Colony. The plots for Area 1 demonstrate the ability of the Ant Colony algorithm to
highlight the location of GCs through an increased concentration of pheromone values. Visually, this
corresponds to the focused bright spot present in the pheromone heat-map of the rasters. For the
plots of Area 4, the pheromone heat-maps show larger bright smudges corresponding to the nearby
galaxies contained within those rasters. These pheromone mappings are less intense but still stand
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out, clearly formed in the shape of the galaxies at hand. For Area 1 and 4, the algorithm is able to
distinctly identify these clusters. However, the results for the other areas are less definitive.

For Area 2: 2.0° × 2.0° it is able to highlight the GC contained within the upper-right corner of
the raster, but it does so with many other less relevant regions also being highlighted. This is taken
to the extreme with Area 2: 4.0°× 4.0° which does not clearly identify the GC at all. The difference
in these outcomes is due to the disparity in the number of stars contained within both rasters. As
Area 2: 2.0°×2.0° contains less stars, the connected structure that this GC demonstrates, represents
an increased proportion of the total substructure. Thus, the ants are more likely to gather within
the GC to pool their pheromone values than in Area 2: 4.0° × 4.0°. Both rasters present a busy
starscape and it seems that the ants are being spread too thin to have their pheromone values be
reliably identified by the clustering phase that follows.

The plots for Area 3 focus on the rasters containing the Magellanic Clouds. Figure 6.4j is of
the Small Magellanic Cloud and has no GCs present, while Figure 6.4l shows the Large Magellanic
Cloud which contains the four GCs: NGC 1696, NGC 1756, NGC 1786, and NGC 1795. These
GCs were not identified in the results of the final pipeline. The pheromone values across the rasters
containing these GCs are distributed erratically by the ants without sufficient concentration. As a
result, no cluster gets singled out by the clustering phase. However, the full pipeline does identify
many clusters contained within Area 3. These clusters are primarily on the fringes in rasters that do
not contain many stars. Many of them are contained within the Dec bound of −90.0° and −86.0°.
These rasters represent the least busy regions in Area 3.

Table 6.2 lists the number of stars contained within each raster that was examined and presents
additional statistics on the pheromone values associated with that raster.

Table 6.2: Visualization of the Star and Pheromone (f) Information of Each Raster in Figure 6.4.

Figure Nstars fmax fmean

6.4b NGC 4147 (A1) 26 778 2.513 × 10−2 3.060 × 10−4

6.4d Palomar 5 + M5 (A1) 76 687 5.649 × 10−3 1.069 × 10−4

6.4f M71 (A2: 4.0° × 4.0°) 3 246 820 5.482 × 10−3 2.524 × 10−6

6.4h M71 (A2: 2.0° × 2.0°) 771 759 5.944 × 10−3 1.062 × 10−5

6.4j Small Magellanic Cloud (A3) 301 721 1.430 × 10−2 2.716 × 10−5

6.4l Large Magellanic Cloud (A3) 576 494 9.693 × 10−3 1.421 × 10−5

6.4n Andromeda Galaxy (A4) 97 875 7.633 × 10−3 8.372 × 10−5

6.4p Triangulum Galaxy (A4) 66 763 7.941 × 10−3 1.227 × 10−4

What can be observed in this table is that the mean pheromone value (fmean) from the rasters of
Area 2 and Area 3 are much smaller than the values of Area 1 and Area 4. This again emphasizes
the relationship of the number of stars and the behavior of the Ant Colony algorithm expressed with
the pheromone values.

Ultimately, the Ant Colony algorithm demonstrates effective behavior in specific circumstances
(namely rasters with a large variation in stellar density across the raster). However, the algorithm
requires further optimization to function as effectively on rasters with a more uniform distribution
and those containing many stars.

What are the shortcomings of the Ant Colony algorithm?
There are two major shortcomings in the implementation of the Ant Colony algorithm. Firstly, it
is possible that the ants are unable to evaluate their environment sufficiently. This is evident from
the inability of the Ant Colony to successfully identify any clusters in Area 2: 4.0° × 4.0°. The
configuration of the parameters of the Ant Colony play the primary factor in determining the scale
at which the Ant Colony is able to successfully operate. It is crucial to identify this relationship
between these parameters and the properties of the rasters being evaluated given the central nature
of the Ant Colony algorithm to the functioning of the whole pipeline.

Secondly, the Ant Colony algorithm computes the Euclidean Distance between stars in RA, Dec,
and Distance. However, this assumes that the basis units of each of these axes are uniform. While
this holds between RA and Dec as they are in the same unit, it does not hold with distance. It
may be possible to determine some relationship between the RA, Dec, and Distance which operates
functionally.
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How could the Ant Colony algorithm be improved?
Two main suggestions for improving the Ant Colony algorithm are:

1. Determining the relationship between the configuration constants for the Ant Colony algo-
rithm and the characteristics of the input rasters. The aim would be to identify a method of
dynamically setting these constants based on the raster. This information could then also be
forwarded alongside the pheromone results to the clustering algorithm.

2. As with the same improvement mentioned for BlobDoG, introducing a rasterization scheme
which also cuts across distance. This would make it easier for the Ant Colony algorithm to
control the number of stars being processed per raster and thereby improve the uniformity of
the behavior of the Ant Colony.

6.3 Gravitational Clustering Based on Pheromone Mapping
What is the behavior displayed by the Gravitational Clustering algorithm?
To explore the behavior of the clustering algorithm, plots are generated to compare the distribution of
pheromone values across a raster against the resulting clustering. Figure 6.5 shows such a comparison
for the raster containing the GC NGC 4147.

(a) Pheromone Heat-map (b) Cluster Plot

Figure 6.5: 2D Plots of NGC 4147

The distribution of the pheromone values presented in Figure 6.5a are precisely represented in
the clustering presented in Figure 6.5b. These plots are effective at showcasing the clustering across
RA and Dec. However, unlike BlobDoG, the Ant Colony algorithm and the Gravitational Clustering
algorithm operate by taking into account a third distance dimension. The comparison showing this
distance dimension may be seen in Figure 6.6.

0

0.005
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0.015
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0.025
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(a) Pheromone Heat-map

cluster
Unclustered

Cluster 0

(b) Cluster Plot

Figure 6.6: 3D Plots of NGC 4147
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Figure 6.6 shows 3D scatterplots zoomed-in on the area around the cluster. The size of each point
in the scatterplot corresponds to the magnitude of the pheromone value (as does the color in the case
of the pheromone heat-map). It is clear from these figures, that the center of the cluster contains
the stars with the highest pheromone values. Additionally, a separate group with high pheromone
values may be observed within the distance of 2 kpc to 3 kpc. The main grouping evidently contains
more than 100 stars whereas this other group contains less than 100 stars and is not classified as a
cluster.

It is interesting to consider the scenario where the clustering algorithm does identify multiple
clusters within the same raster. This is case for the raster containing the GC NGC 5024 and the
2D plot of the comparison between the pheromones values for this raster and the clustering may be
seen in Figure 6.7.

(a) Pheromone Heat-map (b) Cluster Plot

Figure 6.7: 2D Plots of NGC 5024

In Figure 6.7, only the results for Cluster 2 seem apparent. This is because the clusters overlap
in RA and Dec and this is confirmed when considering the plots in Figure 6.8.
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Figure 6.8: 3D Plots of NGC 5024

The pheromone values seem uniformly distributed over the zoomed-in range displayed in Fig-
ure 6.8a. When comparing this region to the region presented in Figure 6.5 there seem to be many
more stars present. Additionally, unlike Figure 6.5 it is hard to visually distinguish any sub-clusters
across this range. These pheromone values appear as a single agglomerate structure. However,
the clustering algorithm does distinguish this group into multiple clusters. It is evident from Fig-
ure 6.8b that the clustering algorithm identifies 3 distinct clusters around the center of mass of the
pheromone values. These clusters appear as thin slices all in close proximity to each other with
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no apparent unclustered regions interlacing them. This indicates an issue in the behavior of the
clustering algorithm.

What are the shortcomings of the Gravitational Clustering algorithm?
From Figure 6.8, it becomes apparent that the clustering algorithm functions well in RA and Dec
but seems miscalibrated under distance. This is due to the fact that the basis unit for RA, Dec, and
distance are treated as the same unit. Thus, a 1.°0 shift in RA or Dec is considered equivalent to
a 1.0 kpc shift in distance. However, in reality this comparison is not physically sensible and it is
evident from the results that the relative scaling for these bases are inappropriate. This same issue
pervades the Ant Colony as well as it also makes use of Euclidean Distance.

Additionally, the fact that clusters are being split into multiple clusters under distance means
that the sizes of the resulting cluster are underestimated. The parameter NGCmin is set to a constant
of 100. Thus, it is possible that a cluster whose total number of stars is above 100 has been filtered
away as it was split into multiple clusters. This, likely explains why some clusters were identified
only in 4/5 experiments. Instead of making a binary decision, it would be practical to provide a
continuous metric describing the validity of a given cluster.

Finally, more experimentation is required to determine an optimal value for Fmin attraction. This
evaluation should also consider possible relationships between the properties of the raster and the
constants that were used in previous phases of the pipeline.

How could the Gravitational Clustering algorithm be improved?
There are a number of possible improvements that could be considered for the Gravitational Clus-
tering algorithm:

1. More testing must be done to determine any possible parametric relationships between the
constants set in the previous phases of the pipeline and the constants used in the clustering
phase.

2. The Ant Colony algorithm and the Gravitational Clustering algorithm both make use of Eu-
clidean Distance, which treats the scale of the basis units for RA, Dec, and Distance identically.
However, the distance operates with different units to the RA and Dec and this results in mis-
calibration of the algorithm in considering the distance. This could be temporarily alleviated
by special casing the distance metric in the computations or by evaluating another distance
metric perhaps under a different geometric scheme (e.g. spherical coordinates).

3. After the initial clusters have been formed, the clustering algorithm makes a binary decision
based on the number of stars within the cluster. This decision determines whether or not that
cluster should be classified as a valid cluster. This is mainly to remove small clusters that were
formed containing very few stars (approaching one star). Instead, it would be appropriate to
provide a continuous metric on the certainty of a given cluster being valid. This, step could also
evaluate other properties such as metallicity. These metrics could also be used to differentiate
between different cluster types.
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Appendix A

Extended BlobDoG Tables

Table A.1: Extended BlobDoG Cluster Removals

Type Name RA (°) Dec (°) RA Bounds (°) Dec Bounds (°) Experiments

Area 1
OC Golden-Eye Cluster 132.°85 11°48′31.′′41 132.°54 – 133.°14 11°30′49.′′94 – 12°09′28.′′79 1 2 3 4 5
Galaxy NGC 3286

NGC 3288
158.°86 58°20′16.′′71 158.°58 – 159.°21 58°01′42.′′82 – 58°39′16.′′97 4

Galaxy NGC 3770
NGC 3795

174.°06 59°12′18.′′36 173.°74 – 174.°35 58°52′39.′′72 – 59°32′26.′′42 2

Galaxy NGC 3838
PGC 36398
PGC 36585
PGC 36655
PGC 36877

176.°51 58°31′52.′′81 176.°10 – 177.°04 58°03′39.′′24 – 59°02′00.′′30 1 2 3 4 5

Galaxy Box Galaxy 187.°05 44°07′25.′′99 186.°65 – 187.°53 43°45′34.′′72 – 44°26′31.′′10 1 2 3 4 5
Galaxy Whirlpool Galaxy 202.°46 47°11′30.′′37 202.°08 – 202.°75 46°53′49.′′64 – 47°36′14.′′96 1 2 3 5
Galaxy Pinwheel Galaxy 210.°79 54°21′33.′′69 210.°55 – 211.°07 54°08′42.′′75 – 54°36′48.′′15 1 2 3 4 5

Area 3
Nothing N.A. 01.°37 −86°17′02.′′66 00.°77 – 01.°99 −86°50′12.′′81 – −86°00′10.′′72 1 2 3 4 5
Galaxy PGC 993 07.°22 −86°32′25.′′26 06.°51 – 07.°91 −87°08′00.′′46 – −86°00′22.′′38 2 3 4 5
Nothing N.A. 08.°62 −86°30′45.′′61 08.°10 – 09.°19 −87°02′11.′′48 – −86°04′45.′′38 1 2 3 4 5
Galaxy PGC 3533 12.°54 −86°30′27.′′51 12.°01 – 13.°27 −87°09′21.′′00 – −86°00′03.′′34 1 2 3 4 5
Galaxy PGC 216800 13.°58 −87°04′17.′′60 13.°16 – 14.°05 −87°30′06.′′74 – −86°33′10.′′10 1 2 3 4 5
Nothing N.A. 17.°19 −86°27′27.′′30 16.°46 – 18.°12 −87°19′04.′′59 – −86°00′08.′′79 1 2 3 4 5
Galaxy PGC 5780 25.°76 −86°27′20.′′33 25.°10 – 26.°38 −87°12′58.′′21 – −86°00′07.′′08 1 2 3 4 5
Nothing N.A. 28.°42 −86°23′11.′′26 28.°00 – 29.°01 −87°02′35.′′83 – −86°00′56.′′14 1 2 3 4 5
Galactic Cluster Abell 3037 36.°97 −86°20′57.′′40 36.°50 – 37.°48 −86°47′35.′′26 – −86°00′32.′′54 1 2 3 4
Nothing N.A. 41.°02 −86°35′40.′′26 40.°22 – 41.°82 −87°21′16.′′69 – −86°00′02.′′30 1 2 3 4 5
Nothing N.A 50.°74 −86°25′15.′′67 50.°23 – 51.°25 −86°54′33.′′20 – −86°01′02.′′53 1 2 3 4 5
Nothing N.A. 53.°58 −86°21′59.′′43 52.°98 – 54.°19 −86°56′14.′′36 – −86°00′42.′′69 2 3 4
Nothing N.A. 61.°90 −86°18′11.′′33 61.°35 – 62.°47 −86°45′54.′′25 – −86°00′05.′′26 1 3 4 5
Nothing N.A. 62.°74 −86°32′06.′′73 61.°68 – 63.°45 −87°10′30.′′65 – −86°00′22.′′24 1 3 4 5
Nothing N.A. 69.°40 −86°39′36.′′30 68.°57 – 70.°21 −87°33′40.′′20 – −86°00′27.′′49 1 2 3 4 5
Nothing N.A. 71.°48 −86°24′13.′′20 70.°93 – 71.°97 −86°54′45.′′20 – −86°01′34.′′43 4 5
Galactic Cluster Abell 3333 73.°44 −86°37′29.′′98 72.°61 – 74.°50 −87°32′24.′′77 – −86°00′15.′′80 1 2 3 4 5
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Table A.2: Extended Clusters Found in All Experiments

Type Name RA (°) Dec (°) RA Bounds (°) Dec Bounds (°) Experiments

Area 1
Dwarf Galaxy Regulus Dwarf Galaxy 152.°12 12°18′02.′′45 152.°00 – 152.°25 12°09′58.′′35 – 12°26′21.′′46 1 2 3 4 5
GC NGC 4147 182.°53 18°32′29.′′50 182.°46 – 182.°67 18°19′57.′′04 – 18°38′49.′′73 1 2 3 4 5
GC NGC 5024 198.°23 18°10′02.′′92 198.°15 – 198.°31 18°05′47.′′74 – 18°15′37.′′24 1 2 3 4 5
GC NGC 5053 199.°11 17°41′59.′′43 199.°03 – 199.°20 17°37′41.′′37 – 17°45′53.′′90 1 2 3 4
GC M3 205.°55 28°22′26.′′78 205.°44 – 205.°65 28°15′48.′′56 – 28°27′32.′′13 1 2 3 4 5
GC NGC 5466 211.°36 28°32′00.′′26 210.°98 – 211.°47 28°24′58.′′82 – 28°38′44.′′69 1 2 3 4 5
GC Palomar 5 229.°61 01°57′47.′′14 229.°51 – 229.°72 01°53′35.′′19 – 01°59′57.′′80 3
GC M5 229.°64 02°03′26.′′66 229.°59 – 229.°71 02°00′09.′′53 – 02°07′22.′′18 2

Area 2
Nothing N.A. 295.°06 19°09′17.′′96 295.°01 – 295.°12 19°05′18.′′69 – 19°14′36.′′41 1
Nothing N.A. 295.°29 18°29′05.′′08 295.°21 – 295.°41 18°22′57.′′86 – 18°34′12.′′04 5
Nothing N.A. 296.°00 17°23′27.′′66 295.°91 – 296.°09 17°17′42.′′90 – 17°29′03.′′90 5
Nothing N.A. 296.°02 22°43′14.′′11 295.°90 – 296.°17 22°37′14.′′73 – 22°48′57.′′44 3
Nothing N.A. 296.°05 15°19′35.′′71 295.°94 – 296.°13 15°12′51.′′08 – 15°29′18.′′70 4
Nothing N.A. 296.°17 22°11′23.′′46 296.°09 – 296.°26 22°06′18.′′71 – 22°15′22.′′18 4
Nothing N.A. 296.°22 17°31′32.′′99 296.°15 – 296.°31 17°25′16.′′15 – 17°38′16.′′47 3
Molecular Cloud LDN 758 296.°61 19°08′40.′′17 296.°51 – 296.°71 19°04′57.′′81 – 19°12′23.′′21 3
OC NGC 6827 297.°60 21°21′28.′′57 297.°50 – 297.°68 21°18′05.′′35 – 21°25′13.′′22 2
Nothing N.A. 297.°17 23°52′08.′′87 297.°10 – 297.°26 23°46′57.′′79 – 23°56′59.′′35 1
Nothing N.A. 297.°72 15°37′39.′′26 297.°63 – 297.°82 15°28′41.′′39 – 15°44′36.′′90 4
Absorption Nebula LDN 787 298.°22 22°12′59.′′69 298.°15 – 298.°30 22°05′50.′′14 – 22°20′26.′′79 5
GC M71 298.°44 18°46′27.′′05 298.°40 – 298.°49 18°42′30.′′76 – 18°50′02.′′53 1 4
Nothing N.A. 299.°26 18°34′53.′′48 299.°19 – 299.°34 18°28′12.′′09 – 18°42′43.′′59 5
Nothing N.A. 299.°71 20°07′38.′′33 299.°65 – 299.°77 20°02′01.′′45 – 20°13′46.′′18 4
Nothing N.A. 300.°30 18°17′28.′′09 300.°22 – 300.°36 18°10′37.′′66 – 18°25′39.′′34 3
Nothing N.A. 301.°47 19°52′50.′′56 301.°38 – 301.°57 19°48′32.′′35 – 19°57′00.′′22 3
Nothing N.A. 302.°15 23°29′50.′′72 302.°01 – 302.°24 23°21′47.′′17 – 23°37′09.′′98 5

Area 3
Galaxy String of Pearls 03.°78 −39°12′55.′′81 03.°55 – 04.°00 −39°19′58.′′48 – −39°06′32.′′19 1 2 3 4 5
Galaxy Southern Pinwheel

Galaxy
13.°73 −37°39′55.′′00 13.°33 – 14.°00 −37°53′52.′′16 – −37°06′18.′′28 1 2 3 4 5

Dwarf Galaxy Sculptor Dwarf Galaxy 15.°03 −33°43′18.′′88 14.°73 – 15.°29 −33°53′59.′′04 – −33°30′35.′′11 1 2 3 4 5
OC NGC 419 17.°07 −72°52′56.′′38 17.°01 – 17.°12 −72°54′46.′′05 – −72°50′33.′′55 2
GC NGC 1049 39.°88 −34°32′06.′′15 39.°59 – 40.°00 −34°48′34.′′74 – −34°15′17.′′86 1 2 3 4 5
Galaxy Fornax Dwarf Galaxy 40.°08 −34°30′12.′′32 40.°00 – 40.°28 −34°43′31.′′34 – −34°13′02.′′70 1 2 3 4 5
GC NGC 1261 48.°07 −55°12′59.′′17 48.°00 – 48.°14 −55°17′01.′′45 – −55°10′23.′′89 1 2 3 4 5
GC NGC 1466 56.°14 −71°40′10.′′54 56.°02 – 56.°34 −72°04′39.′′73 – −71°27′11.′′21 1 3 4 5
GC NGC 1841 71.°37 −84°00′38.′′52 70.°77 – 71.°80 −84°28′49.′′91 – −83°24′22.′′53 1 2 3 4 5
OC NGC 1777 73.°95 −74°16′45.′′35 73.°77 – 74.°12 −74°28′29.′′07 – −74°03′19.′′63 1 2 3 4 5
GC NGC 1783 74.°79 −65°58′40.′′00 74.°71 – 74.°89 −65°59′58.′′83 – −65°49′10.′′26 1 2 3 5

Area 4
HII region NGC 7822 00.°55 67°25′37.′′17 00.°40 – 00.°75 67°16′53.′′23 – 67°34′07.′′21 1 2 3 4
Galaxy Triangulum Galaxy 23.°47 30°36′49.′′92 23.°31 – 23.°61 30°29′08.′′78 – 30°44′38.′′01 1 2 3 4 5
OC Double Cluster 35.°52 57°08′26.′′09 35.°43 – 35.°63 57°03′30.′′07 – 57°13′46.′′71 3
OC NGC 1027 40.°69 61°35′27.′′79 40.°58 – 40.°79 61°29′39.′′61 – 61°41′45.′′61 4
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Appendix B

Raster Plots of the Full Pipeline

Figure B.1: Clustering Results Across A1 for All Experiments
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Figure B.2: Clustering Results Across A2: 2.0° × 2.0° for All Experiments
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Figure B.3: Clustering Results Across A2: 4.0° × 4.0° for All Experiments
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Figure B.4: Clustering Results Across A3 for All Experiments
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Figure B.5: Clustering Results Across A4 for All Experiments
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Appendix C

Clusters Found Across All
Experiments

Table C.1: Area 1: All Clusters Found Across All Experiments

RA (°) Dec (°) RA Bounds (°) Dec Bounds (°) Experiment
132.°85 11°48′04 .′′56 132.°64 – 133.°09 11°33′07 .′′28 – 12°01′31 .′′53 1
132.°85 11°48′06 .′′92 132.°61 – 133.°10 11°30′49 .′′94 – 12°09′28 .′′79 2
132.°85 11°49′08 .′′74 132.°64 – 133.°10 11°34′28 .′′69 – 12°04′18 .′′96 3
132.°85 11°49′06 .′′97 132.°64 – 133.°10 11°33′07 .′′28 – 12°09′03 .′′91 4
132.°85 11°48′09 .′′85 132.°54 – 133.°14 11°30′56 .′′18 – 12°07′07 .′′47 5
152.°12 12°18′06 .′′04 152.°00 – 152.°25 12°11′00 .′′17 – 12°24′07 .′′58 1
152.°12 12°17′56 .′′10 152.°01 – 152.°24 12°10′07 .′′97 – 12°24′05 .′′15 2
152.°12 12°18′06 .′′39 152.°00 – 152.°25 12°09′58 .′′35 – 12°26′21 .′′46 3
152.°12 12°18′00 .′′67 152.°00 – 152.°25 12°10′07 .′′97 – 12°26′21 .′′46 4
152.°12 12°18′03 .′′03 152.°00 – 152.°25 12°09′58 .′′35 – 12°26′21 .′′46 5
158.°86 58°20′16 .′′71 158.°58 – 159.°21 58°01′42 .′′82 – 58°39′16 .′′97 4
174.°06 59°12′18 .′′36 173.°74 – 174.°35 58°52′39 .′′72 – 59°32′26 .′′42 2
176.°50 58°32′04 .′′48 176.°18 – 176.°94 58°08′47 .′′54 – 58°57′48 .′′63 1
176.°50 58°29′44 .′′00 176.°18 – 176.°89 58°08′15 .′′42 – 58°54′52 .′′21 2
176.°53 58°31′39 .′′37 176.°10 – 177.°04 58°03′39 .′′24 – 59°02′00 .′′30 3
176.°50 58°31′59 .′′53 176.°18 – 176.°89 58°10′05 .′′86 – 58°57′38 .′′37 4
176.°51 58°33′56 .′′67 176.°18 – 176.°95 58°08′47 .′′54 – 59°02′00 .′′30 5
182.°53 18°32′25 .′′99 182.°46 – 182.°67 18°19′57 .′′04 – 18°38′49 .′′73 1
182.°53 18°32′31 .′′81 182.°47 – 182.°57 18°29′10 .′′58 – 18°38′49 .′′73 2
182.°53 18°32′31 .′′08 182.°47 – 182.°59 18°26′52 .′′72 – 18°38′49 .′′73 3
182.°53 18°32′28 .′′01 182.°47 – 182.°57 18°26′52 .′′72 – 18°35′16 .′′31 4
182.°53 18°32′30 .′′61 182.°47 – 182.°57 18°29′10 .′′58 – 18°35′16 .′′31 5
187.°04 44°08′16 .′′25 186.°77 – 187.°20 43°57′53 .′′17 – 44°21′39 .′′41 1
187.°06 44°05′33 .′′51 186.°65 – 187.°53 43°45′34 .′′72 – 44°26′31 .′′10 2
187.°04 44°08′29 .′′61 186.°77 – 187.°20 43°57′59 .′′46 – 44°21′39 .′′41 3
187.°04 44°07′14 .′′98 186.°72 – 187.°47 43°45′34 .′′72 – 44°24′34 .′′75 4
187.°06 44°07′35 .′′58 186.°84 – 187.°47 43°49′33 .′′00 – 44°21′12 .′′38 5
199.°11 17°41′53 .′′28 199.°06 – 199.°18 17°39′09 .′′54 – 17°44′47 .′′28 1
199.°11 17°42′02 .′′20 199.°03 – 199.°20 17°37′41 .′′37 – 17°45′38 .′′77 2
199.°11 17°41′56 .′′40 199.°06 – 199.°18 17°38′08 .′′72 – 17°45′53 .′′90 2
199.°11 17°42′04 .′′44 199.°06 – 199.°16 17°39′16 .′′08 – 17°45′00 .′′74 3
199.°11 17°42′00 .′′84 199.°06 – 199.°18 17°37′49 .′′95 – 17°45′53 .′′90 4
198.°23 18°10′11 .′′42 198.°16 – 198.°29 18°06′30 .′′66 – 18°14′18 .′′80 1
198.°23 18°09′47 .′′85 198.°17 – 198.°29 18°05′58 .′′06 – 18°13′27 .′′93 1
198.°23 18°10′19 .′′39 198.°18 – 198.°29 18°06′22 .′′83 – 18°13′56 .′′37 1
198.°23 18°10′13 .′′23 198.°17 – 198.°28 18°06′46 .′′77 – 18°13′21 .′′44 2
198.°24 18°09′36 .′′75 198.°19 – 198.°28 18°06′54 .′′88 – 18°12′36 .′′07 2
198.°23 18°10′10 .′′90 198.°18 – 198.°28 18°07′01 .′′82 – 18°13′01 .′′76 3
198.°23 18°09′48 .′′92 198.°19 – 198.°28 18°06′51 .′′88 – 18°13′27 .′′93 3
198.°23 18°10′05 .′′12 198.°15 – 198.°31 18°05′47 .′′74 – 18°15′37 .′′24 4
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198.°23 18°10′12 .′′74 198.°16 – 198.°28 18°06′46 .′′77 – 18°13′59 .′′04 5
202.°47 47°11′20 .′′97 202.°22 – 202.°72 46°55′18 .′′52 – 47°27′00 .′′17 1
202.°49 47°10′49 .′′78 202.°22 – 202.°72 46°57′07 .′′41 – 47°23′56 .′′32 2
202.°44 47°12′06 .′′75 202.°08 – 202.°75 46°53′49 .′′64 – 47°36′14 .′′96 3
202.°45 47°11′43 .′′97 202.°19 – 202.°72 46°55′18 .′′52 – 47°29′05 .′′63 5
205.°55 28°22′16 .′′21 205.°48 – 205.°63 28°18′32 .′′51 – 28°26′24 .′′14 1
205.°54 28°22′12 .′′63 205.°50 – 205.°60 28°19′48 .′′37 – 28°24′39 .′′45 1
205.°55 28°22′17 .′′10 205.°49 – 205.°62 28°18′34 .′′73 – 28°26′07 .′′30 1
205.°57 28°21′39 .′′18 205.°50 – 205.°63 28°18′26 .′′09 – 28°24′50 .′′05 1
205.°55 28°22′15 .′′75 205.°48 – 205.°63 28°19′05 .′′57 – 28°26′06 .′′42 2
205.°54 28°22′24 .′′46 205.°48 – 205.°62 28°18′46 .′′60 – 28°26′32 .′′55 2
205.°55 28°22′52 .′′99 205.°49 – 205.°63 28°19′29 .′′34 – 28°27′02 .′′14 2
205.°55 28°22′13 .′′72 205.°48 – 205.°61 28°18′34 .′′73 – 28°25′54 .′′94 2
205.°55 28°22′55 .′′37 205.°45 – 205.°63 28°18′23 .′′23 – 28°27′05 .′′68 3
205.°55 28°22′28 .′′81 205.°49 – 205.°62 28°18′57 .′′79 – 28°25′54 .′′94 3
205.°55 28°22′14 .′′82 205.°48 – 205.°62 28°19′05 .′′57 – 28°26′24 .′′14 3
205.°54 28°22′24 .′′71 205.°49 – 205.°60 28°19′10 .′′45 – 28°25′27 .′′66 3
205.°53 28°22′56 .′′01 205.°44 – 205.°63 28°18′07 .′′68 – 28°26′56 .′′59 4
205.°55 28°22′17 .′′54 205.°48 – 205.°63 28°18′26 .′′10 – 28°26′41 .′′83 4
205.°55 28°22′53 .′′39 205.°47 – 205.°63 28°19′00 .′′52 – 28°27′05 .′′68 4
205.°55 28°22′33 .′′42 205.°48 – 205.°62 28°18′34 .′′73 – 28°26′41 .′′54 4
205.°55 28°22′10 .′′70 205.°48 – 205.°62 28°18′48 .′′76 – 28°25′57 .′′14 4
205.°55 28°22′47 .′′98 205.°46 – 205.°65 28°17′59 .′′86 – 28°27′32 .′′13 5
205.°55 28°22′22 .′′16 205.°46 – 205.°65 28°15′48 .′′56 – 28°27′06 .′′97 5
205.°56 28°22′42 .′′33 205.°48 – 205.°63 28°18′29 .′′32 – 28°26′53 .′′07 5
205.°54 28°22′03 .′′74 205.°49 – 205.°61 28°19′28 .′′82 – 28°24′30 .′′13 5
205.°55 28°22′46 .′′17 205.°48 – 205.°63 28°18′11 .′′89 – 28°26′58 .′′28 5
211.°36 28°31′59 .′′63 211.°26 – 211.°45 28°27′03 .′′42 – 28°36′29 .′′84 1
211.°36 28°32′04 .′′20 210.°98 – 211.°47 28°24′58 .′′82 – 28°38′44 .′′69 2
211.°36 28°31′48 .′′32 211.°30 – 211.°42 28°28′07 .′′81 – 28°35′21 .′′12 2
211.°36 28°31′50 .′′57 211.°29 – 211.°45 28°27′41 .′′92 – 28°35′23 .′′77 3
211.°37 28°31′57 .′′40 211.°29 – 211.°44 28°27′40 .′′08 – 28°35′47 .′′21 3
211.°37 28°32′03 .′′89 211.°30 – 211.°43 28°27′22 .′′15 – 28°35′38 .′′87 3
211.°36 28°32′02 .′′31 211.°29 – 211.°45 28°27′22 .′′15 – 28°36′37 .′′66 4
211.°36 28°32′05 .′′62 211.°31 – 211.°42 28°29′13 .′′36 – 28°35′21 .′′12 4
211.°36 28°32′04 .′′79 211.°31 – 211.°44 28°28′31 .′′06 – 28°36′04 .′′44 5
211.°37 28°32′05 .′′86 211.°30 – 211.°43 28°28′14 .′′20 – 28°35′38 .′′87 5
210.°79 54°21′26 .′′55 210.°57 – 210.°99 54°09′13 .′′67 – 54°34′09 .′′66 1
210.°78 54°21′28 .′′86 210.°55 – 211.°03 54°09′13 .′′67 – 54°36′48 .′′15 2
210.°79 54°21′46 .′′21 210.°57 – 211.°07 54°08′42 .′′75 – 54°36′48 .′′15 3
210.°79 54°21′36 .′′21 210.°57 – 211.°03 54°10′56 .′′12 – 54°34′09 .′′66 4
210.°79 54°21′30 .′′62 210.°55 – 211.°03 54°09′13 .′′67 – 54°36′48 .′′15 5
229.°61 01°57′47 .′′14 229.°51 – 229.°72 01°53′35 .′′19 – 01°59′57 .′′80 3
229.°64 02°03′26 .′′66 229.°59 – 229.°71 02°00′09 .′′53 – 02°07′22 .′′18 2
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Table C.2: Area 2: All Clusters Found Across All Experiments

RA (°) Dec (°) RA Bounds (°) Dec Bounds (°) Experiment
296.°05 15°19′35 .′′71 295.°94 – 296.°13 15°12′51 .′′08 – 15°29′18 .′′70 4
296.°22 17°31′32 .′′99 296.°15 – 296.°31 17°25′16 .′′15 – 17°38′16 .′′47 3
296.°00 17°23′27 .′′66 295.°91 – 296.°09 17°17′42 .′′90 – 17°29′03 .′′90 5
295.°29 18°29′05 .′′08 295.°21 – 295.°41 18°22′57 .′′86 – 18°34′12 .′′04 5
295.°06 19°09′17 .′′96 295.°01 – 295.°12 19°05′18 .′′69 – 19°14′36 .′′41 1
296.°61 19°08′40 .′′17 296.°51 – 296.°71 19°04′57 .′′81 – 19°12′23 .′′21 3
296.°02 22°43′14 .′′11 295.°90 – 296.°17 22°37′14 .′′73 – 22°48′57 .′′44 3
296.°17 22°11′23 .′′46 296.°09 – 296.°26 22°06′18 .′′71 – 22°15′22 .′′18 4
297.°72 15°37′39 .′′26 297.°63 – 297.°82 15°28′41 .′′39 – 15°44′36 .′′90 4
298.°44 18°46′44 .′′62 298.°40 – 298.°49 18°43′08 .′′71 – 18°50′02 .′′53 1
298.°45 18°46′09 .′′47 298.°40 – 298.°49 18°42′30 .′′76 – 18°49′38 .′′71 4
297.°60 21°21′28 .′′57 297.°50 – 297.°68 21°18′05 .′′35 – 21°25′13 .′′22 2
298.°22 22°12′59 .′′69 298.°15 – 298.°30 22°05′50 .′′14 – 22°20′26 .′′79 5
297.°17 23°52′08 .′′87 297.°10 – 297.°26 23°46′57 .′′79 – 23°56′59 .′′35 1
300.°30 18°17′28 .′′09 300.°22 – 300.°36 18°10′37 .′′66 – 18°25′39 .′′34 3
299.°26 18°34′53 .′′48 299.°19 – 299.°34 18°28′12 .′′09 – 18°42′43 .′′59 5
299.°71 20°07′38 .′′33 299.°65 – 299.°77 20°02′01 .′′45 – 20°13′46 .′′18 4
301.°47 19°52′50 .′′56 301.°38 – 301.°57 19°48′32 .′′35 – 19°57′00 .′′22 3
302.°15 23°29′50 .′′72 302.°01 – 302.°24 23°21′47 .′′17 – 23°37′09 .′′98 5

Table C.3: Area 3: All Clusters Found Across All Experiments

RA (°) Dec (°) RA Bounds (°) Dec Bounds (°) Experiment
03.°78 −39°12′55 .′′47 03.°58 – 04.°00 −39°19′58 .′′48 – −39°06′32 .′′19 1
03.°78 −39°12′55 .′′22 03.°55 – 04.°00 −39°19′58 .′′48 – −39°06′32 .′′19 2
03.°78 −39°12′54 .′′31 03.°57 – 04.°00 −39°19′58 .′′48 – −39°07′53 .′′63 3
03.°78 −39°12′54 .′′08 03.°58 – 04.°00 −39°19′58 .′′48 – −39°08′18 .′′42 4
03.°78 −39°12′59 .′′98 03.°60 – 03.°99 −39°18′44 .′′16 – −39°08′43 .′′04 5
01.°40 −86°15′32 .′′89 00.°87 – 01.°89 −86°37′55 .′′48 – −86°00′13 .′′53 1
01.°36 −86°16′43 .′′99 00.°87 – 01.°86 −86°46′08 .′′93 – −86°00′13 .′′53 2
01.°33 −86°16′09 .′′03 00.°77 – 01.°86 −86°44′27 .′′61 – −86°00′13 .′′53 3
01.°39 −86°19′02 .′′41 00.°77 – 01.°99 −86°50′12 .′′81 – −86°00′10 .′′72 4
01.°36 −86°17′45 .′′00 00.°77 – 01.°89 −86°46′08 .′′93 – −86°00′13 .′′53 5
15.°03 −33°43′14 .′′41 14.°75 – 15.°28 −33°53′59 .′′04 – −33°32′20 .′′92 1
15.°03 −33°43′22 .′′53 14.°77 – 15.°26 −33°53′59 .′′04 – −33°32′06 .′′49 2
15.°03 −33°43′34 .′′98 14.°77 – 15.°25 −33°53′46 .′′71 – −33°32′39 .′′88 3
15.°03 −33°43′19 .′′87 14.°77 – 15.°27 −33°53′59 .′′04 – −33°32′20 .′′92 4
15.°02 −33°43′02 .′′59 14.°73 – 15.°29 −33°53′54 .′′33 – −33°30′35 .′′11 5
13.°72 −37°40′02 .′′85 13.°35 – 13.°97 −37°53′05 .′′80 – −37°10′21 .′′15 1
13.°73 −37°39′44 .′′18 13.°41 – 14.°00 −37°53′52 .′′16 – −37°06′46 .′′06 2
13.°73 −37°39′41 .′′93 13.°48 – 13.°97 −37°50′22 .′′87 – −37°10′24 .′′93 3
13.°73 −37°40′16 .′′57 13.°38 – 14.°00 −37°50′22 .′′87 – −37°14′32 .′′03 4
13.°73 −37°39′49 .′′49 13.°33 – 13.°97 −37°52′30 .′′24 – −37°06′18 .′′28 5
13.°55 −87°04′15 .′′09 13.°16 – 14.°02 −87°30′06 .′′74 – −86°38′35 .′′39 1
12.°60 −86°31′06 .′′35 12.°01 – 13.°27 −87°09′21 .′′00 – −86°00′03 .′′34 1
13.°58 −87°05′13 .′′56 13.°17 – 14.°02 −87°30′06 .′′74 – −86°38′35 .′′39 2
12.°50 −86°30′11 .′′85 12.°01 – 12.°96 −86°59′10 .′′79 – −86°04′37 .′′05 2
13.°59 −87°03′51 .′′93 13.°16 – 14.°05 −87°30′06 .′′74 – −86°36′07 .′′06 3
12.°58 −86°31′24 .′′77 12.°01 – 13.°21 −87°06′08 .′′99 – −86°00′03 .′′34 3
13.°58 −87°03′29 .′′05 13.°16 – 14.°05 −87°30′06 .′′74 – −86°33′10 .′′10 4
12.°45 −86°28′57 .′′56 12.°01 – 12.°88 −86°58′57 .′′97 – −86°04′37 .′′05 4
13.°59 −87°04′38 .′′39 13.°17 – 14.°02 −87°30′06 .′′74 – −86°38′35 .′′39 5
12.°57 −86°30′37 .′′02 12.°01 – 13.°17 −87°04′26 .′′50 – −86°00′12 .′′68 5
17.°07 −72°52′56 .′′38 17.°01 – 17.°12 −72°54′46 .′′05 – −72°50′33 .′′55 2
17.°19 −86°27′08 .′′05 16.°60 – 17.°77 −86°58′46 .′′11 – −86°00′14 .′′19 1
17.°31 −86°32′02 .′′85 16.°46 – 18.°12 −87°19′04 .′′59 – −86°00′08 .′′79 2
17.°19 −86°26′05 .′′87 16.°60 – 17.°77 −86°58′46 .′′11 – −86°00′14 .′′19 3
17.°14 −86°25′36 .′′56 16.°55 – 17.°73 −87°01′22 .′′87 – −86°00′08 .′′79 4
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17.°11 −86°26′23 .′′20 16.°60 – 17.°70 −86°58′46 .′′11 – −86°00′14 .′′19 5
25.°77 −86°24′48 .′′89 25.°26 – 26.°31 −86°56′17 .′′69 – −86°00′07 .′′08 1
25.°77 −86°25′15 .′′14 25.°26 – 26.°31 −86°56′58 .′′19 – −86°00′20 .′′07 2
25.°75 −86°30′02 .′′36 25.°10 – 26.°38 −87°12′58 .′′21 – −86°00′07 .′′08 3
25.°76 −86°28′16 .′′53 25.°20 – 26.°38 −87°05′04 .′′74 – −86°00′20 .′′07 4
25.°77 −86°28′18 .′′73 25.°10 – 26.°38 −87°09′37 .′′15 – −86°00′07 .′′08 5
28.°43 −86°23′55 .′′69 28.°00 – 28.°96 −86°56′33 .′′55 – −86°00′56 .′′14 1
28.°44 −86°22′47 .′′53 28.°00 – 28.°96 −86°56′33 .′′55 – −86°00′56 .′′14 2
28.°48 −86°24′52 .′′50 28.°00 – 29.°01 −87°02′35 .′′83 – −86°00′56 .′′14 3
28.°37 −86°22′00 .′′38 28.°00 – 28.°80 −86°51′52 .′′28 – −86°00′59 .′′93 4
28.°37 −86°22′20 .′′20 28.°00 – 28.°80 −86°51′52 .′′28 – −86°00′59 .′′93 5
39.°88 −34°32′38 .′′24 39.°69 – 40.°00 −34°45′50 .′′73 – −34°19′42 .′′98 1
39.°88 −34°32′36 .′′01 39.°68 – 40.°00 −34°44′45 .′′63 – −34°20′44 .′′78 1
39.°88 −34°31′55 .′′80 39.°64 – 40.°00 −34°45′58 .′′69 – −34°17′14 .′′90 2
39.°86 −34°32′22 .′′78 39.°59 – 40.°00 −34°48′34 .′′74 – −34°15′17 .′′86 3
39.°88 −34°31′19 .′′18 39.°66 – 40.°00 −34°44′18 .′′77 – −34°19′32 .′′50 4
39.°89 −34°31′54 .′′73 39.°73 – 40.°00 −34°42′27 .′′74 – −34°22′31 .′′23 4
39.°87 −34°31′56 .′′34 39.°64 – 40.°00 −34°46′24 .′′10 – −34°17′14 .′′90 5
36.°95 −86°21′15 .′′31 36.°50 – 37.°42 −86°47′35 .′′26 – −86°00′32 .′′54 1
36.°96 −86°21′01 .′′91 36.°50 – 37.°44 −86°45′25 .′′61 – −86°00′32 .′′54 2
36.°99 −86°20′38 .′′53 36.°56 – 37.°48 −86°45′25 .′′61 – −86°00′32 .′′54 3
36.°97 −86°20′53 .′′84 36.°50 – 37.°48 −86°47′35 .′′26 – −86°00′32 .′′54 4
07.°24 −86°32′48 .′′43 06.°73 – 07.°84 −87°03′56 .′′94 – −86°05′59 .′′01 2
07.°21 −86°31′38 .′′72 06.°51 – 07.°91 −87°08′00 .′′46 – −86°00′22 .′′38 3
07.°21 −86°33′17 .′′47 06.°74 – 07.°69 −86°58′28 .′′01 – −86°05′59 .′′01 4
07.°21 −86°31′56 .′′40 06.°53 – 07.°91 −87°06′19 .′′85 – −86°01′06 .′′38 5
40.°09 −34°28′06 .′′22 40.°00 – 40.°23 −34°39′08 .′′35 – −34°16′09 .′′70 1
40.°09 −34°31′26 .′′30 40.°00 – 40.°22 −34°40′56 .′′34 – −34°21′52 .′′31 1
40.°07 −34°28′32 .′′63 40.°00 – 40.°19 −34°37′01 .′′63 – −34°19′06 .′′33 2
40.°07 −34°31′24 .′′25 40.°00 – 40.°18 −34°38′44 .′′05 – −34°23′32 .′′68 2
40.°07 −34°29′00 .′′02 40.°00 – 40.°20 −34°37′59 .′′60 – −34°20′13 .′′11 3
40.°09 −34°31′25 .′′81 40.°00 – 40.°23 −34°43′31 .′′34 – −34°21′12 .′′65 3
40.°09 −34°29′15 .′′88 40.°00 – 40.°28 −34°43′18 .′′87 – −34°13′02 .′′70 4
40.°06 −34°33′06 .′′33 40.°00 – 40.°17 −34°39′47 .′′45 – −34°25′52 .′′01 4
40.°07 −34°28′49 .′′68 40.°00 – 40.°18 −34°37′26 .′′65 – −34°18′43 .′′10 5
40.°09 −34°30′56 .′′11 40.°00 – 40.°23 −34°40′49 .′′72 – −34°21′53 .′′81 5
41.°03 −86°35′17 .′′99 40.°30 – 41.°76 −87°14′56 .′′40 – −86°00′02 .′′30 1
40.°99 −86°36′50 .′′35 40.°31 – 41.°67 −87°14′57 .′′78 – −86°00′43 .′′39 2
41.°02 −86°32′48 .′′88 40.°40 – 41.°67 −87°09′33 .′′33 – −86°00′43 .′′39 3
41.°00 −86°37′08 .′′04 40.°22 – 41.°82 −87°21′16 .′′69 – −86°00′02 .′′30 4
41.°03 −86°36′16 .′′02 40.°25 – 41.°82 −87°18′03 .′′88 – −86°00′02 .′′30 5
48.°07 −55°13′13 .′′34 48.°01 – 48.°12 −55°15′14 .′′81 – −55°10′35 .′′09 1
48.°07 −55°12′58 .′′62 48.°02 – 48.°11 −55°14′55 .′′60 – −55°10′44 .′′95 1
48.°07 −55°12′57 .′′70 48.°02 – 48.°12 −55°15′15 .′′04 – −55°10′44 .′′95 2
48.°07 −55°12′47 .′′25 48.°02 – 48.°11 −55°14′35 .′′01 – −55°10′23 .′′89 2
48.°07 −55°13′12 .′′45 48.°01 – 48.°12 −55°15′14 .′′81 – −55°10′42 .′′13 2
48.°07 −55°13′02 .′′05 48.°00 – 48.°14 −55°16′16 .′′37 – −55°10′29 .′′24 3
48.°07 −55°12′51 .′′10 48.°01 – 48.°12 −55°15′28 .′′86 – −55°10′23 .′′89 3
48.°07 −55°13′00 .′′97 48.°00 – 48.°14 −55°17′01 .′′45 – −55°10′29 .′′24 4
48.°07 −55°12′54 .′′68 48.°01 – 48.°13 −55°15′15 .′′04 – −55°10′23 .′′89 4
48.°07 −55°12′53 .′′61 48.°01 – 48.°13 −55°15′28 .′′86 – −55°10′23 .′′89 5
48.°07 −55°12′59 .′′11 48.°02 – 48.°11 −55°15′09 .′′67 – −55°10′29 .′′24 5
50.°75 −86°24′26 .′′26 50.°24 – 51.°25 −86°50′48 .′′56 – −86°01′02 .′′53 1
50.°73 −86°25′54 .′′13 50.°23 – 51.°24 −86°50′48 .′′56 – −86°01′02 .′′53 2
50.°73 −86°25′44 .′′94 50.°23 – 51.°25 −86°54′33 .′′20 – −86°01′02 .′′53 3
50.°77 −86°25′04 .′′71 50.°27 – 51.°25 −86°50′48 .′′56 – −86°01′02 .′′53 4
50.°75 −86°25′08 .′′31 50.°27 – 51.°25 −86°50′48 .′′56 – −86°01′02 .′′53 5
53.°58 −86°20′48 .′′87 53.°16 – 54.°07 −86°47′23 .′′82 – −86°00′42 .′′69 2
53.°59 −86°24′35 .′′88 52.°98 – 54.°19 −86°56′14 .′′36 – −86°00′42 .′′69 3
53.°58 −86°20′33 .′′55 53.°11 – 54.°07 −86°47′20 .′′88 – −86°00′42 .′′69 4
56.°14 −71°39′52 .′′64 56.°03 – 56.°34 −71°59′28 .′′39 – −71°27′48 .′′18 1
56.°14 −71°39′54 .′′60 56.°03 – 56.°26 −71°55′20 .′′84 – −71°27′11 .′′21 3
56.°15 −71°41′15 .′′45 56.°02 – 56.°34 −72°04′39 .′′73 – −71°27′48 .′′18 4
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56.°14 −71°39′39 .′′48 56.°03 – 56.°26 −71°48′32 .′′10 – −71°27′48 .′′18 5
61.°92 −86°19′49 .′′83 61.°39 – 62.°47 −86°45′54 .′′25 – −86°00′24 .′′76 1
62.°93 −86°27′01 .′′74 62.°42 – 63.°39 −86°54′10 .′′71 – −86°00′22 .′′24 1
61.°90 −86°17′21 .′′94 61.°40 – 62.°43 −86°41′13 .′′85 – −86°00′24 .′′76 3
62.°93 −86°25′46 .′′70 62.°42 – 63.°45 −86°54′10 .′′71 – −86°00′22 .′′24 3
61.°85 −86°18′41 .′′65 61.°35 – 62.°35 −86°45′54 .′′25 – −86°00′05 .′′26 4
62.°22 −86°49′12 .′′30 61.°68 – 62.°63 −87°10′30 .′′65 – −86°26′43 .′′62 4
61.°91 −86°16′51 .′′91 61.°40 – 62.°35 −86°38′42 .′′34 – −86°00′24 .′′76 5
62.°91 −86°26′26 .′′18 62.°42 – 63.°36 −86°54′10 .′′71 – −86°00′22 .′′24 5
71.°37 −84°00′30 .′′40 70.°80 – 71.°80 −84°28′49 .′′91 – −83°24′22 .′′53 1
71.°37 −84°00′35 .′′45 70.°80 – 71.°80 −84°22′49 .′′86 – −83°29′40 .′′52 2
71.°37 −84°01′23 .′′35 70.°98 – 71.°76 −84°22′41 .′′95 – −83°42′29 .′′79 3
71.°36 −84°00′30 .′′16 70.°84 – 71.°76 −84°22′10 .′′30 – −83°29′40 .′′52 4
71.°37 −84°00′13 .′′25 70.°77 – 71.°80 −84°22′49 .′′86 – −83°26′44 .′′60 5
69.°46 −86°38′59 .′′13 68.°81 – 70.°12 −87°15′42 .′′73 – −86°03′47 .′′98 1
69.°36 −86°42′25 .′′19 68.°57 – 70.°21 −87°33′40 .′′20 – −86°00′27 .′′49 2
69.°41 −86°38′42 .′′03 68.°71 – 70.°06 −87°15′36 .′′88 – −86°03′47 .′′98 3
69.°37 −86°38′52 .′′44 68.°64 – 70.°17 −87°25′08 .′′48 – −86°00′27 .′′49 4
71.°49 −86°23′14 .′′97 71.°05 – 71.°97 −86°48′24 .′′97 – −86°01′34 .′′43 4
71.°47 −86°25′11 .′′42 70.°93 – 71.°97 −86°54′45 .′′20 – −86°01′34 .′′43 5
69.°41 −86°39′02 .′′72 68.°76 – 70.°11 −87°15′42 .′′73 – −86°03′47 .′′98 5
74.°79 −65°58′53 .′′76 74.°73 – 74.°84 −65°59′58 .′′83 – −65°56′56 .′′74 1
74.°79 −65°58′52 .′′77 74.°72 – 74.°85 −65°59′58 .′′83 – −65°55′13 .′′36 2
74.°79 −65°58′33 .′′95 74.°72 – 74.°89 −65°59′55 .′′68 – −65°56′08 .′′71 2
74.°79 −65°58′47 .′′84 74.°72 – 74.°85 −65°59′58 .′′83 – −65°55′01 .′′16 3
74.°79 −65°58′34 .′′66 74.°72 – 74.°88 −65°59′56 .′′04 – −65°54′46 .′′43 3
74.°78 −65°58′36 .′′24 74.°71 – 74.°87 −65°59′58 .′′83 – −65°49′10 .′′26 5
74.°79 −65°58′20 .′′78 74.°72 – 74.°87 −65°59′57 .′′54 – −65°53′46 .′′34 5
73.°95 −74°16′54 .′′76 73.°84 – 74.°09 −74°23′35 .′′77 – −74°08′18 .′′62 1
73.°95 −74°16′57 .′′19 73.°84 – 74.°07 −74°21′33 .′′08 – −74°11′24 .′′40 2
73.°95 −74°16′41 .′′94 73.°80 – 74.°12 −74°26′59 .′′69 – −74°08′18 .′′62 3
73.°95 −74°16′32 .′′77 73.°78 – 74.°11 −74°28′29 .′′07 – −74°03′19 .′′63 4
73.°95 −74°16′40 .′′07 73.°77 – 74.°11 −74°27′26 .′′84 – −74°04′27 .′′48 5
73.°30 −86°36′49 .′′34 72.°61 – 74.°08 −87°20′21 .′′62 – −86°01′36 .′′09 1
73.°53 −86°37′55 .′′11 72.°68 – 74.°40 −87°27′31 .′′75 – −86°00′15 .′′80 2
73.°57 −86°36′39 .′′48 72.°73 – 74.°47 −87°26′18 .′′23 – −86°00′15 .′′80 3
73.°34 −86°37′15 .′′79 72.°61 – 74.°18 −87°25′57 .′′57 – −86°01′36 .′′09 4
73.°46 −86°38′50 .′′19 72.°61 – 74.°50 −87°32′24 .′′77 – −86°00′15 .′′80 5
08.°62 −86°31′22 .′′09 08.°10 – 09.°19 −87°02′11 .′′48 – −86°04′45 .′′38 1
08.°62 −86°31′08 .′′60 08.°17 – 09.°10 −86°56′36 .′′06 – −86°08′31 .′′47 2
08.°63 −86°30′15 .′′31 08.°17 – 09.°10 −86°56′36 .′′06 – −86°05′42 .′′51 3
08.°61 −86°30′30 .′′86 08.°17 – 09.°10 −86°56′36 .′′06 – −86°05′42 .′′51 4
08.°63 −86°30′31 .′′20 08.°12 – 09.°15 −86°56′36 .′′06 – −86°04′45 .′′44 5

Table C.4: Area 4: All Clusters Found Across All Experiments

RA (°) Dec (°) RA Bounds (°) Dec Bounds (°) Experiment
00.°56 67°26′02 .′′32 00.°40 – 00.°75 67°16′53 .′′23 – 67°34′07 .′′21 1
00.°55 67°25′17 .′′38 00.°44 – 00.°68 67°19′50 .′′40 – 67°30′31 .′′84 2
00.°55 67°25′57 .′′82 00.°42 – 00.°71 67°19′37 .′′98 – 67°34′07 .′′21 3
00.°55 67°25′11 .′′16 00.°46 – 00.°66 67°19′53 .′′51 – 67°29′48 .′′36 4
23.°47 30°36′29 .′′71 23.°32 – 23.°59 30°29′08 .′′78 – 30°43′25 .′′53 1
23.°47 30°36′37 .′′36 23.°35 – 23.°60 30°29′29 .′′25 – 30°43′35 .′′91 2
23.°47 30°37′42 .′′05 23.°38 – 23.°56 30°32′01 .′′53 – 30°43′25 .′′53 3
23.°47 30°36′50 .′′79 23.°36 – 23.°57 30°30′46 .′′37 – 30°43′25 .′′53 4
23.°46 30°36′29 .′′71 23.°31 – 23.°61 30°29′08 .′′78 – 30°44′38 .′′01 5
35.°52 57°08′26 .′′09 35.°43 – 35.°63 57°03′30 .′′07 – 57°13′46 .′′71 3
40.°69 61°35′27 .′′79 40.°58 – 40.°79 61°29′39 .′′61 – 61°41′45 .′′61 4
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