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ABSTRACT

In this thesis, we introduce a naive p-adic height on the Jacobians of smooth projective curves
of genus 2. More generally, we explore both real and p-adic height functions on elliptic curves
and on the Jacobians of genus 2 curves. Starting from the more established topic of real-valued
height functions on elliptic curves, we discuss how methods can be adapted to the construction
of p-adic height functions. A naive p-adic height was defined by Bernadette Perrin-Riou, and it
can be used to obtain a quadratic p-adic height using a limit process. We give more details on
her arguments. We then move on to the topic of height functions on the Jacobians of genus 2
curves. We discuss existing real height functions in this setting, and a quadratic p-adic height
defined using local height functions. Then we turn to the main result of the thesis, which is the
existence of a naive p-adic height on the Jacobian of a genus 2 curve that can be used to define
a quadratic p-adic height. This height is defined analogously to Perrin-Riou’s height. We show
that the resulting quadratic p-adic height is equal to the quadratic height obtained using local
heights.
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Introduction

Roughly speaking, a real height function is a function from a mathematical structure to the real
numbers which measures the complexity of mathematical objects. On projective space, there is
a straightforward definition of a real height function that can be used to count points that are
rational over a given field, such as a number field, in the sense that there is a finite number of
points with height below any given value (even though the total number of projective points
over a field may be infinite). Using this function, we can define a real height function on the
group of points on an elliptic curve over Q (or more generally, a number field). The resulting
function is also reasonably well-behaved with respect to the group structure of the elliptic curve.
In particular, it is close to being a quadratic form, as we will see in Section We call this
the naive real height function on the elliptic curve. This function was for example important in
the proof of the Mordell-Weil theorem (see [32, VIII, Theorem 6.7]), which states that the group
of rational points on an elliptic curve over a number field is finitely generated.

In 1965, Néron constructed a real height function on elliptic curves in [27] which is actually a
quadratic form, by writing it as a sum of local functions. Around that time, Tate defined the
same height function as a global height using the naive height and applying a limit construction
(unpublished). The resulting height function is called the canonical height or Néron-Tate height.
We will discuss both constructions in Section and Section

The idea of height functions can be extended to curves of genus higher than 1, or more generally
to algebraic varieties. In this thesis, besides height functions on elliptic curves, we look at height
functions defined on the Jacobians of smooth projective genus 2 curves. Because the Jacobian is
an abelian variety, we can again impose conditions on the behaviour of the height function with
respect to the group law. In particular, height functions that are quadratic forms can also be
found in this case. We will see such height functions in Section

Besides height functions that map to the real numbers, we can define height functions that
map to the field of p-adic numbers for a prime p. In this case, we lose the counting property,
but it is still possible to define p-adic height functions which are quadratic forms. For elliptic
curves, such functions were defined as the sum of local p-adic height functions, similar to Néron’s
construction of the canonical real height. The local height at p is defined using a so-called p-adic
sigma function, which can be defined up to a choice of a parameter in Q,. Different sigma
functions give rise to different p-adic heights. Such sigma functions have been constructed by
Bernardi (3], Néron [26] and Mazur-Tate [24]. We will see Bernardi’s sigma function and a
general description of the possible sigma functions in Section [2.2.2]

Alternatively, in 1984 Perrin-Riou [2§8| constructed two quadratic p-adic height functions on
elliptic curves using an analogue of the method of Tate, namely as limits of naive p-adic height
functions. She compared these functions with the one that was constructed using local p-adic



heights. We discuss her construction and the comparison at length in Section [2.3]

On the Jacobians of genus 2 curves, p-adic height functions constructed using local p-adic heights
have also recently been described. This construction also needs a p-adic sigma function, which
is defined by Blakestad in [8] and generalized by Bianchi in [5]. The main goal of this thesis is
to give an alternative construction analogous to Perrin-Riou’s construction for elliptic curves. In
Section we define a naive p-adic height on the Jacobian of a genus 2 curve and show that a
limit construction applied to this height, similar to the construction of Tate and Perrin-Riou,
results in a quadratic p-adic height. We show that the resulting height is the same function as
the one that was obtained using local p-adic heights.

Real-valued height functions on elliptic curves and more generally on abelian varieties arise in the
Birch and Swinnerton-Dyer conjecture (see |2, Conjecture 1.1]), which is one of the Millenium
Prize Problems. The p-adic height functions on abelian varieties in turn appear in a p-adic
analogue of the Birch and Swinnerton-Dyer conjecture (see [25], |2, Conjecture 1.3, 1.4]). Besides
this, p-adic heights are also used in the quadratic Chabauty method (see [1]). This is a method
for computing the rational points on a curve of genus > 1 over the rational numbers, when the
rank of the Mordell-Weil group of its Jacobian is equal to the genus of the curve. The method
extends the Chabauty-Coleman method, which requires this rank to be strictly smaller than
the genus. An exploration of such applications for the discussed height functions is outside the
scope of this thesis.

We start this thesis by defining the necessary preliminaries to understand the theory behind
the topics outlined above. In Section [I.I} we define the field of p-adic numbers, and the p-adic
logarithm function which appears in the definitions of p-adic heights. In Section we introduce
the Riemann-Roch theorem for curves. We then define elliptic curves and some useful properties
of these curves in Section [I.3] In Section [[.4] we see a general description of smooth genus 2
curves, and we define the corresponding Jacobians and Kummer surfaces in Section [I.5] To
prove results about p-adic height functions, we make frequent use of properties of formal groups.
We define the general notion of a formal group in Section [I.6, and use it to construct formal
groups associated to elliptic curves and Jacobians of curves of genus 2. We conclude the section
by introducing the formal group logarithm, a formal power series which shows up frequently in
arguments in later chapters.

In the second chapter, we explore the topic of height functions on elliptic curves. We start
by introducing the naive real height function and the Néron-Tate height in Section We
present both Tate’s limit construction and Néron’s construction using local height functions. In
Section 2.2 we discuss the definition of p-adic quadratic heights as the sum of local p-adic height
functions. Then we discuss the alternative construction by Perrin-Riou, using naive p-adic height
functions, in Section We go through her arguments showing the existence and quadraticity
of the limit heights, giving more details where useful. We then compare these quadratic p-adic
heights to the quadratic p-adic heights from Section

In the final chapter we treat height functions on the Jacobians of genus 2 curves. The structure
of this chapter is comparable to that of the previous one. In Section 3.1} we discuss real-valued
height functions on the Jacobians of genus 2 curves defined by Uchida [35]. Then, in Section
we discuss a p-adic height that is defined using local p-adic height functions by Bianchi [4].
Finally, in Section we introduce a naive p-adic height on the Jacobian. This naive height can
be used to define a quadratic p-adic height, as we show in this section. We then show that the
resulting quadratic height is the same as the quadratic p-adic height from Section [3.2



Chapter 1

Preliminaries

1.1 p-adic numbers

Traditionally, height functions on curves were defined as functions mapping into the real numbers.
The real numbers are the completion of () with respect to the standard absolute value. In this
section we will see that it is also possible to define other absolute values on the field QQ, which
can be used to define the field of p-adic numbers for a prime p. The main references used for
this section are 33| Section 2, 3|, [15, Chapter 3, 4, 5] and [21}, Chapter I, VI].

Definition 1.1.1 ([11, p. 2]). Let K be a field. A discrete valuation on K is a surjective map
v: K — Z U {oco} with the properties

1. v(a) =00 <= a=0.
2. v(ab) = v(a) + v(b) for all a,b € K.
3. v(a+b) > min{v(a),v(b)} for all a,b € K.

The subring O = {a € K | v(a) > 0} is a principal ideal domain with exactly one nonzero
maximal ideal, which is a discrete valuation ring (DVR) by definition (see |11, p. 4, Proposition

2]).
Definition 1.1.2. An absolute value on a field K is a map | - |: K — Rx>o with the properties:
L. |la|=0 <= a=0.
2. |ab| = |a| - 0] for all a,b € K.
3. |la+0b| <|a|+ |b] for all a,b € K (the triangle inequality).
If the map satisfies the stronger property
4. la+ b| < max{]al, |b|} for all a,b € K,

the absolute value is called non-archimedean. Otherwise it is called archimedean. The absolute
value satisfying |a| = 1 for all a # 0 is called the trivial absolute value.



Lemma 1.1.3 ([15, Proposition 2.3.4]). Let | - | be a non-archimedean absolute value. If
la| # |b|, we have |a + b| = max{|al, |b|}. Similarly, if v is a discrete valuation and v(a) # v(b),
we have v(a + b) = min{v(a),v(b)}.

An absolute value on a field K induces a metric d(a,b) = |a — b|, which turns K into a metric
space.

Definition 1.1.4. Two absolute values on a field K are called equivalent if they induce the
same topology on K. An equivalence class of absolute values is called a place of K.

Proposition 1.1.5 (|15, Proposition 3.1.3]). Two absolute values | - |1 and |- |2 on a field K
are equivalent if and only if there exists a € Rsq such that for every a € K, |a|1 = |al$.

Let K be a field with a discrete valuation v. Then we can define a non-archimedean absolute

value |- |, on K by
0 ifa=0
laly = v(a)
Q@ ifa#0

for some 0 < o < 1. For different choices of o these absolute values are in the same equivalence
class.

Lemma 1.1.6 ([15, Lemma 3.2.2]). Let | - | be a non-archimedean absolute value on a field
K. A sequence (ay) is Cauchy if and only if limy, o |an+1 — an| = 0.

Lemma 1.1.7 (Generalization of [15, Corollary 5.1.2]). Let K be a field which is complete
with respect to the metric induced by a non-archimedean absolute value |- |. Then a series
Z;o:o an with a, € K converges in K if and only if lim, , a, = 0. In that case we have
| 2> onz0 an| < maxp {|an|}.

1.1.1 Absolute values on Q

The most well-known absolute value on Q is defined by

a ifa>0
|aloo = .
—a ifa<O.

This is an archimedean absolute value.

Let p be a prime number. We can write each a € Q* as a = %p” for some unique n € Z, and
some 71,7 € Z such that p { riro. Then we assign ord,(a) = n , and ord,(0) = co. This defines
a discrete valuation ord, on Q, which we call the p-adic valuation. This valuation defines a
non-archimedean absolute value |- |, on Q:

)0 ifa=0
‘Cb|p - p—ordp(a) if a #0,

which we call the p-adic absolute value. It can be shown that |- |, and |- |, are not equivalent
for primes p and ¢ when p # ¢. Furthermore, | - |« is not equivalent to | - |, for any prime p |21}
p. 7, Exercise 7, 9].

Theorem 1.1.8 (Ostrowski’s Theorem, |21, p. 3, Theorem 1]). Every nontrivial absolute
value on Q is equivalent to | - | or to ||, for a prime p.

4



Definition 1.1.9. We define the set of standard absolute values on Q by

Mg = {0} U{p € Z~¢ | p a prime number}.

This set defines a choice of representative for every place of Q.

Theorem 1.1.10 (|32, VIII, Product Formula 5.3]). Let z € Q*. Then

IT l=le=1.

’UEMQ

The field Q is not complete with respect to the metric induced by each of the standard absolute
values (see [15, Lemma 3.2.3]). The completion of Q with respect to | - |« is the field of real
numbers R. With respect to the p-adic absolute value for a prime p, the completion of Q is
called the field of p-adic numbers and is denoted by Q,. Explicitly, we have

Qp = {(an) | (an) is a Cauchy sequence in Q w.r.t. |-|,}/{(an) | li_>m lan|p, = 0}.
n—oo

We can extend the p-adic valuation and absolute value to Q,. Let a € Q, be represented by the
Cauchy sequence (ay). We define ordy,(a) = lim,,_,o ord,(ay) and |al, = lim, o |an|p (for the
existence of these limits, see [21}, p. 10]). Then ord,, is a discrete valuation on Qp, and |- |, is a
non-archimedean absolute value on Q,.

Definition 1.1.11. We define the ring of p-adic integers as

Zp={a€Qp|lal, <1}
= {a € Q| ord,(a) > 0}.

The ring Z, is a DVR with field of fractions Q, and maximal ideal pZ,. Note that Z C Z,.

Definition 1.1.12. On Z,, there is a natural reduction map
Ly = Lyp|pZLy = Fp.

We denote the image of a € Z,, under this map by @ € F,. For a polynomial g € Zy[x1,...,zy], we
use the notation g for the polynomial in Fp[z1, ..., z,] obtained by reducing all of its coefficients
modulo p.

Theorem 1.1.13 (Hensel’s lemma, [21, p. 16, Theorem 3]). Let f € Zy[z] with formal
deriwative f'. Let ag € Z, such that f(ap) € pZy, and f'(ao) ¢ pZ,. Then there exists a unique
a € Zy such that f(a) =0 and ag — a € pZy,.

1.1.2 The p-adic exponential and logarithm

On R we have an exponential function, which can be described by the power series

oo xn

exp(z) = » — (1.1)

n=0
which converges on all of R. We can define a p-adic exponential function on a subset of Q, using
the same power series. On Q,, we need ord,(z) > p%l for this series to converge, and in that
case it converges to a value in Z,, (see [32, IV, Lemma 6.3(b)]). When p is odd, this means its
domain of convergence is pZ,. We denote this function by exp,: pZ, — Z, (or expy: 4Zs — Zs
for p = 2).



Lemma 1.1.14. If x € p*Z,, for some k € Z, k > zﬁ’ then exp,(r) € 1 + p*Z,.
Proof. This follows from [32, IV, Lemma 6.3(b)]. [

Similarly we have the standard (natural) logarithm function on R, which can be described by
the power series
e (_1)n+1

log(z) = Z T(m -1n" (1.2)

n=1

which converges for 0 < < 2. We can define a p-adic logarithm on Q) by starting out from the
same power series. On Q, equipped with the p-adic absolute value, the series ([1.2)) converges for
x € 14 pZy, ie. when |z —1|, <1 (see [32, IV, Lemma 6.3(a)]).

Lemma 1.1.15 ([15, Corollary 5.8.3]). Let a € Q. Then we can write a = rbp" for some
unique n € Z, r € Z, a root of unity satisfying Pl =1, and b € 1 + pZ,,.

Proof. We already know that we can write a = up” for a unique n € Z and some u € Z. From
Hensel’s lemma applied to the polynomial 2P~! — 1, we get that there exists a unique r € Ly,
satisfying r?~! = 1 such that u = r mod pZy. This shows that wrP=2 = P71 = 1 mod P2y, O in
other words, urP=2 €1 + pZy. If we set b= urP=2, we get u = rb and hence a = rbp". Because
our choices of n and r were unique, this factorization is uniquely determined. |

We want to define a p-adic logarithm log,: Q; — @Q, in such a way that for all a,b € Q,, we
have the property log,(ab) = log,(a) + log,(b). For b € 1 + pZ,, we can define

X 1 \n+l
log, (b) = > (171+(b —1" (1.3)
n=1

because this series converges at b. For r € ZX satisfying 7~ = 1, we need

(p —1)log,(r) = log,(1) =0,

and hence log, () = 0. We thus get

log,, (rbp") = log,(b) + nlog,(p).

Hence when we fix a value for log,(p), this completely defines log, on Q. A common choice,
which we adopt, is to set log,(p) = 0. For this choice, the resulting logarithm is called the Iwasawa
logarithm ([15, p. 155]). To see that it indeed satisfies the desired property, let r1,r2 € Z;, be
(p — 1)-st roots of unity, b1, by € 1+ pZ, and ny,ny € Z. Then riry € Zy, is also a (p — 1)-st root
of unity and b1bs € 1 + pZ,. Hence

log,, (r1b1p™" - rabop™?) = logp(rlrgblbgp”1+”2)

= 10gp(b1b2)
= logp(bl) =+ logp(bQ)‘

This last step uses that the original power series ([1.2) satisfies log,(b1b2) = log,(b1) + log,(b2)
for bi,by € 1 + pZ,, (see [15, Proposition 5.7.3]).

The p-adic logarithm has the following useful property.



Lemma 1.1.16. If v € 1+ p*Z, for some k € Z~o, then log,(z) € P*Z,.

Proof. Because x € 1 4 pZ,, we have by definition log,(z) = > 72, ﬂ(w —1)*. We know

1

ordy(z — 1) > k. Also ord,(i) <i—1 for all ¢ > 1. Hence for all i > 1, we have

ord,, <(_1>l+1($ — 1)i> > ik —(i—1)

—k+(k—1)(i—1) >k

This shows that log,(v) € P*7Z,. [

In particular, this shows that the image of the function log, actually lies in pZ,, so we have
log,: Q) — pZy.

As formal power series, we have log,(exp,(z)) = x and exp,(log,(z)) = . Hence Lemma [1.1.14
and Lemma [1.1.16| imply that for all & > zﬁ’ the map exp,,: kap —1 —i—kap is a bijection

with inverse log,

We deduce a variation on the product formula involving the p-adic logarithm, which will be
useful multiple times.

Lemma 1.1.17. Let x € Q*. Then

log,(z) + Z log, ||, = 0.

q prime
q#p

Proof. Note that for z € Q*, we have |z[, € Q¢ C Q, for all v € Mg. From the product
formula (Theorem [1.1.10]), we then know that

Z log,, |z|, = 0.

UGMQ

Note that log,(—1) = 0 and hence log,(a) = log,(—a) for all @ € Q. In particular, we have
log,, |z]|oo = log,(x). Furthermore, we note that |z[, is an integer power of p by definition, and
hence log,, |z, = 0. This implies the result. [ |

1.2 The Riemann-Roch theorem

This section gives an overview of some general theory about algebraic curves. We use the word
curve for a geometrically irreducible projective variety of dimension 1. We aim to introduce all
concepts necessary to understand the Riemann-Roch theorem for curves. This section is mainly
based on [32, Chapter II]. We restrict to curves over perfect fields, which are fields for which
every algebraic extension is separable. In particular, all fields of characteristic 0 and all finite
fields are perfect fields, and these are the only types of fields we will need to consider. For more
general fields the arguments we discuss work in the same way when we replace the algebraic
closure by the separable closure.



1.2.1 Divisors

Let us consider a curve C defined over a perfect field K. Then the divisor group of C, denoted by
Dive, is the free abelian group generated by the points of C. A divisor D is thus a finite formal
sum of points of C, of the form D =", _.np P for some np € Z, where all but finitely many
np are equal to zero. We define the degree of a divisor D to be deg(D) = > p.onp. We define
the set Divd = {D € Dive | deg(D) = 0}, which is a subgroup of Dive.

Consider any algebraic extension field K C L C K, where K denotes a fixed algebraic closure of
K. If Gal(K/L) is the Galois group of K /L, there is an action of this group on Dive and DivY,
defined for o € Gal(K /L) as

(Z np P)U =Y npo(P),

pPeC pPeC

where o(P) represents the image under the coordinate-wise action of o on P as a point in
projective space. We define Dive (L) = {D € Dive | Vo € Gal(K/L), D° = D} and we say that
such D € Dive(L) is defined over L. The set Dive(L) is a subgroup of Dive. We similarly define
the group Diva(L) = {D € Divd | Vo € Gal(K /L), D° = D}.

Now let us assume that C is a smooth curve, and let K (C) be its function field. For f € K(C)*,
we define an associated divisor

div(f) =) ordp(f) P,

PeC

with ordp as defined in |32, p. 18, Definition]. We say that a divisor D € Dive is principal
if D = div(f) for some f € K(C)*. We can now define an equivalence relation on Dive. We
say D1 and Dy are linearly equivalent if their difference is a principal divisor. In this case, we
write D1 ~ Dy. The principal divisors from a subgroup, which we denote by Prince C Dive.
We can thus define the quotient group Pice = Dive / Prince, which is called the Picard group.
Furthermore, all principal divisors have degree zero (see [32, II, Proposition 3.1]), and hence
Prince C Divg. We can thus also define Picg = Divg / Prince. We denote the class of a divisor
D in these factor groups by [D]. By definition we have [D;] = [Ds] precisely when Dy ~ Ds.

For f € K(C)* and o € Gal(K/K), let us denote by f the function we obtain when we replace
each coefficient in f by its image under o. We have

(div(f))” =) ordp(f) o (P)

which follows from the observation that f(P) =0 <= f?(c(P)) = 0. In particular, this shows
that (div(f))? € Princc. Hence there are well-defined actions of Gal(K/K) on Picc and Picd
defined by [D]? = [D?] for 0 € Gal(K/K). For an extension field K C L C K we can hence
define

Pice(L) = {[D] € Pic¢ | Vo € Gal(K /L), D]’ = [D]}

and
Picd(L) = {[D] € Pic | Vo € Gal(K/L),[D]° = [D]}.



1.2.2 Differentials

The space of differentials Q¢ on C is a K(C)-vector space generated by symbols of the form df
for f € K(C), subject to the relations

1. d(f +g) =df +dg for all f,g € K(C),
2. d(fg) = f dg+ g df for all f,g € K(C),
3. de=0forall c € K.

Let P € C, and fix a uniformizer ¢t € K(C) at P. Then for each differential w € ¢, there is
a unique function g € K(C) such that w = gdt. If w # 0, we can define ordp(w) = ordp(g),
because this value is independent of the choice of ¢ (see [32, II, Proposition 4.3]). We define the
divisor associated to a nonzero differential w as

div(w) = Z ordp(w) P.
pecC

The space Q¢ is a 1-dimensional vector space (|32, II, Proposition 4.2]), which implies that all
differentials w € Q¢ are in the same divisor class in Pice. We call this class the canonical divisor
class on C. Any divisor in this class is called a canonical divisor.

1.2.3 The Riemann-Roch theorem

We say a divisor D = Y p.onp P is effective when np > 0 for all P € C. We then write D > 0.
Similarly, we write D1 > Do when D1 — Ds is effective. For any divisor D € Dive, we can define
a finite-dimensional K-vector space

L(D) ={f € K(C)* | div(f) = —D} U {0}.
We write ¢(D) = dimp L(D).

Theorem 1.2.1 (Riemann-Roch, [32, II, Theorem 5.4]). Let C be a smooth curve and let
K¢ be a canonical divisor. There is an integer g > 0 (called the genus of C) such that for every
divisor D € Dive, we have

UD) — ¢(Kc — D) = deg(D) — g + 1.

Corollary 1.2.2 ([32, II, Corollary 5.5]).
1. {(Ke) =g.
2. deg(K¢) =29 — 2.
3. If deg(D) > 2g — 2, then ¢(D) = deg(D) — g + 1.

There exist generalizations of the Riemann-Roch Theorem to smooth projective varieties of
higher dimensions. We do not treat them here, but see for example [17, V, Theorem 1.6] for a
version on surfaces or [17, Appendix A] for a treatment of Riemann-Roch on varieties of arbitrary
dimension.



1.3 Elliptic curves

We introduce the concept of elliptic curves, and we state some properties that we use in this
thesis. A more elaborate introduction can be found in [32, Chapter III].

Let K be a perfect field. An elliptic curve over K is a smooth projective curve E over K of
genus 1, together with a point O € E. Any elliptic curve can be given as the zero set in P? of a
Weierstrass equation, which is an equation of the form

Y2Z + a1 XY Z +asYZ? = X34+ aaX?Z + au X Z? + ag Z°

with a; € K, and O = [0:1:0]. Such a specific equation is also called a Weierstrass model for E.
We say E is defined over K, and we write F/K. For any algebraic extension field K C L C K,
we denote by E(L) the points of E which can be represented with coordinates in L. We can
dehomogenize by setting x = % and y = % to represent F by an affine equation of the form

v+ arzy + asy = 2° + asx® + asx + ag. (1.4)

We call O the point at infinity. When the characteristic of K is not 2 or 3, it is possible to
perform a change of coordinates to represent F by an equation of the form

VP =23+ Az + B

with A, B € K, called a short Weierstrass equation |32, Section II1.1]. We can define an addition
operation on an elliptic curve, which turns it into an abelian group with identity O, and more
specifically an abelian variety. The explicit group law can be found in |32 Section III.2].

Elliptic curves are smooth by definition. For a curve represented by a Weierstrass equation
, being smooth is equivalent to the nonvanishing of the quantity A defined in 32, p. 42],
called the discriminant of the Weierstrass equation. A curve given by an equation of the form
can also be singular. In that case it has exactly one singular point, and the subset Fyq of
nonsingular points still has a group structure where the addition operation is defined in the
same way as on elliptic curves (see |32} III, Proposition 2.5]).

We denote the sum of m copies of a point P € E(K) by [m]P. We write Fio for the subgroup
of torsion points on E, that is

Eiors ={P € E(K) | [m]P = O for some m € Z~}.
Similarly we write Eyors(K) = Eiors N E(K).

In this thesis, we mostly consider elliptic curves over Q given by an equation (1.4) with a; € Z
(for any arbitrary Weierstrass equation over Q we can perform a coordinate transformation to
achieve a; € Z, see [32, Section III.1]).

Proposition 1.3.1. Let E/Q be an elliptic curve given by a Weierstrass equation (1.4) with
a; € Z. Then for any P € E(Q) \ {O}, we can write the coordinates of P uniquely as

b(P)

w(P) = 00 and y(p )= apy

d(P)?

for some a(P),b(P) € Z, d(P) € Z~o such that gcd(a(P),d(P)) = ged(b(P),d(P)) = 1.
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Proof. Because a; € Z, we have ordy(a;) > 0 for all ¢ and all primes ¢. Let us consider any point
P = (z,y) € E(Q)\ {O}. If ord,(y) < 0 for a prime ¢, we can compare the g-adic valuations of
the left- and right-hand side of (|1.4), and we find that

2o0rd,(y) = ord, (v + azy — ag) (using Lemma |1.1.3])
= ordy(z® + azz?® + ayz — ay7y), (1.5)

which implies that we must also have ord,(z) < 0. Then ord,(z®) < ord,(asz?® + asz). We
consider three cases.

1. If ordy(23) > ord,(a17y), we have 2 ord,(x) > ord,(a1y). But Lemma and (1.5 then
imply that 2ordy(y) = ordy(ai1zy), and hence

2ordy(x) = 2ordy(y) — 2ordg(ar1) < ordg(a1y).

This is a contradiction.

2. If ordy(23) = ord,(a;zy), we have ord,(y) = 2ord,(z) — ordy(a;). But from we get
2ord,(y) > min{ord,(z*), ord,(asz?), ord,(asz), ords (a1zy)} = ord,(z*).

We obtain 4 ord,(z) — 2ordy,(a;) > 3ordy(z) which is again a contradiction.

3. We must thus have ord,(z?) < ord,(a;zy). Using Lemma this implies that
ordy(z® + agz? 4+ agr — a1wy) = ordy(z®) = 3ord,(z).
We conclude that 2 ord,(y) = 3 ord,(z).

Conversely, if ord,(z) < 0, similar reasoning again shows that 2 ord,(y) = 3 ord,(z). This shows
that we can write the coordinates of P uniquely as z(P) = % and y(P) = % for some
a(P),b(P) € Z, d(P) € Z~¢ such that ged(a(P),d(P)) = ged(b(P),d(P)) = 1. [ |

1.3.1 The Kummer variety

For a general abelian variety A, if we identify all points P on A with their additive inverse —P,
the corresponding quotient of A is again a variety called the Kummer variety (see |7, Section
4.8]). Let us consider an elliptic curve E/K given by a Weierstrass model . Because an
elliptic curves is an abelian variety, we can consider its Kummer variety. Let us consider the
surjective morphism

ke E— P! (1.6)
(z,y) — [z : 1]
O [1:0]

(see [32, II, Example 2.2, Theorem 2.3]). We see that x(P) = k(Q) precisely when P, Q # O and
z(P) = z(Q), or when P = (@ = O. From the group law on E, we can deduce that z(P) = z(Q)
precisely when P = +@). This shows that x exactly identifies each point with its inverse, and
thus the map & identifies the Kummer variety of E with P!,

11



1.3.2 Reduction of elliptic curves

Let g be a prime. When we have an elliptic curve E given by a model of the form with
coefficients in Z, we can view E as an elliptic curve defined over ;. Each coefficient a € Z; in
the defining equation of E can be reduced modulo ¢ via the natural reduction in Definition
The resulting equation defines a (possibly singular) Weierstrass curve over [y, given by

Ei y2 + arzy + asy = .’L‘3 + a2$2 + asx + ag,
which is the reduction of modulo q. Each P € E(Qq) can be written in the form [X : Y : Z]
with X, Y, Z € Z, such that at least one of the coordinates is in Z;. Then the reduction of P
modulo q is defined as P = [)Z' Y Z}, which is a point on E. When E is nonsingular (that is,
when ¢ 1 A(F)), we say E has good reduction at ¢ with respect to the model . Otherwise,
FE has bad reduction at g with respect to the model. This may be dependent on the chosen
Weierstrass equation for E. It is possible to define the notion of a minimal Weierstrass equation
for F, and we say E has good reduction at q if it has good reduction at g with respect to this
minimal equation (see [32, Section VII.1]). In particular, if F has good reduction at ¢ with

respect to some Weierstrass equation with integer coefficients, it has good reduction with respect
to a minimal equation as well.

We define the following sets, which are actually groups:
Ens(Fq) ={Pe E(Fq) | P is nonsingular}.
Ey(Q) = {P € E(Q) | P € Eus(Fy)}
Ei(Qq) = {P € E(Q | P=0}.

These groups form an exact sequence

{0} = E1(Qq) = Eo(Qq) — EHS(Fq) — {0}
where the map on the left is inclusion, and the map on the right is reduction modulo ¢
(see [32, VII, Proposition 2.1]). We also use the notation E(()q) (Q) = Ep(Qq) N E(Q) and
E{(Q) = E1(Q,) N E(Q).

1.3.3 Division polynomials

Given a Weierstrass curve E, we define a collection of polynomials called division polynomials.
These are useful when looking at the coordinates of multiples of points on the curve.

Definition 1.3.2 (|32, Exercise 3.7]). Let E/K be a curve over a field K given by a Weierstrass
equation (|1.4) (we include singular curves). The division polynomials corresponding to E are
polynomials ,, € Z[a1, a2, as, a4, as, x,y], defined inductively as

Yo =0,

Y1 =1,

Yo =2y + a1 + as,

Y3 = 3t + boa® + 3by2”® + 3bgx + bg,

¥y = o (22° 4 baa® + 5baa” + 10bgz® + 10bsz® + (babs — babg)z + (babs — b3)) ,
Voms1 = Umaatly, — Ymo1b  for m > 2,

me = ﬁ:(wgn—lwm+2 - wm—2¢72n+1) for m > 3.
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with b; € Zla1, ag, a3, a4, ag) as defined in [32, Section III.1]. We furthermore define polynomials

Gm = Ty — hmi1m—1 form > 1. (1.7)

Proposition 1.3.3 (|28, p. 248], |37, Lemma 3.3, 3.4, 3.5, 3.6], |36, Proposition 4.9]).
For all m > 1, the polynomials ¥y, and ¢, satisfy the following properties:

(i) Gm, V2, € Zlar, az, a3, aq, ag, ).

(ii) ¢m is homogeneous of degree 2m? and 2, of degree 2(m? — 1) if we give a; weight i and x
weight 2.

(iii) As polynomials in Zlas, ..., ag)[x], ¢m has degree m? and )2, has degree m*> —1. Moreover,

bm is monic, and the leading coefficient of 2, is m?.

(iv) Let P # O be a nonsingular point on E. When 2 (x(P)) = 0, we have [m]P = O.
Otherwise,

z([m]P) = ; (1.8)
(v) For a nonsingular point P # O and all m,n > 1 such that [n|P # O, we have
Ymn(P) = n(P)"™ Yin((n] P).

(vi) We have

@n—ﬁ>@<@ﬂ

Y2
= ¢y — bag2 — 2bsdn S — bl (1.9)
W = 083 (j;)
= Y2 (465 + badZ7 + 2bantb + betl). (1.10)

1.4 Curves of genus 2

Let K be a perfect field with characteristic different from 2. Every smooth curve of genus 2 over
K can be described by an affine equation of the form

C:y? = f(z) = fea® + f52° + faz + f32° + foz® + frz + fo, (1.11)

where f € K[x] has degree 5 or 6, and it has no multiple factors (otherwise the curve is singular)
(see |10, p. 1]). In particular, every smooth genus 2 curve is a hyperelliptic curve. For a general
introduction on this class of curves, see [33].

We cannot complete the affine curve by homogenizing the equation in the usual way
to obtain a smooth projective curve in P2. The resulting equation would be of the form
Y?27Z* = F(X,Z) where F is a homogeneous polynomial of total degree 6 in X and Z. The
projective point [0: 1: 0] is a zero of this equation, but it is a singular point, so the projective
equation defines a singular curve. Instead, we embed the affine curve in a modified projective
plane.

13



Definition 1.4.1 ([33), Definition 2.1]). The weighted projective plane P%l 31) is the geometric
object whose points over a field L are triples (X,Y, Z) € L3\ {(0,0,0)} modulo the equivalence

relation ~, where (X,Y,Z) ~ (X', Y’,Z’) if there exists some element ¢ € L™ such that
(X", Y, Z") = (cX, Y, cZ). We denote the corresponding equivalence class by [X : Y : Z].

The coordinate ring of }P’%l 51) over L is the ring L[X,Y, Z] graded such that X and Z have
degree 1 and Y has degree 3.

If we homogenize (|1.11) to a polynomial in the coordinate ring of P%L?),l) over K, we obtain the
equation

Y2 = f6 X0+ f5 X°Z + fuXAZ% + 3X323 + fo X224 + [1X Z° + fo 25, (1.12)

2

where = = % and y = % This equation defines C as a smooth subvariety of ]P’(l 31"

If f(z) has degree 6 and it has a root in K, it is possible to apply a coordinate transformation
over K such that f becomes monic of degree exactly 5 (see |10, p. 1]). In this thesis we restrict
to curves that can be written in this form. These curves have an affine equation of the form

C:y? = f(x) =2° + faz’ + fza® + for® + frz + fo (1.13)

for some f; € K such that f has no multiple factors. If we denote the (distinct) roots of f by
r1,...,75 € K, we can alternatively write

(x — 7).

~
—
N
I
.zm

Looking at the curve via its embedding in P%l 5.1y, We note that it has one point at infinity
co=[1:0:0].

Note that when [X : Y : Z] € C, we also have [X : =Y : Z] € C. So there is an automorphism of
C defined by

t:C—=C
X:Y:Z]—[X:-Y:Z],

called the hyperelliptic involution. We also have a quotient map

7:C — P!
X:Y:Z]—[X:Z]

Note that this map is well-defined, because [0 : 1 : 0] ¢ C. This map is a 2-1 cover, branched
precisely on the fixed points of ¢ (i.e. the points with Y = 0). These points are called the
Weierstrass points of C. Explicitly, these are the points (r1,0),..., (r5,0) and oco.

1.4.1 Divisors on genus 2 curves

We introduce a few important divisors on C. To find divisors, it is useful to first fix a uniformizer
at every point in C. We distinguish three types of points.
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1. Let P = (z9,yo) with yo # 0. In this case, the maximal ideal of the local ring O¢ p at P is
of the form mp = (x — z9,y — yo), but we notice that

(v — o) +v0) =y* — 4
= ($—£U0)5+-~-+f1($—l‘0)
= (z — 20)"g(),

where g € K|[z] satisfies g(z¢) # 0, and the value of k € Z~o depends on which of the f;
equal 0. We conclude that

k 9(@)
y—yo=(x—xo )
( ) Y+
where % € OCX,’P. This implies that mp = (z — x¢), so © — ¢ is a uniformizer at P.

2. Let P = (14,0) for some k € {1,...,5}. We know f(x) = (z — rx)g(z) with g € K|[z].
We have that mp = (x — g, %), but y?> = f(x) and hence z — rj, = %. Because f has
no multiple roots we know that ﬁ € OCX’ p» and hence this implies that mp = (y). We
conclude that y is a uniformizer at P.

3. Let P = oco. We perform a change of variables to the affine patch corresponding to X ## 0,
which results in the w? = z + --- + fp2% with z = % and w = 9% We can also write it
as w? = H?Zl(z — p;), where the p; € K are the roots of z 4 --- 4 fo26. We fix p; = 0.

When we represent points @) by coordinates (w(Q), z2(Q)), we have oo = (0,0). We have
Mo = (w, 2). We note that

w?
2= —
6
[Tz (z = pi)
1 X _ . . .
and Iy € O¢ .- Hence me = (w), so w is a uniformizer at oo.

We use this information to find a canonical divisor on C.

Lemma 1.4.2. The divisor 200 is a canonical divisor.

Proof. We will show that div (df) = 200. First, we determine div(dz) = ) pc ordp(dz) P. We
find ordp(dz) for all P € C again by considering the three different types of points.

1. If P = (zo,y0) with yo # 0, we found that = — x is a uniformizer. We conclude that
ordp(dz) = ordp(d(x — zg)) = ordp(1) = 0.

2. If P = (ry,0) for some k € {1,...,5}, then y is a uniformizer at P. We can derive that
5
2ydy = dz Z H(w —7j),
i=1 ji

and hence

2y
ordp(dx) = ordp ( dy) =1
Z?:1 Hj;éi(x =75)
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3. At P = 0o, we saw that w is a uniformizer. Using x = é, we find

dr = —z2dz

—wx2
= wr dw.

21‘6:1 Hj;éi(z = pj)

This implies that

— w2
ordp(dx) = ordp ( 5 wr > = -3.
>ie1 Hj;éi(z = pj)

In conclusion, we have found that div(dx) = Zg’:l(m, 0) — 3o0.

Now we determine div(y). It is easy to see that ordp(y) = 0 when P = (x¢,yo) with yo # 0,
and ordp(y) = 1 when P = (r},0). Finally we note that orde(y) = orde(13) = —5. Hence
div(y) = 322, (r4,0) — 50o. We conclude that div(%’c) = div(dz) — div(y) = 200. Because %”” is
a differential, we conclude that 200 is a canonical divisor. |

Lemma 1.4.3. Let P € C. Then P + 1(P) — 200 is a principal divisor.

Proof. If P = oo, this divisor becomes trivial and the result is clear. Now assume P = (xq,yo)
for some g, yo € K. Let us determine the divisor of the function x — zg. First of all, for points
Q = (z1,y1) € C with x; # x¢, we have ordg(x — z9) = 0. The only points with z-coordinate xg
are P = (x0,y0) and «(P) = (zo, —yo). We have to distinguish two cases.

1. If yo # 0, we have P # +(P). We saw that © — ¢ is a uniformizer at P and ¢(P). This
shows that ordp(z — x¢) = ord,(p) (x —x9) = 1.

2. If yo = 0, we have P = ((P). We know that y is a uniformizer at P, and that x —xg = 2

9(z)
for some function g(z) such that g(xg) # 0. Hence ordp(x — zg) = 2.

Finally, at co we saw that w is a uniformizer. We have x —xg = 1‘% and hence ordeo(x — ) =

—ordeo(z) = —2. We conclude that div(z — z9) = P + «(P) — 200. The latter is therefore a
principal divisor. |

Corollary 1.4.4. Let P € C. Then P + «(P) is a canonical divisor.

Proof. We know from Lemma that 200 is a canonical divisor, so the result is true for
P =o0. If P = (z0,yp), using Lemma we see that

[200] = [200 + div(x — z0)]
=[P+ (P)].

This shows that P + ¢(P) is also a canonical divisor. [ |
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1.5 The Jacobian of a genus 2 curve and its Kummer surface

In this section, we introduce the concept of the Jacobian variety J of a smooth curve C of genus
2, which is an abelian variety. We treat everything in the setting of Section We also define
the Kummer surface of the Jacobian, and see how operations on J carry over to this surface.

As in Section[L.4] we consider a smooth curve C of genus 2 over a perfect field K with char(K) # 2,
represented by an equation of the form

C:y? = f(x) =2° + faz’ + fza® + for® + frz + fo (1.14)
5
=[[@—-r)
=1

where f; € K, such that f has no multiple roots, and r; € K are the distinct roots of f.
The Jacobian corresponding to C is an abelian variety J of dimension 2 over the field K,
such that as abelian groups we have J(K) = Pic2(K) (and more generally, for any field
K CLCK,J(L)="Picd(L)) (|33, Theorem 4.8]). The following result shows that each nonzero
point on J can be represented by a unique pair of points on C. The first part of the proof is
based on the proof of a more general statement for hyperelliptic curves in [33, Corollary 4.14].

Proposition 1.5.1. Let K C L C K be a field. For all P € Pic2(L) \ {0}, there are unique
points Py, P» € C(L') for some algebraic extension field L C L' with [L’ : L] < 2, such that
P = [P1+P2—200].

Proof. Consider any P = [D] € PicQ(L) where D € DivQ is a divisor representing P. The
Riemann-Roch theorem (Theorem [1.2.1)), together with Lemma m gives us that

(200 + D) = £(~=D) +1 > 1.

In other words, there exists a function ¢ € £(200 + D) such that 200 + D + div(¢) > 0. Let
us write D = 200 + D + div(¢). Then we know D > 0 and deg(D) = 2, hence it is of the form
D = P, + P, for some Py, Py € C(K). We have P = [D] = [D — 200] = [P + Py — 200).

Now let us show uniqueness. For this we need that P # 0. Let us assume that
P = [P1+P2—200] = [Q1+Q2—200].
Then

Pr+P—-Q1—Q2~0
P+ Py +1(Q1) + ¢(Q2) — 400 ~ 0,

where we used @Q; + ¢(Q;) — 200 ~ 0 for i = 1,2 (Lemma [1.4.3]). This shows that
P+ P+ L(Ql) + L(QQ) — 400 € Prince

and hence there exists a function 1) € K(C)* such that div(y)) = P+ P +1(Q1) +1(Q2) —400. In
particular, we see that ¢ € £(400). Corollary [L.2.2]implies that £(400) = 3. Because ordp(z) >0
for all P # oo, and orde(z) = ordeo(1/2) = —2, we deduce that £(400) = (1,z,22). Hence we
can write ¢ = ag + a1x + azx? for some a; € K. In particular, ¥ does not depend on y. We
consider a few cases:
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1. If Py = (zo,y0) with yo # 0, we know that ¢ has a zero at P;. But because 1 is a
polynomial in x, 1) then also has a zero at ¢(Py) = (xo, —y0)-

2. If P = (14,0) for some k, recall that y is a uniformizer at P;. We know ¢ € K|[z] has a
zero at Py. Hence ¥(x) = (x — 14)g(z) for some g(z) € K|z]. In the proof of Lemmam
we saw that ordp, (x — r;) = 2, hence ordp, (¢)) > 2.

3. If P, = oo, recall that w is a uniformizer at P; and ordp, (z) = 2. We have ¢ = M‘QZM
z

We have ordp, (1)) > —3, so ordp, (apz% +a1z+ag) > 1. But because agz?+a1z+ag € K[z
and ordp, (z) = 2, this implies ordp, (apz? + a1z + az) > 2 and hence ordp, (¢) > —2.

In each case, we see that «(P;) has to be one of the points P»,t(Q1),t(Q2) appearing in
div(¢)). We cannot have ¢(P;) = P, because then Lemma tells us that P = 0. Hence
t(Py) = 1(Q;) for i € {1,2}. Because ¢ is an involution we conclude P; = @);. We can repeat
the entire reasoning for P to get ¢(Ps) = (Q;) for i € {1,2}. Hence {Py, P»} C {Q1,Q2}. The
symmetric counterpart of this argument shows that we must have {P;, P»} = {Q1,Q2} and
hence P; + P» — 200 = Q1 + @2 — 200, which shows uniqueness.

Now we show the last part of the proposition. Because P € Picg (L), we must have that the
class of P; + P, — 200 is fixed under the action of Gal(K/L). Note that oo is fixed under this
action because oo € C(L). Therefore, we need

[Pl + Py — 200] = [Pl + Py — 200]0
= [o(Py) 4+ o(P2) — 20

for all o € Gal(K/L). By the uniqueness we just showed, we conclude P; + P = o(P}) + o(P2),
or in other words, each o € Gal(K /L) permutes P; and P,. In particular, o2(P;) = P; for all
o € Gal(K/L) for i = 1,2. If P;, P, € C(L), then the statement is immediate. Let us assume
that P; ¢ C(L), so there exists 7 € Gal(K /L) such that 7(P;) = P, # P;. We then also have
7(P) = Pp, so also P, ¢ C(L). Then P; # oo, so P; = (x1,%;) for some z1,y; € K, and
o?(P;) = P, for all ¢ € Gal(K/L). This implies that 1 and y; have a minimal polynomial of
degree 2 over L. Using the defining equation of C, we deduce that x; € L(y;). We then have
x1,y1,7(x1),7(y1) € L(y1), so P1, Py € C(L(y1)) with [L(y1) : L] = 2. [ |

Because the Jacobian is a group, we introduce similar notation as for elliptic curves. We denote
the sum of m copies of a point P € J by [m]|P, and we write Jios for the subgroup of torsion
points on J.

1.5.1 Algebraic variety structure of the Jacobian

For a fixed P € C, we define the map ®p: C — Picg by @ — [@Q — P]. It follows from Proposition
that @, is injective. We denote the image of ., by ©. Then because @, is an embedding
and Picg can be identified with the Jacobian J, we can view © as a subvariety of J of dimension
1 (because it is isomorphic to C). The variety O is then a divisor on J (see |17, Section I1.6] for
a general introduction). The space £(30) corresponding to .J is a 9-dimensional K-vector space
(see |16l p. 100]). Proposition shows that we can identify J with the 2-fold symmetric
product of C, where the points corresponding to O on J are blown down to a single point (that
is, all points of the form {P,¢(P)}). Points on © then correspond to points of the form {P, oo}
for some P € C. Under this identification, £(30) corresponds to a space of symmetric functions
on C x C. These functions are in K (z1,y1,%2,y2)* (where y? = f(x1) and y2 = f(x2)) such
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that they have at most a triple pole at oo in both coordinates. This space is a K-vector space
which has a basis 1, p11, p12, P22, ©111, P112, P122, £222, @ of functions that are defined over K,
described explicitly in [16, p. 99]. We note that p11, 12, p22 and p are even functions, and
0111, ©112, 122 and o9 are odd. It follows from a theorem of Lefschetz (|7, Theorem 4.5.1])
that the following map defines an embedding of the Jacobian into P®, which makes its projective
variety structure explicit:

J: Picd — P® (1.15)

[P1+ P2 —200] = [1: 9111 121 022 1 @111 ¢ ©112 : 9122 © 9222 © ).
The image of this map is the Jacobian as an algebraic variety embedded in P®, and we denote it by
J. Explicit equations defining the Jacobian variety can be found in |16, Corollary 2.15], and we
reproduced them adapted to our notation in the of this thesis. For the nine projective

coordinates of J in P®, we use the notation Xg, X11, X12, X22, X111, X112, X122, X292, X in this
order, after [16]. As coordinate functions, we then have

X, - Xk X.. X
Rij = Tza Pijk = X;;, Pij = 72 and p = Xy (1.16)

We note that J([0]) =[0:0:0:0:1:0:0:0]=: 0.

1.5.2 The Kummer surface

If we identify all points P on the Jacobian with their additive inverse — P, the corresponding
quotient of J is again a variety called the Kummer surface.

The Kummer surface can be embedded in P? using a basis of £(20) (see [7, Theorem 4.8.1]).
The even functions 1, p11, p12 and poo form such a basis ([13) §2]), and as such define a map
into P3 as follows:

K: Picd — P3
[Pl + Py — 200] — [1 D022 1 —(12 - @11]- (117)
The image of this map is the Kummer surface embedded in 2. We denote it by K. Because the
map J is an embedding, there exists an inverse map from J to Picg and hence we can define
a map KJ ! from the Jacobian to the Kummer surface. Explicitly it can be described as a
morphism of varieties:
k:J =K

X929 X2 X1n
Xo: X11: X190 Xoo : Xq11: X112 : Xq99 : X999 : X| — |1 L — : .
[Xo: X1 X120 Xog 0 X110 X120 X2 0 Xogo 0 X X, X, X

(1.18)

In particular, we have k(Q) =[0:0: 0 : 1]. The Kummer surface is a projective variety defined
by a homogeneous equation of the form

G(X,Y,Z,W) = R(X,Y,Z)W? + S(X,Y, Z)W + T(X,Y, Z) = 0, (1.19)

where R, S and T are homogeneous polynomials with coefficients in Z[fo, ..., f4] of total degree
2, 3, and 4, respectively, and X,Y, Z, W are the coordinates of the considered projective space
P3. The explicit equation can be found in |13, Appendix A]. We note that in [13], Flynn uses
an embedding of the Jacobian in P'® rather than P® to construct the Kummer surface. This
embedding works more generally for genus 2 curves defined by an equation of degree 5 or 6, but
because we restrict to degree 5 curves we can use Grant’s embedding into P® instead. The same
Kummer construction is applicable in this case.
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1.5.3 Computations on the Kummer surface

For a point P € J let us write x(P) for its image on the Kummer surface. In general, when
we consider the projective Kummer coordinates of two points x(P), k(Q) € K, we do not have
enough information to deduce the coordinates of k(P + @), because we cannot distinguish +P
and £@ from only their Kummer coordinates. We can thus not in general find a formula for
addition on K. We do however have the following theorem:

Theorem 1.5.2 ([10, Theorem 3.4.1]). For i,j € {1,2,3,4}, there exist polynomials B;;

with coefficients in Z[fo, ..., f1], which are biquadratic in two sets of variables ki, ..., ks and
l1,...,lq, with the following property. For any P,Q € J, let us fix Kummer coordinates
K(P)=lz1:...ixq),k(Q)=[y1:...:yal, k(P+ Q) =[z1:...: 24, K(P — Q) = [wy : ... : wy].

Then there exists a constant ¢ € K- such that for alli,j € {1,2,3,4}, we have

ZiWw; + wizj = 2CBij((901,1‘2,903, 334)7 (y17y27y3a y4))-

The constant ¢ makes sure that we work projectively, which is necessary because the Kummer
coordinates in projective space are only well-defined up to a scalar multiple in K , Explicit
formulas for the polynomials B;; can be found in [12].

Using this result, it is possible to define a multiplication-by-m map ., on the Kummer surface
for any m € Z, such that the following diagram is commutative:

[m]

J J
o
K £y K

Such a map ., is well-defined, because if k(P) = k(Q), this implies that @ = +P, and hence
k(Im]Q) = k(£[m]P) = k([m]P). Using Theorem we can find explicit formulas defining
the multiplication-by-2 map.

Proposition 1.5.3. There exist polynomials 1, ...,04 in Z[fo, ..., fa]lk1, k2, k3, k4], each ho-
mogeneous of total degree 4, such that for all P € J with k(P) = [x1 : x2 : x3 : x4], we
have

K([2]P) = [61(z1, z2, 23, T4) : O2(z1, T2, T3, 4) : 03(21, T2, T3, T4) : Oa(1, T2, T3, 24)] -

Proof. Let P € J with k(P) = [z1 : 22 : x3 : x4]. Let us write s([2]P) = [y1 : y2 : y3 : ya]. If we
apply Theorem for P =@ using k(O) =[0:0:0: 1], we get

2cBia((x1,. .., 24), (T1,...,24)) ifi=1,2,3,
Yi = e
CB4,4(($1,...,1‘4),(%1,...,1’4)) le:4,

for some ¢ € K . So if we define §; € Z[fo,- .., fa]lk1, ko, k3, k4] as

2Bi,4((k:17 k27 k37 k4)7 (kla k?a k?): k4)) le - 17 27 37

5k, ko, o, kog) =
( b 4) {B4,4((k:17k27k37k4);(k17k27k37k4)) if 4 :47

then K([Q]P) = [61(%1, e ,[134) . (52(1‘1, e ,3}4) . 53(.%'1, .. .,ac4) : (54(.%1, e ,.1'4)]. |
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Explicit formulas for the polynomials d; can be found in |13, Appendix C]. For general multiples,
we have the following result by Uchida:

Theorem 1.5.4 ([35, Theorem 3.3, Proposition 3.6, Lemma 3.8]). For any m > 0
and t =1,2,3,4, there exist homogeneous polynomials finm, ; € Zlfo, ..., fa][k1, ke, k3, k4] of total
degree m? such that:

po = po2 = po,3 =0, poa =1,
w1 = ki,
Hoam,i = 0;i(Hm) form >1,
Mom+1,iki = Bii(fimy1, ) for m >1
in Q(fo, ..., fa)l[k1, ko, ks, k4]/(G) (where G is the defining equation (1.19) of the Kummer surface

K as a projective variety in P3), where we write jm = (fm1s- - - m.a). For all P € J(Q) with
K(P) = [x1 : x9 : x3 : 4], we have

K(Im]P) = [tmai (@1, ..., x4) 1ot pima(x, ..., 4)].

In other words, scalar multiplication on J descends to K, and we have an inductive definition
for the image on K of multiples of points in J(Q).

1.5.4 Reduction of varieties

Let ¢ be a prime number. Consider a projective variety V C P" defined by a set of equations
with coefficients in Z. Then we can view V as a variety defined over Q, for a prime q. We
can reduce V modulo ¢ by reducing the coefficients of the defining equations with the map in
Definition the same way we did in Section for elliptic curves, to obtain a possibly
singular variety V over F,. For a curve in the weighted projective space P%l,?),l)’ for example
a smooth genus 2 curve C defined by an equation of the form with coefficients in Z, we
define the reduction modulo ¢ analogously, by reducing each of the coefficients modulo q. The
resulting equation then also defines a possibly singular curve C over F, in P%L&l)' In each of
these cases, we can write a point on V as P = [XO - Xp] with X; € Z, such that at least
one of the coordinates is in Z, and we define P = [X X, eV,

As in Section [I.3.2] we define the following sets:
Vis(F,) = {P € V(F,) | P is nonsingular},
Vo(Qq) ={P e V(Q) | Pe vnS(]Fq)}-

When V is an abelian variety with identity O (for example when V is a Jacobian), we also define
i(Q,) ={PeV(Q| P =0}
Furthermore we write Vo(q) (Q) = W(Qy) NV(Q) and Vl(q) Q) = Vl(q)((@q) NV(Q).

For a smooth curve C of genus 2 given by (1.14) with f; € Z, the reduction modulo g is a curve
C over [F,, which is singular precisely when ¢ d1v1des the discriminant of f (see [9, Section 16]).
It follows that C has bad reduction at only a finite number of primes. For such a curve C, the
embedding of its Jacobian .J in IP® is also defined by equations with coefficients in Z (see the
Appendix]). Hence we can also reduce J modulo g. When C has good reduction at a prime g, so
does J. The reduction J is the Jacobian variety corresponding to C and we have a commutative
diagram
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Pic2(Q,) —L— J(Qy)

| !

Picd(F,) —L— J(F,)

where J is the map (1.15)), the vertical map on the left is defined by
[Pl + Py — 200] — [ﬁl + ﬁg — 200],

and the vertical map on the right is the reduction map described above (see [33, Lemma 4.20]).

The sets J(IF,) and J;(Qg) are then also groups.

Similarly we can reduce points on the Kummer surface, and this reduction also fits in a
commutative diagram

J(Qq) —— K(Qy)

l l (1.20)
J(Fy) —— K(F,)

where the vertical maps are reduction modulo gq.

1.5.5 Division polynomials on J

Like for elliptic curves (Section , we can define division polynomials on the Jacobian of a
genus 2 curve of the form . These were defined by Kanayama in |20, (19| for curves over C,
so in particular this works when our curve is defined over Q. A Jacobian over C can be identified
with C2/A for some lattice A, and on this lattice there is a o-function of dimension 2 (see [20]
p. 400]), much like the Weierstrass o-function of dimension 1 on elliptic curves. There is an
identification between .J and C2/A and we denote the image of the subvariety © under this map
by ©’. We have the following definition.

Definition 1.5.5 (|20, p. 402, Definition]). For all n € Z, we define functions ¢, on
(C?/A)\ © by

. 9, .. 8$Li) ke (9$Lij) o
We define gb,(f) = (%i, () %j, and gf)%” )= g’—u}c for i,j,k € {1,2}.

In 36|, Proposition 4.3], Uchida notes that for any n € Z, we have
D_n(u) = —pp(u). (1.21)

Each u € (C?/A) \ ©' corresponds to a point [1 : p11 : @12 : P22 : @111 © P112 © P122 © ©222 © &)
on J. Under this identification, we can consider ¢, ¢£f), %j) and ¢$fjk> for i,j,k € {1,2} as
a functions on J. Let us denote the set of points that lie on the subvariety of J defining the
divisor © by supp(0), the support of the divisor ©.

Proposition 1.5.6 (|20, Proposition 2|, [36, Theorem 5.8], [16, Equation (3.4)]).
For all n € Z, the function ¢, on J \ supp(©) is a polynomial in the coordinates p;;j and

©ijk with coefficients in Z[%, fos--oy fa]. As a result, also the functions ¢$f), Sj) and ¢>$fj’“) for
i7j7 ke {17 2} are polynomials in Z[%v f07 s 7f4”pij7 pz]k]
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We call ¢, the n-th division polynomial. In particular, we have
¢1 = 17
P2 = P129122 — P229112 — P111-

The polynomials quickly become more complicated, but they can be determined using a recurrence
relation, see |20} |19, Lemma 1, Proposition 3]. The division polynomials can be used to express
the coordinates of multiples of a point P on J in terms of the coordinates of P.

Proposition 1.5.7 ([20, Proposition 1]). Let n > 1, and P € J such that P, [n]P ¢ supp(©).
Then

() (7) _ (5)
i(1P) = piy(P) 4 PV S DI (E)

| 07062 — (8700 + 60 + 60 ) o + 2606001
Pijk([n]P) = E@ijk(P) - 33 (

P).

1.6 Formal groups

We define the notion of a formal group, and describe ways in which it is useful for the study
of elliptic curves and Jacobians of genus 2 curves. This section is based on [32, Chapter 1V]
for one-dimensional groups, and [5] for more general statements. In this chapter, R denotes a
commutative ring with identity.

Definition 1.6.1 ([5, Definition 1.1]). An n-parameter formal group F over R is a collection
of n power series

R(Xl,...,Xn,Yl,...,Yn) S R[[Xl,...,Xn,Yl,...,Yn]]

in 2n variables with the following properties, where we write F' = (F},... F,), and define X, Y
similarly:

1. F;(X,Y) = X; +Y,; + (terms of total degree > 2).
°. F(X,F(Y,Z)) = F(F(X,Y), Z).

F(X,Y) is called the formal group law of F. We denote the formal group by (F, F) if we want
to make the formal group law explicit. If F' furthermore satisfies F(X,Y) = F(Y, X)), we say
F is commutative.

Lemma 1.6.2 (|5, p. 1]). Let F be an n-parameter (possibly noncommutative) formal group
over R with group law F(X,Y). It satisfies the following properties:

1. F(X,0)=X and F(0,Y) =Y.

2. There is a unique collection of n power series ¢(T') € R[[T1,...,T,]], calded the formal
inverse, satisfying F(T,+(T)) = F(¢«(T),T) =0 and

i(T) = —T + (terms of total degree > 2).

An important example of a commutative formal group, which we will use later, is the n-parameter
formal additive group (G, F,) defined by the formal group law F,(X,Y)=X +Y.
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Definition 1.6.3 ([32, Section IV.2], [5, Definition 1.2]). Let (F, F') and (G, G) be an n-
parameter and an m-parameter formal group over R, respectively. A formal group homomorphism

f from F to G defined over R is a collection of m power series f1,..., f; € R[[Th,...,T,]] with
no constant term, that satisfies

F(F(X,Y)) = G(f(X), f(Y)).

The homomorphism f is an isomorphism if there exists a formal group homomorphism g from
G to F such that f(g(T)) =T and g(f(T)) =T.

Definition 1.6.4 (|32, Section IV.2]). Let (F, F) be a commutative n-parameter formal
group. We define the multiplication-by-m maps for m € 7Z inductively as homomorphisms
[m]: F — F by

[0)(T) = 0,
[m +1|(T) = F([m|(T),T),
[m —1|(T) = F([m[(T),i(T))

Proposition 1.6.5 ([32, IV, Proposition 2.3]). Let F be a formal group over R and let
m € Z. Then
[m](T') = mT + (terms of total degree > 2).

Furthermore, [m] is an isomorphism precisely when m € R*.

Proof. This can be proven using the inductive definition of the map [m]. Clearly, we have
[0(T) = 0 = 0T. Now let us assume that the result holds for m = k > 0, so we have
[k](T) = kT + (higher order terms). Then

[k +1)(T) = F([|(T),T)
= [k](T) + T + (terms of total degree > 2)
= kT + T + (terms of total degree > 2)
= (k+ 1)T + (terms of total degree > 2).

This shows the first statement is true for all m > 0. A similar induction argument shows the
statement for all m < 0. For the second part of the proposition, we note that according to |38
Lemma 1.4], [m] is an isomorphism if and only if the matrix (88[—%(0)) is invertible over R. By

what we just found, we have (86[%11' (O)) = (md;j) (where 6;; is the Kronecker delta function),

which is invertible over R precisely when m € R*. |

1.6.1 Groups associated to formal groups

Let us now assume that R is a complete local commutative ring with maximal ideal m, and let
(F, F) be an n-parameter formal group over R. In this case, if we take r = (r1,...,r,) and
s =(s1,...,8p) in [, m (the Cartesian product of n copies of m), then F(r, s) converges in
[[; m by the completeness of R. Similarly, 4(r) converges in [[;" ; m. Hence we can use F to
define a group.
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Definition 1.6.6 (generalization of |32, p. 123, Definition]). The group associated to F,
which we denote by F([];_; m), is a group with underlying set [[;" ; m, group operations

n
r+s=F(r,s) foralrsc Hm,
i=1

—r=i(r) forallr € [[ m
i=1
and identity element 0 = (0,...,0) € []"; m.

The fact that this defines a group follows from the properties of the formal group law.

Proposition 1.6.7. Let (F, F) and (G, G) be an n-parameter and an m-parameter formal group
over R, respectively. Let f be a formal group homomorphism from F to G. Then f converges
for all v € T[;_; m and it defines a group homomorphism

Fr Pl m) — 6L m)

(riy..oyrn) = flri, .. ).

If f is a formal group isomorphism, then this group homomorphism is also an isomorphism.

Proof. The fact that R is complete with respect to m ensures that f converges on [[; m. We
have f(r + s) = F(F(r,s)) = G(f(r), f(s) = £(r) + £(s) for all 7, s € [[_, m. n

Proposition 1.6.8. The group homomorphism induced by [m] on F([[}_,m) is the usual
multiplication-by-m homomorphism on a group.

Proof. Let 7 € [[i; m, and let us denote by mr the sum of m copies of = in F([[;~, m) if
m > 0, or the sum of —m copies of —r if m < 0. We show the result by induction on m. Clearly,
0-r =0 =[0](r). Now assume the statement is true for m = k € Z>p. Then we get

(k+1)r=Fkr+r
=[k](r)+7r
= F([k](r),7)
= [k + 1](r).
Similarly, if we assume the result holds for m = k € Z<q, we get
(k—Dr=kr—r

= [K](r) +i(r)

= F([k](r),i(r))

= [k —1](r).

|

In this thesis, we often consider the situation where R is the ring of p-adic integers Z, for a
prime p, which is complete with respect to its maximal ideal pZ,. In this case we have a result
about the image of the multiplication-by-p”™ map. We use the notation (pZy)" for the Cartesian
product of n copies of pZ,, and p"Z, for the n-th power of the ideal pZ,.
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Proposition 1.6.9. Let p be a prime. Let (F,F') be a commutative n-parameter formal group
over Zy. For all v € (pZ,)" and m € Z>q, we have [p™](r) € (p™T1Z,)".

Proof. We prove this by induction on m. Because r € (pZ,)", the result is true for m = 0. Now
assume it is true for m = k > 0. By Proposition [1.6.5] we have

") = pl([pF)(r)) = plp")(r) + g([p*)(r))

for some g = (g1,...,gn) With gi € (r1,...,7,)?Z,[[r]]. Let us denote by [p**1];(r) the i-th
component of [pF*1](r). Then it is of the form [pFT1];(r) = p[p¥]i(r) + g:([p*](r)). Because
[p¥]:(r) € pF*t1Z, by the induction hypothesis, we have p[p*];(r) € p**%Z,. Furthermore,
because g; € (r1,...,7n)?Zy[[r]], we obtain that g;([p*](r)) € p?**VZ, C p**+2Z,. This shows
that [pt*1];(r) € p**2Z, for all i = 1,...,n, and hence [p*](r) € (p*+2Z,)". [ ]

1.6.2 The formal group associated to an elliptic curve
Let E be an elliptic curve over a perfect field K, defined by the homogeneous equation
Y2Z 4+ a1 XYZ 4+ asYZ? = X3 + a9 X% Z + ay X Z% + agZ>. (1.22)

Let R = Zlay,...,as]. We can define a formal group associated to E. If we consider the
dehomogenization of (1.22) with respect to Y, we get the affine equation

w =12 + artw + ast?>w + azw? + agtw? + agw® =: ft,w) (1.23)
in the variables w = —é and ¢t = —%, corresponding to the affine part of E where Y # 0. Let

us denote the coordinate ring of E by K[E] := K[t,w]/(f(t,w) —w), and its fraction field by
K(E). Let us consider the local ring at the point at infinity O = [0 : 1 : 0], which is the ring

Opo = {% e K(E) ) g.h € K[E] with h(0,0) # 0} ,

and let us denote its maximal ideal by mp = {g/h € Ogo | g(0,0) = 0}. We note that
mo = (w,t) = (t), because

43
w = € tOg 0.
1—ait — ast? — azw — astw — agw? EO
Hence ¢ := —%- is a uniformiser of Op 0. Using (1.23) and a general version of Hensel’s lemma

(see |32, IV, Lemma 1.2]), we get the following result.
Proposition 1.6.10 ([32, IV, Proposition 1.1]). There erists a unique power series w' (T)
in K[[T]] that satisfies w’ (0) = 0 and w? (T) = f(T,w? (T)). It is of the form
e .
w'(T) =T*+ > AT
i=4
with A; € R, so w? (T) € R[[T]]. Explicitly, we have Ay = a1 and As = a2 + as.

Using this power series, we define a map between Op ¢ and the power series ring K[[T7].
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Proposition 1.6.11. Let us define the map

v: Opo — KI[[T]]

g(t, w)

) I @R (@)

This map is a well-defined ring homomorphism, which is furthermore injective. In particular,
Og,0 is isomorphic to a subring of K[[T]].

Proof. First of all, we note that if g/h € O, then h(0,0) # 0 and hence h(T,w™(T)) is
invertible in K[[T]]. Furthermore, if g;/hi = g2/h2 in O o, then

g1 (t’ w)hZ(ta w) = gQ(tv w)hl (t’ w) + g(t, w)(f(tv w) - w)

for some g € K[E], and because f(T,w? (T)) — w? (T) = 0 by Proposition [1.6.10| it follows that
p(g1/h1) = ¢(g2/h2).

For injectivity, we consider the completion of Og o with respect to its maximal ideal tOFf 0.
It follows from the construction of w’ that w? () converges to w in this completion (see [32,
Section 1V.1]). Hence if ¢(g/h) = 0, we have g(T,w”(T)) = 0 in K[[T]], and so we get
g(t,wT'(t)) = g(t,w) = 0 in the completion of Og . We conclude that ¢ is injective. [

The function field of E/K, which is the fraction field of O ¢ is then also isomorphic to a

subfield of the fraction field of K[[T]], which is the field of formal Laurent series K((7")). An
injective homomorphism can be given by

Q(Og) = K(E) — K((T))
9t w) , ¢l9(t,w))
h(t,w) — @(h(t,w))’

and we also denote it by (. Hence we can also describe the coordinate functions x = % = i
and y = % = —% (the affine coordinates when dehomogenized with respect to Z) as Laurent

series in K ((T")). We find

t T
Ty . _ _ _ -2 -1
' (T):=p(x)=¢ <w> = T T —aiT™" —ag—asT+... (1.24)
1 1 _ _ _
y (1) := ¢(y) = ¢ <—w> =TT " T3+ T2+ aT  +az+...

Because w? (T) € R|[[T]] and has leading coefficient 1 € RX, both 27 (T) and y* (T') also have
coefficients in R.

From our definition of w”(T), we deduce that the pair (27 (T),y”(T)) is a solution to the
Weierstrass equation y? + a1zy + agy = 2% + ag2? + a4 + ag in K((T)). Let us specialize to
the case K = Q, for some prime p, and a; € Z, (in general, we could choose a complete local
field with ring of integers S such that a; € S, but we will not need this generality). In this
case, the series 27 (T) and y (T) converge for T € pZ, \ {0} to a limit in Q,, and we obtain
(z7(T),y"(T)) € E(Qp). We define an injective map

Y pZy — E(Qp) (1.25)
o { (T(@),yT(t))  ift#0
O if t =0.
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(The map is injective because on the image, an inverse can be given by (z,y) — —%, 0 ~0.)

It is possible to define a formal group (E, F) in such a way that the map 1 in becomes a
group homomorphism from the group associated to E into E (Qp). We outline the construction
here, more details can be found in [32, Section IV.1]. To define the formal group law of E we
look at the addition law on E(Q)), for which we need to find the third intersection point of the
curve with a line through two points. We consider two coordinates 77 and T5, and we define
a line through (71, w” (T1)) and (T, w” (T%)) in the (¢, w)-plane by finding formal power series
ATy, Ty) and v(T1, Ty) in R[[Ty, Ts]] such that (T1,w? (T1)) and (T2, w” (1)) are solutions of the
equation w = A\t + v. We also know that w? (T}) = f(T;,w? (T;)) for i = 1,2 from Proposition
Hence T7 and T are two roots in R[[T1,T5]] of the cubic polynomial

)\(Tl, Tg)t + I/(Tl, TQ) — f (t, )\(Tl, Tg)t + I/(Tl, Tg))

in R[[T1,T»]][t]. Let us denote the third root by {(T1,T2) € R[[T1,T>]]. Then in the (¢, w)-plane,
the point (I(Ty,Ty),w” (I(T1,T2))) is colinear with (71, w”(T1)) and (T2, w” (T3)) . We define
F(Tl, Tg) = Z(l(Tl, Tg)), where

z(T)

i) = yI(T) + a127(T) + a3

=T —a1T?+--- € R[[T]]

is the series that gives the t-coordinate of the inverse of (7, w” (T)). From the properties of the
addition law on E, we can deduce that F' € R[[T1,T»]] and

F(Ty,Ty) = F(Ts,Ty)
F(Ty, F(T,,T3)) = F(F(Th,T2),T3)
F(T,0)= F(0,T) =T
F(Ty,Ts) = T1 + T2 + (terms of degree > 2)).

This shows that F' indeed defines a one-parameter commutative formal group over R (and hence
over Zp), denoted by E. This is the formal group associated to the elliptic curve E.

We can then also define the group E(pr) associated to E. From the way that F was defined, it
follows that the map 1 in is a group homomorphism from F (pZy) to E(Qyp) (|32, Example
IV.3.1.3]). It turns out ([32, VII, Proposition 2.2]) that the image of ¢ in E(Qy) is E1(Qy).
Hence defines an isomorphism

V: E(pZy) — F1(Qp). (1.26)

We write ¢ ~1(P) = t(P) for the inverse map, because it corresponds to the t-coordinate of the
point P (where t = —%) With this notation we then have 7 (¢(P)) = z(P) and y* (t(P)) = y(P).
In particular we use that every P € E1(Q)) reduces to [0 : 1 : 0] modulo p. This implies that

ordy(z(P)) > ord,(y(P)), and hence ord,(¢(P)) = ord, (—%) > 0. so indeed t(P) € pZy.

Lemma 1.6.12. For all P € E1(Q,), we have

where on the left [m] denotes the multiplication-by-m map on E(Qy), and on the right we evaluate
the power series defining the multiplication-by-m homomorphism [m] € Zy[[T]] from Definition

at (P) € pi,.
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Proof. Because 1 is a group homomorphism, we get
t([m]P) =m - t(P)
= [m](t(P)). (Proposition |1.6.8))

|
Corollary 1.6.13. Let P € E1(Qp). Then for alln >0,
ord, (¢([p"|P)) > n+1.
Proof. Because t(P) € E(pZ,), Lemma [1.6.12 and Proposition imply that for all n > 0,
t([p")(P)) = [P"1(t(P)) € p"*'Zp.
|

1.6.3 The formal group associated to the Jacobian of a genus 2 curve

Assume we are looking at a smooth curve C of genus 2 over a perfect field K given by an affine
equation 32 = f(x) , where f is a polynomial of degree 5 with coefficients in a ring R C K.
Then we saw in Section that the corresponding Jacobian can be embedded in P®. We can
construct a formal group in a similar way as we did for elliptic curves. We have the projective
coordinates Xo, X11, X12, XQQ, X111, X112, X122, X222, X of IP)S. Recall that the identity element
O in J has X111 # 0 and all other coordinates equal to 0. Let us then look at the affine part of
J where X111 # 0. We can dehomogenize the defining equations of J accordingly. Now let us
consider the local ring O of J at O. Then if we write z = %, Ty = %, xij = Xliljl and

Tijk = igﬁ’i , we know that the maximal ideal m of O is the ideal generated by the functions
Zo, %11, %12, T22, T112, T122, T222, T. We want to find parameters ¢; and t3 in O ;0 such that we

can make an identification

(5J,(9 = K([t1,t2]],

where O 7,0 denotes the completion of O ;o with respect to its maximal ideal.

Lemma 1.6.14. Let t; = —x11 and to = —x. Then t1 and ty form a basis for the K-vector
space m/m?.

Proof. Recall that O 0 is a noetherian local ring. We have Oj0/m = K (via the isomorphism
g+ m — ¢(0O)). This also implies that every g € O 0 is of the form g = r + h for some r € K,
h € m. We mentioned that the functions xg, x11, 12, £22, 112, T122, T222, & generate m as an
ideal, and the observation above implies that they also span m/m? as a K-vector space. We use

the defining equations of J, which are reproduced in the to deduce which of these
generators are trivial in m/m2. Equation Fy divided by X3, gives

3 2
xo = 11 + faxoryy + fizor1zi2 — 3foror1iTo2 + ...

which shows that 29 € m®. By dividing equation Fg by X3}, we then deduce that z3, € m?, and
hence x99 € m?. Dividing F» by X111 implies that x%Q € m3, and hence z12 € m?. In a similar
way, we successively deduce by dividing Fig, F11 and Fy by X1211 that 2129, T922, T112 € m>.
Hence they are all trivial in m/m?, and thus the remaining generators are x1; and z. Because .J
is smooth, m/m? has dimension 2 as a K-vector space (see [17, I, Theorem 5.1]). This means that
x11 and z must be linearly independent generators, and equivalently ¢; and t9 form a K-basis
for m/m?, [
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Proposition 1.6.15. The morphism of K-algebras
0s: 050 = K[[T1, To]]

that sends the local parameters t1 and ts of (5;}@ to the variables Ty and Ty in KI[[T1,T>]]
respectively, is an isomorphism.

Proof. This follows from the Cohen structure theorem, see [23, p. 206, Corollary 2]. |

In particular, we can find expansions for the coordinate functions xg, z;;, z;;r as power series
in K|[[t1,t2]]. In [16, Theorem 4.2] it is shown that their images under ¢ ; have expansions in
R[[T},T3]] of the following form:

pi(zo)=-T¢ 1+ Y ayTiT}
i,j>0, i+5>1

or(ree) =T | —2T"7T> + Z ﬁz‘ijng
1,520, i+72>3

@J($12) = Tl T22 + Z ’yijTliTQj
,j20, i+j>3
pr(ri) = -T5 + Y 6,T4TY
4,50
i+5>3
pr(r1z) =TTa+ Y €;TiT3
4,520
i+5>3

p(x22) = —TF + Z GiTiTy (1.27)
1,520
i+5>3
with Qi ﬁij,’yij, 5ij; €ijs Cij € R. By definition of ¢ ; we have
©i(g)(t1,t2) =g for all g € 6J’(’). (1.28)

The coordinate functions in are not necessarily in O 7,0, but they are in its field of
fractions Q(@ 7,0). We can derive series expansions corresponding to these functions in the field
of fractions Q(K]|[T1,T2]]). We use the notation ¢; also for the isomorphism extending the
map in Proposition to the corresponding fields of fractions. For the functions defining
the map to the Kummer surface , we have @;; = Zii To find the corresponding image in

zo

Q(K|[T1,T5]]), we first work out the expansion of ¢ j(xg) in a bit more detail.

Lemma 1.6.16. The expansion ¢ (xg) is of the form

ps(z0) = T a(Th, Ty),

where « is of the form a(Ty,Te) = 1+ foT? + (terms of total degree > 4).
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Proof. We already saw above that ¢ (zg) = —T{a(Ty, T) for some a € 1+ (T1, T2) R[[T1, T3)).
Let us look at equation Fg and divide it by X fn. It has to vanish on J by definition, so we
obtain the equation

zo = oY) + fawoad) + frzorniziz — 3fomozizas — 2foxge — (Afafo — fafr)agrin + 3fs forgai
— (3fafo — [D)admas — (Afsfafo + fifo — fufi — f3 fo)z.
We saw in ((1.27) that in the expansions of zg, x12 and x99 all nonzero terms have total degree
at least 3, and we have x1; = —t;. By our observations above, we conclude that all terms on the
right-hand side, except the first two, are power series in t; and t, whose terms all have total
degree at least 7. The second term, foxox?;, only has terms of degree > 5. We then deduce, by
comparing coefficients on the left- and right-hand side, that agg = —1, ag; = @49 = @41 = aze =0,
aso = foaso = —fo and agg = as1 = aye = a3y = 0. This gives the desired result. |

The series « is invertible in R[[T7, T5]], and its inverse is of the form
o N(Ty,Ty) = 1 — foT? + (terms of total degree > 4).
We get
@r(zg)™t = —T1_3a71(T1,T2).
Using the expansions in , we then find

oao(T) = @y (p22) = s(wa) fps(x0) =T | 2T Te+ Y BLTITY
0,420, i+5>3

—012(T) == p1(—p12) = —ps(x12) /@1 (20) = sz T3 + Z 'yngfTQj
1,j>0, i+j>3

o1 (T) = ps(p11) = ws(z11)/ps(x0) = T 2o~ (11, T2) (1.29)

where 3;,7/; € R.

Now let us look at the case where K = Q, and where the coefficients of f are in Z,,. Note that when
P € J1(Qyp), we have ordy,(X11(P)),ord,(X (P)) > ord,(X111(P)), and hence t1(P),t2(P) € pZ,.
It turns out there is a bijection ([16, Corollary 4.5])

bt Q) — (pZp)?
P (t1(P),t2(P)). (1.30)

Furthermore, this bijection induces a formal group structure on (pZ,)? (see [16, Theorem 4.6)).
In other words, using this bijection we can define a pair of power series F';(X,Y’) which is the
group law of a 2-parameter formal group J over Zy,. This group law is defined in such a way
that vy is a group homomorphism from .J;(Q,) to the group J ((pr)z) associated to the formal
group (j, F ;). We use the notation ¢(P) = (t1(P),t2(P)).

We note that t; = —511111 and ty = —ﬁ are odd functions, in the sense that t;(—P) = —t;(P).
This follows from the fact that p1; and @ are even functions and @111 is an odd function on
J. This implies that the pair of power series defining the inverse on J is simply i;(T) = —-T.
Because 17 is a homomorphism, it furthermore follows that for all P,Q € J1(Q,), we have

F;(=t(P), -t(Q)) = F;(#(=P),t(-Q)) = t(-P = Q) = —t(P + Q) = —F;(¢(P), £(Q))-
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We thus have F;(—X,-Y )= —F;(X,Y) as series, which implies that F'; is an odd series in
the sense that it only has terms of total odd degree.

We have a result analogous to Lemma
Lemma 1.6.17. Let P € J1(Q)p). Then
(t1([m]P), t2([m]P)) = [m](t1(P), t2(P)),

where on the left [m] denotes the multiplication-by-m map on J(Q,), and on the right we
evaluate the power series defining the multiplication-by-m homomorphism [m] € Zy[[t1,t2]] at

(t1(P), t2(P)).

Proof. Because 1 is a group homomorphism from J;(Q,) to J ((pr)Q), we get

(t1([m]P), ta([m]P) = ¢ ([m] P)

= [m](t1(P),t2(P)). (by Proposition [1.6.8))

Corollary 1.6.18. let P € J1(Qp). For alln >0 and for i = 1,2 we have

ord, (¢;([p"]P)) > n+ 1.
Proof. Because t(P) € J ((pr)Q), Lemma [1.6.17] and Proposition imply that for all n > 0,

t([p"|P) = [p"|(¢(P)) € (p""'Z,)".

1.6.4 The formal logarithm

Let (F,F) be an n-parameter commutative formal group over a commutative ring R with
identity. We define differential forms as expressions of the form w(T) = Y " | P;(T)dT;, where
P;(T) € R[[T]]. We say w is an invariant differential if it satisfies w(F (T, S)) = w(T'). Explicitly,
this is the case if for all i = 1,...,n, we have

> B(F(T,8)) 52 (T, ) = P(T)
j=1 ¢

(see [5, Equation (1)]). The collection of invariant differentials form an R-module of rank n (see
[5, Corollary 1.4]). We consider a specific basis wy,...,w, as defined in [5, Remark 1.7].

Theorem 1.6.19 (|5, Theorem 1.6]). Let R be a Q-algebra. Let L;(T) € R[[T]] be the unique
power series satisfying

= 9T !
Then L = (Ly,...,Ly) is a formal group isomorphism from F to @Z We call L the strict formal
logarithm.

32



We denote the inverse of £ by &: @Z — F, and call it the strict formal exponential.

Proposition 1.6.20 ([5, Proposition 1.8]). Let F be an n-parameter commutative formal
group over Z.. Then the strict formal logarithm and exponential of F as a formal group over Q
are of the form

P . )
Li=T+ —Abdn e (1.31)
! ! 1 .Zj;b>0 ng{Jl""ajn} ! "
G tin>2
b. . . .
E =T + I It n
. .Zj;»o il gal !
G tin>2

with Ajy,.sins bj1,~~-,jn €Z.
The following theorem is a generalization of [32, IV, Theorem 6.4(a)].

Theorem 1.6.21. Let p be a prime. Let (F,F) be an n-parameter commutative formal group
defined over 7Z, and hence over Z,. Then the formal group logarithm L(T') converges for
T € (pZy)", and it induces a group homomorphism

L: F((Zy)") = (@) (1.32)

where the group law on (Qp)" is addition.

Proof. Let us consider T € (pZ,)"™, and hence ord,(T;) > 1 for each i =1,...,n. Let us look at
a general term of the series (1.31)) evaluated at T', and write m = j; + ...+ j,. We get

a : ,
ord MTJl---TJ")>m—ord cd{j1,...,J
P <gcd{j17 e jnt 1 n | = p(ged{j1 Jn})

>m — 1Og(p) (m)

where log(,,) denotes the real logarithm with base p. Because this last expression approaches
infinity as m — oo, we conclude that the series (1.31)) converges for each i. The fact that L is a
formal group homomorphism then implies that (1.32)) is a group homomorphism. |

1.6.5 Torsion in formal groups over 7Z,

In Section and Section we saw that the groups F1(Q)) for an elliptic curve E and
J1(Qp) for the Jacobian of a genus 2 curve are both isomorphic to a group associated to a formal
group over Z,. We will show that this means that the groups have trivial torsion subgroups. We
first show two more general lemmas that we use to prove the statement.

Lemma 1.6.22. Let (F, F) be an n-parameter commutative formal group over R with basis
of normalized invariant differentials w1, ...,wy, as in the previous section. Let f: F — F be a
homomorphism. Then for all k =1,...,n, we have

0
wpof = Z%(O)M
i=1 "
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Proof. Let us fix k € {1,...,n}. Let us write w(T) = >_1" 4 Pi(k)(T)dﬂ with Pl-(k) € R[[T]].
First, we show that wy o f is an invariant differential. Indeed, we have
(w0 FYF(T,S)) =wp(F(f(T), f(S))) (because f is a homomorphism)

= wi(f(T)). (because wy, is an invariant differential)

Because the w; form a basis for R-module of invariant differentials, we thus have

i=1

k)

for some dg € R. The left-hand side can be expanded as

(w0 £)(T ZP T))df,(T)
=SS PO ) 2y | ar (1.33)
, , oT;
7j=1 L:=1
For the right-hand side, we have
> dMwy(T) = > d > Pj(i) (T)dT.
=1 i=1 j=1
=1 Li=1

Because (|1.33) and (1.34]) are equal, each pair of corresponding component functions evaluated at
0 must also be equal. Theorem [1.6.19 and Proposition [1.6.20 imply that Pj(Z)(O) = g—%(O) = 0ij
for all 4,7 € {1,...,n} (where ¢;; is the Kronecker delta function). We also have f(0) = 0. We

thus get for each j = 1,...,n that

Zd 00 = Y P00 ) = d = o)

=1

Lemma 1.6.23. Let F be an n-parameter commutative formal group over R and let p € Z~q be
a prime. There are power series gx, hy € R[[T]] with gy € Ty + (T4, ..., T,,)?R[[T]] and hy(0) =0
such that

Ple(T) = p- ge(T) + ha(T7, ..., TF),

where [p|i denotes the k-th component of the multiplication-by-p homomorphism.

Proof. From Proposition [1.6.5, we deduce that a[p]Z(O) = 0;;p. Then Lemma |1.6.22 gives

pwi(T) = (wi o [p])(T'). Expanding both sides and using the same notation as in Lemma [1.6.22]
for each i = 1,...,n we get the equality

O(r) =3 PO ) 22 ), (1.35)
> ,
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Note that for j # k, we have P ([p](T)) € pR[[T]], and P{”([p|(T)) € 1 + (T, ..., Tu) RI[T])-
Then P,gk)([p] (T)) has a multiplicative inverse which is also in 1 + (T1,...,T,)R[[T]]. Using
these facts, ((1.35]) implies that Ga[z;lik (T') € pR][T]] for each . If we write

= > diy.a, 0T

i1,e0sin >0

i, € R, then for each term dil,m,ianl . -Tf;" we either have d;, .. ;, € pR, or
p | ged(iy, . .., iy). Hence we can write [pli(T') = pgr(T)+hi(T7, ..., TE) for some gi, by, € R[[T]].
The requirement on the coefficients of g and hj follows from Proposition |

for some d;, . ;

Theorem 1.6.24 (generalization of [32, IV, Example 6.1.1]). Let p be an odd prime. For
any n-parameter commutative formal group (F, F') over Z,, the associated group F ((pZp)"™) has
a trivial torsion group.

Proof. We first show that all torsion elements must have a power of p as order. Let m € Z~( such
that p { m. Then m € Z), and hence [m] is a formal group isomorphism by Proposition
But then also the multiplication-by-m map on F ((pZy)") is an isomorphism by Proposition
and Proposition so [m](r) = 0 precisely when 7 = 0. Hence no point can have order
exactly m. But if a point r has order mp™ for some n > 0, then p™r has order m which is not
possible. We conclude that all torsion points have order p™ for some n > 0.

Now assume 7 has exact order p. Then we must have [p](r) = 0. Using Lemma [1.6.23] this
becomes

ple(r) =p- gr(r) + b (Y, ..., 72) =0

for all k =1,...,n, with g and h; as in Lemma [1.6.23] By comparing the order at p of the
terms, we deduce that the only possibility for this expression to be 0 is that

ord,(r) > 2ord,(r;)

for some i € {1,...,n}. However, this cannot be satisfied for all & simultaneously unless r = 0.
We conclude that a point of exact order p cannot exist. But if » has exact order p” for some
n > 1, then p" ! has exact order p which is not possible. Hence there can be no nontrivial
torsion points. |

Corollary 1.6.25. Let p be an odd prime, and let E/Q,, be an elliptic curve given by a Weierstrass
equation with coefficients in Z,. Then E1(Qp) N Eiors = {O}.

Proof. This follows from Theorem [1.6.24] and the isomorphism % in (|1.26]). |

Corollary 1.6.26. Let p be an odd prime, and let C be a smooth curve of genus 2 over Q,
defined by an affine equation y?> = f(x) where f is a polynomial of degree 5 with coefficients in
Ly, with Jacobian J. Then Ji1(Qp) N Jiors = {O}.

Proof. This follows from Theorem [1.6.24] and the isomorphism 7 in (1.30)). |
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Chapter 2

Height functions on elliptic curves

We apply the general theory that we discussed to the study of height functions. First, we discuss
the development of height functions on elliptic curves, starting with real-valued functions and
comparing these with the introduction of p-adic height functions.

2.1 Real-valued height functions on elliptic curves

We start by looking at a real valued height function on elliptic curves, which was found by Tate,
and by Néron [27] as a sum of local contributions at each place of Q. This section is largely
based on [32, Chapter VIII] and |31, Chapter VI].

2.1.1 A naive real height function

First, we define a naive height function on projective N-space over Q. Let P € PV (Q). Then we
can write P = [zg : -+ : xn] with zg,...,zx € Z and ged(zo, ..., zn) = 1, uniquely up to sign.
We define a function H: PY(Q) — R by

H(P) = max{|zo|oo, . . - |20 }- (2.1)

Note that this definition is independent of the choice of sign. We use this function to define
a height function on points of elliptic curves. Let us consider an elliptic curve E/Q. Recall
that we have the map « in from E to its Kummer variety P!. We define a height function
H: E(Q) — R by setting

H(P)= H(k(P)).

For P # O we can write z(P) = % with ged(z1(P),z2(P)) = 1, and then the map H can
alternatively be described as

H(P) - 0 iftP=0
| max{|z1(P)|so, |2(P)|so}  otherwise.

We consider the (natural) logarithm of this function to obtain a height function that behaves
additively.

Definition 2.1.1. Let £/Q be an elliptic curve. The naive real height function on E is the
function h: E(Q) — R given by
h(P) = log H(k(P)).
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The naive real height function satisfies the following properties.

Proposition 2.1.2 ([32, VIII, Theorem 6.2, Corollary 6.4, Proposition 6.1]). Let E/Q
be an elliptic curve. There exists a constant C1 = C1(F) € R, and for all m € Z, a constant
Ca(m) = Ca2(E,m) € R, such that

(a) For all P,Q € E(Q), we have
|M(P + Q) + h(P = Q) = 2h(P) = 21(Q) | < C1.

(b) Let m € Z. For all P € E(Q), we have
[h([m]P) = m*h(P)|sc < Ca(m).

(c) For any constant C € R, the set
{PeEQ)]|nP)<C}

is finite.

2.1.2 A canonical real height function

We now define what it means for a function to be a quadratic form. Proposition [2.1.2(a) then
says that h is not quite a quadratic form, but it is close in a sense.

Definition 2.1.3 ([32, p. 85, Definition]). Let G be an abelian group and let K be a field.
A function f: G — K is a quadratic form if it satisfies:

1. f(g) = f(—g) for all g € G (we say f is even).
2. The pairing G x G — K given by (g1,92) — f(g91 + g2) — f(91) — f(g2) is bilinear.

Proposition 2.1.4 (|32, VIII, proof of Theorem 9.3(c)]). Let G be an abelian group and
let K be a field. Let f: G — K be a function satisfying the parallelogram law:

flg1 +92) + f(g1 — 92) = 2f(g1) + 2f(g2)- (2.2)

Then f is a quadratic form.

Proposition 2.1.5. Let G' be an abelian group, let K be a field, and let f: G — K be a function
satisfying the parallelogram law (2.2). Then for all g € G and all m € Z, we have

f(mg) =m?f(g). (2.3)

Proof. This can be shown by induction. From the parallelogram law applied to g1 = go = 0, we
conclude that f(0) = 0. For m = 1 the statement is trivial. Now let m > 1 and assume the
result holds for all integers ¢ such that 0 < ¢ < m. Then for all g € G, we have

f((m+1)g) = 2f(mg) +2f(g) = f((m = 1)g) (parallelogram law)
=2m2f(g) +2f(g9) — (m — 1)*£(g) (induction hypothesis)
= (m+1)*f(g)

which shows the result for m+1. Hence the statement is true for all m € Z>. Finally, according to
Proposition f is even, so for m < 0 and all g € G we have f(mg) = f(—mg) = m%f(g). W
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We say that a function satisfying (2.3]) is a quadratic function (not to be confused with a
quadratic form).

Proposition [2.1.2|(a) tells us that the naive height function i has a bounded difference from
being a quadratic form. We can use h to construct an actual quadratic form, which differs from
h by a bounded amount.

Definition 2.1.6. The canonical real height (or Néron-Tate height) on E/Q is the function

B(P) = Tim —h(2"]P).

n—oo 4M

The existence of this limit is proven in [32, VIII, Proposition 9.1].
Proposition 2.1.7 (|32, VIII, Theorem 9.3]). Let E/Q be an elliptic curve.

(a) For all P,Q € E(Q) we have

h(P + Q)+ h(P — Q) = 2h(P) + 2h(Q).

(b) For all P € E(Q) and all m € Z,

(¢) his a quadratic form on E.
(d) Let P € E(Q). Then h(P) >0, and h(P) = 0 if and only if P is a torsion point.
(¢) |h — hloo < C, where C € R depends only on E.

Alternatively, we can describe the canonical height by a different limit:

Proposition 2.1.8.

~

W(P) = lim —h([n]P).

n—oco N2

Proof. From Proposition 2.1.7(e), we know that there exists a constant C' € R, only depending
on F, such that

|h([n]P) — h([n]P)|so < C for all P € E(Q) and all n € Z.
Using Proposition 2.1.7|(b), this becomes
[n*h(P) = h([n]P)|o < C
([P <

h(P) —
\()n2 -

This implies the result. |
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2.1.3 Local real height functions

Consider P € E(Q)\ {O}. Let us write 2(P) = 23 with ged(z1(P), z2(P)) = 1. Then

h(P) = log H(x(P))
= log max{|z1(P)|cc, [72(P)|oc }

=log [[ max{|a1(P)ly, |z2(P)ly} (2.4)
UGMQ

=log [] |#2(P)]ymax{|z(P)|,, 1}
UGMQ

=log [[ max{|z(P)],, 1} (by Theorem [L.1.10)
”L)GMQ

= Y log max{|z(P)|,,1}.

UEM@

The equality in (2.4)) follows from the fact that max{|zi(P)|q, |x2(P)|q} = 1 for all primes g,
because x1(P) and zo(P) are coprime. This shows that away from O, the naive height can be
expressed as a sum over local contributions, one for every place of Q.

Definition 2.1.9. Let v € Mg. The naive local real height function associated to v,

At E(Qy) \ {O} = R,

is defined by
Ay (P) = log max{|x(P)|,, 1}.

We saw that h(P) = ZveMQ MA(P) for all P € E(Q) \ {O}. Similarly, we can express the
canonical height on E(Q) \ {O} as a sum of local contributions. For all v € Mg, we denote by
Q, the completion of Q with respect to | - |,. We construct functions Ao E(Q,)\ {0} = R for
each v, which are almost quadratic in the sense of Proposition [2.1.10| property 3 below, such
that the equality

UEMQ
holds for all P € E(Q) \ {O}.

Proposition 2.1.10 (|31, VI, Theorem 1.1]). Let v be a place of Q. There exists a unique
function \,: E(Q,) \ {O} — R with the following properties:

1. Ay is continuous on E(Qy) \ {O} and is bounded on the complement of any v-adic neigh-
borhood of O.

2. The limit limp_,o{\,(P) — log |(P)|,} exists.
3. For all P € E(Q,) with [2]P # O,
Ao([21P) = 44 (P) — 2log [¢2(P)].,
where g s the divison polynomial defined in Definition [1.3.2

The continuity in property 1 is with respect to the v-adic topology on E(Q,), a definition of
which can be found in [31} p. 455]. We call A\, the local Néron height function associated to v.
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Proposition 2.1.11 ([31, VI, Theorem 2.1]). Let \,: E(Q,) \ {O} = R be the local Néron
height function associated to v. Then

for all P € E(Q)\ {O}.

It is possible to find explicit formulas for the local heights. The local height corresponding to
the archimedean absolute value | - | can be defined using the Weierstrass o-function (see [32,
Chapter VI] for a general introduction). The explicit formula for Moo can be found in [31, VI,
Theorem 3.2].

For the non-archimedean absolute values | - |,, we can consider a Weierstrass equation for E/Q
with integral coefficients, and reduce the curve modulo p. For points on E that reduce to a
smooth point, we can describe the local height function as follows.

Theorem 2.1.12 ([31, VI, Theorem 4.1]). Let p be a prime. For all P € Ey(Q,) \ {O}, the
local Néron height function associated to p is given by

Ap(P) = Xp(P) = log max{|z(P)|p, 1}

In particular, when E has good reduction at p, we have Ey(Q,) = E(Qy), and thus in that case
we have A, = ), on all of E(Q,) \ {O}.

2.2 p-adic height functions on elliptic curves

Let us fix an odd prime number p. Instead of defining a height function mapping into R, we can
also define a height function that maps into the field of p-adic numbers Q,, which we want to
be a quadratic form. This can be done by defining local p-adic height functions that sum to a
height with the desired properties, in a similar way as the real local height functions in Section
The theory in this section follows [6], Section 2.2].

Let us look at an elliptic curve E/Q with Weierstrass equation of the form
v+ a1y + asy = 23 + agr? + aux + ag (2.5)
with a1, ...,a¢ € Z. We furthermore assume that E has good reduction at p.

Our goal is to define local height functions A\,: E(Q,) \ {O} — @, for all v € Mg such that
hy =3 e Mg A 18 @ well defined function on E (Q) \ {O} which is a quadratic form. It turns out
that we can take A\oo = 0. For primes different from p, we define local height functions in Section
that look very similar to the local real heights from Proposition [2.1.10} To define a local
p-adic height at p, we need some p-adic analysis. We will do this in Section In Section
we combine the local p-adic heights into global p-adic heights that are quadratic forms.

2.2.1 Local p-adic heights at primes different from p

For primes q # p, we have a result similar to Proposition [2.1.10} Recall that we write log,, for
the p-adic logarithm as defined in Section [1.1.2]
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Proposition 2.2.1 (|6, p. 14]). Let ¢ # p be a prime. There exists a unique function
5\((17)): E(Qq) \ {0} — Q, with the following properties:

(a) j\gp) is continuous on E(Qg) \ {O} and bounded on the complement of any neighborhood of
O with respect to the q-adic topology.

(b) limp_o(AP (P) - log, [z(P)|,) esists.
(¢) For all P,Q € E(Qq) such that P,Q,P + Q,P — Q # O, we have

AP (P 4+ Q)+ AP/(P — Q) = 20 (P) + 2AP)(Q) — 2log, |2(P) — 2(Q) ..

This function also has the property
(d) For all P € E(Qq) and all n > 1 such that P, [n|P # O, we have
AP ([n]P) = n®AP)(P) — 21og, [tn(P)|y,
where 1y, denotes the n-th division polynomial defined in Definition [1.5.3,
For points of good reduction we also get a result similar to the real case.

Lemma 2.2.2 ([6, Lemma 2.2.2]). Let g # p. If P € Eo(Qq) \ {O}, then

AP)(P) = log, max{|z(P)|q, 1}

The p-adic local heights at primes different from p are thus very similar to the real local heights,
with the real logarithm replaced by the p-adic logarithm.

2.2.2 Local p-adic heights at p

For the local p-adic height at p, we want to mimic the properties of the Weierstrass o-function,
so we need a p-adic analogue of this function. First of all, the Weierstrass p- and o-function
corresponding to an elliptic curve are defined for a curve in short Weierstrass form (see [32,
Section VI.3|). For a curve E given by , we can perform a coordinate transformation by
substituting

1 14+4
y=y — =(a1x+a3) and z =2 — ot 2as (2.6)
2 12
to get an isomorphic elliptic curve given by a short Weierstrass equation
E: (y)? = () — %2’ - % (2.7)

for some g2, g3 in Q. Such a curve is isomorphic to C/A for some lattice A in C (see [32, VI,
Proposition 3.6]). We consider the Weierstrass p- and o-function relative to A defined in [32, p.
165, Definition, p. 167, Definition]. When we talk about the Weierstrass p- and o-function in
the context of the model , we mean the functions relative to the lattice A corresponding to

the model ({2.7]).
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Let o(z) be the Taylor series expansion of the complex Weierstrass o-function, and p(z) the
Laurent series for the Weierstrass p-function around z = 0. These satisfy the differential equation
([32, VI, Lemma 3.3(b)])
2
o(z) = 5 loga(2) (28)
as well as the identity ([32, Exercise 6.3])

U(ZIUj(LZTQZEZ)g z) _ p(z2) — p(21)- (2.9)

Lemma 2.2.3. We have p(z) € 272 + 22Q[[2?]] and 0(2) € z + 2°Q[[z]]. In particular, both
power series have coefficients in Q.

Proof. According to [32, VI, Theorem 3.5(a)] the Laurent series expansion for p(z) is of the form

p(2) =272+ ) (2k + 1)Gapy22",
k=1

where Gop4o are the Eisenstein series of weight 2k + 2 defined in [32, p. 165, Definition]. In
particular, p(z) € 272 + 22C[[2?]]. By definition we have g, = 60G4 and g3 = 140G ([32, VI,
Remark 3.5.1]), so G4, Gg € Q. We have the recurrence relation
k—2
(4k% = 1)(k — 3)Gar = 3 (2§ — 1)(2k — 2j — 1)G2;Gap—2j,
j=2

for all k > 4 [30, p. 67, Equation (10.7)]. This implies that all Gog4o for k£ > 1 can be computed
recursively as a polynomials in G4 and Gg with coefficients in Q, and hence they are themselves
elements of Q. We conclude that p(2)z=2 + 22Q[[2?]].

For the expansion of o(z), we use the differential equation (2.8) and similar reasoning as in [6}
Proposition 2.2.3]. By integrating the expansion of p(z) once, we obtain

d
9 togo() € 7+ 01+ 20
for some C; € C. Note that if we define §(z2) = 270 (2), we get
1 df(z)
| -
dz og(6(2)) 0(z) dz
2710’ (2) — 27%0(2)

27 to(2)

= dilz log(o(2)) — 27! € C + 2°Q[2]]

Integrating this expression and taking the exponential, we get

0(2) = 20(2) = zexp(Cy + C1z + 2%g(2))

for some Cy € C and g € Q|[z]]. From the definition of the Weierstrass o-function [32, p.
167, Definition], we see that the coefficient of z in o(z) is equal to 1, and that o(z) is an odd
function. The first observation implies that we must have Co = 0, and the second implies
that the coefficient of the 22 term must be zero, hence C; = 0. We then conclude that
o(z) = zexp(ztg(2)) € z + 2°Q[[2]]. [ |
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We define a series
op(T) = o(L(T)) € Q[[TT]],

where L is the strict formal logarithm corresponding to the formal group (E, F), as introduced in
Section We call 0, the Bernardi p-adic o-function, because it was introduced by Bernardi
in 3, p. 9.

We want to use property (2.9)) of o to derive a similar property for o,, but in order for the
right-hand side to be meaningful we need to know what we obtain when we compose the series
p with £. The resulting series is one we have already encountered before.

Proposition 2.2.4. o(L(T)) = 27 (T) + a%ﬁaz as series in Q((7)).

To prove this proposition, we first prove some intermediate results. Consider the elliptic curve F
given by the model (to ease notation we write z, y for the coordinates rather than x’/, y/).
We can consider E as a curve over C, and then there is a group homomorphism ¢: C — E(C)
given by a — [p(a) : 3¢'(a) : 1] (see [32, VI, Proposition 3.6(b)]).

The invariant differential on E(C) is given by 62% (see 32, Section III.1]), and we see that

gb*(g—z) = fgf((j)) = dz. We want to use the map ¢ to define a homomorphism of formal groups

Gl — E over Q given by a power series h(z) which also satisfies h*w = dz, where dz is the
d((T))
) 2y™(T)
E with parameter T' (|32, p. 118]). Recall that to define the formal group associated to E,
we defined a series w? (T) and used it to define 27 (T") and y* (T satisfying T' = —zzgg The
parameter t we started with corresponds to the coordinate function —% on the elliptic curve,

invariant differential of G}l with parameter z, and w = is the invariant differential of

which in our case can be represented by the series h(z) = —25,((2)). We will show that h defines
the formal homomorphism we need.

From [32, VI, Theorem 3.5(a)] we know that p(2) € 272 + 22Q[[2]] and ¢'(2) € —2273 + 2Q[[2]],
so we get h(z) € z+ 22Q][2]]. It then follows from [32, IV, Lemma 2.4] that there exists a unique
inverse power series k(T') € Q[[T]] that satisfies k(h(z)) = z and h(k(T)) =T.

Lemma 2.2.5. We have w” (h(2)) = —p/%z), 2T (h(2)) = p(2) and yT (h(2)) = 3¢'(2) as Laurent
series in Q((z)).

Proof. Recall that w’ (T) is the unique power series in Q[[T]] that satisfies w? (0) = 0 and
wl(T) = f(T,w"(T)) with f(t,w) = t3 — 2tw? — Lw? (Proposition . Because k(7))
exists such that h(k(T)) = T and k(h(z)) = z, this implies that (w” o h)(z) is the unique power
series in Q[[2]] satisfying (w” o h)(0) = 0 and (w” o h)(2) = f(h(z), (W’ o h)(2)). We will show
that the series —ﬁ also satisfies these properties. Namely, —% € 23Q|[2]], so —%h:o = 0.
Furthermore, we know that

/ 2 2
TEE oy~ L) - &

2 ) (2) 2
G T SR TR Gr TR
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We conclude that w’ (h(z)) = —ﬁ. Finally we get

L (h(z :7h(z) = plz

Lemma 2.2.6. h(z) defines a formal group isomorphism from G}l to (E,F) as formal groups
over Q.

Proof. We already saw that h(z) € z + 22Q][[2]]. We furthermore need to show that we have
h(z1 + z2) = F(h(z1),h(22)). From how F was defined in Section we know that h(z1),
h(z2) and i(F'(h(z1), h(22))) are the three roots of the cubic polynomial

A(h(21), (22))T + v(h(21), h(z2)) — (T, AM(h(21), h(22))T + v(h(z1), h(22))) (2.10)

in Q[[z1, 22]][T]. We claim that i(h(z1 + 22)) is also a root of this polynomial. First of all, we
note that
2T (h(z1 + 22))
i(h(z1 + =% by definition of ¢
Z( ('Zl Z2)) yT(h(Zl+2’2)) ( y nrtion Z)
p(z1 + 22)
/

= —QM (because g is even)
¢ (21 — 22)
= h(—2z1 — 22).

Because ¢ is a homomorphism, we have for a;, ay € C, that the points ¢(aq), ¢p(az) and ¢p(—a;—as2)
on F(C) are colinear. When they are on the affine patch Y # 0, we thus have that the point

(—25,((7_2:222)), — p’(—a21 _a2)> in the (¢, w)-plane must lie on the line through (—25,(&11)) ,— p,(Qal))
and (—25,((‘;22)) , —ﬁ). Recall that as series, we have h(z) = —25,((?) and w” (h(2)) = —%.

Thus by taking Taylor expansions, we conclude that the point (h(—z1 — 22), w’ (h(—21 — 22)))
must lie on the line
w = A(h(21), h(z2)) t + v(h(z1), h(z2))

in the (¢, w)-plane. We know from Proposition [1.6.10| that
wl (h(=21 = 22)) = f(h(=21 — 22),w" (B(=21 = 22))),
so this shows that h(—z; — 22) is a root of the polynomial ([2.10)).

We know that h(—z1 — z2) = i(h(z1 + 22)) is not equal to h(z1) or h(z2) because it has nontrivial
terms in both variables. Then we must have i(h(z1 + 22)) = i(F(h(z1),h(22))), and hence
h(z1 4 z2) = F(h(z1),h(z2)) (where we use that i(i(T")) = T'). This shows that h is a formal
group homomorphism.
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We saw that there exists a unique power series k(2) € Q[[2]] that satisfies k(h(z)) = 2z and
h(k(T)) = T. Tt can easily be seen that k(T) is a formal group homomorphism from E to G.,
because the proof of [32, IV, Lemma 2.4] shows that k(T") € TQ[[T]] and

k(Th) + k(Tz) = k(h(k(T1) + k(12)))
= k(F(h(k(T1)), h(k(T2))))
= k(F(T1,Ty)).
Hence h is an isomorphism. |

Corollary 2.2.7. h*w = dz.

Proof. We have w = %’ and hence

Proposition 2.2.8. We have k(T)) = L(T') as power series in Q[[T]], where L is the strict
formal logarithm on E defined in Section|1.6.4,

Proof. Recall that k: E — G is a homomorphism satisfying h(k(T")) = T. Because h*w = dz,
we also have w = (ho k)*w = k*(h*w) = k*dz. On the other hand, the strict formal logarithm is
also defined in such a way that w = £'(T)dT = L*dz. According to |38, Theorem 1.28], there is
a unique homomorphism with this property, so we must conclude that k(7") = L(T). |

Proof of Proposition [2.2.] Because we have x” (h(z)) = p(z), Proposition implies that
p(L(T)) = p(k(T)) = 2™ (h(k(T))) = 2 (T).

Now if we go back to our original curve E given by the model ({2.5)), we performed the transfor-
mation (2.6) to obtain (2.7)), hence we conclude

a? + 4as
p(L(T) = 2" (T) + =—5—
12
where 27 (T) is now the series defined with respect to the model ([2.5)). [ |

Convergence of o,

Our goal is to use o, to construct a local height function, and to do this we want to evaluate it
at ¢t(P), where P € E1(Qp) (see (L.26)). For this to be possible, we need to know something
about the convergence of o, on QQ,. To show a convergence result, we first need a lemma, which
is a one-dimensional version of [5, Lemma 2.3].

Lemma 2.2.9. Let g(T') € Zy[[T]]. Then g(E(z)) is of the form

o

dn, :
g(&(z)) = Z ﬁz" with d,, € Z.
n=0
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Proof. This is observed using exact same reasoning as in the proof of [5, Lemma 2.3]. |

We now state a convergence result for o, which was shown in [3, p. 9]. We provide a more
elaborate proof, adapting the arguments used in the proof of |5, Theorem 2.4].

Proposition 2.2.10. 0,(T") converges for all T € pZ,.

Proof. Recall from Lemma that the power series o(z) is of the form o(z) € z + 2°Q|[2]].
We also have £(z) € z + 22Q|[2]] from Proposition [1.6.20, so 27 '€(z) € 1 + 2QJ[2]] and thus
there exists a series g(z) € 1 + 2Q[[2]] such that z71£(2)g(z) = 1. Hence we can write

where u(z) = 2710 (2)g(2) € 1+ 2Q[[z]]. We note from Proposition [1.6.20| that &£ is of the form
E(z) = 2= %22 + ... for some ¢ € Z, so we deduce that u is of the form

u(z)zl—gz—l—'--. (2.11)
We write
op(T) = o(L(T)) = E(L(T))W(L(T)) = Tup(T),

where u,(T) := u(L(T)). We will show the convergence result for o, by showing the convergence
of uy, first.

We have
d? d? d?
7,2 108(E(2))(L(T)) + - log(u(2)) (£(T)) = - log(o(2))(L(T))
= —p(L(T)) (by @.3))
= —21(T) - a%—;;l@ (by Proposition
as series in Q((7')), and thus
2 a2 + 4da 2
& logu()(£() + DN - ) T og(E(2))(L(T)). (2.12)

We want to show that the left-hand side of this equation is in Z[[T]], so that we can apply
Lemma to find the expansion of % log(u(z)). First of all, because u(z) € 1 + z2Q[[2]], we

have j—; log(u(z)) € Q[[z]]. Hence j—; log(u(2))(L(T)) + a%J{QA‘aQ € QI[T7], so it has no terms with
negative powers of 7.

Now let us look at the right-hand side of (2.12)). Using the chain rule twice, we find that

2
522 log(£(2))(L(T)) = L’(lT) % <jz log(€ (z))(ﬁ(T))>
1 4 1 dlog(T)
E’(T)dT([/(T) dT >
1 d 1
~ £(T)dT <TL”(T)> ' (2:13)



Because L(T) =T + Y2, “=LT™ for some ¢, € Z by Proposition [1.6.20, we have

L(T)=1+> c,T" € 1+ TZ[[T]].
n=1
Hence also ﬁ € Z[[T]]. Tt then follows from (2.13) that dzg log(E(2))(L(T)) € Z((T)).

Furthermore, we also know that z7(T) € Z((T)). Hence the right-hand side of (2.12) has
coefficients in Z, and then so must the left-hand side. We conclude that

2 CL2 a
& tog(u()(£(r) + D12 ¢ gypr)

If we evaluate at £(z), we find using Lemma that

2

d a2 +4ay  ~=dn ,
7 s T Ty =

2
ai + 4as9 .2

log(u(=)) + L1

>
=C1+Coz+ ) n'2z” (2.14)
n=2 )

for some d,, € Zy, and Cy,Cy € Q,. Because u(z) is of the form (2.11)), we see from the series
expansion of the logarithm that log(u(z)) = §2+---, s0o C1 = 0 and Cy = § € Z, (because

p#2).

When T € pZ,, we have that £(T) converges and ord,(L£(T")) > 0 by [32, IV, Lemma 6.3(b)]
(where we use that p > 3). The same Lemma [32, IV, Lemma 6.3(b)] then also implies that the

right-hand side of (2.14)) converges at £(T') to a value in pZ,. Because ord, (a%;f@L(T)?) >0

we conclude that then also log(u(L£(T"))) converges to a value in pZ,. The Taylor series around 0
of the exponential function converges at this value, again by [32, IV, Lemma 6.3(b)], and hence
w(L(T)) = up(T) converges. Then o,(T') also converges for T' € pZ,. [ |

Recall that if P € E1(Q,), the kernel of reduction modulo p, then ¢t(P) = —z(P)/y(P) € pZ,
and hence o, converges at t(P).

Properties of oy,

From the expansions of o (see Lemma [2 and L (see Proposition [1.6.20]), we deduce that
op(T) € T + T?Q[[T]], and hence for T' in the domain of convergence pr, we have 0,(T") =0
precisely when 7' = 0.

From the identity (2.9)), we deduce a similar identity for o,. Using Proposition we see that

o(L(Th) + £(T2))o (L(Th) — L(T3))
2

= p(L(T2)) — p(L(T1))

)
(L () Po (L(Ty)?
<<@?%%T#(W—W@Wﬂmm

=21 (1) — 2T(Ty).
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We saw that Proposition [2.2.10| implies that ¢,(T") converges on t(P) for P € E1(Q)), and we
know x7(T) converges on t(P) for P € E1(Q,) \ {O}. So for P,Q € E1(Q,) \ {O}, we get the
identity

op(t(P + Q))op(t(P — Q)) _ B
o0 (1(P)) 20, (1(Q))2 =z(Q) — z(P). (2.15)
Other p-adic o-functions
For any constant s € Q,, we define a series
ol)(T) = 0, (T) exp,, (-%L(Tﬁ) (2.16)

where exp,, is the p-adic exponential. Note that o), = UI(JO). These functions cr}(,s) are different

p-adic o-functions. The region of convergence of GI(,S) in Q, may depend on s, and we denote it

by Vs. We write V, = {P € E1(Qy) | t(P) € V,}.
We use the following general property of L.

Proposition 2.2.11. The map E1(Q,) — Q, defined by P — L(t(P))? is a quadratic form.
Ezplicitly, for all P,Q € E1(Qp) and m € Z we have

L(t([m]P))* = m*L(¢(P))?,
LHP +Q))* + L(HP — Q) = 2L(t(P))* + 2L(4(Q))*.

Proof. This follows from Lemma [1.6.12| and the fact that the maps ¢~! defined in (1.26)) and £
from ([1.32)) are group homomorphisms. |

Lemma 2.2.12. Let P € E1(Q,) such that P,—P € V. We have
os ) (t(=P)) = —a) (¢(P)).

Proof. We have

o) (H(=P)) = 0 (t(=P)) exp, (— 3 L(H(=P))?) (using (216))
— o(L(i(t(P)))) exp, (—gﬁ(z’(t(P)))2> (because is a homomorphism)
— o(=L(t(P))) exp, (—g(—c(t(P)))Q) (because £ is a homomorphism)
— —0,(H(P)) exp, <—;E(t(P))2> (because o is odd)
= —o ) (t(P))

Lemma 2.2.13. Let s € Qp, and let P,Q € V4 \ {O}. Then

o8 (H(P + Q))oy) (H(P — Q)
o3 (t(P))20y) (1(Q))2

— 2(Q) - 2(P).
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Proof. From (2.16) we get

0 (H(P +@))oy” (1P = Q) _ ap(t(P + @Q)op(t(P ~Q))
o) (t(P))205) (1(Q))2 op(t(P))?0p(t(Q))?
exp, (=3 (LMUP + Q) + L(P - Q) = 2L(H(P))* — 2£(HQ))?))

This last factor is equal to 1 by Proposition [2.2.11] The result then follows from ([2.15)). |

Lemma 2.2.14 ([6, Lemma 2.2.4(ii)]). Let s € Q,, P € V \ {O}, and n € Z~o. Then

oy (t([n]P)) = o) (t(P))" n(P).
with vy, as defined in Definition [1.5.3,

We can use the p-adic o-functions to define local heights 5\2(,5) : Vs \ {0} = Q, by
A (P) = —21log, (o) (¢(P))). (2.17)

This is only meaningful for values of s for which V is larger than {O}, such as s = 0. In this

case, we want to extend ;\I(,S) to all nontorsion points of E(Qy).

Lemma 2.2.15. Let V be a neighbourhood of 0 in Q,. Let P € E(Q,). Then there exists an
integer m > 0 such that [m|P € E1(Qp) and t([m]P) € V.

Proof. We note that E7(Q)) has finite index in Ey(Q,) = E(Q)) from [32, VII, Proposition 2.1].
Hence, the equivalence class of P in E(Q))/E1(Qp) must have finite order k, which implies that
[k]P € E1(Qp). Because V is a neighborhood of 0 in Qy, it contains a set of the form p"Z, for
some n € Z~q. Because [k]P € F1(Q,), we find that ord,(t([p"~'k]P)) > n by Corollary
Hence t([p"~'k]P) € p"Z, C V. [

For the rest of this section, let us fix an s € Q, such that V; is a neighborhood of 0.

Definition 2.2.16. Let P € E(Qy) \ Etors. Let m € Zsg such that t([m]P) € V,. We define
A B(Qp) \ Eiors — Qp by

5 (P) = = (108, (o (1([m] ) log, (bm(P) )

Note that when P € V\ {O}, we can take m = 1 and this definition agrees with (2.17). This

definition does not depend on the choice of m, as the following lemma shows.
Lemma 2.2.17. Let P € E(Qp) \ Eiors. Let m,n € Zsq be such that t([m]P),t([n]P) € V.
Then

2 S 2 S

——5 (108, (o) (t([m]P))) = Log, (¥m(P))) = == (log, (o1 (t([n]P))) — log, (1n(P)))

Proof. From Lemma [2.2.14] we have

2

o) (t([m]P))" thu([m]P) = o) (t([mn] P)) = o) (t([n] P))™ tyu([n] P).
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Using Proposition [1.3.3|(v) we obtain

Y (P)™ U (P)™
This shows that
(s) (s)
op (t(Im]P)) | _ 1 op (t([n]P))
21 gp( pwm(P) ) anOgP< pwn(P) )

Proposition 2.2.18 ([6, p. 18]). The local height ;\I(,S) satisfies the following properties:

(a) For all P € E(Qp) \ Etors and all n > 1, we have

AD([n]P) = AP (P) — 2log, (n(P)).

(b) For all P,Q € E(Qyp) such that P,Q,P + Q,P — Q ¢ Eins, we have

AP +Q) + AP — Q) = 2300 (P) + 23()(Q) — 2log, (¢(P) — 2(Q)).

2.2.3 Global p-adic heights
Again we only consider s € Q, for which V; is a neighborhood of 0. For such s we define a global

height on all of E(Q).

Definition 2.2.19. We define a global height 1" : E(Q) — Q, by

w2 [ T P ¢ B
P 0 if P € Fiops.

To see that the sum in this definition is finite, we note that E has good reduction at all but a

finite number of primes, and at those primes we have we have 5\((1;: )(P) = log,, max{|x(P)[q, 1}

(see Lemma [2.2.2)). For each P € E(Q) \ {O}, we have |z(P)|, = 1 for all but finitely many

primes q. We conclude that j\gp )(P) is nonzero for only finitely many primes.

In order to find a more explicit description of hés), we first consider it on a subset on which the

local heights have a simple description. Let us write

EdQ) = () E(Q)

q prime

for the set of all P € E(Q) that reduce to a nonsingular point modulo all primes (with respect
to the Weierstrass model (12.5))). Furthermore, we write

EP(Q) == E*°YQ) NV,

Proposition 2.2.20. Let P € E(Q). Then there exists an m € Zsq such that [m|P € E,(,s) (Q).
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Proof. Note that E has bad reduction at a prime ¢ precisely when ¢ | A, so there are at most

a finite number of primes ¢i, ..., ¢, for which P ¢ E’(()Qi)((@). But E((]qi)((@) has finite index in
E(Q) (see |32, VII, Corollary 6.2]), which implies that there is a positive integer m; such that

[mi]P € Eqi)((@) for each i € {1,...,7}. Then [my---m,]|P € E&°°4(Q). We already saw in
Lemma [2.2.15| that there exists a positive integer mg such that [mom; ---m,|P € Vg, which
concludes the result. |

Proposition 2.2.21. Let P € E(Q) \ Eyors and let m € Zwg such that [m]P € ES)(Q). Then

) (t(im

with d([m]P) as defined in Proposition [1.3.1]

Proof. Note that [m]P # O because P ¢ E\os. We have

R (P) = A (P)+> AP

aFp
=2 (tog, (o0 1) —logpwm(P)))
+> (x |P) + 21og, |¢m(P)], ) (Def. Prop.
q;ép
= —% 2logp(a]gs) (t([m]P))) — Zlogp max{|z([m]P)|q, 1} (Lemma [1.1.17]

q#p

- L 2log, (o) (t([m] P))) + Y _ log, |d([m]P)?|,
q#p

2 oy ([m] P))
=~ 3log, <d([m]P) : (Lemma [1.1.17)

Proposition 2.2.22 (|6, Properties 2.2.7]). The p-adic height h,(f): E(Q) — Qp is a quadratic
form. Explicitly:

(a) For all P € E(Q) and n € Z, we have hz(f)([n]P) = thZ(f)(P).

(b) For all P,Q € E(Q), we have by’ (P + Q) + by (P — Q) = 2057 (P) + 1 (Q).

Proof. In general, part (a) follows from part (b) by Proposition [2.1.5] However, to prove (b) on
torsion points, we will use part (a), and thus we prove part (a) ﬁrst.

Part (a) is clearly satisfied when P € Fi5(Q). For P ¢ FEios and n > 1, we use Proposition
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[2:2.18 and Proposition [2:2.1] to get

B (1)P) = AP (n]P) + 3 AP ([n] P

a7p
= n2A(P) = 2log, (¥n(P)) +n2 Y [AP(P) - 2log, [vn(P)),]
a7p
= th;S)(P). (Lemma

For n = 0, the statement is clear because both sides evaluate to 0. Finally, to show the statement
for n < 0, we note that h(s)( P) = h;(,s)(—P) for all P € E(Q). This clear when P € Eiu, and
when P ¢ Fios, we can find m € Zs such that [m]P,[—m]P € E,gs) (Q). It then follows from

Proposition that hl(,s)(P) = hl(,s)(—P), because O'I(,S) (t(=P)) = —UI(,S)(t(P)) (Lemma ,
d(—P) = d(P) and log,(—1) = 0. Then we have

) ([0 P) = h) ([=n]P) = (—n)*h) (P) = n*h) (P).

For part (b), let us first consider P,Q € E(Q) such that P,Q,P + Q,P — Q ¢ FEios. Then we
again use Proposition [2.2.18 and Proposition to find

WO (P+Q)+h (P —Q) =A)(P+ Q)+ A (P-Q)+ Y AP(P+Q)+ ) AP(P-Q)
q#p q#p

= 209(P) + 2A)(Q) — 2log, (x(P) — z(Q))
+ Y [2AP(P) + 22P(Q) - 210g, [a(P) — 2(Q)l

q#p
= 2h§f) (P)+ ZhI(f)(Q). (Lemma
If P € Eios with [n]P = O, we get
W (P + Q) +h) (P - Q) = %h;(f)([n}(PJrQ)) — b ([n](P - Q))
= Sh([1Q) + b (-n]Q)
=21(Q)
= 2h{(P) + 2h{9(Q)

A similar argument shows that the parallelogram law is satisfied when @ is a torsion point. If
P + Q € Eios with [n](P + Q) = O, we have [n]P = —[n]Q. We get

When P — @ € Eios we have a similar argument. [ |
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Finally, let us derive a relation between the height functions h](f) for different values of s.

Proposition 2.2.23. For all P € E1(Q), we have
S 0 2
W (P) = hD(P) + sL(t(P))%.

Proof. If P = O, both sides evaluate to 0 so the equality is satisfied. Otherwise, P ¢ Eis by
Corollary [1.6.25| Let m € Z~¢ such that [m]P € EZ(,S) (Q). We find

(s)
s 2 op (t([m]P)) .
hé )(P) = ——log, (pd (Proposition [2.2.21))

O'(O) m S
2 1o, (pd A ”) + 2 Lb(m]P))? (using [ZT5))
= hO(P) + sL(t(P))% (Proposition

2.3 Naive p-adic height functions on elliptic curves

We now introduce two naive p-adic height functions, which in a limit converge to quadratic
p-adic height functions, similarly to how the real canonical height was defined in Definition
We compare these limits to the previously defined p-adic height function h}(}o)' These naive p-adic
heights were first described by Perrin-Riou in 28], in the setting of elliptic curves over general
number fields, and using idele class characters. The goal of this section is to give a more in
depth description and explanation of the results described in [28], specialized to the case where
FE is an elliptic curve defined over Q. In this setting there is only one idéle class character up
to scaling, and for that reason we do not introduce the corresponding theory but instead do

everything explicitly for one normalization.

Let us again fix an odd prime p. We remain in the setting of the previous section, considering
an elliptic curve E/Q defined by (2.5). We focus on the subgroup

Ey(Q) := EV(Q) = E=*Y(Q) n EP(Q)

of points on E. Recall from Proposition that for any P € E(Q) \ {O} we can write
z(P) = ;((PP))Q and y(P) = ;((1];))3 for some unique integers a(P),b(P) and d(P) with d(P) > 0,
such that ged(a(P),d(P)) = ged(b(P),d(P)) = 1. We define the following functions from

Ey(Q)\ {0} to Qp:

Hy(P) = log, (a(P)) (2.18)

2

H3(P) = 3 log, (d(P)*(2y(P) + a1z(P) + a3)/2)

. 2 aq as 3

= 3 log, (b(P) + Fa(P)d(P) + Td(P)*).
Because P € E,(Q) C Efp) (Q), we know that P reduces to [0 : 1 : 0] modulo p. This implies
that ord,(y(P)) < 0 and then also ord,(z(P)) < 0, so we have ord,(a(P)) = ord,(b(P)) = 0 and
ord,(d(P)) > 0. Hence, since p # 2, the arguments a(P) and b(P) + %4 a(P)d(P) 4+ %d(P)? are
in Z;. We call Hy and Hj naive p-adic heights. The main result we discuss in this section is the
following, which is the main proposition in [28, Section 4].
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Theorem 2.3.1 ([28, p. 246, Proposition]). Let P € E,(Q)\ {O}. Then the following limits
exist in Qp:

(a) ho(P) = limy o ﬁHQ([pn]P),

(b) hs(P) = limy o0 o H3([p"]P).

The goal in this section is to work out Perrin-Riou’s proof of this result in detail, which will be
done in Section [2.3.2] and Section 2.3:3] We then show that he and hg satisfy the parallelogram
law in Section In section [2.3.5] we show how ho and hs can be extended from the restricted
domain E,(Q) \ {O} to the entire group E(Q). Finally, in Section we compare hy and hs

with the quadratic height hz(,s) of Section In [29], Perrin-Riou proves a comparison result
under the assumption that F has good ordinary reduction at p. We present an adapted proof
that does not use this assumption.

2.3.1 Some useful lemmas

In order to prove Theorem [2.3.1) we first introduce some lemmas which will become useful
multiple times throughout the remainder of this chapter. The first lemma is based on [28, Lemme
a], but proven for a bigger class of functions (although stated over Q, rather than the more
general v-adic completion of a number field). This greater generality will allow us in Section

to compare hg and hs with the quadratic height h;s) from Section without requiring
that E has ordinary reduction at p, which is an assumption Perrin-Riou uses in [29] to obtain
such a comparison result.

Lemma 2.3.2. Let T = (T1,...,T;) and g(T) € 1 + (T, ..., T,)kQ,[[T]] for some k € Z=o,
such that g converges on some neighborhood of 0 in (Q,)". Let (™) be a sequence of r-tuples in
(Qp)", satisfying ordp($l(n)) >n foralln >0 andi=1,...,r. Then for large enough n € Z>,

g(x™) converges, and for m € Z.;, we have

1
lim — logp(g(:c("))) = 0.

n—oo0 P

Proof. Let us write
o0

—_— . . il PO iT
g(T) =1+ Z azl,...,erl Tr
11,...,05 >0
i1+ tir >k

,,,,, i» € Qp. Because g converges on a neighborhood of 0, we know there exists some
R € 7Z such that g converges for all T € (Q,)" satisfying ord,(7;) > R for i = 1,...,7. In
particular, g(w(”)) converges for all n € Z>q satisfying n > R.

To prove the second statement, we first show that there exists a constant C' > 0 such that g(:v(”)) €
1 +pk(”_C)Zp for all n > C. Because g converges at (p%,...,p®), There is a minimal M € Zs,
such that for all iy, ...,i, € Zso with i1 4 --- 44, > M, we have ord,(a;, ;. p@+ i)y >0,
and hence

ordp(ai17,,,7ir) > —(il —+ -+ lr)R (219)
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If M > k, let us define N = —min{min;, 4...;, <ps ordp(a;, ... ;.),0}. Consider any n > N. Then
for all ¢1,...,%, with k <d1 4+ -+ 4, < M, we get

ordy (aiy,..i, (2§") - (@) ) = ordy(aiy,..,) + Y iy ordy(a”)

j=1
> =N+ (i1 +-+ip)n
> —N+kn
>k(n—N)>0. (using k> 1, N >0) (2.20)

Now consider n > R. For all 4q,...,%, with iy +---+ 4. > M > k, we get

ordy (aiy,..a, (@) - (@) ) = ordy(aiy,..,) + Y iy ordy(al”)

j=1
>—(i1+---+i)R+(ir+---+i)n  (using (2.19))
> k(n—R) > 0. (2.21)

We set C' = max{N, R} > 0. Using (2.20) and (2.21)) we get that if n > C, then for all for all
i1,...,% with k <4y 4+ --- 4+ 4, we have ord, (aihmm(mgn))il e (:::ﬁ’”)%) > k(n — C). Hence
g(x™) € 1+ pF=A7Z, (by Lemma[1.1.7). We conclude that

ord, <p:m logp(g(m(")))) — —mn + ordy(log, (g(=™)))

> —mn+k(n—C) (using Lemma
=n(k —m) — kC.

Because m < k, this shows that ord, (zﬁ logp(g(m(")))> approaches infinity as n — co. This

implies the result. n

Corollary 2.3.3. Let P € Ey(Qp). Let g(T) € 1+ T*Qy[[T]] for some k € Zsq, such that
g converges on some neighborhood of 0 in Q,. Then for large enough n € Z>o, g(t([p"|P))
converges, and for m € Z.y we have

lim - log, (g(t([p"]P))) = 0.

n—oo P

Proof. We know that ord,(t([p"]P)) > n from Corollary [1.6.13] The result then follows immedi-
ately from Lemma [2.3.2] [ ]

Corollary 2.3.4 (variation on [29, Lemme part 1]). Let P € E1(Q,). If g(T) € 1+T*Z,][t]]
for some k € Z~q, then for m € Z . we have

lim —log, (g(t([p"]P))) = 0.

n—oo P

Proof. Because g(T') € Z,[[T]], g converges for all T' € pZ, by Lemma m The result then
follows from Corollary |
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Lemma 2.3.5 ([29, Lemme part 3]). Let P € E1(Q)). If d € Q,, then

lim —+ log, (1+ dt([p"|P)?) = d L(t(P))*.

n—o0 p

Proof. The statement is clearly true for d = 0. Let us assume d # 0 and write C' := ord,(d).
Recall from Corollary [1.6.13| that ord,(¢([p"]P)) > n for all n > 0, so 1 — dt([p"|P)? € 1 + pZ,
for all n > 0 satisfying 2n > —C. For such n, we use (1.3) to obtain

logp (1 + dt([p"]P)Q) = dt([pn]P)Q + t([pn]P)g Z H’Ziﬂdit([pn]P)Qi_?’.
1=2

Let us look at the terms in the sum for ¢ > 2 individually. We see that

ordy, ((—13”1 dit([pn]P)zi_3> > —(i—1)+ (2i —3) (using ord, (i) <i—1)

=1—-22>0.

If C' < 0, we consider n > —2C, and we get

ord, ((1Z)i+1dit([p”]P)2i3> > —(i—1)+Ci+ (2 —3)(n+1)

> (i — 1) 4 Ci + (2i — 3)(—2C + 1)
= —3Ci+i+6C —2
= (i —2)(-3C + 1) > 0.

Hence for all n > max{—2C, 0}, we can write
log,,(1 + dt([p"|P)?) = dt([p"]P)* + t([p"]P)° g(t([p"] P))

with g(t) = Y5, %dit%_?’ and ord,(g(t([p"]P))) > 0. We use this to split the argument of
the limit into two terms, after which we will show that the limit of each of these separate terms
exists, and thus that their sum is equal to the original limit. Assuming for now the limits indeed

exist we obtain the equality

n 2 n 3
i tog, (1+ o)) = i | TIPS SR
n 2 n 3
= i () [P )] 222)

In order to rewrite the first term, we note that L(t([p"]P)) = p"L(t(P)) for all n > 0, by
Theorem |1.6.21| and because the map v in ([1.26]) is a homomorphism. Hence we have

L(t(P)) = plnﬁ(tqp”]m)

1 OOCZ‘_l ;
- _ tpnp’b
o 22 P)

for some ¢; € Z with ¢y = 1 by Proposition [1.6.20, For ¢ > 1, we have

L ci- : L :
ordy (LY ) > n i in = 01
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We get

ord,, <£(t(P)) - W) = ord, ( 1Ci.1t([p”]P)i>

>2(n—1)—n=n-—2

pn

lim (’W>2 = L(t(P))>.

n—00 pn

for n > 1. This implies that lim,, (E(t(P)) - M) = 0, and hence

For the second term of ([2.22), we note that for n > max{—2C, 0}, we have

n 3
ord, (Wg(t([p”]P))) > 3n —2n =n,

and hence lim,, [@#g(t([p”]lo))} = 0. Taking everything together, we conclude that

lim —log,(1+ di([p"|P)?) = dL(H(P))*.

n—o0 p

Corollary 2.3.6. Let d € Z,, P € E1(Q,), and let g(T) € 1+ dT? + T3Q,|[[T]] such that g
converges on a neighborhood of 0 in Q,. Then for large enough n € Z>q, g(t([p"]P)) converges
and

lim — log, (g(t([p"]P))) = d L(H(P))?.

n—oo p

Proof. If we view 1 + dT? as a power series in Z,[[T]], it is invertible, and its inverse is of the

form
oo

WT) e > (—d)T*.
i=0
For T with 2ord,(T) > —ord,(d), we get ord,((—d)*T?) > i for all i > 0, and hence h(T)
converges at 7' by Lemma We conclude that h converges on a neighborhood of 0 in Q.

We can write g(T) = (1+dT?)h(T)g(T), and, because both h and g converge on a neighborhood
of 0 in @y, the same is true for k(T") := h(T")g(T"). Furthermore, from the form of the expansions
we conclude that k(T) € 1+ T3Q,[[T]].

We obtain
: 1 n : 1 n 2 : 1 n
i logy (9(t([p"]P))) = i o 108 (1+dt([p"]P) )+n1ggloﬁ log,, (k(t([p"]P)))
=dL(t(P))
using Lemma and Corollary |
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2.3.2 Existence of hs
We start by proving the existence of the limit in Theorem [2.3.1{(a). Our strategy is as follows:
Let us write G(P) := Ha([p]P) — p?H2(P). Then if we show

: 1 ——
Jim WG([P JP) =0, (2.23)

this implies using Lemma |1.1.6| that the sequence (p%an([p”]P)) for n — oo is Cauchy. This

then shows that the limit in Theorem m(a) exists, because Q) is complete and hence every
Cauchy sequence has a limit. To be able to show (2.23)), we need to rewrite G(P) in a form for
which we can evaluate this limit.

Proposition 2.3.7. Let P = <;((PP))2, ;((If))g) € E,(Q)\ {O}. For allm > 1 such that [m]P # O,

we have

Ha([m]P) — m®Hy(P) = log,, <m> :

Proof. This follows directly from the definition of Haj:
Hy([m]P) — m*Hy(P) = log,(a([m] P)) — m* log,(a(P))
m2
= log, (a([m]P)/a(P)"™").
[
To work with the expression above, we want to express the value a([m|P) in terms of the point P

rather than [m|P. To be able to do this, we make use of some general properties of the division
polynomials, which were introduced in Section [1.3.3

Lemma 2.3.8 (|28, Lemme b]). Let E/K be a possibly singular Weierstrass curve (1.4]) over
a field K. Let P € E(K)\ {O} be a nonsingular point. Then x(P) cannot be a common zero of
bm and V2, for any m > 1.

Proof. By definition, a point P # O is singular when it simultaneously satisfies

Vo(P) = 2y(P) + a12(P) + a3 =0 and n(P):= 3z(P)? + 2a2(P) + a4 — a1y(P) = 0.

For m = 1 we have ¢,,, = 92, = 1, so the statement is trivially true. Next, let us consider the
case m = 2. Some algebra shows that

b2(z(P)) = z* — by — 2bgz — bg
= n(P)?* = 22(P)¢5(z(P)) + a1n(P)¢2(P) — aghs (x(P)).

If we assume that 19 (P) = ¢2(x(P)) = 0, the above equation implies that also n(P) = 0, and
hence that P is a singular point.

Next we show the statement for arbitrary m > 2 by contradiction. Let m be the smallest integer
for which P is a common zero of ¢,,, and 12,. Let us first assume that m is even. Then we can
write m = 2n. We distinguish two cases.
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1. If Y2 (x(P)) = 0, we see from (1.9) that ¢2,(x(P)) = 0 implies that also ¢, (z(P)) = 0.
But this is not possible because of the minimality of m and the fact that n < m.

2. If 92 (x(P)) # 0, then (1.9), (1.10) and our assumption ¢, (z(P)) = 12,(x(P)) = 0 imply
that
On((P)) o ((Pn(z(P)) >
¢< =¢o(z(|n]P)) =0 and 5| —F5—=5 ) = ¥5(x([n]P)) =0.
But we saw that this implies that [n]P is a singular point, which is not possible because
we assumed that P is nonsingular.

Now assume m is odd. Then ¢,,(z(P)) = 92 (x(P)) = 0 together with (1.7) imply that
Ym—1(P)Ym+1(P) = 0. This gives two possibilities. If ¢, 1(P) = 0, then from we know
that ¢m+1(2(P)) = z(P)Y2, 11 (2(P)) — Y (P)m42(P) = 0. But because m + 1 is even, we just
saw that then also @(;,11)/2(2(P)) = Y(mg1)/2(P) = 0. But this contradicts the minimality of m,
because (m +1)/2 < m for m > 3. In a similar way we get a contradiction when v¢,,_1(P) = 0.
Together this proves the lemma. |

Corollary 2.3.9. Let E/K be an elliptic curve over a field K. Then ¢,, and 1?2, have no
common zeros in K, and hence they are coprime polynomials in K|z].

Proof. Assume x € K is a common zero of ¢,, and v2,. Because K is algebraically closed, there
exists y € K such that (z,y) € E(K). This contradicts Lemma [ |

Lemma 2.3.10 ([28, Lemme c]). Let E/K be an elliptic curve, where K is a field with
char(K) not equal to 2 or 3. Then the coefficient of 2™ =1 in the polynomial ¢., is zero for all
m > 1.

Proof. Let us consider the change of coordinates

, a1x + as

4 2
Yy =y+ and $':x+m.

2 12

The corresponding Weierstrass equation (y')? + a2y’ +asy’ = (2)3 +db(2")? + a2’ + aj; satisfies
a} = a, = 0. We consider the polynomials ¢/, and (¢/,,)? corresponding to this equation. We
know that ¢/, is homogeneous of degree 2m?, where x has weight 2 (see Proposition M(u))
The coefficient d/ , | € Z[a}, ... ag] of (z/)™*~1 therefore needs to have weight 2, but because
the a; have weight i, and a} = aj = 0, this is not possible and hence we must have d , | = 0.

4aso —i—a%

Now if we set ¢ = —5— so that 2’ = x 4 ¢, we see that for all P with [m]P # O,

Gm(E(P)+¢) (2 (P))
(V1) (@(P) +¢)  (¥7,)%(2'(P))
= a2/(mP)
=z(mP)+ ¢
_ Sm(z(P)) + cvp (2(P))
Vi (z(P)) '
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‘We conclude that

Sm(@tc) _ dm(@) + vy (@) (2.24)

(¥7)?(z +¢) Vi (@)
in K(z). It follows from Corollary that the numerator and denominator of this fraction on
the right-hand side cannot have common factors. We also know that ¢/, (z +¢) and (¢/,)%(z + ¢)
have no common factors by the same corollary. Hence we conclude that the numerators in (2.24)
are equal, so we have

On(2’) = om(a’ = c) + ey, (2’ o).

Let us denote by d,,2_; the coefficient of 2™ m?~1 i ¢m. By comparing the coefficient of (z’ )m2_1
in the left- and right-hand side of the above equation, we obtain d’ 4= = -—m2c+d,2_ 1 +cm? =

dpm2_1. We conclude that d,2_; =d! , | =0. |

Let us return to our original setting, with the elliptic curve E given by ([2.5)). Recall that we want
to rewrite a([m]P) as an expression in terms of the point P. In order to do this, we introduce
the notation

(X, Z) = 2™ $(X/Z) and P (X, Z) = 292 (X/2).

Lemma 2.3.11 (|28, Lemme d]). Let P = ( a(P) ”(P>3) e E2ood(Q)\ {OY. Let m > 1 such
that [m]P # O. Then a([m]P) = +ém,(m1, m3).

Proof. To ease notation, let us write m; = a(P), ma = b(P) and mg = d(P). We also use the
notation a, = ¢ (ma, m3) and B = Uy, (M1, m3) First of all, we note that

A = 3™ Gy (2(P)),

B = mF™ Y2, (x(P)),

and hence z([m]P) = 0"" by (|L.8] . Note that ay,, B, € Z. It now suffices to show that
ged(am, Bm) = 1. order to do this, let us consider any prime ¢. If ¢ | ms, then ¢ f my
as gcd(ml,mg) = 1. We know that ¢,,(z) is monic in x, so we deduce that ¢,,(X,Z) =

X" 4+ Zg(X,Z) where 9(X,Z) € Z|X, Z] is homogeneous of degree m? — 1. Hence oy, =

bm(my,m3) € mP ‘4t m37Z, which implies that q{ cp,.

If g { mg, this implies that 73 has a multiplicative inverse mgl in F,, and P= (mlmgQ, mgmg3)
(using the notation in Definition [1.1.12)). We observe that

on(@(P)) = (175 2) = 105 2™ G (11, 103).

We thus have ¢ | a,, precisely when gbm( (P )) = 0. Similarly, q | 3, precisely when ¢2 (x(P ) = 0.
But because P € E2°°4(Q), z(P) cannot be a common zero of ¢y, and 2, by Lemma [2.3.8

We conclude that ¢ 1 ged(am, Bm), and because q is arbitrary we have ged(am,, Bm) = 1. This
implies that oy, = £a([m|P). [

Lemma 2.3.12. Let P = <;((TP))2, %) € E,(Q)\ {O}. For all m > 1, there exists a power

series L (T) € 1+ TAZ[[T)], independent of P, such that a([m]P)/a(P)™ = I (t(P)).
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Proof. First of all, note that Because P € Egp ) (Q) \ {O}, P is a nontorsion point by Corollary
1.6.25| Hence [m|P # O for all m > 1, so a([m|P) is well-defined.

We again use the notation m; = a(P), ma = b(P) and m3g = d(P). For m = 1 we get
a([m]P)/a(P)™ =1, so we simply have I;(T) = 1. For m > 2, we use Lemmam to note
that

2 m§m2

al[m]P)/a(P)™ = = G fm5) = £(P) ™" 6 ((P)).

m2
1

Because ¢y, is monic and using Lemma [2.3.10, we get that ¢, (x) = ™ 4 Z;fo_z d;x* for some
d; € 7Z.. We obtain

-2
a([m]P)/a(P)™ =1+ Y diye a(P).

i=—m?

Because P € E;(Q), we have 2(P) = z7 (¢(P)) where 2T has the expansion ([.24). It follows
that z(P)~! € t(P)2Z[[t(P)]]. This implies that a([m]P)/a(P)™ € 1+ t(P)*Z[[t(P)]]. The
coefficients of this series only depend on F and m and not on P, so indeed there exists a power
series I (T) € 1+ TZ[[T]], independent of P, such that a([m]P)/a(P)™ = L, (t(P)). [ |

Using the above lemmas, we can prove the existence of the limit in Theorem [2.3.1(a).

Proof of Theorem |2.3.1|(a). Let P € E,(Q) \ {O}. Then by Corollary [1.6.25, we also have
(ERE)

[p"|P € E,(Q) \ {O} for all n > 0. Recall that we want to show the limit . We get
1 H. n+1 P 1 H " p
P2 2([p""] )—an 2([p"1P)
1 n N
= SR (Ha([p)([p")1P)) — p*Ha([p"] P))
1 . .
= P2 D) logp(a([p”+1]P)/a([p"]p)P2) (Proposition [2.3.7)
1 7
~ p2nt1) log,, (L (¢([p"]P)))- (Lemma [2.3.12))

It then follows from Corollary [2.3.4] that the limit of this expression as n approaches oo is zero,
and hence by Lemma |1.1.6| the sequence (I%Hg([p”]P)) is Cauchy, as desired. [ |

2.3.3 Existence of h3z and a relation between h, and hs

Next, we show the existence of the limit in Theorem [2.3.1|(b), following Perrin-Riou’s argument
in |28, pp. 247-248]. First, we find a relation between Hy and Hs, and make use of the fact that
we know the limit hg exists to find the limit hs. We prove the following relation between the
two limits.

Theorem 2.3.13 ([28, p. 246, Proposition]). Let P € E,(Q) \ {O}. Then

a? + day

h3(P) = ha(P) + ——5

L((P))?.
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Consider P € E,(Q) \ {O}. We write m; = a(P), mo = b(P) and mz = d(P), so that

P = <m—§,m—§> We have
m3 " m3

3(Hs(P) — Hy(P)) = log,, ((m2 + %mlmg + ‘;?’mg)2> — log,,(m?). (2.25)

To find a relation between ho and hs, we want to manipulate the right-hand side of this equation
into an expression at which we can evaluate the appropriate limit using the lemmas in Section

231

Recall that because P € E%p) (Q), we have t(P) = —
of log,, in the first term of (2.25)) as

— __mim3

WP e We can rewrite the argument

3 2
ay az 3\? ay ag mj 3
<m2 + - mms + ?m3> = (m2 - ?mgt(P) - Emiki’t(P) ) .

Because P € E}p)((@) we know that ord,(y(P)) < ord,(z(P)) < 0, and hence ord,(m;) =
ordy(mg) = 0. This means that m;, my € Z;. Because p # 2 we also have 2,4 € ZX. We can

rewrite the expression above as an element in Z, modulo the ideal generated by t(P)3p as follows:
al as m3 2 a1 2
ma — Lmgt(P) — B2y (p)3) = 2 (1 - 77:(13)) mod (P)3
2 2 m3 2
3
=m3 ((1 —ait(P)) (1 + 41t(P)2> + (th(P)3> mod t(P)3
2
= m3(1 — a1t(P)) (1 + th(P)2) mod t(P)3. (2.26)

Now let us rewrite the first factor in (2.26]). By multiplying both sides of the Weierstrass equation
of the curve (2.5) by m$, we obtain

m% + aymimaoms + agmgmg = m‘rf + an%mg + a4m1m§L + a6mg
2 2 m% 3 3 2 2 m% 4 mg 6
mjy — aymat(P) — a3—5t(P)° = my + agmyt(P)” + as—35t(P)" + ag—5t(P)". (2.27)
mj m3 my
Because my € Z,, we thus have
2 _ .3 2 2 3
m5(1 — a1t(P)) = mj + agmst(P)* mod t(P)°. (2.28)

Equation (2.27) furthermore shows that m3 = m$ mod #(P), and hence (2.28) becomes

m3(1 — a1t(P)) = mi(1 + axt(P)*) mod t(P)>. (2.29)

We combine ([2.26]) and (2.29)) to obtain

a a 2 a3
(mg + Lmums + im%) m3 (1 + agt(P)?) (1 + 41t(P)2> mod #(P)?

2 2

2+4
m3 <1 + ‘“Z“%(P)?> mod #(P)?.
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Substituting this into (2.25)) gives

244
3(Hs(P) — Hy(P)) = log, (1 + Wt(zﬂf + et(P)3)
for some e € Z,. We find
li L Hs([p™ P
. 1 n 1 a? + 4a n "
= tin o | Ha1P) + o, (14 2P + et
n—00 P 3 4
1 n 1.1 ai +4az, 5o n) pr3
— tim o t(p1P) + 5 fim o, (14 PR 4 erprie)?)
2
4
= ho(P) + A2 L)), (Corollary P-3.6)

12
This proves both Theorem [2.3.1|(b) and Theorem [2.3.13

2.3.4 Quadraticity of h, and hg

We now show that the functions he and hs indeed qualify as height functions, in the sense
that they are quadratic functions and satisfy the parallelogram law. Quadraticity follows
straightforwardly from the results in Section [2.3.2]

Theorem 2.3.14. Let P € E,(Q) \ {O} and let m € Z, m # 0. Then

ho([m]P) = m2hy(P),
hs([m]P) = m2hs(P).

Proof. Let us first consider m > 0. Using the results from Section [2.3.2] we get

ha([m] P) — m?ha(P) = lim —— (Ha([p"m]P) — m?Hs([p"|P))

n—o0 p?
. a([p"m]P) iy
= nh_)ngo ﬁ logp <a([pn]P)7'nQ (Pr0p081t10n 237
) 1
= nlgrolo o log,, (L (t([p"]P))) = 0. (Lemma [2.3.12] Corollary [2.3.4])

To show the result for m < 0, recall that for any P € E,(Q) \ {O} we have z(P) = z(—P), and
thus a(P) = a(—P) which implies Ho(P) = Hay(—P). We get

ha(—P) = lim — Hy([p"](—P))

n—00 p2n

= Jim 5 H((p"](P)
= ho(P).
We conclude that for m < 0, we have
ha([m]P) = ha([=m]P) = (=m)*ha(P) = m*ha(P).
This shows the result for hg. The result for hs then follows from Theorem and Proposition
2211 [
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We now work out the details of the argument by Perrin-Riou in |28} pp. 251-253], which shows
that hs satisfies the parallelogram law. This argument follows a standard approach for showing
the parallelogram law, it is for example analogous to the argument of Silverman in 32| VIII,
Theorem 6.2] showing that the Néron-Tate height satisfies the parallelogram law.

Let us start by introducing a map H: Q x Q — Z, as follows. Let a,b € Q. Then we can write
a= g—; and b= % for some aq, e, a3 € Z such that ged(aq, ag, a3) = 1, unique up to sign. Let

us define the set B, = {i : p{a;}. Note that i € B, precisely when «; € Z, and that B), is
nonempty. We define

H(a,b) = #39 S log, ().

P ieB,
Note that this is well-defined because log,,(a;) = log,(—a;).

Furthermore, for a € Q* with ordy(a) < 0, we can write a = % with mq,me € Z and

ged(my, me) = 1, again unique up to sign. Then p {m;, and we define

H(a) = 2log,(m1).
Lemma 2.3.15 ([28, p. 251]). Let a,b € Q* with ordy(a) < 0 and ord,(b) < 0. Then
H(ab,a +b) = H(a) + H(b).

Proof. Let a = [t and b = 72 with m; € Z such that ged(m1, m3) = ged(ma, ms) = 1. We

mima

have ab = e, and a+b = %. Let a; = mima, as = mymg +mamsg and as = msmy.

We want to show that ged(ag, ag,a3) = 1. Assume ¢ is a prime such that ¢ | a1 and ¢ | as.
Without loss of generality we assume that ¢ | m;. But because ged(my,ms3) = 1 this implies
g1 ms. Then q | oz implies that ¢ | m4. Again, ged(ma, m4) = 1 implies that g { mg. Together
this implies that g { mymy + moms = ag. This shows that ged(ag, ag,a3) = 1. To compute
H(ab,a + b) we need to determine B, = {i : p{ a;}. From our assumption on a and b we know
that ord,(m;) = ord,(mz) = 0 and ord,(ms3), ord,(m4) > 0. We deduce that ord,(a;) = 0,
ord,(ag) > 0 and ordy(asz) > 0, so we have B, = {a1}. We conclude that

H(ab,a + b) = 2log,(m1mz)
= 2log,(m1) + 2log,(m2)
= H(a) + H(D).

For P € E,(Q) \ {O}, we have ord,(z(P)) < 0 and H(xz(P)) = 2H3(P). Hence when P,Q, P +
Q,P—-Q € EyQ)\ {O}, Lemma in particular implies

2Hy(P + Q) + 2Hy(P — Q) = H(a(P+ Q) + H(x(P — Q)
— H@(P+Qa(P - Q),x(P+Q) +2(P—Q),  (2.30)
2Hy(P) + 2Hy(Q) = H(2(P)2(Q), 2(P) + 2(Q)). (2.31)

We consider the following standard formulas, which can be derived from the group law on F
(132, III, Algorithm 2.3]). They are valid for any (possibly singular) Weierstrass curve E over a
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field K at points P,Q € Eng(K) such that P,Q, P+ Q,P — Q # O.

(z(P) + 2(Q))(bs + 22(P)x(Q)) + bax(P)x(Q) + bs
(z(P) —2(Q))? ’

(2(P)z(Q))* — baz(P)z(Q) — bs(x(P) + 2(Q)) — bs
(z(P) —2(Q))? '

w(P+Q)+z(P-Q)= (2.32)

(P +Q)z(P - Q) = (2.33)

Lemma 2.3.16 ([28, Lemme e]). Consider a Weierstrass curve given by (1.4)) over a field K.
If P and Q are two nonsingular points, then the numerators and demominator in the right-hand
side of (2.32) and (2.33)) cannot all be simultaneously equal to zero.

Proof. Suppose that the denominator of both fractions is equal to 0. Then we have z(P) = x(Q),
and the numerator of (2.32)) reduces to

2x(P)(by + 22(P)?) + boz(P)? + bg = 4x(P)? + box(P)* + 2b42(P) + b = V3 (z(P)).
The numerator of reduces to
z(P)* — byx(P)? — 2bgz(P) — by = ¢o(x(P)).

Because P is nonsingular, we cannot have ¢o(z(P)) = ¥3(2(P)) = 0 by Lemma m Hence
the numerators of (2.32)) and ([2.33) cannot simultaneously be zero when the denominator is

Zero. |

Let us now consider two points P,Q € E,(Q) \ {O} such that also P+ Q,P — Q # O. Let

x(P) = ;((PP))Q and z(Q) = ;((52))2 Then the reasoning in the proof of Lemma [2.3.15 shows that if
we write

then z(P) +z(Q) = % and z(P)z(Q) = 2 with ged(u1, ug, uz) = 1. Then we see from (2.32)
that

x(P+Q)+m(P—Q):Z—;
o(P+Q)a(P-Q)=22

with

w1 = bguiusg + 2uqug + bousug + 66u§,
2 2
w2 = Uy — b4U2’LL3 — b6U1U3 — b8U3,

wy = u% — 4uous.

Lemma 2.3.17. We have ged(wy, we, ws) = 1.

Proof. Let ¢ be any prime. We show that ¢ t ged(wy,we,w3). We consider separate cases,
depending on whether ¢ divides the denominators of z(P) and z(Q).
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1. If ¢ | d(Q) and ¢ | d(P), we have ¢ 1 a(P)a(Q). Then q | ug but ¢ { uz, and hence q t ws.
2. If ¢| d(Q) and g t d(P), then ¢t a(Q) and we get ¢ | ug but ¢t u;. This shows that ¢ { ws.
3. If ¢1d(Q) and ¢ | d(P), similar reasoning implies that g t ws.

(

4. If ¢4 d(P) and ¢ 1 d(Q), we have ]3, C~2 # O modulo g, but both reductions are nonsingular
because P, Q € E2°°4(Q). We have that @3 € Fy. Plugging in z(P) = (a(P)d(P)~?) and
2(Q) = (@(Q)d(Q)2) into equations (2.32) and (2.33) gives

~_Q ~ ~—2 ~
Us U1 ond z(P+Q)z(P— Q) =28 12

2(P+Q)+x(P - Q)= 25 —
Ug “W3 Ug

21173

Lemma [2.3.16| then implies that w1, w9 and w3 cannot simultaneously be 0 modulo ¢g. This
implies that ¢ ged(wy, we, ws).

Because ord,(z(P)),ord,(z(Q)) < 0, we deduce that ord,(u1),ord,(us) > 0 and ord,(uz) = 0.
This shows that ord,(wy),ord,(ws) > 0 and ord,(ws2) = 0.

Let us define the notation

2

Wo u3 uULU3 uj

M P. =—==1—-bs—=—b> — bg—.

( 7Q) u% 4U2 6 u% SU%

We obtain
wo W1 .
2,(P 1 Q)+ 2H(P— Q) = H (ws w3> (using (Z30)
— 2log, (i)

= 4log,,(uz) + 2log, (A (P, Q))

py <“ “) +210g,(A(P, Q))

us us
— 2H (2(P)(Q), 2(P) + 2(Q)) + 2log, \(P.Q))
— 2H(2(P)) + 2H(2(Q)) + 2log, \(P.Q))  (using ([231))
— 4H,(P) + 4H3(Q) + 2log,(A(P,Q)). (2.34)

Recall that z(P) = 2T (¢(P)) and 2(Q) = 2T (t(Q)). We use the expansion of 2T in (1.24) to
find that

o = (@(P)x(@) ! € H(PHQPZIH(P), HQ)
o = 2P +2(Q) =1(P) 7 +1(Q) 7 —art(P) ™ — (@) 4+

This shows that A(P, Q) = AT (¢(P),t(Q)) for some power series AT (T1,Ty) € 1+ TET2Z[[T1, T3]].
We have a result very similar to Corollary for power series in two variables.

Lemma 2.3.18. Let P,Q € E1(Qp) \ {O}. Let g(T1,Ts) € 1+ (T, T2)*Zy[[T1, T2]] for some
k € Z~o. For m € Zj, we have

lim —— log, (g(t([p"]P), {([p"]Q))) = 0.

n—oo P
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Proof. For P,Q € E1(Qp) we have ord,(t([p"]P)),ord,(t([p"]@)) > n for all n > 0 (Corollary
1.6.13). Because g € 1+ (T1,T2)*Z,[[T1, T3]] converges on (pZ,)?, the result follows from Lemma
2.3.2 |

Theorem 2.3.19 (|28, p. 246, Proposition]). Let P,Q € E,(Q) be such that P, Q, P+ Q,
P—-Q #0O. Then

Proof. Using (2.34)), we find

ho(P + Q) + ha(P = Q) = lim p;n(Hz([p”]P + [p"1Q) + Ha([p"1P — [p"]Q))

n—

= 2ha(P) +2ha(Q) + Jim 5 log, (AT (¢[5"1P) ((p"]Q))
= 2hy(P) + 2he(Q). (using Lemma

The result for hg then follows from Theorem [2.3.13| and Proposition |2.2.11 |

2.3.5 Extension of hy and hs to E(Q)

We use the quadraticity of hy and hs to extend these functions to the entire group E(Q).

Definition 2.3.20. We define a function hy: E(Q) — Q, and hg: E(Q) — Q) as follows. For
P € Eis(Q), we set
ho(P) = h3(P) = 0.

For P € E(Q) \ Etors, let m € Z~q such that [m]P € E,(Q) \ {O} (which exists by Proposition

9.2.20). Then

hg(P):%hg([m]P) and hg(P):%hg([m]P).

The following Proposition shows that the definition does not depend on the choice of m.

Proposition 2.3.21. Let P € E(Q) \ Eiors, and let my and my be positive integers such that
[m1] P, [m2] P € Ep(Q). Then

L hs([ma]P) = —5ha([ma)P).

ho([ma]P) = —=ho([ma]P)  and — -

1
2 )
my my

Proof. Because E,(Q) is a subgroup, we also have [m;mg|P € E,(Q) \ {O}. It follows from
Theorem 2.3.14] that

1 1 1
m—%hg([mﬂP) = mhz([’mmlﬂp) = m—%h2([m2]P).
The same argument shows the statement for hs. |
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Definition [2.3.20] agrees with the original definition of hy and h3 on E,(Q) \ {O}, because for
P ¢ E,(Q) \ {O} we have P ¢ FE\qs by Corollary [1.6.25] so we can take m = 1 in Definition
2.5.20

Proposition 2.3.22. hy and hs are quadratic forms on E(Q). Ezplicitly, let P,Q € E(Q) and
let n € Z. Then

(a) ha([n]P) = n?ha(P) and hs([n]P) = n?hs(P).

(b) ha(P+Q)+h2(P—Q) = 2ha(P)+2h2(Q) and h3(P+Q) +h3(P — Q) = 2h3(P) +2h3(Q).

Proof. We show the results for hy. The exact same arguments work for hs.

Part (a) is clearly satisfied for all P € E(Q) when n = 0, because then both sides evaluate to 0.
Now let n # 0. If P is a torsion point, again both sides evaluate to 0. Now let P ¢ FEo.s and let
m1 € Zso be such that [m1]P € E,(Q)\{O}. For n # 0, we then also have [mn]P € E,(Q)\{O},
and we get

1
ha([n|P) = Whg([mln]P) (Definition [2.3.20)
1
2
n
= m—%hg([ml]P) (Theorem [2.3.14])
= n2hy(P). (Definition [2.3.20)

For (b), let us first assume that P,Q, P+Q, P—Q ¢ Eios. Let my be as before and let mg € Z+
be such that [m2]Q € E,(Q) \ {O}. Then [mimg]P, [m1m2]Q and their sum and difference are
all in E,(Q) \ {O}. Therefore

1

ho(P + Q) + ho(P — Q) = —5—5 (ha([mamo] P + [mim2]Q) + hao([mima] P — [m1m2]Q))
mymsy
= 21 5 (2h2([m1ma] P) + 2ha([m1m2]Q)) (Theorem [2.3.19))
mims;

= 2h2(P) -+ 2h2(Q).

If one of P,Q,P + @Q,P — @ is a torsion point, we can use arguments like in the proof of
Proposition [2.2.22 to obtain the result. |

2.3.6 A relation between the p-adic heights h,, h3 and h;s)
)

Next, we compare the quadratic heights hs and hs to the p-adic heights hz(,s described in Section

In [29], Perrin-Riou provides a relation between hy and hi(,s) for a specific value of s under
the assumption that E has ordinary reduction at p. The proof we provide here uses a similar
strategy, but we use the more general Corollary instead of Corollary and Lemma
in our argument, which allows us to show the relation without the assumption of ordinary
reduction at p.

Theorem 2.3.23 ([29, p. 292]). Let s € Q, such that Vi is a neighborhood of 0. Let
P e EY @)\ {O}. Then

a? + 4as

W (P) = ha(P) + <s + =0

) L(t(P))>.
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Proof. Let us consider a point @ € EZ(,S) (Q)\{O}. We write z(Q) = ;((QQ))Q as before. Recall that
a(@Q) # 0 for Q € B (Q) \ {0},

o)
hz(f)(Q) = —2log, (W) (Proposition
= —log, (o (1(Q))*2(Q) ) +log, (a(Q))
= —log, (o) (H(Q))%" (HQ)) + Ha(Q). (2.35)

Using the expansion of o (Lemma [2.2.3)), the expansion of exp,, in (1.1) and the expansion of L,
which can be found using Theorem [1.6.19] and the expansion of the invariant differential w given

in [32, p. 118], we can deduce that the expansion of J]()S) is of the form

2
ai aj + as S
o) =T+ 5T° + (13—2>T3+~--

in Q,[[T]]. Using the expansion of 27 in (1.24)), some algebra shows that

a? + 4ay

O'I(JS) (T) 22" (T) =1 - (s + =13

)2+ e Qi

Recall from Proposition that the Bernardi o-function O'I(,O) (T") converges for T' € pZ,. We
also know that 27 (T') converges on pZ, \ {0}. From the expansion we see that 0](,0) (0)zT(0) = 1.
Together, these facts imply that the series U,(,O) (T)22T(T) converges on a neighborhood of 0.
When P € Eéo) (Q)\ {0}, then also [p"]|P € E,(Q)\ {O} for all n > 0 because P is a nontorsion
point by Corollary We can thus use to derive

hz(jo)(P) = nh_)rglo p;nh](go)([p”]P) (because h}()o) is quadratic)
1 1
=l o H(P) — i o log, (0 (57 PP (1(71P)
2
= ha(P) + wﬁ(t(P))Q. (Corollary

Finally, using Proposition [2.2.23 we find that for all P € EZ(,S)(Q) \ {O},

a? + 4ay

W) (P) = ho(P) + (s + 12) L(t(P))2.

Comparing this result with Theorem gives the following Corollary.
Corollary 2.3.24. Let P € E,(Q) \ {O}. Then
W) (P) = hs(P) + sL(t(P)).

In particular, we have h3(P) = hz()o)(P).
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We can extend this last equality to all of F(Q) using the definition in the previous section.

Proposition 2.3.25. We have h,(,o) = h3 on E(Q).

Proof. For P € Eis(Q), we have h](JO) (P) = h3(P) = 0. By Corollary 2.3.24| we know the equality

is satisfied for P € E,(Q) \ {O}. For P € E(Q) \ Eiors, let m € Zsq such that [m]P € E,(Q).
Then

1

h®)(P) = Whgﬁ([m]m (Proposition
1

= —shs([m]P) (Corollary [2.3.24)

= h3(P). (Proposition
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Chapter 3

Height functions on the Jacobians of
genus 2 curves

Similarly to how we defined heights for elliptic curves, we can define heights on the Jacobian of
a genus 2 curve. In the case of elliptic curves we defined the height functions in such a way that
they only depend on the xz-coordinate of a point. That way, each point has the same height as
its additive inverse. On the Jacobian, we will define heights that only depend on the image of a
point on the Kummer surface. Because the map from the Jacobian to the Kummer surface also
identifies points with their additive inverse, these height functions will have that same property.

Let us consider a smooth projective curve C of genus 2 defined over Q by an equation of the
form (L.13)), with Jacobian J. A point P € J(Q) has an image x(P) € P? on the Kummer
surface via the map (1.18). We introduce notation for a useful normalization of x(P). We
write k(P) = [x1(P) : x2(P) : x3(P) : x4(P)] for the normalization that satisfies z;(P) € Z and
ged(z1(P), ..., z4(P)) = 1. This normalization is defined uniquely only up to sign, but we only
consider the coordinates in the context of ratios, v-adic absolute values or the p-adic logarithm
of the coordinates, in which case the sign does not make a difference. Furthermore we use the
notation z(P) = (z1(P),x2(P),x3(P),z4(P)).

3.1 Real-valued heights on the Jacobian of a genus 2 curve

In order to define a naive height function, we take the standard height H on projective space
defined in (2.1)), and apply it to the projective Kummer coordinates of a point on .J.

Definition 3.1.1. We define hpaive: J(Q) — R by
hnaive(P) = log H(k(P)),
with H as defined in ([2.1)).

A canonical height is defined analogously to the canonical height for elliptic curves (Proposition
2.1.8).

Definition 3.1.2 ([14, p. 335]). We define the real canonical height h: J(Q) — R by

~

B(P) = 1im — hoaive([]P).

n—o00 N
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Proposition 3.1.3 ([14, p. 335]). The real canonical height h: J(Q) — R is a quadratic form.

3.1.1 Local real height functions

In Section [2.1.3]| we saw that we could write the naive and canonical real heights on an elliptic
curve as the sum of local components. We do a similar thing for the naive height in Definition
[3.1.1] and the canonical height in Definition [3.1.2] For elliptic curves, we defined the local heights
everywhere except on the identity O of E. In the genus 2 case, we have to define the local
heights away from the support of a divisor on J (this is analogous in the sense that the divisor
O on an elliptic curve E can be seen as the genus 1 analogue of the © divisor, see [36, p. 281]).
Recall that © is a divisor on J, obtained as the image of the map ®,, (Section . We use it
to define the following divisors on J:

01 =20, O3=0; +divpr, O3=0;+divpie, O4 =01+ divep.

We denote by supp(D) the support of a divisor D, that is, the set of points that lie on the
components of D as subvarieties of J. Then P € supp(©) precisely when z;(P) = 0, and we
have supp(©;) = supp(©). Furthermore, we have P € supp(©;) precisely when z;(P) = 0. For
every point P € J, there thus exists i € {1,2,3,4} such that P ¢ supp(©;). We introduce the
notation Jp = J \ supp(D) for a divisor D.

Definition 3.1.4. Let v € Mg. For ¢ = 1,2,3,4, we define the naive real local height
Aiv: Jo,(Qy) = R by

;(P)
zi(P)

Aiw(P) = log 11%1?54{

When v is a prime ¢, we have max;<;<4 {|z;(P)|,} =1 because of how the normalization z(P)
is defined, and hence

Ai,q(P) = —log ’xi(P”q‘

Proposition 3.1.5 (|35, Theorem 5.7]). Let P € Jg,(Q). Then

hnaive(P) = Z )\“}(P)

”UEMQ

Proof. We note that \;,(P) = 0 for all but finitely many v. Using the observation that
maxi<;<a{|z;(P)|s} =1 for all primes ¢, we get

hnaive(P) = log max {|;(P)loc} = log 514 max {la; (P)].}
v Q

(P
= log H 121]22(4{ ZEP; } (using Theorem [1.1.10))
’UGM@ v
(P
= Z log max { x](P) }
vEMg lsisd 1‘7,( ) v

We want a similar decomposition for the canonical height. To achieve this we introduce a more
general theory of Weil functions.
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Definition 3.1.6. An Mg-constant is a function v: Mg — R such that y(v) = 0 for all but
finitely many places.

Definition 3.1.7 ([35, p. 118]). Let D be a divisor on J. Consider a collection of functions
Apw: Jp(Qy) — R for v € Mg. These are called Weil functions on J associated to D if the
following property holds: Let U be any Zariski open subset of J such that U Nsupp(D) # &
and D|y = div(g) for some rational function g on U. Then there exists a collection of functions
a,: [[U(Qy,) — R that are locally Mg-bounded and continuous (see |35, p. 117] for a definition)
such that

)\D,v(P) = —log|g(P)|v + au(P)

for all v € Mg and all P € Up(Q,).

In particular, the naive local height functions \;, are Weil functions associated to ©; for
i=1,2,3,4 ([35, p. 119]).

Theorem 3.1.8 ([22, Chapter 11, Theorem 1.1]). For any divisor D on .J, there exists a
Weil function Ap,: Jp(Qy) = R for each v € Mg such that the following properties hold:

(i) For two divisors D,D" on J, we have 5\D+D’,v = S\D,v + S\ng + 71 (v) for all v € My
wherever all of the functions are defined.

(ii) If D = div(f), then /A\Dﬂ,(P) = —log|f(P)|y + 12(v) for all v e Mg and all P € Jp(Qy).

(iii) For allv € Mg and P € Jp-p(Qy), we have X[Q]*DVU(P) = Apu([2]P) + v3(v).

The ~y; are Mg-constants. With these properties the functions S\D,v are defined uniquely up to an
Mg-constant. We call these functions canonical local height functions on J associated with D.
They furthermore have the following property:

(iv) Let p: A — J be a homomorphism of abelian varieties defined over Q. Then for allv € Mg
and P € J«p(Qy), we have Apxp o(P) = Apo(@(P)) +74(v), where vy is an Mg-constant.

Proposition 3.1.9 ([22, Chapter 11, Proof of Theorem 1.1]). Let D be a divisor on J
satisfying [2]*D ~ 4D. Let Ap,: Jp(Qy,) — R for v € Mg be a collection of Weil functions
associated to D. Then the A\p, are canonical local height functions associated to D if and only
if they satisfy

Apw([21P) = 4Apy(P) — log|p(P)]. (3.1)

for allv € Mg and all P such that P, [2]P € Jp(Q,), where ¢ is a rational function on J such
that [2]*D = 4D + div(¢). Furthermore, each choice of such a function ¢ defines a unique
collection of canonical local height functions satisfying (3.1)).

In [35, Section 5], Uchida provides explicit canonical local heights on J associated to the divisors
©; for i € {1,2,3,4}. These can be obtained by adding an Mg-bounded continuous correction
term to the naive height functions from Definition For all v € Mg and P € J(Qy), we
define

max;; |0 (x(P))lo

(max; [2;(P)]y)*

d,(P) =
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Note that we define ®,(P) in terms of the normalization z(P) of k(P), but because the J; are
homogeneous polynomials of total degree 4, any other normalization gives the same result. When
v is a prime q, we get

®q(P) = max|[0;(z(P))lg.

The collection of functions ®,(P) is Mg-bounded and continuous (see [35, Lemma 5.1]). Hence
the following functions are well-defined Weil functions.

Definition 3.1.10. Let v € Mg and i € {1,2,3,4}. We define the canonical local real height
Aip(P): Jo,(Qy) — R by

00 1 .
Nio(P) = N (P) + 3 77 log @,(127)P).
n=0

Theorem 3.1.11 (|35, Theorem 5.3]). Let i € {1,2,3,4}, v € Mg. For all P € J(Q,) such
that P, [2]P ¢ supp(0;), we have

di(z(P))

Miw([2]P) = 4\ »(P) — log (P

v

~

In particular, \;, s a canonical local height function associated with ©;.

Proof. The identity follows by simply working out the definition.

= Aio([21P)+ ) i log (12 TP) — Ao (P) =) o log ®.(127]P)
n=0 n=0
= Xio([2]P) — 4Xi»(P) — log ®,(P)
(121 P (P ) (z(P)]y
_ log max z;([2]P)  4log max i ( )‘ o max1<j<a |0 (2( ))I4
1<j<4 z([2]P) v 1<j<4 $2(P) (maxlgjg4 ’.%‘j(P)‘U)
9;(x(P)) 8;(z(P))
= o8 00X 5Py |, T OB Tyt |
=—log|——=2~| .
Og ilfz(P)4 )
Because div (%) = [2]*©; — 40,, Proposition |[3.1.9| implies that S\i,v is a canonical local
height function associated with ©;. |

For any prime ¢, let us define the set
Ug(Qq) :=A{P € J(Qq) | 24(P) = 1}.

Note that by definition of the normalization x(P), we have max; |z;(P)|, = 1 for all primes g.
Hence P € Uy(Qq) precisely when max; |6;(z(P))|q =1

Proposition 3.1.12 ([34, Theorem 4.1], [14, Lemma 1]). Let ¢ be a prime. Then

(a) Uy(Qy) is a subgroup of J(Qq) of finite index, and J1(Qq) C Uqy(Qy).
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(b) If q is odd and J/Q has good reduction at q, then Uy(Qq) = J(Qy).
Proposition 3.1.13. Let P € Uy(Qq) \ supp(©;) for some i € {1,2,3,4}. Then

Nig(P) = Nig(P).
In particular, if q is odd and J has good reduction at q, this is true for all P € Jo,(Qq).

Proof. By Proposition [3.1.12(a), we know that U,(Qq) is a group. Hence if P € U,(Qy),
then also [2"|P € U,(Qy) for all n > 0. Hence ®,([2"]P) = 1 for all n > 0, so we conclude
Xi,q(P) = \,¢(P). The second claim follows directly from Proposition |3.1.12(b). [

Recall that C has bad reduction at a prime ¢ for only finitely many primes, and hence the same
is true for its Jacobian .J (Section [1.5.4). For each P € Jg,(Q,), we thus have A; 4(P) = Ai4(P)
for all but finitely many primes, and hence \; 4(P) = 0 for all but finitely many places.

Theorem 3.1.14 ([35, Theorem 5.7]). Let P € Jo,(Q) for some i € {1,2,3,4}. Then we
have

UEM@

We thus get a local decomposition of the canonical real height h this way. In 14, p. 341], Flynn
and Smart define local height functions on all of J(Q) as follows. For each point PelJ (Q), let 4
be the smallest index such that z;(P) # 0. They define the local height at P as A; ,(P) for that
index q.

In |36, Section 7], Uchida notes that the division polynomial ¢2 defined in Section satisfies
[2]*© = 4O + div(¢2). Hence there exists a canonical local height function Ag, associated with
© for each v € Mg that satisfies

Ao ([2]P) = 4he,(P) —log|d2(P)]o-

We also have [2]*(01) = 2[2]*(0) = 40 + div(¢3), and hence g, , := 2o, is a canonical local
height function associated with ©1. Because 5\@1,u and 5\1,1, defined in Definition are both
canonical local height functions on J associated with ©1, they must differ by an Mg-constant
v(v). In [18, Proposition 6.1], it is shown that we actually have

~

Aovw = ALy (3.2)

on Jo,(Qy) for each place v. In [36, Theorem 7.5], Uchida shows that these functions have the
following properties on Jg, (Qy):

Theorem 3.1.15 ([36, Theorem 7.5]). Let v be a place of Q and P,Q € Jo, (Qy). Then
(a) If P+ Q,P — Q ¢ supp(01), we have
Aoy w(P + Q) + Ao, (P — Q) = 20, o(P) + 2X0, 4(Q)
= 2log| — p11(P) + p11(Q) — 912(P)22(Q) + p22(P)012(Q)lo-
(b) Ifn € Z\ {0} and [n]P ¢ supp(©1), we have
Ao, w([n)P) = n*Ae, »(P) — 21og [¢n(P)|o,

where ¢y, is the division polynomial defined in Section|1.5.5
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3.2 A p-adic height on the Jacobian of a genus 2 curve

Similarly to what we did for elliptic curves in Section we can define a p-adic height function
on a Jacobian by defining local heights at each place. Fix an odd prime p. We consider a smooth
curve C of genus 2 over QQ given by an equation of the form

C:y? = f(x) =2° + fax* + fz2® + for® + frz + fo (3.3)

with f; € Z, such that C has good reduction at p. We introduce local height functions away from
the divisor © at each place of Q, as defined by Bianchi [4]. Again, the local p-adic height at oo
is equal to 0. For the other places, we have to distinguish between p and primes away from p, as
we did in Section 2.2

3.2.1 Local p-adic heights at primes different from p

Let ¢ # p be a prime. Then we can define a local height at g by taking the height 5\1761 from the
previous section, and replacing the real logarithm by the p-adic logarithm log,.

Definition 3.2.1. Let ¢ # p be a prime. Let P € U,(Qy) \ supp(©). We define a local p-adic
height Ag: Uy(Qq) \ supp(©) — Q, by

5‘q(P) = —log, [21(P)lqg-

The local p-adic heights satisfy the following properties.
Theorem 3.2.2. Let ¢ # p be a prime, and P,Q € Uy(Qq) \ supp(©). Then
(a) If P+ Q,P — Q ¢ supp(0), we have

AP+ Q)+ A\(P— Q) = 2),(P) + 2),(Q)
—2log, | — p11(P) + p11(Q) — p12(P)022(Q) + p22(P)012(Q)lg-

(b) If n € Z\ {0} and [n]P ¢ supp(©), we have

j‘q([n]P> = nQS‘q(P) - 210gp |Pn(P)]g-

Proof. We note that 5\(1 looks very similar to the local real height ;\17q, because in Proposition

We saw that on U,(Qy) \ supp(©), we have 5\1,q(P) = A 4(P) = —log|z1(P)[,. We also
saw in that 5\@1,(1 = ;\17(1. So we have S\Q(P) = logp(exp(j\ehq(P))) on Uy(Qy) \ supp(O).
We know that ;\@1,(1 satisfies the properties in Theorem and by subsequently taking the
exponential and p-adic logarithm on both sides of the equations there, we obtain the result. H

3.2.2 Local p-adic height at p

To construct a local p-adic height at p we use a p-adic o-function, as we did in Section
for elliptic curves. This function is defined in [5, Theorem 2.4]. It is based on the complex
o-function associated to the Jacobian of C. The o-function is an odd function in two variables
that has a Taylor expansion around (0, 0) of the form o(21, z2) € 21 + (21, 22)Q[[21, 22]] (see 36,
Proposition 2.1, Proposition 2.3]). We define

op(T) = o (L(T)),
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where L is the strict formal logarithm on the formal group J corresponding to J as defined in
Section Because ¢ is odd and L is a formal group homomorphism from J to @2, and we
saw that the formal inverse on J is 4 (T') = —T (Section , we conclude that also o), is odd
in the sense that it has only terms of total odd degree.

Theorem 3.2.3 ([5, Theorem 2.4]). The series o,(T) converges on (pZy)?.

Recall that when P € J;(Q)), we have t1(P),t2(P) € pZy, where t(P) = (t1(P),t2(P)) is the
image of P under the map 7 in (1.30) and the functions ¢; and ¢y are defined in Lemma [1.6.14
This implies that o, (T") converges at t(P).

We have 0,(T) € Ty (1 + (11, To)Q[[T]]) (see |5, Appendix A]), so it vanishes for (T1,T%) € (pZ,)?
precisely when 77 = 0.

Lemma 3.2.4. Let P € J1(Qp). Then ti(P) =0 if and only if P € supp(O).

Proof. Recall from Lemma that ¢t; = —X11/X111. From the explicit description of
the map in [20, Remark 2], we see that X11(P)/X111(P) = 0 for all P € supp(O).
When P ¢ supp(©), we have t;(P) = p11(P)/p111(P). Note that for P € J;(Q,) we have
K(P) =[0:0:0: 1], because the diagram is commutative. In particular, because
K(P) = [1 : p22(P) : —p12(P) : p11(P)] (see (1.17)), this implies that ©;;(P) # 0. Hence
t1(P) # 0. [ |

It follows that o, (T') is nonzero on J1(Qp) \ supp(©). It has the following properties.

Proposition 3.2.5. Let P,Q € Ji1(Qp) \ supp(©). Then

op(t(P + Q))op(t(P — Q))
op(t(P))%0,(¢(Q))?

and for all n # 0,

= —p11(P) + p11(Q) — p12(P)p22(Q) + p22(P)p12(Q),

op(t([n]P))
TolHI) _ 50(P). (3.4)
ap(t(P))"*
Proof. This follows from [5, Theorem 2.4] using the facts that ¢;(¢n)(t(P)) = ¢n(P) and
p;‘g(t(P)) = ;j(P), which follows from ([1.28). The second statement is only shown for n > 0,
but for n < 0 we note that

op(t([nlP)) _ —op(t([=n]P))

@D~ oy )= oalP).

using (|1.21]) and the fact that o, is an odd function. |

We use o), to define a local p-adic height at p.

Definition 3.2.6. We define a local p-adic height A,: J1(Q,) \ supp(©) — Q, by

Ap(P) = —2log,(0,(t(P)))-

Proposition 3.2.7. Let ;\p: J1(Qp) \ supp(©) — Q,, be as defined in Definition .
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(a) For all P € J1(Qp) \ supp(©) and for all n # 0 such that [n]|P ¢ supp(©), we have

~

Mp([n]P) = 127y (P) — 2log,, (¢u(P)).

(b) For all P,Q € J1(Qp) \ supp(®©) such that also P+ Q, P — Q ¢ supp(©), we have

Ap(P+ Q)+ \p(P = Q) = 20,(P) + 20,(Q)
= 2log,(=p11(P) + 011(Q) — p12(P)p22(Q) + p22(P)p12(Q))-

Proof. For (a), from Definition we get

Mp([n]P) = —2log,, (0, (t([n] P)))
= —2log, (0, (t(P))™ ¢u(P)) (Proposition [3.2.5)
= —2n"log,, (0, (¢(P))) — 210g, (¢ (P))
= n*Ap(P) — 2log,(¢n(P)).

For (b), we again use Proposition to get

M (P +Q) + Ap(P = Q) = —2log, (0, (t(P + Q) (¢(P — Q)))
= —2logp(ap(t(P))2ap(t(Q))2)
— 2log,(—p11(P) + 911(Q) — p12(P)p22(Q) + p22(P)p12(Q))

(P
= 20,(P) +20,(Q)
— 2log,(—p11(P) + p11(Q) — P12(P)p22(Q) + p22(P)p12(Q))-

3.2.3 A global p-adic height on J

Now we define a global p-adic height as the sum of the local contributions in Definition and
Definition [3.2.6] We first construct a suitable subgroup on which all local heights are defined.
Let us define Uy(Q) := Uy(Qq) N J(Q). We furthermore write Jyi7(Q) := Ny primeUq(Q), and

Jp(Q) = JP(Q) N Jy(Q), (3.5)

where Jl(p ) (Q) is the kernel of reduction as defined in Section These are all subgroups of
J(Q).

Lemma 3.2.8. Let P € Jy(Q). Then Xq(P) = 0 for all but finitely many primes q.

Proof. Because z1(P) € Z \ {0} we have that |z1(P)|, = 1 and hence A\,(P) = 0 for all but
finitely many q. |

Proposition 3.2.9. J,(Q) is a subgroup of finite index of J(Q).
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Proof. We know that C has bad reduction at only finitely many primes qi,...,q,, and when C
has good reduction at an odd prime g, then the same is true for J. So for odd ¢ ¢ {q1,...,q},

we have U,(Q) = J(Q) by Proposition [3.1.12(b). Hence

Tp(Q) = JP(Q) N U2(Q) NU (@) N ---N U, (Q).

From Proposition [3.1.12(a), we know that for each prime ¢, the subgroup U,(Q,) has finite index
in J(Qq). We also have that Jl(p) (Q) has finite index in J(Q), because Jl(p) (Q) is the kernel of

the reduction map J(Q) — J(F,) modulo p. We conclude that J,(Q) is a finite intersection of
subgroups of finite index, which thus has finite index in J(Q). [ |

Lemma 3.2.10 ([18, Lemma 8.1]). Let P € J(Q) \ Jiors be such that P € supp(©). Then
one of [2|P,[3]P,[4]P is in Jo(Q).

Definition 3.2.11. We define a global height h,: J(Q) — Q, as follows. For P ¢ Jiops, we set
hp(P) =0. For P € J(Q) \ Jiors, let m € Zx¢ such that [m]P € J,(Q) \ supp(©) (which exists
by Proposition and Lemma [3.2.10). We define

()= Y A(mP). (36)

q prime

with j\q as defined in Definition and Definition

To see that this function is well-defined, first of all note that the sum in (3.6|) is finite by Lemma
[3:2.8] The following result shows that the definition is not dependent on the choice of m.

Proposition 3.2.12. Let P € J(Q) \ Jiors, and let m and n be positive integers such that
P, [nlP € J,(Q) \ supp(®). Then

> AmP) = Y (P,

q prime q prime

Proof. Let | € Z~q be such that [mnl]P € J,(Q) \ supp(©). For each prime ¢ # p, Theorem
implies that
Ag([mnl]P) = (nl)*Ag([m]P) — 2log, |$u([m]P)],
= (ml)*Ay([n]P) — 210g, |$mi([n] P)g.
We use this to deduce
1. 1. 2

A([m]P) = =5 Aq([n]P) = -——5 (log, [¢ni([m]P)lq — log,, |¢mi([n] P)]q)

m2 (mnl)

At p, we get a similar equality from Proposition [3.2.

~

Ap([mnl] P) = (nl)*Ap([m] P) — 21og,,(¢ni([m] P))
= (ml)*Ay([n] P) — 2log,(¢m([n] P)),
which implies

0nP) = 53y (01P) = - (logy (@ (m]P) = 08, (1 (01P))

m2 n2
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The product formula in Lemma [T.1.17] then implies that

Z #Xq([m]P) - Z %/A\q([n]P) =0.

q prime q prime

We can give a more explicit description of ilp using the explicit descriptions of the local p-adic
heights.

Proposition 3.2.13. Let P € J(Q) \ Jiors and let m € Zsq such that [m]P € J,(Q) \ supp(O).

Then
hp(P) = —% log,, (ai(f([m]P))) :

Proof. We have

q prime

= 210, (o (eI P)) + > logyn({miP)| - (Definition B2
q7p

m ( 1 ([m] ) > . ( — ’
.

Proposition 3.2.14. The p-adic height in is a quadratic function, that is, for all P € J(Q)
and n € 7Z, we have

Proof. If P is a torsion point, the statement is clear for all n € Z. Now assume P ¢ Jios
and n € Z. For n = 0 the result is immediate.A Let n #£ 0, and let m € Z~q be such that
[mn]P € J,(Q) \ supp(©). Then by definition of h, we get

W(P) = 3 (il P) = 3 (] P) = n?hy(P).

q prime q prime

The height ﬁp actually also satisfies the parallelogram law, and thus is a quadratic form. We do
not show this here, but in the next section (Section [3.3), we define a height h,, in a different way

In Theorem we show that izp is
equal to hy, which then implies that ilp is a quadratic from.

and show that it is a quadratic form in Theorem
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3.3 A naive p-adic height on the Jacobian of a genus 2 curve

We consider the same setting as in the previous section, with an odd prime p and a smooth
curve C of genus 2 over Q defined by with integer coefficients and good reduction at p. In
this section, our goal is to construct a quadratic p-adic height in a way that is different from the
method we saw in Section [3.2] namely with a naive height and a construction analogous to the
construction of Perrin-Riou in Section 2.3l

We start by considering points in the group J,(Q) as defined in . Note that when P € Jl(p) (Q),
we have P = O modulo p, and then also #(P) = [0: 0 : 0 : 1] because the diagram is
commutative. In particular, we have that x4(P) is not divisible by p and that x4(P) # 0. We
define a naive p-adic height H,: J,(Q) — Q, as follows:

Hy(P) = log,,(z4(P)).

Note the similarity between this function and the naive height function Hs on elliptic curves in
([2.18). For P € E,(Q) \ {O}, if we write k(P) = [z1(P) : 2(P)] with z1(P),z2(P) € Z such
that ged(x1(P), 72(P)) = 1 (with x as in ((1.6))), we have Hz(P) = log,(71(P)). Both Hy and
H, are defined at P € E,(Q) \ {O} and P € J,(Q), respectively, as the p-adic logarithm of the
coordinate of x(P) with the lowest p-adic valuation.

The goal of this section is to prove the following result, which is an analogue of Theorem [2.3.1

Theorem 3.3.1. Let P € J,(Q). Then the following limit exists:

hy(P) = lim — H,([p"|P). (3.7)

We show the existence of the limit (3.7) in Section In Section we show that the
resulting function h, satisfies the parallelogram law. In Section we show how the definition
of h, can be extended to obtain a quadratic form on all of J(Q). Finally, in Section we

compare h, to the height ﬁp from Section and we show that they are actually the same.

3.3.1 Existence of the limit defining h,

Let us start by proving that the limit (3.7) exists. We do this by showing that the sequence
ﬁHp([p”]P) is a Cauchy sequence in the complete metric space Q,. Using Lemma we
can instead show that as n approaches infinity, we have

1 1

WHp([an]P) - ﬁHp([pn]P) 0. (3.8)

Let us start by looking at the expression H,([p|P) — p*H,(P) for P € J,(Q). To evaluate
H,, at the point [p]P, we need a description of its image on the Kummer surface. We use
the multiplication formulas defined in Theorem [1.5.4] The functions pu,, evaluated at P give
projective coordinates for x([m]|P), but the theorem does not tell us which specific normalization
for k([m]P) we obtain. Uchida has the following result about the normalization when P = O.

Lemma 3.3.2 ([35, Lemma 3.9]). We have p,,(0,0,0,1) = (0,0,0,1) for all m > 0.

We want to determine the normalization of x([m]P) we obtain from the functions fi,,; also
at other points P. Specifically, we show that for points P in the subgroup J,(Q), we have
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ged(pm,1(x(P)), pm2(x(P)), tm,3(x(P)), tma(x(P))) = 1. Note that for m = 2, this is true
by definition of J,(Q). Namely, if P € J,(Q), then P € Uy,(Q) for all primes ¢q. Hence
®,(P) = max; |0j(x(P))|q = 1 for all g, which implies that ged(d1(z(P)),...,d(z(P))) =1. To
show that the same is satisfied for all other p,,, we use some theory about real local height
functions on the Jacobian, which we already saw in Section Recall that we presented
Uchida’s naive and canonical local real height functions in Definition and Definition [3.1.10
respectively. We make use of a property of these canonical local height functions that was proven
by Uchida in [35, Theorem 5.3]. We reproduce the result here and fill in some details in Uchida’s
proof for the case ¢ = 4. This case is of interest in the current setting because we consider points
P e J,(Q) C Jl(p) (Q), and for these points we have kK(P) = [0: 0 : 0 : 1], which implies that

x4(P) # 0. We thus have Jl(p) (Q) C Jo,(Q).

Theorem 3.3.3 ([35, Theorem 5.3]). Let q be a prime. Let Ay, be the canonical local real
height defined in Definition|3.1.10, For any m € Zsq and P € J(Qq) with P,[m]P ¢ supp(©4),
we have

pam 4 (2(P))

5‘4,q([m]P) - m25‘4,q(P) = —log 24(P)m

q

Proof. For m = 1 the statement is trivial. For m = 2, we showed the statement in Theorem
3.1.11, In that theorem, we also saw that A4, is a canonical local height function associated
with the divisor ©4, and hence it satisfies the properties in Theorem [3.1.8] We note that

P

div (W) = [m]*©4 — m?0,.
zq(P)™

We can then use the properties in Theorem to find

Ag([m]P) = m*Agq(P) = Ajpjro,,(P) = Amze,o(P) +71 (property (iv), (1))

= Nm]r0s—m201)4(P) + 72 (property (i))
P
= —log Mx(mz)) + 73, (property (ii))  (3.9)
x4(P) q
where the v; are constants. We thus need

“ < z(P

15 = Mag([mP) — m*Aa g (P) + log [Pt ) (3.10)

z4(P)

q
for all P such that P, [m]P € Jo,(Qy), so in particular for P = O with k(O) =[0:0:0:1]. But
we know that 4i,,(0,0,0,1) = (0,0,0,1) by Lemma [3.3.2} and hence also ®4(0) = 1. This shows
that 5\4,(1((’)) = 0, and thus that all terms on the right-hand side of evaluate to 0 at O,
which implies 3 = 0 independently of P. Then gives the desired result. |

Theorem 3.3.4. Let P € J,(Q). Then z;([m|P) = £pmi(x(P)) for all 1 < i < 4 and all
m > 1.

Proof. Consider any prime ¢ and any m € Zso. Recall that Jl(p) (Q) € Jo,(Q), and thus
P,[m]P € Jo,(Q). We apply Theorem to obtain

fim,a(2(P))
zg(P)Y™ |,

= —log |pma(z(P))], +m*log|z4(P)]

Ag([m]P) —m*Aig(P) = —log

. (3.11)
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On the other hand, because P, [m|P € Jy(Q), we have from Proposition [3.1.13| that
Nag([mIP) = m*Aag(P) = Aag(Im]P) = m*Aay(P)

= —log |z4([m] P)|, +m?*log|a4(P)] (3.12)

Equating and then gives
—log|z4([m]P)|, = —log |pma(z(P))], -
We thus know that x4([m]P), pma(z(P)) € Z such that |z4([m]P)|, = [pma(z(P))|, for all
primes g. This implies that z4([m|P) = L a(z(P)). Because
r([m]P) = [x1([m]P) = za([m]P) : 23([m]P) : z4([m]P)]
= [um1(@(P)) : pm,2(2(P)) : prm 3(2(P)) : i 4(x(P))],
this implies that z;([m]P) = £y, i(z(P)) for all 1 < i < 4. |

In particular, we deduce that ged(pm,1(z(P)), ttm,2(x(P)), pim,3(x(P)), prma(x(P))) = 1 for all
m > 0.

Corollary 3.3.5. Let P € J,(Q) and m > 1. Then

Hy([m]P) — m*H,(P) = log, (W) . (3.13)

We now need to rewrite the argument of the logarithm in (3.13)). If P € pr )(Q), we know that
x24(P) # 0. Note that we can view

Pma(T1, T2, 3, T4) <.’If1 Ty T3 1)
m2 —HMmAaA\ T T T
7 x4’ x4 T4
as a polynomial of total degree at most m? in Z [%, ;—i, i—ﬂ Because x4(P) # 0, we get from
(L18) that
P 1 P P
b)) _ 1 py mB) o py g TP o2 p, (3.14)
z4(P)  pn z4(P)  pn z4(P)  pn
Hence we have
P 1
D — o (P 222, - 22(p), 1) (3.15)
x4(P)™ P11 P11 P11

We now use the 2-parameter formal group associated to J, which we defined in Section [I.6.3}
Recall that in ((1.29), we have expansions of the coordinate functions p;; defining the map to
the Kummer surface in the parameters t; and t5. Using these, we find

1
—— =12 + (terms of total degree > 3)
211
§922
=== = 2t1t9 + (terms of total degree > 3)
11
12 2
—=== =5 + (terms of total degree > 3) (3.16)
11
which are all in Z[[t1, t2]]. To find an expansion for fi, 4 (ﬁ, %, —%, 1) in #1 and to, we first

look more closely at the coefficients of the polynomial i, 4. We prove a few properties, using
the equations for ¢ given in [13, Appendix C] and the equations for the biquadratic formulas B;;
from [12]. We do not reproduce the equations here, but we highlight some properties.
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Properties 3.3.6. The polynomials 6;(k1, ke, k3, ka) have the following property:
(a) The coefficient of ki in &; is 0 fori=1,2,3, and 1 for i = 4.
(b) The terms kiky, kiks, kiks have coefficient 0 in &y.
The biquadratic polynomials By;((k1, k2, k3, k), (11, 12,13,14)) have the following properties:

(¢c) In By for i = 1,2,3, the coefficients of the terms of the form k3lly and k;k4l3 for
7=1,2,3,4 are 0.

(d) In Bua, the coefficients of terms of the form k3l;l; and kik;13 fori,j € {1,2,3,4}, are 0,
unless ¢ = j = 4, in which case the coefficient is 1.

Lemma 3.3.7. The coefficient of I@TQ in the homogeneous polynomial pim, ;(k1, ko, k3, k) is equal
to 0 fori=1,2,3, and 1 fori=4.

Proof. Let us show this by induction on m using the inductive definition of u,, in Theorem
It is clear from the definition that the statement is true for po = (0,0,0,1) and p; =
(K1, ko, k3, ka).

We now show that if the statement is true for y; with [ > 1, then it is also true for pg;. Namely,
by definition f9;(k) = 6;(w(k)). Because the coefficient of k‘f is 0in 1, 2 and 3 by the

2
induction hypothesis, the only term in 0;(x;) that can contribute to the kfl) -term in &;(uy(k))
is the ui 4-term. However, we see from Properties [3.3.6(a) that this term vanishes in 6;(yy) for

i =1,2,3. In 04(py), its coefficient is 1, and the coefficient of k‘ff in fu 4 is also 1 by the induction
hypothesis. This shows the statement for m = 2I.

Now we show that if the statement is true for p; and py1q with [ > 1, then it is also true for po;11.
Namely, by definition po;41,i(k) ki = Bii(pu+1(k), u(k)) for i = 1,2,3,4. Hence the coefficient

of kle)Q in p19141,i(k) corresponds to the coefficient of kikal)Q in Bji(pus1(k), i (k)). By the

induction hypothesis, we know that p414 and j 4 are the only coordinates that have a nonzero

2
coefficient of ki”l) and k:ff, respectively. Therefore, the only terms in Bj;(p41, 1) that could

2
contribute to the kikflﬂ) -term in By (41 (k), i (k)) are terms of the form ul2+1 At j 1,4 and

/‘l+1,j,lll+174,u12’4 for some j € {1,2,3,4}. However, Properties (c) shows that for i = 1,2, 3,
all these terms have coefficient 0. For i = 4, Properties d) tells us that the coefficient
2
of /‘12+1 4/1,124 in Byg(p+1(k), ) is 1. By the induction hypothesis, the coefficient of kilﬂ) in
ti+1,4 and the coefficient of k:f in 4 are 1. These facts show that the coefficient of kle)Q in

p2i+1,i(k) is equal to 0 for ¢ = 1,2,3 and equal to 1 for i = 4. [ |

Lemma 3.3.8. Let m > 1. The coefficient of kT2_1ki in fim a(ky, ko, k3, ka) is equal to 0 for
i=1,2,3.

Proof. We again use induction on m. Note that the statement is true for m = 1 because
P4 = ka.

Let us assume the statement is true for m = [, and show it is true for m = 2[. Let us fix
i €{1,2,3}. From Lemma we deduce that the only terms in d4(y;) that can contribute

to the kTlei—term in 04(w(k)) = paa(k) are of the form M?4Ml,j for some j € {1,2,3,4}.

84



Properties m(b) tells us that for j = 1,2, 3, these terms have coefficient 0. Hence they cannot
contribute, and the only term left is MLA. However, the coefficient of k‘fflk:l- is equal to 0 in
tu,4(k) by the induction hypothesis. Hence this term also cannot contribute. We conclude that

. (20)%2-1,, . .
the coefficient of k, ki in pop4(k) is 0.

Now we assume the statement is true for m = [ and m = [+ 1, and show it is true for m = 2/ + 1.

Let us again fix i € {1,2,3}. By definition, the coefficient of kal)Q_lki in p19741.4(k) corresponds

to the coefficient of kflﬂ)zki in Byg(pi41(k), pi(k)). It follows from Lemma that the only

2
terms in Bag(py41, ) that can contribute to the kflﬂ) ki-term in Baa(p41(k), pu(k)) are the

terms of the form 1“12+1,4Nl,j'“lv4 and Ml+1,jﬂl+1,4ﬂz4- However, from Properties |3.3.6(d) it follows

that for j = 1,2, 3 these terms have coefficient 0. For j = 4 we get the term u;ﬂ_l 4”1247 but from
the induction hypothesis we know that the coefficient of k:f_lki in p 4(k) and the coefficient

of kiHl)lei in fyy41,4(k) are 0. Then this term can also not contribute to the kalﬁki—term
in By (pi4+1(k), pi(k)), so the latter must have coefficient 0. This shows that the coefficient of

]‘34(12”1)2_1% in po141,4(k) is 0. L

We can use these facts about the polynomial ji,, 4 to say something about the (t1, t2)-expansion

1 22 p12
Of’u’m’4 (pn’pn’ ml’l)'

Proposition 3.3.9. Let m > 1. Then fim4 (i P22 P12 1) has an expansion in t1 and to of

P11 P11’ P11’
the form
um(tl, tg) cl+ (tl, t2)4Zp[[t1, tQH.

Proof. Recall that ji,, 4 is a homogeneous polynomial of degree m?2. Let us write

pma(ky ko ks k) = Y agjuoki kiR
i+j+l+w=m?2

Then Lemma says that ag g o m2 = 1, and Lemma says that a9 m2—1 = ap,1,0m2-1 =
a0,071’m2,1 = 0. We thus get

) . ;
1 @22 @12 1Y (p22)’ 012

Hm 4 <, —,——,1) = Z Qijlw | — — -
P11 P11 P11 211 211 211

i+j+l+w=m?2

1Y @22>j < pu)l
1+ Aiilw | — — —— . 3.17
Z I (@11> <@11 211 ( )

i+jHlH+w=m?
i+j+1>2

From the expansions in (3.16) we note that ﬁ, b -2 (t1,t2)%Z[[t1,t]]. In the last sum

in (3.17)), each term satisfies i + j + [ > 2, and hence we conclude that this sum is contained in
(t1,t2)*7Z][t1,t2]]. This implies the result. [ |

For P ¢ Jl(p)(@), we then get from (3.15)) that

U (t1(P), t2(P)) = ‘W. (3.18)

We have the following convergence results, which are very similar to Corollary and Corollary
for elliptic curves.
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Corollary 3.3.10. Let P € J1(Qp). Let g(T1,Ts) € 1+ (T1, T2)*Q,[[T1, T2]] for some integer
k> 0, such that g converges on some neighborhood of (0,0). Then for large enough n € Z>o,
g(ti([p"]P), t2([p"])P)) converges, and for m € Zj we have

lim ——log, (g(t1 (0"} P), ta([p"] P))) = 0.

n—oo pmn

Proof. Because P € J1(Qp), we have ord,(t1([p"]P)), ordy(t2([p"]P)) > n for all n > 0 (Corollary
1.6.18)). The result then follows from Lemma [2.3.2 |

Corollary 3.3.11. Let P € J;(Qp). Let g(T1,T») € 1+ (T1,T2)3Z,[[T1, T2]]. Then

lim ——log, (g(t:([p"]P), t2([p"]P))) = 0.

n—o0 p

Proof. The series g(T1,12) converges for T1,T> € pZ,. The result follows from Corollary
5.3.10) |

We use this to show the existence of the limit (3.7)).

Proof of Theorem [3.3.1 Recall that we can prove the theorem by showing the limit in (3.8]).
Note that [p"|P € J,(Q) for all n > 0. We have

1 1
. n+1 7,
tin (o B - o (51P))

: 1 n 2 n

— tin s (P - 28, (571P)
L1 o 4(96([19”]13)))

= — lim —1 —_— Coroll 3.3.5
2 Jim. o ogp< 52 ([p"| PP (Corollary [3.3.5)
L. 1 n n .

= 2 Jim - 1og, (11 (")) 12("1P) (using (ET9)

=0. (Proposition Corollary [3.3.11])

3.3.2 Quadraticity of h),

Next, our goal is to prove that the function hy, satisfies the parallelogram law on J,(Q). Explicitly
we want to show the following theorem.

Theorem 3.3.12. Let P,Q € J,(Q). Then

hp(P + Q) + hy(P — Q) = 2hyp(P) + 2hy(Q).

We first note that by definition, for P,Q € J,(Q) we have
Hp(P + Q) + Hy(P — Q) =log,(z4(P + Q)z4(P — Q)). (3.19)

Our goal is to rewrite the right-hand side in such a way that it depends on the coordinates of
P and @ instead. As in the previous section, we use theory on the canonical local real height
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function by Uchida which were introduced in Section Again, we only need to consider the
local height away from Oy, because we know that J,(Q) C Jg,(Q). We use the following result
by Uchida. Uchida states this result for all ©; with ¢ = 1,2, 3,4, but we only need the case i = 4
and we fill in some details in the proof for this case.

Lemma 3.3.13 ([35, Theorem 5.6]). Let q be a prime, and let 5\4,q be the canonical local real

height defined in Definition|3.1.10. Let P,Q € J(Qq) be such that P,Q,P+Q, P—Q ¢ supp(©a).
Then

Bua(x(P), 2(Q))

Mg(P+ Q) + Aag(P — Q) — 2X4 4(P) — 2X44(Q) = —log 22(P)24(Q)?

q

Proof. Recall from the proof of Theorem|3.1.11|that 5\4,q is a canonical local height corresponding
to ©4. If we define the morphisms o, ¢, 71, m2: J x J — J by 0(P,Q) = P+ Q, ¢(P,Q) =P —Q,
m1(P,Q) = P and m(P, Q) = @, we have

( Bus(a(P).2(Q))
d”( 4(P)2rs(Q)?

We use the properties of canonical local height functions in Theorem to conclude that

) =0"04+ €04 — 21704 — 2750 4.

Mg(P+ Q) + Ag(P = Q) = 204 (P) — 204,4(Q)
= 5‘cr*‘@;;,q(]% Q) + 5\5*94,q(P7 Q) - 25\#1‘94,q(P7 Q) - 25‘#5@4,(1(P7 Q) +m (property (1V)

= 5‘0’*@44’6*@472#{@472#5@4,(](P7 Q) + 72 (property (1)
)

By(z(P), z(Q)) + s, (property (ii

)
)
= —log )

z4(P)?za(Q)* |,
(3.20)

where the v; are constants. We rearrange this equation to get an expression for vs:

Bu(z(P), 2(Q))
r4(P)*x4(Q)?

This equality holds in particular for P = @ = O with K(O) =[0:0:0: 1]. In that case we have
A14(0) =0, and we also conclude that Byy(z(P),z(Q)) = 1 from Properties (d) Hence all
terms on the right-hand side evaluate to 0, so 73 = 0. But as this value is independent of P and
@, we conclude from that the desired equation is satisfied. |

73 = Aag(P + Q) + Aag(P — Q) — 21 (P) — 2X44(Q) + log

q

Proposition 3.3.14. Let P,Q € J,(Q). Then Bj(xz(P),z(Q)) = tx;i(P + Q)x;(P — Q) for
i=1,2,3,4.

Proof. Recall that Jl(p ) (Q) C Jo,(Q). Hence we can apply Lemma [3.3.13| for any prime ¢, which

gives us
Bua(x(P), z(Q))
z4(P)?24(Q)?
= —log|Bu(z(P),z(Q))l,
+ 2log |z4(P)|q + 2log |z4(Q)]4. (3.21)

Aig(P+ Q)+ Aig(P— Q) — 204 4(P) — 224 4(Q) = —log

q
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On the other hand, because P, Q € Jy(Q), and hence P+ Q, P — Q € Jy(Q), Proposition [3.1.13

implies

Mg(P+ Q) + Agg(P = Q) = 2X14(P) — 2X4,4(Q)
= )\4,q(P + Q) + )\4,q(P - Q) - 2A4,q<P) - 2A4,q(Q)
= —logza(P + Q)lq —log|za(P = Q)lq + 2log |z4(P)lq + 2log |24(Q)]g-  (3.22)

Equating (3.21)) and (3.22) gives
—log |Baa(z(P),z(Q))|, = —log |z4(P + Q)za(P — Q)]

We conclude that ordg(Bas(z(P), z(Q))) = ordy(x4(P+Q)z4(P —Q)) for every prime g. Because
24(P 4+ Q)z4(P — Q) is nonzero, this implies that

Bu(z(P), 2(Q)) = £24(P + Q)z4(P — Q).
From Theorem [L.5.2l we deduce that
[B11(z(P),2(Q)) : Ba2(x(P), z(Q)) : Bss(x(P), x(Q)) : Baa(x(P),2z(Q))] =
[xl(P + Q)xl(P — Q) : (IZQ(P + Q)xg(P — Q) : afg(P + Q)(IZg(P — Q) cx4(P + Q)JZ4(P — Q)]
as projective points. Therefore Bj;(z(P),z(Q)) = £x;(P+ Q)z;(P — Q) for alli =1,2,3,4. N

Together, (3.19) and Proposition [3.3.14] give
Hp(P + Q) + Hy(P — Q) = log,,(Bu(z(P), z(Q)))- (3.23)
We write Byy(z(P),2(Q)) = 24(P)?24(Q)*\(P, Q), where by definition

 Bu(e(P).2(Q)
NPQ) = =B

Because Byy(k,1) is a biquadratic form in the variables ky, ko, k3, k4 and 13, 1,3, 14, we can view
A(P, Q) as a polynomial

r1(P) x2(P) x3(P) 21(Q) 22(Q) 73(Q)
MPQYEL| P 2a(P) 24(P) 22(Q)’ 7a(Q)” 7a(Q)

From Properties [3.3.6(d), we conclude that the constant coefficient of A is 1. It also says that
k313 is the only term in Byy(k, 1) that involves k7 or I3, and therefore all nonconstant terms in the

polynomial A(P, @) contain at least one factor Z((IIZ)) and one factor Z Eg; for some 4, j € {1,2,3}.

Recall that because P,Q € Jl(p) (Q), we have (3.14]) for P and Q. Using (3.14]) and (3.16)), we
then conclude that there is a series

MNA(Ty, Ty, Sy, S5) € 14 (T, T2)(S1, So)Z[[T}, Ty, S1, So]] (3.24)
such that A(P, Q) = AT (¢(P), t(Q)).
Lemma 3.3.15. Let P,Q € JP(Q,) and
g(T1, Tz, S1,S2) € 14 (Ty, T2)*(S1, S2)*Z,[[T1, Ta, S1, Sa]).-
Then .
lim —-log,(g(t([p"]P), t([p"]Q))) = 0.

n—o0 p
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Proof. Recall from Corollary|1.6.18|that ord,(¢;([p"]P)), ord,(ti([p"]@Q)) > n for i = 1, 2. Because
g has coefficients in Z,, it converges when ord,(t;),ord,(s;) > 0 for i = 1,2 by Lemma m

Then the result follows from Lemma, with r =4, k =4 and m = 2. |
We rewrite (3.23)) as

Hy(P+ Q) + Hy(P — Q) = log, (4(P)224(Q)*A(P, Q))
— 2log, (24(P)) + 2log, (#4(Q)) + log,(A(P. Q))
— 2H,(P) + 2H,(Q) + log,(\ ((P), t(Q))-

We use this to show that h, satisfies the parallelogram law.

Proof of Theorem[3.3.14 For P,(Q € J,(Q), we obtain

ho(P+ Q) + hp(P— Q) = Tim —— (H,(0")P + [p"]Q) + Hy(p"]P — [p"]Q))

= 2hp(P) + 2hy(Q). (using (3.24)) and Lemma [3.3.15))

Corollary 3.3.16. Let P € J,(Q) and let n € Z. Then

ho([nP) = n*hy(P).

Proof. Because J,(Q) is an abelian group, this follows from Proposition and Theorem
3.3.12] Alternatively, this can be shown directly using Corollary and an argument similar
to the proof of Theorem [3.3.1 [ |

3.3.3 Extension of h, to J(Q)

We defined hy, only on J,(Q). We now extend the definition to J(Q) in such a way that the
resulting function is a quadratic form on J(Q). Recall that J,(Q) is a subgroup of finite index
in J(Q) (Proposition [3.2.9)), and hence each point P € J(Q) has a multiple that lies in J,(Q).

Definition 3.3.17. Let P € J(Q). Let m € Zs( such that [m|P € J,(Q). Then we define

hp(P) = —5 hy([m] P).

m2

To show that this definition makes sense, we need the following property.

Lemma 3.3.18. Let P € J(Q) and mi,my € Z~q such that [m1|P, [mg]P € J,(Q). Then

o hy(Imi]P) = (o] P).

1 my
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Proof. Because also [mima|P € J,(Q), we can use Corollary [3.3.16| to conclude that

(1] P) = — sy (mama) P)
1 12
- %hp([mg]P).
2

It is then also clear that Definition does not conflict with the original definition of h, on
Jp(Q), because we can take m =1 when P € J,(Q).

Theorem 3.3.19. The function hy: J(Q) — Q, is a quadratic form. Explicitly, it has the
following properties.

(a) For all P,Q € J(Q), we have hy(P + Q) + hy(P — Q) = 2h,(P) + 2k, (Q).

(b) For all P € J(Q) and n € Z, we have hy([n]P) = n?h,(P).

Proof. Let my, my € Zs( be such that [m;]|P, [m2]@Q € J,(Q). These exist by Proposition
Then also [m;mg] P, [m1m2]@ and their sum and difference are all in J,(Q). Therefore, using
Definition [3.3.17 we get

hp(P+ Q)+ hy(P — Q) = m;m% (hp([mima] P + [m1ma]Q) + hy([mima] P — [m1m2]Q))
sy @hy(fmma] P) + 2hy((m1ma]Q)) (Theorem
myms

— 2h,(P) + 2h,(Q).

This shows part (a). Part (b) follows from part (a) and Proposition [2.1.5] [ |

3.3.4 Comparison of h, and h,,

Now that we have found a quadratic p-adic height h, as a limit of the naive height H,, we
compare it with the p-adic height ﬁp from Section In this section, we show that the two
heights turn out to be identical. We first show this on the subset J,(Q) \ supp(©), because there
we have more straightforward descriptions of h, and ilp. We then use that result to show that
the heights must be equal on all of J(Q).

We take a similar approach as in Section for elliptic curves. First we find an expression g(P)
such that h,(P) = H,(P)+ g(P) for all P € J,(Q) \ supp(©). Then we want to take a limit over
p-power multiples of P on both sides such that the term involving g vanishes, and we obtain h,(P)
on the right-hand side. However, because we only have this expression for P € J,(Q) \ supp(©),
we can only take the limit over multiples [p"]|P of P that are also not in supp(©). We thus first
show that for any P € J1(Q) \ {O}, the set S(P) = {n € Z=¢ | [p"]P ¢ supp(O)} is infinite, so
that we can take the limit over the multiples [p"|P with n € S(P) rather than over all n € Z-o.
To show that S(P) is infinite, we first need some lemmas about the multiplication-by-p map on
the formal group associated to J.
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Lemma 3.3.20. Let m > 1. Let [m| = ([m]1,[m]2) be the multiplication-by-m homomorphism
from Definition[1.6.4. The series [m]1(0,T2) € Zy[[T3]] is of the form

[m]1(0,Ty) = &, T3 + (terms of degree > 5),

where &y, = —> " i(i — 1).

Proof. The formal group law F'j of J can be computed explicitly, and it is shown in [4] that F';
has an expansion of the form

Fra(X1, X2, Y1,Y2) = X1+ Y1 = oXPYV1 = X0V = X3V — Xo¥5

+ (terms of total degree > 5)
Fia(X1, X2, Y1,Y2) = Xo + Y2 — AX{Y1 — AX0YE + 22 X5Y) + 2f4 X0V

+ (terms of total degree > 5).

We noted in Section [I.6.3] that the series Iy 7, F» ; only have terms of total odd degree, and
from the definition of [m] we deduce that the same is then true for the [m]; and [m]s.

For m = 1, we find that
[1]1(07 TQ) = FJ,I(Ov 0,0, TQ) € TQBZP[[T2H
and hence it has the desired form with £; = 0.

For induction, let k¥ > 1 and let us assume that [m];(0,T2) = &, T3 + (terms of degree > 5) for
all m < k. We note that [k]2(0,75) = kT + (terms of degree > 3) by Proposition and
because [k]2 is odd. We then get

[k +1]1(0,T2) = Fy1 ([k]1(0,T3), [k]2(0,T2), 0, T»)
= [k]1(0, 1) — Tu([k]2(0, T%))* — T2[k]2(0, Tb) + (terms of degree > 5)
= T3 — k*Ts — kT + (terms of degree > 5)
= (& — k(k +1))T5 + (terms of degree > 5).

Because ;41 = & — k(k + 1), this implies the result. [ |

Lemma 3.3.21. Let p be a prime. Then for &, as defined in Lemma we have ords(&3) = 0,
and ord,(&p) =1 for p # 3.

Proof. We note that

Ny P41 pp+1)  plp+D(p—1)
§p—;z(z—1)— 3 + 5 = - 3

Because ord,(p+ 1) = ord,(p — 1) = 0, we find ordz(&3) = 0 and ord,(&,) = 1 for p # 3. |

Theorem 3.3.22. Let P € J1(Qp) Nsupp(©) and P # O. Then [p|P € Jo(Qy).
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Proof. We know from Lemma that P € supp(©) implies that ¢;(P) = 0. If we assume that
[p]P € supp(O), then we must have ¢;([p]P) = 0. From Lemma [3.3.20] we know that

t1([pP) = [p11(0,12(P)) = t5(P) (& + (terms of degree > 2 in t3(P))).

Because ord,(§,) < 1 by Lemma3.3.21} this can only be zero when t2(P) = 0. But t(P) = (0,0) if
and only if P = O. This contradicts our assumption, and hence we must have [p|P ¢ supp(©). W

Corollary 3.3.23. Let P € J1(Qp) \ {O}. Then the set S(P) = {n € Z~o | [p"|P ¢ supp(©)}
18 infinite.

Proof. 1f Z~o \ S(P) is finite, this is immediate. Now assume Z¢ \ S(P) is infinite. Corollary
1.6.26| implies that P is a nontorsion point, and hence for every n € Z-o \ S(P), we have
[p"]P € supp(©) \ {O}. Then Theorem (3.3.22| implies that n+ 1 € S(P). Hence S(P) must also
be infinite. |

We now use this fact to show that h, and in are equal.

Theorem 3.3.24. Let P € J,(Q) \ supp(©). Then

Proof. Let us consider a point @ € J,(Q) \ supp(©). Note that Corollary [1.6.26 implies that
Q ¢ Jiors. Furthermore, because @ € Jl(p)((@), we have x4(P) # 0. We get

o 2
hy(Q) = — log,, <i§fgg;)> (Proposition |3.2.13)
— 1o o 224(Q) oo (x
— —tog, ((t(QPLLD ) +1og, (01(@)

= —log, (0,(t(Q))* 011 (H(Q))) + Hp(Q). (3.25)

In the last step we used that because Q ¢ supp(©), we know from (L.17) and (1.28) that

24(Q)/z1(Q) = 911(Q) = I, (#(Q)), the expansion of which is given in (1.29). We see in [5,
Appendix A] that 0,(T) has an expansion of the form

2
2

ooT) e 7y (14 272+ (1, TQm T ).

Using these expansions we deduce that
op(T) 011 (T) € 1+ (T, T2) " Qpu[[T1, To]). (3.26)

Recall that o,(T) converges for T € (pZ,)? (Theorem [3.2.3)). We also know that o, (T') with
expansion (1.29) converges on (pZ,)? \ {(0,0)}, and 0, (T)?pT, (T) evaluates to 1 at (0,0). We
conclude that the series o, (T)?p%; (T) converges on a neighborhood of (0, 0).
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Recall from Corollary [3.3.23| that S(P) is an infinite set, so we can take a limit over n € S(P).
We get

hy(P) = Jim Lnfzp([p”]P) (because izp is quadratic)
nGS(P)p
: 1 n . 1 n n .
— D B ([p"1P) — lim - log, (0, (H([p"IP) 26T (H([p"P))  (using (B:25))
nes(p) P nes(p) P
: 1 T : 1 7 7
= i S H(1P) — T o, (o(8(571P) 6 451 P)

= hy(P). (using Theorem (3.26)) and Corollary |3.3.10))

The equality between the second and third line is satisfied provided the limits exist, which is
shown in the final step. |

Finally, we show that h, = h,, on all of J(Q).

Theorem 3.3.25. For all P € J(Q), we have hy(P) = hy(P).

{Droof. First of all, let us consider P € Jios(Q) with m € Z~q such that [m]P = O. We have
hp(P) = 0 by Definition |3.2.11} On the other hand, h,(P) = #hp((’)), and we note that

H,(O) = 0 which implies by definition that h,(0) = 0. Hence h,(P) = h,(P) = 0.

For P € J(Q) \ Jiors, let us consider m € Z¢ such that [m]P € J,(Q) \ supp(©), which exists
by Proposition [3.2.9) and Lemma [3.2.10] Then

. 1.

hp(P) = Whp([m]P) (Proposition |3.2.14)
1

= (P (Theorem E321

= hp([m]P). (Theorem [3.3.19))

In particular, because we showed that h, is a quadratic form on J(Q), the same is true for
hp. This way we indirectly showed that the global height defined in Section satisfies the
parallelogram law.

In conclusion, we indeed succeeded in providing an alternate construction of a quadratic p-adic
height on the Jacobian of a genus 2 curve, by defining a naive height and using a limit process.
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Appendix

Consider a smooth projective curve C of genus 2 over a perfect field K with char(K) # 2, defined
by the affine equation

C:y* = 2"+ faxt + f32° + for® + frz + fo

with f; € K. The corresponding Jacobian J can be defined as the zero set of the following 13
polynomials in P®, as shown in [16, Section 2].

Fy =2X0X — X131 X090 + X35 — f3X0X12 + f1.X5,

F3 = X0 X112 — X222 X12 + X122 X002,

Fy = Xo X111 + XogoX11 + X120 X12 — 2X7112 X020 — 2[4 X0 X112 + f3X0 X122,

Fy = XoX19y — X11X3 + 2X0X Xoo + XoX11X12 — faXoX11 X202 — f3X0X12X22 + 24 X5 X
— fafsX§ X120 + [1X5 X002 + (fafr — f0) X0,

Fs = X0X399 — Xiy — XoX12 X022 — f1X0X3, — X5 X11 — [3X5 X2z — fo X3,

Fr = Xo X120 X090 — X12X35 + X{X — f3X3 X102 — faX0X12X2,

Fy = XoX1; — Xi1 — foXoXT — fiXoX11 X1z + 3foXoX11 X0 + 2f0 X3 X
+ (4fsfo — f3.£1)XGX11 — 3f30XE X12 + (3fafo — 1) X5 Xa2
+ (dfafafo + fifo— faff = f3f0) X3,

Fy = — X111 X112 + fuXi1 X122 — f3X112 X122 + foX112X000 — fiX120 X000 + fo X35y — X?
— [aX X11 + f3X X12 — foX Xoo — foX11 X2 + fafoX11 X2 — (fo + faf1) X12X22
+2f1f0 X35 — 2(fafa + f1) X0 X — 2fo X0 X1
+ 2fshi+ fafsfr+ fafo = 3 = f11) Xo X2 + 2fo(fF — f3) X0 X2
+ (fafafo — fafafr = 2f2f0) X5,

Fio = Xty — X1 X122 + X1 X — foX11Xa2 + 2f1.X12 X292 — 3f0X3, + 2foX0 X
+ (fafr = fafs — fo) XoX12 — 2fafoXo X2 + (fof1 — f30) X3,

Fiy = X111 X2 — X112X122 — 2X X120 + X§; — 2f1X11 X102 + 3f3X11 Xo2 — 2f2X12X00 + f1X5,
—5f3X0X + foXoX11 + (3fF — 2faf2) XoX12 + (fafr — fo) XoXaz — 2f3/1X3,

Fio = X755 — X112X022 + X202 X + 2X11 X12 — fuX11X22 + 2f2X0X + (fo — faf3)XoX12
+ (fafr — fo) X5,

Fi3 = X111 X12 — X112 X711 — fiXoX122 + 2fo X0 Xa22,

Fig = 2X120 X711 — X112 X712 — X111 X902 — f3X112 + 2f2 X0 X122 — f1 X0 X220
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