
University of Groningen

Faculty of Science and Engineering

Mathematics

Master Thesis

A naive p-adic height function on the
Jacobians of curves of genus 2

Manoy Trip

1st supervisors:
dr. J. S. Müller
dr. F. Bianchi

2nd supervisor:
dr. O. Lorscheid

May 2022



Abstract

In this thesis, we introduce a naive p-adic height on the Jacobians of smooth projective curves
of genus 2. More generally, we explore both real and p-adic height functions on elliptic curves
and on the Jacobians of genus 2 curves. Starting from the more established topic of real-valued
height functions on elliptic curves, we discuss how methods can be adapted to the construction
of p-adic height functions. A naive p-adic height was defined by Bernadette Perrin-Riou, and it
can be used to obtain a quadratic p-adic height using a limit process. We give more details on
her arguments. We then move on to the topic of height functions on the Jacobians of genus 2
curves. We discuss existing real height functions in this setting, and a quadratic p-adic height
defined using local height functions. Then we turn to the main result of the thesis, which is the
existence of a naive p-adic height on the Jacobian of a genus 2 curve that can be used to define
a quadratic p-adic height. This height is defined analogously to Perrin-Riou’s height. We show
that the resulting quadratic p-adic height is equal to the quadratic height obtained using local
heights.
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Introduction

Roughly speaking, a real height function is a function from a mathematical structure to the real
numbers which measures the complexity of mathematical objects. On projective space, there is
a straightforward definition of a real height function that can be used to count points that are
rational over a given field, such as a number field, in the sense that there is a finite number of
points with height below any given value (even though the total number of projective points
over a field may be infinite). Using this function, we can define a real height function on the
group of points on an elliptic curve over Q (or more generally, a number field). The resulting
function is also reasonably well-behaved with respect to the group structure of the elliptic curve.
In particular, it is close to being a quadratic form, as we will see in Section 2.1.1. We call this
the naive real height function on the elliptic curve. This function was for example important in
the proof of the Mordell-Weil theorem (see [32, VIII, Theorem 6.7]), which states that the group
of rational points on an elliptic curve over a number field is finitely generated.

In 1965, Néron constructed a real height function on elliptic curves in [27] which is actually a
quadratic form, by writing it as a sum of local functions. Around that time, Tate defined the
same height function as a global height using the naive height and applying a limit construction
(unpublished). The resulting height function is called the canonical height or Néron-Tate height.
We will discuss both constructions in Section 2.1.2 and Section 2.1.3.

The idea of height functions can be extended to curves of genus higher than 1, or more generally
to algebraic varieties. In this thesis, besides height functions on elliptic curves, we look at height
functions defined on the Jacobians of smooth projective genus 2 curves. Because the Jacobian is
an abelian variety, we can again impose conditions on the behaviour of the height function with
respect to the group law. In particular, height functions that are quadratic forms can also be
found in this case. We will see such height functions in Section 3.1.

Besides height functions that map to the real numbers, we can define height functions that
map to the field of p-adic numbers for a prime p. In this case, we lose the counting property,
but it is still possible to define p-adic height functions which are quadratic forms. For elliptic
curves, such functions were defined as the sum of local p-adic height functions, similar to Néron’s
construction of the canonical real height. The local height at p is defined using a so-called p-adic
sigma function, which can be defined up to a choice of a parameter in Qp. Different sigma
functions give rise to different p-adic heights. Such sigma functions have been constructed by
Bernardi [3], Néron [26] and Mazur–Tate [24]. We will see Bernardi’s sigma function and a
general description of the possible sigma functions in Section 2.2.2.

Alternatively, in 1984 Perrin-Riou [28] constructed two quadratic p-adic height functions on
elliptic curves using an analogue of the method of Tate, namely as limits of naive p-adic height
functions. She compared these functions with the one that was constructed using local p-adic
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heights. We discuss her construction and the comparison at length in Section 2.3.

On the Jacobians of genus 2 curves, p-adic height functions constructed using local p-adic heights
have also recently been described. This construction also needs a p-adic sigma function, which
is defined by Blakestad in [8] and generalized by Bianchi in [5]. The main goal of this thesis is
to give an alternative construction analogous to Perrin-Riou’s construction for elliptic curves. In
Section 3.3, we define a naive p-adic height on the Jacobian of a genus 2 curve and show that a
limit construction applied to this height, similar to the construction of Tate and Perrin-Riou,
results in a quadratic p-adic height. We show that the resulting height is the same function as
the one that was obtained using local p-adic heights.

Real-valued height functions on elliptic curves and more generally on abelian varieties arise in the
Birch and Swinnerton-Dyer conjecture (see [2, Conjecture 1.1]), which is one of the Millenium
Prize Problems. The p-adic height functions on abelian varieties in turn appear in a p-adic
analogue of the Birch and Swinnerton-Dyer conjecture (see [25], [2, Conjecture 1.3, 1.4]). Besides
this, p-adic heights are also used in the quadratic Chabauty method (see [1]). This is a method
for computing the rational points on a curve of genus > 1 over the rational numbers, when the
rank of the Mordell-Weil group of its Jacobian is equal to the genus of the curve. The method
extends the Chabauty-Coleman method, which requires this rank to be strictly smaller than
the genus. An exploration of such applications for the discussed height functions is outside the
scope of this thesis.

We start this thesis by defining the necessary preliminaries to understand the theory behind
the topics outlined above. In Section 1.1, we define the field of p-adic numbers, and the p-adic
logarithm function which appears in the definitions of p-adic heights. In Section 1.2, we introduce
the Riemann-Roch theorem for curves. We then define elliptic curves and some useful properties
of these curves in Section 1.3. In Section 1.4 we see a general description of smooth genus 2
curves, and we define the corresponding Jacobians and Kummer surfaces in Section 1.5. To
prove results about p-adic height functions, we make frequent use of properties of formal groups.
We define the general notion of a formal group in Section 1.6, and use it to construct formal
groups associated to elliptic curves and Jacobians of curves of genus 2. We conclude the section
by introducing the formal group logarithm, a formal power series which shows up frequently in
arguments in later chapters.

In the second chapter, we explore the topic of height functions on elliptic curves. We start
by introducing the naive real height function and the Néron-Tate height in Section 2.1. We
present both Tate’s limit construction and Néron’s construction using local height functions. In
Section 2.2, we discuss the definition of p-adic quadratic heights as the sum of local p-adic height
functions. Then we discuss the alternative construction by Perrin-Riou, using naive p-adic height
functions, in Section 2.3. We go through her arguments showing the existence and quadraticity
of the limit heights, giving more details where useful. We then compare these quadratic p-adic
heights to the quadratic p-adic heights from Section 2.2.

In the final chapter we treat height functions on the Jacobians of genus 2 curves. The structure
of this chapter is comparable to that of the previous one. In Section 3.1, we discuss real-valued
height functions on the Jacobians of genus 2 curves defined by Uchida [35]. Then, in Section
3.2, we discuss a p-adic height that is defined using local p-adic height functions by Bianchi [4].
Finally, in Section 3.3 we introduce a naive p-adic height on the Jacobian. This naive height can
be used to define a quadratic p-adic height, as we show in this section. We then show that the
resulting quadratic height is the same as the quadratic p-adic height from Section 3.2.

2



Chapter 1

Preliminaries

1.1 p-adic numbers

Traditionally, height functions on curves were defined as functions mapping into the real numbers.
The real numbers are the completion of Q with respect to the standard absolute value. In this
section we will see that it is also possible to define other absolute values on the field Q, which
can be used to define the field of p-adic numbers for a prime p. The main references used for
this section are [33, Section 2, 3], [15, Chapter 3, 4, 5] and [21, Chapter I, VI].

Definition 1.1.1 ([11, p. 2]). Let K be a field. A discrete valuation on K is a surjective map
v : K → Z ∪ {∞} with the properties

1. v(a) = ∞ ⇐⇒ a = 0.

2. v(ab) = v(a) + v(b) for all a, b ∈ K.

3. v(a+ b) ≥ min{v(a), v(b)} for all a, b ∈ K.

The subring OK = {a ∈ K | v(a) ≥ 0} is a principal ideal domain with exactly one nonzero
maximal ideal, which is a discrete valuation ring (DVR) by definition (see [11, p. 4, Proposition
2]).

Definition 1.1.2. An absolute value on a field K is a map | · | : K → R≥0 with the properties:

1. |a| = 0 ⇐⇒ a = 0.

2. |ab| = |a| · |b| for all a, b ∈ K.

3. |a+ b| ≤ |a|+ |b| for all a, b ∈ K (the triangle inequality).

If the map satisfies the stronger property

4. |a+ b| ≤ max{|a|, |b|} for all a, b ∈ K,

the absolute value is called non-archimedean. Otherwise it is called archimedean. The absolute
value satisfying |a| = 1 for all a ̸= 0 is called the trivial absolute value.
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Lemma 1.1.3 ([15, Proposition 2.3.4]). Let | · | be a non-archimedean absolute value. If
|a| ≠ |b|, we have |a+ b| = max{|a|, |b|}. Similarly, if v is a discrete valuation and v(a) ̸= v(b),
we have v(a+ b) = min{v(a), v(b)}.

An absolute value on a field K induces a metric d(a, b) = |a− b|, which turns K into a metric
space.

Definition 1.1.4. Two absolute values on a field K are called equivalent if they induce the
same topology on K. An equivalence class of absolute values is called a place of K.

Proposition 1.1.5 ([15, Proposition 3.1.3]). Two absolute values | · |1 and | · |2 on a field K
are equivalent if and only if there exists α ∈ R>0 such that for every a ∈ K, |a|1 = |a|α2 .

Let K be a field with a discrete valuation v. Then we can define a non-archimedean absolute
value | · |v on K by

|a|v =

{
0 if a = 0

αv(a) if a ̸= 0

for some 0 < α < 1. For different choices of α these absolute values are in the same equivalence
class.

Lemma 1.1.6 ([15, Lemma 3.2.2]). Let | · | be a non-archimedean absolute value on a field
K. A sequence (an) is Cauchy if and only if limn→∞ |an+1 − an| = 0.

Lemma 1.1.7 (Generalization of [15, Corollary 5.1.2]). Let K be a field which is complete
with respect to the metric induced by a non-archimedean absolute value | · |. Then a series∑∞

n=0 an with an ∈ K converges in K if and only if limn→∞ an = 0. In that case we have
|
∑∞

n=0 an| ≤ maxn{|an|}.

1.1.1 Absolute values on Q

The most well-known absolute value on Q is defined by

|a|∞ =

{
a if a ≥ 0

−a if a < 0.

This is an archimedean absolute value.

Let p be a prime number. We can write each a ∈ Q× as a = r1
r2
pn for some unique n ∈ Z, and

some r1, r2 ∈ Z such that p ∤ r1r2. Then we assign ordp(a) = n , and ordp(0) = ∞. This defines
a discrete valuation ordp on Q, which we call the p-adic valuation. This valuation defines a
non-archimedean absolute value | · |p on Q:

|a|p =

{
0 if a = 0

p− ordp(a) if a ̸= 0,

which we call the p-adic absolute value. It can be shown that | · |p and | · |q are not equivalent
for primes p and q when p ̸= q. Furthermore, | · |∞ is not equivalent to | · |p for any prime p [21,
p. 7, Exercise 7, 9].

Theorem 1.1.8 (Ostrowski’s Theorem, [21, p. 3, Theorem 1]). Every nontrivial absolute
value on Q is equivalent to | · |∞ or to | · |p for a prime p.

4



Definition 1.1.9. We define the set of standard absolute values on Q by

MQ = {∞} ∪ {p ∈ Z>0 | p a prime number}.

This set defines a choice of representative for every place of Q.

Theorem 1.1.10 ([32, VIII, Product Formula 5.3]). Let x ∈ Q×. Then∏
v∈MQ

|x|v = 1.

The field Q is not complete with respect to the metric induced by each of the standard absolute
values (see [15, Lemma 3.2.3]). The completion of Q with respect to | · |∞ is the field of real
numbers R. With respect to the p-adic absolute value for a prime p, the completion of Q is
called the field of p-adic numbers and is denoted by Qp. Explicitly, we have

Qp = {(an) | (an) is a Cauchy sequence in Q w.r.t. | · |p}/{(an) | lim
n→∞

|an|p = 0}.

We can extend the p-adic valuation and absolute value to Qp. Let a ∈ Qp be represented by the
Cauchy sequence (an). We define ordp(a) = limn→∞ ordp(an) and |a|p = limn→∞ |an|p (for the
existence of these limits, see [21, p. 10]). Then ordp is a discrete valuation on Qp, and | · |p is a
non-archimedean absolute value on Qp.

Definition 1.1.11. We define the ring of p-adic integers as

Zp = {a ∈ Qp | |a|p ≤ 1}
= {a ∈ Qp | ordp(a) ≥ 0}.

The ring Zp is a DVR with field of fractions Qp and maximal ideal pZp. Note that Z ⊆ Zp.

Definition 1.1.12. On Zp, there is a natural reduction map

Zp → Zp/pZp
∼= Fp.

We denote the image of a ∈ Zp under this map by ã ∈ Fp. For a polynomial g ∈ Zp[x1, . . . , xn], we
use the notation g̃ for the polynomial in Fp[x1, . . . , xn] obtained by reducing all of its coefficients
modulo p.

Theorem 1.1.13 (Hensel’s lemma, [21, p. 16, Theorem 3]). Let f ∈ Zp[x] with formal
derivative f ′. Let a0 ∈ Zp such that f(a0) ∈ pZp and f ′(a0) /∈ pZp. Then there exists a unique
a ∈ Zp such that f(a) = 0 and a0 − a ∈ pZp.

1.1.2 The p-adic exponential and logarithm

On R we have an exponential function, which can be described by the power series

exp(x) =

∞∑
n=0

xn

n!
(1.1)

which converges on all of R. We can define a p-adic exponential function on a subset of Qp using
the same power series. On Qp, we need ordp(x) >

1
p−1 for this series to converge, and in that

case it converges to a value in Zp (see [32, IV, Lemma 6.3(b)]). When p is odd, this means its
domain of convergence is pZp. We denote this function by expp : pZp → Zp (or exp2 : 4Z2 → Z2

for p = 2).
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Lemma 1.1.14. If x ∈ pkZp for some k ∈ Z, k > 1
p−1 , then expp(x) ∈ 1 + pkZp.

Proof. This follows from [32, IV, Lemma 6.3(b)]. ■

Similarly we have the standard (natural) logarithm function on R, which can be described by
the power series

log(x) =
∞∑
n=1

(−1)n+1

n
(x− 1)n (1.2)

which converges for 0 < x ≤ 2. We can define a p-adic logarithm on Qp by starting out from the
same power series. On Qp equipped with the p-adic absolute value, the series (1.2) converges for
x ∈ 1 + pZp, i.e. when |x− 1|p < 1 (see [32, IV, Lemma 6.3(a)]).

Lemma 1.1.15 ([15, Corollary 5.8.3]). Let a ∈ Q×
p . Then we can write a = rbpn for some

unique n ∈ Z, r ∈ Z×
p a root of unity satisfying rp−1 = 1, and b ∈ 1 + pZp.

Proof. We already know that we can write a = upn for a unique n ∈ Z and some u ∈ Z×
p . From

Hensel’s lemma applied to the polynomial xp−1 − 1, we get that there exists a unique r ∈ Zp

satisfying rp−1 = 1 such that u ≡ r mod pZp. This shows that ur
p−2 ≡ rp−1 ≡ 1 mod pZp, or in

other words, urp−2 ∈ 1 + pZp. If we set b = urp−2, we get u = rb and hence a = rbpn. Because
our choices of n and r were unique, this factorization is uniquely determined. ■

We want to define a p-adic logarithm logp : Q×
p → Qp in such a way that for all a, b ∈ Q×

p , we
have the property logp(ab) = logp(a) + logp(b). For b ∈ 1 + pZp, we can define

logp(b) =
∞∑
n=1

(−1)n+1

n
(b− 1)n (1.3)

because this series converges at b. For r ∈ Z×
p satisfying rp−1 = 1, we need

(p− 1) logp(r) = logp(1) = 0,

and hence logp(r) = 0. We thus get

logp(rbp
n) = logp(b) + n logp(p).

Hence when we fix a value for logp(p), this completely defines logp on Q×
p . A common choice,

which we adopt, is to set logp(p) = 0. For this choice, the resulting logarithm is called the Iwasawa
logarithm ([15, p. 155]). To see that it indeed satisfies the desired property, let r1, r2 ∈ Zp be
(p− 1)-st roots of unity, b1, b2 ∈ 1 + pZp and n1, n2 ∈ Z. Then r1r2 ∈ Zp is also a (p− 1)-st root
of unity and b1b2 ∈ 1 + pZp. Hence

logp(r1b1p
n1 · r2b2pn2) = logp(r1r2b1b2p

n1+n2)

= logp(b1b2)

= logp(b1) + logp(b2).

This last step uses that the original power series (1.2) satisfies logp(b1b2) = logp(b1) + logp(b2)
for b1, b2 ∈ 1 + pZp (see [15, Proposition 5.7.3]).

The p-adic logarithm has the following useful property.
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Lemma 1.1.16. If x ∈ 1 + pkZp for some k ∈ Z>0, then logp(x) ∈ pkZp.

Proof. Because x ∈ 1 + pZp, we have by definition logp(x) =
∑∞

i=1
(−1)i+1

i (x − 1)i. We know
ordp(x− 1) ≥ k. Also ordp(i) ≤ i− 1 for all i ≥ 1. Hence for all i ≥ 1, we have

ordp

(
(−1)i+1

i
(x− 1)i

)
≥ ik − (i− 1)

= k + (k − 1)(i− 1) ≥ k.

This shows that logp(x) ∈ pkZp. ■

In particular, this shows that the image of the function logp actually lies in pZp, so we have
logp : Q×

p → pZp.

As formal power series, we have logp(expp(x)) = x and expp(logp(x)) = x. Hence Lemma 1.1.14

and Lemma 1.1.16 imply that for all k > 1
p−1 , the map expp : p

kZp → 1 + pkZp is a bijection
with inverse logp.

We deduce a variation on the product formula involving the p-adic logarithm, which will be
useful multiple times.

Lemma 1.1.17. Let x ∈ Q×. Then

logp(x) +
∑

q prime
q ̸=p

logp |x|q = 0.

Proof. Note that for x ∈ Q×, we have |x|v ∈ Q× ⊆ Q×
p for all v ∈ MQ. From the product

formula (Theorem 1.1.10), we then know that∑
v∈MQ

logp |x|v = 0.

Note that logp(−1) = 0 and hence logp(a) = logp(−a) for all a ∈ Q×
p . In particular, we have

logp |x|∞ = logp(x). Furthermore, we note that |x|p is an integer power of p by definition, and
hence logp |x|p = 0. This implies the result. ■

1.2 The Riemann-Roch theorem

This section gives an overview of some general theory about algebraic curves. We use the word
curve for a geometrically irreducible projective variety of dimension 1. We aim to introduce all
concepts necessary to understand the Riemann-Roch theorem for curves. This section is mainly
based on [32, Chapter II]. We restrict to curves over perfect fields, which are fields for which
every algebraic extension is separable. In particular, all fields of characteristic 0 and all finite
fields are perfect fields, and these are the only types of fields we will need to consider. For more
general fields the arguments we discuss work in the same way when we replace the algebraic
closure by the separable closure.
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1.2.1 Divisors

Let us consider a curve C defined over a perfect field K. Then the divisor group of C, denoted by
DivC , is the free abelian group generated by the points of C. A divisor D is thus a finite formal
sum of points of C, of the form D =

∑
P∈C nP P for some nP ∈ Z, where all but finitely many

nP are equal to zero. We define the degree of a divisor D to be deg(D) =
∑

P∈C nP . We define
the set Div0C = {D ∈ DivC | deg(D) = 0}, which is a subgroup of DivC .

Consider any algebraic extension field K ⊆ L ⊆ K, where K denotes a fixed algebraic closure of
K. If Gal(K/L) is the Galois group of K/L, there is an action of this group on DivC and Div0C ,
defined for σ ∈ Gal(K/L) as (∑

P∈C
nP P

)σ

:=
∑
P∈C

nP σ(P ),

where σ(P ) represents the image under the coordinate-wise action of σ on P as a point in
projective space. We define DivC(L) = {D ∈ DivC | ∀σ ∈ Gal(K/L), Dσ = D} and we say that
such D ∈ DivC(L) is defined over L. The set DivC(L) is a subgroup of DivC . We similarly define
the group Div0C(L) = {D ∈ Div0C | ∀σ ∈ Gal(K/L), Dσ = D}.

Now let us assume that C is a smooth curve, and let K(C) be its function field. For f ∈ K(C)×,
we define an associated divisor

div(f) =
∑
P∈C

ordP (f)P,

with ordP as defined in [32, p. 18, Definition]. We say that a divisor D ∈ DivC is principal
if D = div(f) for some f ∈ K(C)×. We can now define an equivalence relation on DivC. We
say D1 and D2 are linearly equivalent if their difference is a principal divisor. In this case, we
write D1 ∼ D2. The principal divisors from a subgroup, which we denote by PrincC ⊆ DivC.
We can thus define the quotient group PicC = DivC /PrincC, which is called the Picard group.
Furthermore, all principal divisors have degree zero (see [32, II, Proposition 3.1]), and hence
PrincC ⊆ Div0C . We can thus also define Pic0C = Div0C /PrincC . We denote the class of a divisor
D in these factor groups by [D]. By definition we have [D1] = [D2] precisely when D1 ∼ D2.

For f ∈ K(C)× and σ ∈ Gal(K/K), let us denote by fσ the function we obtain when we replace
each coefficient in f by its image under σ. We have

(div(f))σ =
∑
P∈C

ordP (f)σ(P )

=
∑
P∈C

ordP (f
σ)P

= div(fσ),

which follows from the observation that f(P ) = 0 ⇐⇒ fσ(σ(P )) = 0. In particular, this shows
that (div(f))σ ∈ PrincC. Hence there are well-defined actions of Gal(K/K) on PicC and Pic0C
defined by [D]σ = [Dσ] for σ ∈ Gal(K/K). For an extension field K ⊆ L ⊆ K we can hence
define

PicC(L) = {[D] ∈ PicC | ∀σ ∈ Gal(K/L), [D]σ = [D]}

and
Pic0C(L) = {[D] ∈ Pic0C | ∀σ ∈ Gal(K/L), [D]σ = [D]}.
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1.2.2 Differentials

The space of differentials ΩC on C is a K(C)-vector space generated by symbols of the form df
for f ∈ K(C), subject to the relations

1. d(f + g) = df + dg for all f, g ∈ K(C),

2. d(fg) = f dg + g df for all f, g ∈ K(C),

3. dc = 0 for all c ∈ K.

Let P ∈ C, and fix a uniformizer t ∈ K(C) at P . Then for each differential ω ∈ ΩC, there is
a unique function g ∈ K(C) such that ω = gdt. If ω ≠ 0, we can define ordP (ω) = ordP (g),
because this value is independent of the choice of t (see [32, II, Proposition 4.3]). We define the
divisor associated to a nonzero differential ω as

div(ω) =
∑
P∈C

ordP (ω)P.

The space ΩC is a 1-dimensional vector space ([32, II, Proposition 4.2]), which implies that all
differentials ω ∈ ΩC are in the same divisor class in PicC . We call this class the canonical divisor
class on C. Any divisor in this class is called a canonical divisor.

1.2.3 The Riemann-Roch theorem

We say a divisor D =
∑

P∈C nP P is effective when nP ≥ 0 for all P ∈ C. We then write D ≥ 0.
Similarly, we write D1 ≥ D2 when D1 −D2 is effective. For any divisor D ∈ DivC , we can define
a finite-dimensional K-vector space

L(D) = {f ∈ K(C)× | div(f) ≥ −D} ∪ {0}.

We write ℓ(D) = dimK L(D).

Theorem 1.2.1 (Riemann-Roch, [32, II, Theorem 5.4]). Let C be a smooth curve and let
KC be a canonical divisor. There is an integer g ≥ 0 (called the genus of C) such that for every
divisor D ∈ DivC, we have

ℓ(D)− ℓ(KC −D) = deg(D)− g + 1.

Corollary 1.2.2 ([32, II, Corollary 5.5]).

1. ℓ(KC) = g.

2. deg(KC) = 2g − 2.

3. If deg(D) > 2g − 2, then ℓ(D) = deg(D)− g + 1.

There exist generalizations of the Riemann-Roch Theorem to smooth projective varieties of
higher dimensions. We do not treat them here, but see for example [17, V, Theorem 1.6] for a
version on surfaces or [17, Appendix A] for a treatment of Riemann-Roch on varieties of arbitrary
dimension.
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1.3 Elliptic curves

We introduce the concept of elliptic curves, and we state some properties that we use in this
thesis. A more elaborate introduction can be found in [32, Chapter III].

Let K be a perfect field. An elliptic curve over K is a smooth projective curve E over K of
genus 1, together with a point O ∈ E. Any elliptic curve can be given as the zero set in P2 of a
Weierstrass equation, which is an equation of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

with ai ∈ K, and O = [0 : 1 : 0]. Such a specific equation is also called a Weierstrass model for E.
We say E is defined over K, and we write E/K. For any algebraic extension field K ⊆ L ⊆ K,
we denote by E(L) the points of E which can be represented with coordinates in L. We can
dehomogenize by setting x = X

Z and y = Y
Z to represent E by an affine equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1.4)

We call O the point at infinity. When the characteristic of K is not 2 or 3, it is possible to
perform a change of coordinates to represent E by an equation of the form

y2 = x3 +Ax+B

with A,B ∈ K, called a short Weierstrass equation [32, Section III.1]. We can define an addition
operation on an elliptic curve, which turns it into an abelian group with identity O, and more
specifically an abelian variety. The explicit group law can be found in [32, Section III.2].

Elliptic curves are smooth by definition. For a curve represented by a Weierstrass equation
(1.4), being smooth is equivalent to the nonvanishing of the quantity ∆ defined in [32, p. 42],
called the discriminant of the Weierstrass equation. A curve given by an equation of the form
(1.4) can also be singular. In that case it has exactly one singular point, and the subset Ens of
nonsingular points still has a group structure where the addition operation is defined in the
same way as on elliptic curves (see [32, III, Proposition 2.5]).

We denote the sum of m copies of a point P ∈ E(K) by [m]P . We write Etors for the subgroup
of torsion points on E, that is

Etors = {P ∈ E(K) | [m]P = O for some m ∈ Z>0}.

Similarly we write Etors(K) = Etors ∩ E(K).

In this thesis, we mostly consider elliptic curves over Q given by an equation (1.4) with ai ∈ Z
(for any arbitrary Weierstrass equation over Q we can perform a coordinate transformation to
achieve ai ∈ Z, see [32, Section III.1]).

Proposition 1.3.1. Let E/Q be an elliptic curve given by a Weierstrass equation (1.4) with
ai ∈ Z. Then for any P ∈ E(Q) \ {O}, we can write the coordinates of P uniquely as

x(P ) =
a(P )

d(P )2
and y(P ) =

b(P )

d(P )3

for some a(P ), b(P ) ∈ Z, d(P ) ∈ Z>0 such that gcd(a(P ), d(P )) = gcd(b(P ), d(P )) = 1.
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Proof. Because ai ∈ Z, we have ordq(ai) ≥ 0 for all i and all primes q. Let us consider any point
P = (x, y) ∈ E(Q) \ {O}. If ordq(y) < 0 for a prime q, we can compare the q-adic valuations of
the left- and right-hand side of (1.4), and we find that

2 ordq(y) = ordq(y
2 + a3y − a6) (using Lemma 1.1.3)

= ordq(x
3 + a2x

2 + a4x− a1xy), (1.5)

which implies that we must also have ordq(x) < 0. Then ordq(x
3) < ordq(a2x

2 + a4x). We
consider three cases.

1. If ordp(x
3) > ordp(a1xy), we have 2 ordp(x) > ordp(a1y). But Lemma 1.1.3 and (1.5) then

imply that 2 ordq(y) = ordq(a1xy), and hence

2 ordq(x) = 2 ordq(y)− 2 ordq(a1) < ordq(a1y).

This is a contradiction.

2. If ordq(x
3) = ordq(a1xy), we have ordq(y) = 2 ordq(x)− ordq(a1). But from (1.5) we get

2 ordq(y) ≥ min{ordq(x3), ordq(a2x2), ordq(a4x), ord1(a1xy)} = ordp(x
3).

We obtain 4 ordp(x)− 2 ordp(a1) ≥ 3 ordp(x) which is again a contradiction.

3. We must thus have ordp(x
3) < ordp(a1xy). Using Lemma 1.1.3, this implies that

ordq(x
3 + a2x

2 + a4x− a1xy) = ordq(x
3) = 3 ordq(x).

We conclude that 2 ordq(y) = 3 ordq(x).

Conversely, if ordq(x) < 0, similar reasoning again shows that 2 ordq(y) = 3 ordq(x). This shows

that we can write the coordinates of P uniquely as x(P ) = a(P )
d(P )2

and y(P ) = b(P )
d(P )3

for some

a(P ), b(P ) ∈ Z, d(P ) ∈ Z>0 such that gcd(a(P ), d(P )) = gcd(b(P ), d(P )) = 1. ■

1.3.1 The Kummer variety

For a general abelian variety A, if we identify all points P on A with their additive inverse −P ,
the corresponding quotient of A is again a variety called the Kummer variety (see [7, Section
4.8]). Let us consider an elliptic curve E/K given by a Weierstrass model (1.4). Because an
elliptic curves is an abelian variety, we can consider its Kummer variety. Let us consider the
surjective morphism

κ : E → P1 (1.6)

(x, y) 7→ [x : 1]

O 7→ [1 : 0]

(see [32, II, Example 2.2, Theorem 2.3]). We see that κ(P ) = κ(Q) precisely when P,Q ̸= O and
x(P ) = x(Q), or when P = Q = O. From the group law on E, we can deduce that x(P ) = x(Q)
precisely when P = ±Q. This shows that κ exactly identifies each point with its inverse, and
thus the map κ identifies the Kummer variety of E with P1.
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1.3.2 Reduction of elliptic curves

Let q be a prime. When we have an elliptic curve E given by a model of the form (1.4) with
coefficients in Z, we can view E as an elliptic curve defined over Qq. Each coefficient a ∈ Zq in
the defining equation (1.4) of E can be reduced modulo q via the natural reduction in Definition
1.1.12. The resulting equation defines a (possibly singular) Weierstrass curve over Fq, given by

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6,

which is the reduction of (1.4) modulo q. Each P ∈ E(Qq) can be written in the form [X : Y : Z]
with X,Y, Z ∈ Zq such that at least one of the coordinates is in Z×

q . Then the reduction of P

modulo q is defined as P̃ = [X̃ : Ỹ : Z̃], which is a point on Ẽ. When Ẽ is nonsingular (that is,
when q ∤ ∆(E)), we say E has good reduction at q with respect to the model (1.4). Otherwise,
E has bad reduction at q with respect to the model. This may be dependent on the chosen
Weierstrass equation for E. It is possible to define the notion of a minimal Weierstrass equation
for E, and we say E has good reduction at q if it has good reduction at q with respect to this
minimal equation (see [32, Section VII.1]). In particular, if E has good reduction at q with
respect to some Weierstrass equation with integer coefficients, it has good reduction with respect
to a minimal equation as well.

We define the following sets, which are actually groups:

Ẽns(Fq) = {P ∈ Ẽ(Fq) | P is nonsingular}.

E0(Qq) = {P ∈ E(Q) | P̃ ∈ Ẽns(Fq)}

E1(Qq) = {P ∈ E(Q) | P̃ = Õ}.

These groups form an exact sequence

{O} → E1(Qq) → E0(Qq) → Ẽns(Fq) → {O}

where the map on the left is inclusion, and the map on the right is reduction modulo q

(see [32, VII, Proposition 2.1]). We also use the notation E
(q)
0 (Q) = E0(Qq) ∩ E(Q) and

E
(q)
1 (Q) = E1(Qq) ∩ E(Q).

1.3.3 Division polynomials

Given a Weierstrass curve E, we define a collection of polynomials called division polynomials.
These are useful when looking at the coordinates of multiples of points on the curve.

Definition 1.3.2 ([32, Exercise 3.7]). Let E/K be a curve over a fieldK given by a Weierstrass
equation (1.4) (we include singular curves). The division polynomials corresponding to E are
polynomials ψn ∈ Z[a1, a2, a3, a4, a6, x, y], defined inductively as

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y + a1x+ a3,

ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8,

ψ4 = ψ2

(
2x6 + b2x

5 + 5b4x
4 + 10b6x

3 + 10b8x
2 + (b2b8 − b4b6)x+ (b4b8 − b26)

)
,

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2,

ψ2m =
ψm

ψ2
(ψ2

m−1ψm+2 − ψm−2ψ
2
m+1) for m ≥ 3.
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with bi ∈ Z[a1, a2, a3, a4, a6] as defined in [32, Section III.1]. We furthermore define polynomials

ϕm = xψ2
m − ψm+1ψm−1 for m ≥ 1. (1.7)

Proposition 1.3.3 ([28, p. 248], [37, Lemma 3.3, 3.4, 3.5, 3.6], [36, Proposition 4.9]).
For all m ≥ 1, the polynomials ψm and ϕm satisfy the following properties:

(i) ϕm, ψ
2
m ∈ Z[a1, a2, a3, a4, a6, x].

(ii) ϕm is homogeneous of degree 2m2 and ψ2
m of degree 2(m2 − 1) if we give ai weight i and x

weight 2.

(iii) As polynomials in Z[a1, . . . , a6][x], ϕm has degree m2 and ψ2
m has degree m2−1. Moreover,

ϕm is monic, and the leading coefficient of ψ2
m is m2.

(iv) Let P ≠ O be a nonsingular point on E. When ψ2
m(x(P )) = 0, we have [m]P = O.

Otherwise,

x([m]P ) =
ϕm(x(P ))

ψ2
m(x(P ))

. (1.8)

(v) For a nonsingular point P ̸= O and all m,n ≥ 1 such that [n]P ̸= O, we have

ψmn(P ) = ψn(P )
m2
ψm([n]P ).

(vi) We have

ϕ2n = ψ8
n · ϕ2

(
ϕn
ψ2
n

)
= ϕ4n − b4ϕ

2
nψ

4
n − 2b6ϕnψ

6
n − b8ψ

8
n, (1.9)

ψ2
2n = ψ8

n · ψ2
2

(
ϕn
ψ2
n

)
= ψ2

n(4ϕ
3
n + b2ϕ

2
nψ

2
n + 2b4ϕnψ

4
n + b6ψ

6
n). (1.10)

1.4 Curves of genus 2

Let K be a perfect field with characteristic different from 2. Every smooth curve of genus 2 over
K can be described by an affine equation of the form

C : y2 = f(x) = f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0, (1.11)

where f ∈ K[x] has degree 5 or 6, and it has no multiple factors (otherwise the curve is singular)
(see [10, p. 1]). In particular, every smooth genus 2 curve is a hyperelliptic curve. For a general
introduction on this class of curves, see [33].

We cannot complete the affine curve (1.11) by homogenizing the equation in the usual way
to obtain a smooth projective curve in P2. The resulting equation would be of the form
Y 2Z4 = F (X,Z) where F is a homogeneous polynomial of total degree 6 in X and Z. The
projective point [0 : 1 : 0] is a zero of this equation, but it is a singular point, so the projective
equation defines a singular curve. Instead, we embed the affine curve in a modified projective
plane.
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Definition 1.4.1 ([33, Definition 2.1]). The weighted projective plane P2
(1,3,1) is the geometric

object whose points over a field L are triples (X,Y, Z) ∈ L3 \ {(0, 0, 0)} modulo the equivalence

relation ∼, where (X,Y, Z) ∼ (X ′, Y ′, Z ′) if there exists some element c ∈ L
×

such that
(X ′, Y ′, Z ′) = (cX, c3Y, cZ). We denote the corresponding equivalence class by [X : Y : Z].

The coordinate ring of P2
(1,3,1) over L is the ring L[X,Y, Z] graded such that X and Z have

degree 1 and Y has degree 3.

If we homogenize (1.11) to a polynomial in the coordinate ring of P2
(1,3,1) over K, we obtain the

equation

Y 2 = f6X
6 + f5X

5Z + f4X
4Z2 + f3X

3Z3 + f2X
2Z4 + f1XZ

5 + f0Z
6, (1.12)

where x = X
Z and y = Y

Z3 . This equation defines C as a smooth subvariety of P2
(1,3,1).

If f(x) has degree 6 and it has a root in K, it is possible to apply a coordinate transformation
over K such that f becomes monic of degree exactly 5 (see [10, p. 1]). In this thesis we restrict
to curves that can be written in this form. These curves have an affine equation of the form

C : y2 = f(x) = x5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0 (1.13)

for some fi ∈ K such that f has no multiple factors. If we denote the (distinct) roots of f by
r1, . . . , r5 ∈ K, we can alternatively write

f(x) =

5∏
i=1

(x− ri).

Looking at the curve via its embedding in P2
(1,3,1), we note that it has one point at infinity

∞ = [1 : 0 : 0].

Note that when [X : Y : Z] ∈ C, we also have [X : −Y : Z] ∈ C. So there is an automorphism of
C defined by

ι : C → C
[X : Y : Z] 7→ [X : −Y : Z],

called the hyperelliptic involution. We also have a quotient map

π : C → P1

[X : Y : Z] 7→ [X : Z].

Note that this map is well-defined, because [0 : 1 : 0] /∈ C. This map is a 2-1 cover, branched
precisely on the fixed points of ι (i.e. the points with Y = 0). These points are called the
Weierstrass points of C. Explicitly, these are the points (r1, 0), . . . , (r5, 0) and ∞.

1.4.1 Divisors on genus 2 curves

We introduce a few important divisors on C. To find divisors, it is useful to first fix a uniformizer
at every point in C. We distinguish three types of points.

14



1. Let P = (x0, y0) with y0 ̸= 0. In this case, the maximal ideal of the local ring OC,P at P is
of the form mP = (x− x0, y − y0), but we notice that

(y − y0)(y + y0) = y2 − y20

= (x− x0)
5 + · · ·+ f1(x− x0)

= (x− x0)
kg(x),

where g ∈ K[x] satisfies g(x0) ̸= 0, and the value of k ∈ Z>0 depends on which of the fi
equal 0. We conclude that

y − y0 = (x− x0)
k g(x)

y + y0
,

where g(x)
y+y0

∈ O×
C,P . This implies that mP = (x− x0), so x− x0 is a uniformizer at P .

2. Let P = (rk, 0) for some k ∈ {1, . . . , 5}. We know f(x) = (x − rk)g(x) with g ∈ K[x].

We have that mP = (x − rk, y), but y
2 = f(x) and hence x − rk = y2

g(x) . Because f has

no multiple roots we know that 1
g(x) ∈ O×

C,P , and hence this implies that mP = (y). We
conclude that y is a uniformizer at P .

3. Let P = ∞. We perform a change of variables to the affine patch corresponding to X ≠ 0,
which results in the w2 = z + · · · + f0z

6 with z = 1
x and w = y

x3 . We can also write it

as w2 =
∏6

i=1(z − ρi), where the ρi ∈ K are the roots of z + · · · + f0z
6. We fix ρ1 = 0.

When we represent points Q by coordinates (w(Q), z(Q)), we have ∞ = (0, 0). We have
m∞ = (w, z). We note that

z =
w2∏6

i=2(z − ρi)

and 1∏6
i=2(z−ri)

∈ O×
C,∞. Hence m∞ = (w), so w is a uniformizer at ∞.

We use this information to find a canonical divisor on C.

Lemma 1.4.2. The divisor 2∞ is a canonical divisor.

Proof. We will show that div
(
dx
y

)
= 2∞. First, we determine div(dx) =

∑
P∈C ordP (dx)P. We

find ordP (dx) for all P ∈ C again by considering the three different types of points.

1. If P = (x0, y0) with y0 ≠ 0, we found that x − x0 is a uniformizer. We conclude that
ordP (dx) = ordP (d(x− x0)) = ordP (1) = 0.

2. If P = (rk, 0) for some k ∈ {1, . . . , 5}, then y is a uniformizer at P . We can derive that

2ydy = dx

5∑
i=1

∏
j ̸=i

(x− rj),

and hence

ordP (dx) = ordP

(
2y∑5

i=1

∏
j ̸=i(x− rj)

dy

)
= 1.
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3. At P = ∞, we saw that w is a uniformizer. Using x = 1
z , we find

dx = −x2dz

=
−2wx2∑6

i=1

∏
j ̸=i(z − ρj)

dw.

This implies that

ordP (dx) = ordP

(
−2wx2∑6

i=1

∏
j ̸=i(z − ρj)

)
= −3.

In conclusion, we have found that div(dx) =
∑5

i=1(ri, 0)− 3∞.

Now we determine div(y). It is easy to see that ordP (y) = 0 when P = (x0, y0) with y0 ̸= 0,
and ordP (y) = 1 when P = (rk, 0). Finally we note that ord∞(y) = ord∞( w

z3
) = −5. Hence

div(y) =
∑5

i=1(ri, 0)− 5∞. We conclude that div(dxy ) = div(dx)− div(y) = 2∞. Because dx
y is

a differential, we conclude that 2∞ is a canonical divisor. ■

Lemma 1.4.3. Let P ∈ C. Then P + ι(P )− 2∞ is a principal divisor.

Proof. If P = ∞, this divisor becomes trivial and the result is clear. Now assume P = (x0, y0)
for some x0, y0 ∈ K. Let us determine the divisor of the function x− x0. First of all, for points
Q = (x1, y1) ∈ C with x1 ̸= x0, we have ordQ(x− x0) = 0. The only points with x-coordinate x0
are P = (x0, y0) and ι(P ) = (x0,−y0). We have to distinguish two cases.

1. If y0 ̸= 0, we have P ̸= ι(P ). We saw that x − x0 is a uniformizer at P and ι(P ). This
shows that ordP (x− x0) = ordι(P )(x− x0) = 1.

2. If y0 = 0, we have P = ι(P ). We know that y is a uniformizer at P , and that x−x0 = y2

g(x)

for some function g(x) such that g(x0) ̸= 0. Hence ordP (x− x0) = 2.

Finally, at ∞ we saw that w is a uniformizer. We have x−x0 = 1−x0z
z and hence ord∞(x−x0) =

− ord∞(z) = −2. We conclude that div(x − x0) = P + ι(P ) − 2∞. The latter is therefore a
principal divisor. ■

Corollary 1.4.4. Let P ∈ C. Then P + ι(P ) is a canonical divisor.

Proof. We know from Lemma 1.4.2 that 2∞ is a canonical divisor, so the result is true for
P = ∞. If P = (x0, y0), using Lemma 1.4.3 we see that

[2∞] = [2∞+ div(x− x0)]

= [P + ι(P )].

This shows that P + ι(P ) is also a canonical divisor. ■
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1.5 The Jacobian of a genus 2 curve and its Kummer surface

In this section, we introduce the concept of the Jacobian variety J of a smooth curve C of genus
2, which is an abelian variety. We treat everything in the setting of Section 1.4. We also define
the Kummer surface of the Jacobian, and see how operations on J carry over to this surface.

As in Section 1.4, we consider a smooth curve C of genus 2 over a perfect fieldK with char(K) ̸= 2,
represented by an equation of the form

C : y2 = f(x) = x5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0 (1.14)

=
5∏

i=1

(x− ri)

where fi ∈ K, such that f has no multiple roots, and ri ∈ K are the distinct roots of f .
The Jacobian corresponding to C is an abelian variety J of dimension 2 over the field K,
such that as abelian groups we have J(K) = Pic0C(K) (and more generally, for any field
K ⊆ L ⊆ K,J(L) = Pic0C(L)) ([33, Theorem 4.8]). The following result shows that each nonzero
point on J can be represented by a unique pair of points on C. The first part of the proof is
based on the proof of a more general statement for hyperelliptic curves in [33, Corollary 4.14].

Proposition 1.5.1. Let K ⊆ L ⊆ K be a field. For all P ∈ Pic0C(L) \ {0}, there are unique
points P1, P2 ∈ C(L′) for some algebraic extension field L ⊆ L′ with [L′ : L] ≤ 2, such that
P = [P1 + P2 − 2∞].

Proof. Consider any P = [D] ∈ Pic0C(L) where D ∈ Div0C is a divisor representing P . The
Riemann-Roch theorem (Theorem 1.2.1), together with Lemma 1.4.2, gives us that

ℓ(2∞+D) = ℓ(−D) + 1 ≥ 1.

In other words, there exists a function ϕ ∈ L(2∞ +D) such that 2∞ +D + div(ϕ) ≥ 0. Let
us write D̃ = 2∞+D + div(ϕ). Then we know D̃ ≥ 0 and deg(D̃) = 2, hence it is of the form
D̃ = P1 + P2 for some P1, P2 ∈ C(K). We have P = [D] = [D̃ − 2∞] = [P1 + P2 − 2∞].

Now let us show uniqueness. For this we need that P ̸= 0. Let us assume that

P = [P1 + P2 − 2∞] = [Q1 +Q2 − 2∞].

Then

P1 + P2 −Q1 −Q2 ∼ 0

P1 + P2 + ι(Q1) + ι(Q2)− 4∞ ∼ 0,

where we used Qi + ι(Qi)− 2∞ ∼ 0 for i = 1, 2 (Lemma 1.4.3). This shows that

P1 + P2 + ι(Q1) + ι(Q2)− 4∞ ∈ PrincC

and hence there exists a function ψ ∈ K(C)× such that div(ψ) = P1+P2+ι(Q1)+ι(Q2)−4∞. In
particular, we see that ψ ∈ L(4∞). Corollary 1.2.2 implies that ℓ(4∞) = 3. Because ordP (x) ≥ 0
for all P ̸= ∞, and ord∞(x) = ord∞(1/z) = −2, we deduce that L(4∞) = ⟨1, x, x2⟩. Hence we
can write ψ = a0 + a1x + a2x

2 for some ai ∈ K. In particular, ψ does not depend on y. We
consider a few cases:
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1. If P1 = (x0, y0) with y0 ̸= 0, we know that ψ has a zero at P1. But because ψ is a
polynomial in x, ψ then also has a zero at ι(P1) = (x0,−y0).

2. If P1 = (rk, 0) for some k, recall that y is a uniformizer at P1. We know ψ ∈ K[x] has a
zero at P1. Hence ψ(x) = (x− rk)g(x) for some g(x) ∈ K[x]. In the proof of Lemma 1.4.2
we saw that ordP1(x− rk) = 2, hence ordP1(ψ) ≥ 2.

3. If P1 = ∞, recall that w is a uniformizer at P1 and ordP1(z) = 2. We have ψ = a0z2+a1z+a2
z2

.

We have ordP1(ψ) ≥ −3, so ordP1(a0z
2+a1z+a2) ≥ 1. But because a0z

2+a1z+a2 ∈ K[z]
and ordP1(z) = 2, this implies ordP1(a0z

2 + a1z + a2) ≥ 2 and hence ordP1(ψ) ≥ −2.

In each case, we see that ι(P1) has to be one of the points P2, ι(Q1), ι(Q2) appearing in
div(ψ). We cannot have ι(P1) = P2, because then Lemma 1.4.3 tells us that P = 0. Hence
ι(P1) = ι(Qi) for i ∈ {1, 2}. Because ι is an involution we conclude P1 = Qi. We can repeat
the entire reasoning for P2 to get ι(P2) = ι(Qi) for i ∈ {1, 2}. Hence {P1, P2} ⊆ {Q1, Q2}. The
symmetric counterpart of this argument shows that we must have {P1, P2} = {Q1, Q2} and
hence P1 + P2 − 2∞ = Q1 +Q2 − 2∞, which shows uniqueness.

Now we show the last part of the proposition. Because P ∈ Pic0C(L), we must have that the
class of P1 + P2 − 2∞ is fixed under the action of Gal(K/L). Note that ∞ is fixed under this
action because ∞ ∈ C(L). Therefore, we need

[P1 + P2 − 2∞] = [P1 + P2 − 2∞]σ

= [σ(P1) + σ(P2)− 2∞]

for all σ ∈ Gal(K/L). By the uniqueness we just showed, we conclude P1 + P2 = σ(P1) + σ(P2),
or in other words, each σ ∈ Gal(K/L) permutes P1 and P2. In particular, σ2(Pi) = Pi for all
σ ∈ Gal(K/L) for i = 1, 2. If P1, P2 ∈ C(L), then the statement is immediate. Let us assume
that P1 /∈ C(L), so there exists τ ∈ Gal(K/L) such that τ(P1) = P2 ̸= P1. We then also have
τ(P2) = P1, so also P2 /∈ C(L). Then P1 ̸= ∞, so P1 = (x1, y1) for some x1, y1 ∈ K, and
σ2(P1) = P1 for all σ ∈ Gal(K/L). This implies that x1 and y1 have a minimal polynomial of
degree 2 over L. Using the defining equation of C, we deduce that x1 ∈ L(y1). We then have
x1, y1, τ(x1), τ(y1) ∈ L(y1), so P1, P2 ∈ C(L(y1)) with [L(y1) : L] = 2. ■

Because the Jacobian is a group, we introduce similar notation as for elliptic curves. We denote
the sum of m copies of a point P ∈ J by [m]P , and we write Jtors for the subgroup of torsion
points on J .

1.5.1 Algebraic variety structure of the Jacobian

For a fixed P ∈ C, we define the map ΦP : C → Pic0C by Q 7→ [Q−P ]. It follows from Proposition
1.5.1 that Φ∞ is injective. We denote the image of Φ∞ by Θ. Then because Φ∞ is an embedding
and Pic0C can be identified with the Jacobian J , we can view Θ as a subvariety of J of dimension
1 (because it is isomorphic to C). The variety Θ is then a divisor on J (see [17, Section II.6] for
a general introduction). The space L(3Θ) corresponding to J is a 9-dimensional K-vector space
(see [16, p. 100]). Proposition 1.5.1 shows that we can identify J with the 2-fold symmetric
product of C, where the points corresponding to O on J are blown down to a single point (that
is, all points of the form {P, ι(P )}). Points on Θ then correspond to points of the form {P,∞}
for some P ∈ C. Under this identification, L(3Θ) corresponds to a space of symmetric functions
on C × C. These functions are in K(x1, y1, x2, y2)

× (where y21 = f(x1) and y22 = f(x2)) such
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that they have at most a triple pole at ∞ in both coordinates. This space is a K-vector space
which has a basis 1, ℘11, ℘12, ℘22, ℘111, ℘112, ℘122, ℘222, ℘ of functions that are defined over K,
described explicitly in [16, p. 99]. We note that ℘11, ℘12, ℘22 and ℘ are even functions, and
℘111, ℘112, ℘122 and ℘222 are odd. It follows from a theorem of Lefschetz ([7, Theorem 4.5.1])
that the following map defines an embedding of the Jacobian into P8, which makes its projective
variety structure explicit:

J : Pic0C → P8 (1.15)

[P1 + P2 − 2∞] 7→ [1 : ℘11 : ℘12 : ℘22 : ℘111 : ℘112 : ℘122 : ℘222 : ℘].

The image of this map is the Jacobian as an algebraic variety embedded in P8, and we denote it by
J . Explicit equations defining the Jacobian variety can be found in [16, Corollary 2.15], and we
reproduced them adapted to our notation in the Appendix of this thesis. For the nine projective
coordinates of J in P8, we use the notation X0, X11, X12, X22, X111, X112, X122, X222, X in this
order, after [16]. As coordinate functions, we then have

℘ij =
Xij

X0
, ℘ijk =

Xijk

X0
, ℘ij =

Xij

X0
and ℘ =

X

X0
. (1.16)

We note that J ([0]) = [0 : 0 : 0 : 0 : 1 : 0 : 0 : 0] =: O.

1.5.2 The Kummer surface

If we identify all points P on the Jacobian with their additive inverse −P , the corresponding
quotient of J is again a variety called the Kummer surface.

The Kummer surface can be embedded in P3 using a basis of L(2Θ) (see [7, Theorem 4.8.1]).
The even functions 1, ℘11, ℘12 and ℘22 form such a basis ([13, §2]), and as such define a map
into P3 as follows:

K : Pic0C → P3

[P1 + P2 − 2∞] 7→ [1 : ℘22 : −℘12 : ℘11]. (1.17)

The image of this map is the Kummer surface embedded in P3. We denote it by K. Because the
map J is an embedding, there exists an inverse map from J to Pic0C and hence we can define
a map KJ −1 from the Jacobian to the Kummer surface. Explicitly it can be described as a
morphism of varieties:

κ : J → K

[X0 : X11 : X12 : X22 : X111 : X112 : X122 : X222 : X] 7→
[
1 :

X22

X0
: −X12

X0
:
X11

X0

]
. (1.18)

In particular, we have κ(O) = [0 : 0 : 0 : 1]. The Kummer surface is a projective variety defined
by a homogeneous equation of the form

G(X,Y, Z,W ) := R(X,Y, Z)W 2 + S(X,Y, Z)W + T (X,Y, Z) = 0, (1.19)

where R,S and T are homogeneous polynomials with coefficients in Z[f0, . . . , f4] of total degree
2, 3, and 4, respectively, and X,Y, Z,W are the coordinates of the considered projective space
P3. The explicit equation can be found in [13, Appendix A]. We note that in [13], Flynn uses
an embedding of the Jacobian in P15 rather than P8 to construct the Kummer surface. This
embedding works more generally for genus 2 curves defined by an equation of degree 5 or 6, but
because we restrict to degree 5 curves we can use Grant’s embedding into P8 instead. The same
Kummer construction is applicable in this case.
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1.5.3 Computations on the Kummer surface

For a point P ∈ J let us write κ(P ) for its image on the Kummer surface. In general, when
we consider the projective Kummer coordinates of two points κ(P ), κ(Q) ∈ K, we do not have
enough information to deduce the coordinates of κ(P +Q), because we cannot distinguish ±P
and ±Q from only their Kummer coordinates. We can thus not in general find a formula for
addition on K. We do however have the following theorem:

Theorem 1.5.2 ([10, Theorem 3.4.1]). For i, j ∈ {1, 2, 3, 4}, there exist polynomials Bij

with coefficients in Z[f0, . . . , f4], which are biquadratic in two sets of variables k1, . . . , k4 and
l1, . . . , l4, with the following property. For any P,Q ∈ J , let us fix Kummer coordinates

κ(P ) = [x1 : . . . : x4], κ(Q) = [y1 : . . . : y4], κ(P +Q) = [z1 : . . . : z4], κ(P −Q) = [w1 : . . . : w4].

Then there exists a constant c ∈ K
×

such that for all i, j ∈ {1, 2, 3, 4}, we have

ziwj + wizj = 2cBij((x1, x2, x3, x4), (y1, y2, y3, y4)).

The constant c makes sure that we work projectively, which is necessary because the Kummer
coordinates in projective space are only well-defined up to a scalar multiple in K

×
. Explicit

formulas for the polynomials Bij can be found in [12].

Using this result, it is possible to define a multiplication-by-m map µm on the Kummer surface
for any m ∈ Z, such that the following diagram is commutative:

J J

K K

[m]

κ κ

µm

Such a map µm is well-defined, because if κ(P ) = κ(Q), this implies that Q = ±P , and hence
κ([m]Q) = κ(±[m]P ) = κ([m]P ). Using Theorem 1.5.2, we can find explicit formulas defining
the multiplication-by-2 map.

Proposition 1.5.3. There exist polynomials δ1, . . . , δ4 in Z[f0, . . . , f4][k1, k2, k3, k4], each ho-
mogeneous of total degree 4, such that for all P ∈ J with κ(P ) = [x1 : x2 : x3 : x4], we
have

κ([2]P ) = [δ1(x1, x2, x3, x4) : δ2(x1, x2, x3, x4) : δ3(x1, x2, x3, x4) : δ4(x1, x2, x3, x4)] .

Proof. Let P ∈ J with κ(P ) = [x1 : x2 : x3 : x4]. Let us write κ([2]P ) = [y1 : y2 : y3 : y4]. If we
apply Theorem 1.5.2 for P = Q using κ(O) = [0 : 0 : 0 : 1], we get

yi =

{
2cBi,4((x1, . . . , x4), (x1, . . . , x4)) if i = 1, 2, 3,

cB4,4((x1, . . . , x4), (x1, . . . , x4)) if i = 4,

for some c ∈ K
×
. So if we define δi ∈ Z[f0, . . . , f4][k1, k2, k3, k4] as

δi(k1, k2, k3, k4) =

{
2Bi,4((k1, k2, k3, k4), (k1, k2, k3, k4)) if i = 1, 2, 3,

B4,4((k1, k2, k3, k4), (k1, k2, k3, k4)) if i = 4,

then κ([2]P ) = [δ1(x1, . . . , x4) : δ2(x1, . . . , x4) : δ3(x1, . . . , x4) : δ4(x1, . . . , x4)]. ■
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Explicit formulas for the polynomials δi can be found in [13, Appendix C]. For general multiples,
we have the following result by Uchida:

Theorem 1.5.4 ([35, Theorem 3.3, Proposition 3.6, Lemma 3.8]). For any m ≥ 0
and i = 1, 2, 3, 4, there exist homogeneous polynomials µm,i ∈ Z[f0, . . . , f4][k1, k2, k3, k4] of total
degree m2 such that:

µ0,1 = µ0,2 = µ0,3 = 0, µ0,4 = 1,

µ1,i = ki,

µ2m,i = δi(µm) for m ≥ 1,

µ2m+1,iki = Bii(µm+1, µm) for m ≥ 1

in Q(f0, . . . , f4)[k1, k2, k3, k4]/(G) (where G is the defining equation (1.19) of the Kummer surface
K as a projective variety in P3), where we write µm = (µm,1, . . . , µm,4). For all P ∈ J(Q) with
κ(P ) = [x1 : x2 : x3 : x4], we have

κ([m]P ) = [µm,1(x1, . . . , x4) : . . . : µm,4(x1, . . . , x4)].

In other words, scalar multiplication on J descends to K, and we have an inductive definition
for the image on K of multiples of points in J(Q).

1.5.4 Reduction of varieties

Let q be a prime number. Consider a projective variety V ⊆ Pn defined by a set of equations
with coefficients in Z. Then we can view V as a variety defined over Qq for a prime q. We
can reduce V modulo q by reducing the coefficients of the defining equations with the map in
Definition 1.1.12, the same way we did in Section 1.3.2 for elliptic curves, to obtain a possibly
singular variety Ṽ over Fq. For a curve in the weighted projective space P2

(1,3,1), for example

a smooth genus 2 curve C defined by an equation of the form (1.12) with coefficients in Z, we
define the reduction modulo q analogously, by reducing each of the coefficients modulo q. The
resulting equation then also defines a possibly singular curve C̃ over Fq in P2

(1,3,1). In each of

these cases, we can write a point on V as P = [X0 : · · · : Xn] with Xi ∈ Zp such that at least

one of the coordinates is in Z×
p , and we define P̃ = [X̃0 : · · · : X̃n] ∈ Ṽ .

As in Section 1.3.2, we define the following sets:

Ṽns(Fq) = {P ∈ Ṽ (Fq) | P is nonsingular},

V0(Qq) = {P ∈ V (Q) | P̃ ∈ Ṽns(Fq)}.

When V is an abelian variety with identity O (for example when V is a Jacobian), we also define

V1(Qq) = {P ∈ V (Q) | P̃ = Õ}.

Furthermore we write V
(q)
0 (Q) = V0(Qq) ∩ V (Q) and V

(q)
1 (Q) = V

(q)
1 (Qq) ∩ V (Q).

For a smooth curve C of genus 2 given by (1.14) with fi ∈ Z, the reduction modulo q is a curve
C̃ over Fq, which is singular precisely when q divides the discriminant of f (see [9, Section 16]).
It follows that C has bad reduction at only a finite number of primes. For such a curve C, the
embedding of its Jacobian J in P8 is also defined by equations with coefficients in Z (see the
Appendix). Hence we can also reduce J modulo q. When C has good reduction at a prime q, so
does J . The reduction J̃ is the Jacobian variety corresponding to C̃, and we have a commutative
diagram
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Pic0C(Qq) J(Qq)

Pic0C̃(Fq) J̃(Fq)

J

J

where J is the map (1.15), the vertical map on the left is defined by

[P1 + P2 − 2∞] 7→ [P̃1 + P̃2 − 2∞],

and the vertical map on the right is the reduction map described above (see [33, Lemma 4.20]).
The sets J̃(Fq) and J1(Qq) are then also groups.

Similarly we can reduce points on the Kummer surface, and this reduction also fits in a
commutative diagram

J(Qq) K(Qq)

J̃(Fq) K̃(Fq)

κ

κ

(1.20)

where the vertical maps are reduction modulo q.

1.5.5 Division polynomials on J

Like for elliptic curves (Section 1.3.3), we can define division polynomials on the Jacobian of a
genus 2 curve of the form (1.14). These were defined by Kanayama in [20, 19] for curves over C,
so in particular this works when our curve is defined over Q. A Jacobian over C can be identified
with C2/Λ for some lattice Λ, and on this lattice there is a σ-function of dimension 2 (see [20,
p. 400]), much like the Weierstrass σ-function of dimension 1 on elliptic curves. There is an
identification between J and C2/Λ and we denote the image of the subvariety Θ under this map
by Θ′. We have the following definition.

Definition 1.5.5 ([20, p. 402, Definition]). For all n ∈ Z, we define functions ϕn on
(C2/Λ) \Θ′ by

ϕn(u) =
σ(nu)

σ(u)n2 .

We define ϕ
(i)
n := ∂ϕn

∂ui
, ϕ

(ij)
n := ∂ϕ

(i)
n

∂uj
, and ϕ

(ijk)
n := ∂ϕ

(ij)
n

∂uk
for i, j, k ∈ {1, 2}.

In [36, Proposition 4.3], Uchida notes that for any n ∈ Z, we have

ϕ−n(u) = −ϕn(u). (1.21)

Each u ∈ (C2/Λ) \ Θ′ corresponds to a point [1 : ℘11 : ℘12 : ℘22 : ℘111 : ℘112 : ℘122 : ℘222 : ℘]

on J . Under this identification, we can consider ϕn, ϕ
(i)
n , ϕ

(ij)
n and ϕ

(ijk)
n for i, j, k ∈ {1, 2} as

a functions on J . Let us denote the set of points that lie on the subvariety of J defining the
divisor Θ by supp(Θ), the support of the divisor Θ.

Proposition 1.5.6 ([20, Proposition 2], [36, Theorem 5.8], [16, Equation (3.4)]).
For all n ∈ Z, the function ϕn on J \ supp(Θ) is a polynomial in the coordinates ℘ij and

℘ijk with coefficients in Z[12 , f0, . . . , f4]. As a result, also the functions ϕ
(i)
n , ϕ

(ij)
n and ϕ

(ijk)
n for

i, j, k ∈ {1, 2} are polynomials in Z[12 , f0, . . . , f4][℘ij , ℘ijk].
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We call ϕn the n-th division polynomial. In particular, we have

ϕ1 = 1,

ϕ2 = ℘12℘122 − ℘22℘112 − ℘111.

The polynomials quickly become more complicated, but they can be determined using a recurrence
relation, see [20, 19, Lemma 1, Proposition 3]. The division polynomials can be used to express
the coordinates of multiples of a point P on J in terms of the coordinates of P .

Proposition 1.5.7 ([20, Proposition 1]). Let n ≥ 1, and P ∈ J such that P, [n]P /∈ supp(Θ).
Then

℘ij([n]P ) = ℘ij(P ) +
ϕ
(i)
n (P )ϕ

(j)
n (P )− ϕn(P )ϕ

(ij)
n (P )

n2ϕ2n(P )
,

℘ijk([n]P ) =
1

n
℘ijk(P )−

ϕ
(ijk)
n ϕ2n −

(
ϕ
(ij)
n ϕ

(k)
n + ϕ

(ki)
n ϕ

(j)
n + ϕ

(jk)
n ϕ

(i)
n

)
ϕn + 2ϕ

(i)
n ϕ

(j)
n ϕ

(k)
n

n3ϕ3n
(P ).

1.6 Formal groups

We define the notion of a formal group, and describe ways in which it is useful for the study
of elliptic curves and Jacobians of genus 2 curves. This section is based on [32, Chapter IV]
for one-dimensional groups, and [5] for more general statements. In this chapter, R denotes a
commutative ring with identity.

Definition 1.6.1 ([5, Definition 1.1]). An n-parameter formal group F over R is a collection
of n power series

Fi(X1, . . . , Xn, Y1, . . . , Yn) ∈ R[[X1, . . . , Xn, Y1, . . . , Yn]]

in 2n variables with the following properties, where we write F = (F1, . . . Fn), and define X, Y
similarly:

1. Fi(X,Y ) = Xi + Yi + (terms of total degree ≥ 2).

2. F (X,F (Y ,Z)) = F (F (X,Y ),Z).

F (X,Y ) is called the formal group law of F . We denote the formal group by (F ,F ) if we want
to make the formal group law explicit. If F furthermore satisfies F (X,Y ) = F (Y ,X), we say
F is commutative.

Lemma 1.6.2 ([5, p. 1]). Let F be an n-parameter (possibly noncommutative) formal group
over R with group law F (X,Y ). It satisfies the following properties:

1. F (X,0) = X and F (0,Y ) = Y .

2. There is a unique collection of n power series i(T ) ∈ R[[T1, . . . , Tn]], calded the formal
inverse, satisfying F (T , i(T )) = F (i(T ),T ) = 0 and

i(T ) = −T + (terms of total degree ≥ 2).

An important example of a commutative formal group, which we will use later, is the n-parameter
formal additive group (Ĝn

a ,F a) defined by the formal group law F a(X,Y ) = X + Y .
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Definition 1.6.3 ([32, Section IV.2], [5, Definition 1.2]). Let (F ,F ) and (G,G) be an n-
parameter and anm-parameter formal group over R, respectively. A formal group homomorphism
f from F to G defined over R is a collection of m power series f1, . . . , fm ∈ R[[T1, . . . , Tn]] with
no constant term, that satisfies

f(F (X,Y )) = G(f(X),f(Y )).

The homomorphism f is an isomorphism if there exists a formal group homomorphism g from
G to F such that f(g(T )) = T and g(f(T )) = T .

Definition 1.6.4 ([32, Section IV.2]). Let (F ,F ) be a commutative n-parameter formal
group. We define the multiplication-by-m maps for m ∈ Z inductively as homomorphisms
[m] : F → F by

[0](T ) = 0,

[m+ 1](T ) = F ([m](T ),T ),

[m− 1](T ) = F ([m](T ), i(T )).

Proposition 1.6.5 ([32, IV, Proposition 2.3]). Let F be a formal group over R and let
m ∈ Z. Then

[m](T ) = mT + (terms of total degree ≥ 2).

Furthermore, [m] is an isomorphism precisely when m ∈ R×.

Proof. This can be proven using the inductive definition of the map [m]. Clearly, we have
[0](T ) = 0 = 0T . Now let us assume that the result holds for m = k ≥ 0, so we have
[k](T ) = kT + (higher order terms). Then

[k + 1](T ) = F ([k](T ),T )

= [k](T ) + T + (terms of total degree ≥ 2)

= kT + T + (terms of total degree ≥ 2)

= (k + 1)T + (terms of total degree ≥ 2).

This shows the first statement is true for all m ≥ 0. A similar induction argument shows the
statement for all m < 0. For the second part of the proposition, we note that according to [38,

Lemma 1.4], [m] is an isomorphism if and only if the matrix
(
∂[m]i
∂Tj

(0)
)
is invertible over R. By

what we just found, we have
(
∂[m]i
∂Tj

(0)
)
= (mδij) (where δij is the Kronecker delta function),

which is invertible over R precisely when m ∈ R×. ■

1.6.1 Groups associated to formal groups

Let us now assume that R is a complete local commutative ring with maximal ideal m, and let
(F ,F ) be an n-parameter formal group over R. In this case, if we take r = (r1, . . . , rn) and
s = (s1, . . . , sn) in

∏n
i=1m (the Cartesian product of n copies of m), then F (r, s) converges in∏n

i=1m by the completeness of R. Similarly, i(r) converges in
∏n

i=1m. Hence we can use F to
define a group.
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Definition 1.6.6 (generalization of [32, p. 123, Definition]). The group associated to F ,
which we denote by F(

∏n
i=1m), is a group with underlying set

∏n
i=1m, group operations

r + s = F (r, s) for all r, s ∈
n∏

i=1

m,

−r = i(r) for all r ∈
n∏

i=1

m

and identity element 0 = (0, . . . , 0) ∈
∏n

i=1m.

The fact that this defines a group follows from the properties of the formal group law.

Proposition 1.6.7. Let (F ,F ) and (G,G) be an n-parameter and an m-parameter formal group
over R, respectively. Let f be a formal group homomorphism from F to G. Then f converges
for all r ∈

∏n
i=1m and it defines a group homomorphism

f : F(
∏n

i=1m) → G(
∏m

i=1m)

(r1, . . . , rn) 7→ f(r1, . . . , rn).

If f is a formal group isomorphism, then this group homomorphism is also an isomorphism.

Proof. The fact that R is complete with respect to m ensures that f converges on
∏n

i=1m. We
have f(r + s) = f(F (r, s)) = G(f(r),f(s)) = f(r) + f(s) for all r, s ∈

∏n
i=1m. ■

Proposition 1.6.8. The group homomorphism induced by [m] on F(
∏n

i=1m) is the usual
multiplication-by-m homomorphism on a group.

Proof. Let r ∈
∏n

i=1m, and let us denote by mr the sum of m copies of r in F(
∏n

i=1m) if
m ≥ 0, or the sum of −m copies of −r if m < 0. We show the result by induction on m. Clearly,
0 · r = 0 = [0](r). Now assume the statement is true for m = k ∈ Z≥0. Then we get

(k + 1)r = kr + r

= [k](r) + r

= F ([k](r), r)

= [k + 1](r).

Similarly, if we assume the result holds for m = k ∈ Z≤0, we get

(k − 1)r = kr − r

= [k](r) + i(r)

= F ([k](r), i(r))

= [k − 1](r).

■

In this thesis, we often consider the situation where R is the ring of p-adic integers Zp for a
prime p, which is complete with respect to its maximal ideal pZp. In this case we have a result
about the image of the multiplication-by-pm map. We use the notation (pZp)

n for the Cartesian
product of n copies of pZp, and p

nZp for the n-th power of the ideal pZp.
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Proposition 1.6.9. Let p be a prime. Let (F ,F ) be a commutative n-parameter formal group
over Zp. For all r ∈ (pZp)

n and m ∈ Z≥0, we have [pm](r) ∈ (pm+1Zp)
n.

Proof. We prove this by induction on m. Because r ∈ (pZp)
n, the result is true for m = 0. Now

assume it is true for m = k ≥ 0. By Proposition 1.6.5, we have

[pk+1](r) = [p]([pk](r)) = p[pk](r) + g([pk](r))

for some g = (g1, . . . , gn) with gi ∈ (r1, . . . , rn)
2Zp[[r]]. Let us denote by [pk+1]i(r) the i-th

component of [pk+1](r). Then it is of the form [pk+1]i(r) = p[pk]i(r) + gi([p
k](r)). Because

[pk]i(r) ∈ pk+1Zp by the induction hypothesis, we have p[pk]i(r) ∈ pk+2Zp. Furthermore,
because gi ∈ (r1, . . . , rn)

2Zp[[r]], we obtain that gi([p
k](r)) ∈ p2(k+1)Zp ⊆ pk+2Zp. This shows

that [pk+1]i(r) ∈ pk+2Zp for all i = 1, . . . , n, and hence [pk+1](r) ∈ (pk+2Zp)
n. ■

1.6.2 The formal group associated to an elliptic curve

Let E be an elliptic curve over a perfect field K, defined by the homogeneous equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3. (1.22)

Let R = Z[a1, . . . , a6]. We can define a formal group associated to E. If we consider the
dehomogenization of (1.22) with respect to Y, we get the affine equation

w = t3 + a1tw + a2t
2w + a3w

2 + a4tw
2 + a6w

3 =: f(t, w) (1.23)

in the variables w = −Z
Y and t = −X

Y , corresponding to the affine part of E where Y ̸= 0. Let
us denote the coordinate ring of E by K[E] := K[t, w]/(f(t, w)− w), and its fraction field by
K(E). Let us consider the local ring at the point at infinity O = [0 : 1 : 0], which is the ring

OE,O =
{g
h
∈ K(E)

∣∣∣ g, h ∈ K[E] with h(0, 0) ̸= 0
}
,

and let us denote its maximal ideal by mO = {g/h ∈ OE,O | g(0, 0) = 0}. We note that
mO = (w, t) = (t), because

w =
t3

1− a1t− a2t2 − a3w − a4tw − a6w2
∈ tOE,O.

Hence t := −X
Y is a uniformiser of OE,O. Using (1.23) and a general version of Hensel’s lemma

(see [32, IV, Lemma 1.2]), we get the following result.

Proposition 1.6.10 ([32, IV, Proposition 1.1]). There exists a unique power series wT (T )
in K[[T ]] that satisfies wT (0) = 0 and wT (T ) = f(T,wT (T )). It is of the form

wT (T ) = T 3 +

∞∑
i=4

AiT
i

with Ai ∈ R, so wT (T ) ∈ R[[T ]]. Explicitly, we have A4 = a1 and A5 = a21 + a2.

Using this power series, we define a map between OE,O and the power series ring K[[T ]].

26



Proposition 1.6.11. Let us define the map

φ : OE,O → K[[T ]]

g(t, w)

h(t, w)
7→ g(T,wT (T ))(h(T,wT (T )))−1.

This map is a well-defined ring homomorphism, which is furthermore injective. In particular,
OE,O is isomorphic to a subring of K[[T ]].

Proof. First of all, we note that if g/h ∈ OE,O, then h(0, 0) ̸= 0 and hence h(T,wT (T )) is
invertible in K[[T ]]. Furthermore, if g1/h1 = g2/h2 in OE,O, then

g1(t, w)h2(t, w) = g2(t, w)h1(t, w) + g(t, w)(f(t, w)− w)

for some g ∈ K[E], and because f(T,wT (T ))− wT (T ) = 0 by Proposition 1.6.10, it follows that
φ(g1/h1) = φ(g2/h2).

For injectivity, we consider the completion of OE,O with respect to its maximal ideal tOE,O.
It follows from the construction of wT that wT (t) converges to w in this completion (see [32,
Section IV.1]). Hence if φ(g/h) = 0, we have g(T,wT (T )) = 0 in K[[T ]], and so we get
g(t, wT (t)) = g(t, w) = 0 in the completion of OE,O. We conclude that φ is injective. ■

The function field of E/K, which is the fraction field of OE,O is then also isomorphic to a
subfield of the fraction field of K[[T ]], which is the field of formal Laurent series K((T )). An
injective homomorphism can be given by

Q(OE,O) = K(E) → K((T ))

g(t, w)

h(t, w)
7→ φ(g(t, w))

φ(h(t, w))
,

and we also denote it by φ. Hence we can also describe the coordinate functions x = X
Z = t

w
and y = Y

Z = − 1
w (the affine coordinates when dehomogenized with respect to Z) as Laurent

series in K((T )). We find

xT (T ) := φ(x) = φ

(
t

w

)
=

T

wT (T )
= T−2 − a1T

−1 − a2 − a3T + . . . (1.24)

yT (T ) := φ(y) = φ

(
− 1

w

)
= − 1

wT (T )
= −T−3 + a1T

−2 + a2T
−1 + a3 + . . .

Because wT (T ) ∈ R[[T ]] and has leading coefficient 1 ∈ R×, both xT (T ) and yT (T ) also have
coefficients in R.

From our definition of wT (T ), we deduce that the pair
(
xT (T ), yT (T )

)
is a solution to the

Weierstrass equation y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 in K((T )). Let us specialize to

the case K = Qp for some prime p, and ai ∈ Zp (in general, we could choose a complete local
field with ring of integers S such that ai ∈ S, but we will not need this generality). In this
case, the series xT (T ) and yT (T ) converge for T ∈ pZp \ {0} to a limit in Qp, and we obtain(
xT (T ), yT (T )

)
∈ E(Qp). We define an injective map

ψ : pZp → E(Qp) (1.25)

t 7→

{(
xT (t), yT (t)

)
if t ̸= 0

O if t = 0.
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(The map is injective because on the image, an inverse can be given by (x, y) 7→ −x
y , O 7→ 0.)

It is possible to define a formal group (Ê, F ) in such a way that the map ψ in (1.25) becomes a
group homomorphism from the group associated to Ê into E(Qp). We outline the construction
here, more details can be found in [32, Section IV.1]. To define the formal group law of Ê we
look at the addition law on E(Qp), for which we need to find the third intersection point of the
curve with a line through two points. We consider two coordinates T1 and T2, and we define
a line through (T1, w

T (T1)) and (T2, w
T (T2)) in the (t, w)-plane by finding formal power series

λ(T1, T2) and ν(T1, T2) in R[[T1, T2]] such that (T1, w
T (T1)) and (T2, w

T (T2)) are solutions of the
equation w = λt+ ν. We also know that wT (Ti) = f(Ti, w

T (Ti)) for i = 1, 2 from Proposition
1.6.10. Hence T1 and T2 are two roots in R[[T1, T2]] of the cubic polynomial

λ(T1, T2)t+ ν(T1, T2)− f (t, λ(T1, T2)t+ ν(T1, T2))

in R[[T1, T2]][t]. Let us denote the third root by l(T1, T2) ∈ R[[T1, T2]]. Then in the (t, w)-plane,
the point (l(T1, T2), w

T (l(T1, T2))) is colinear with (T1, w
T (T1)) and (T2, w

T (T2)) . We define
F (T1, T2) := i(l(T1, T2)), where

i(T ) =
xT (T )

yT (T ) + a1xT (T ) + a3
= −T − a1T

2 + · · · ∈ R[[T ]]

is the series that gives the t-coordinate of the inverse of (T,wT (T )). From the properties of the
addition law on E, we can deduce that F ∈ R[[T1, T2]] and

F (T1, T2) = F (T2, T1)

F (T1, F (T2, T3)) = F (F (T1, T2), T3)

F (T, 0) = F (0, T ) = T

F (T1, T2) = T1 + T2 + (terms of degree ≥ 2)).

This shows that F indeed defines a one-parameter commutative formal group over R (and hence
over Zp), denoted by Ê. This is the formal group associated to the elliptic curve E.

We can then also define the group Ê(pZp) associated to Ê. From the way that F was defined, it
follows that the map ψ in (1.25) is a group homomorphism from Ê(pZp) to E(Qp) ([32, Example
IV.3.1.3]). It turns out ([32, VII, Proposition 2.2]) that the image of ψ in E(Qp) is E1(Qp).
Hence (1.25) defines an isomorphism

ψ : Ê(pZp) → E1(Qp). (1.26)

We write ψ−1(P ) = t(P ) for the inverse map, because it corresponds to the t-coordinate of the
point P (where t = −X

Y ). With this notation we then have xT (t(P )) = x(P ) and yT (t(P )) = y(P ).
In particular we use that every P ∈ E1(Qp) reduces to [0 : 1 : 0] modulo p. This implies that

ordp(x(P )) > ordp(y(P )), and hence ordp(t(P )) = ordp

(
−x(P )

y(P )

)
> 0. so indeed t(P ) ∈ pZp.

Lemma 1.6.12. For all P ∈ E1(Qp), we have

t([m]P ) = [m](t(P )),

where on the left [m] denotes the multiplication-by-m map on E(Qp), and on the right we evaluate
the power series defining the multiplication-by-m homomorphism [m] ∈ Zp[[T ]] from Definition
1.6.4 at t(P ) ∈ pZp.
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Proof. Because ψ is a group homomorphism, we get

t([m]P ) = m · t(P )
= [m](t(P )). (Proposition 1.6.8)

■

Corollary 1.6.13. Let P ∈ E1(Qp). Then for all n ≥ 0,

ordp(t([p
n]P )) ≥ n+ 1.

Proof. Because t(P ) ∈ Ê(pZp), Lemma 1.6.12 and Proposition 1.6.9 imply that for all n ≥ 0,

t([pn](P )) = [pn](t(P )) ∈ pn+1Zp.

■

1.6.3 The formal group associated to the Jacobian of a genus 2 curve

Assume we are looking at a smooth curve C of genus 2 over a perfect field K given by an affine
equation y2 = f(x) , where f is a polynomial of degree 5 with coefficients in a ring R ⊆ K.
Then we saw in Section 1.5.1 that the corresponding Jacobian can be embedded in P8. We can
construct a formal group in a similar way as we did for elliptic curves. We have the projective
coordinates X0, X11, X12, X22, X111, X112, X122, X222, X of P8. Recall that the identity element
O in J has X111 ̸= 0 and all other coordinates equal to 0. Let us then look at the affine part of
J where X111 ≠ 0. We can dehomogenize the defining equations of J accordingly. Now let us
consider the local ring OJ,O of J at O. Then if we write x = X

X111
, x0 = X0

X111
, xij =

Xij

X111
and

xijk =
Xijk

X111
, we know that the maximal ideal m of OJ,O is the ideal generated by the functions

x0, x11, x12, x22, x112, x122, x222, x. We want to find parameters t1 and t2 in OJ,O such that we
can make an identification

ÕJ,O ∼= K[[t1, t2]],

where ÕJ,O denotes the completion of OJ,O with respect to its maximal ideal.

Lemma 1.6.14. Let t1 = −x11 and t2 = −x. Then t1 and t2 form a basis for the K-vector
space m/m2.

Proof. Recall that OJ,O is a noetherian local ring. We have OJ,O/m ∼= K (via the isomorphism
g +m → g(O)). This also implies that every g ∈ OJ,O is of the form g = r + h for some r ∈ K,
h ∈ m. We mentioned that the functions x0, x11, x12, x22, x112, x122, x222, x generate m as an
ideal, and the observation above implies that they also span m/m2 as a K-vector space. We use
the defining equations of J , which are reproduced in the Appendix, to deduce which of these
generators are trivial in m/m2. Equation F8 divided by X3

111 gives

x0 = x311 + f2x0x
2
11 + f1x0x11x12 − 3f0x0x11x22 + . . .

which shows that x0 ∈ m3. By dividing equation F6 by X3
111 we then deduce that x322 ∈ m4, and

hence x22 ∈ m2. Dividing F2 by X111 implies that x212 ∈ m3, and hence x12 ∈ m2. In a similar
way, we successively deduce by dividing F10, F11 and F9 by X2

111 that x122, x222, x112 ∈ m2.
Hence they are all trivial in m/m2, and thus the remaining generators are x11 and x. Because J
is smooth, m/m2 has dimension 2 as a K-vector space (see [17, I, Theorem 5.1]). This means that
x11 and x must be linearly independent generators, and equivalently t1 and t2 form a K-basis
for m/m2. ■
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Proposition 1.6.15. The morphism of K-algebras

φJ : ÕJ,O → K[[T1, T2]]

that sends the local parameters t1 and t2 of ÕJ,O to the variables T1 and T2 in K[[T1, T2]]
respectively, is an isomorphism.

Proof. This follows from the Cohen structure theorem, see [23, p. 206, Corollary 2]. ■

In particular, we can find expansions for the coordinate functions x0, xij , xijk as power series
in K[[t1, t2]]. In [16, Theorem 4.2] it is shown that their images under φJ have expansions in
R[[T1, T2]] of the following form:

φJ(x0) = −T 3
1

1 +
∑

i,j≥0, i+j≥1

αijT
i
1T

j
2


φJ(x22) = T1

−2T1T2 +
∑

i,j≥0, i+j≥3

βijT
i
1T

j
2


φJ(x12) = T1

T 2
2 +

∑
i,j≥0, i+j≥3

γijT
i
1T

j
2


φJ(x112) = −T 2

2 +
∑
i,j≥0
i+j>3

δijT
i
1T

j
2

φJ(x122) = T1T2 +
∑
i,j≥0
i+j>3

ϵijT
i
1T

j
2

φJ(x222) = −T 2
1 +

∑
i,j≥0
i+j>3

ζijT
i
1T

j
2 (1.27)

with αij , βij , γij , δij , ϵij , ζij ∈ R. By definition of φJ we have

φJ(g)(t1, t2) = g for all g ∈ ÕJ,O. (1.28)

The coordinate functions in (1.16) are not necessarily in ÕJ,O, but they are in its field of

fractions Q(ÕJ,O). We can derive series expansions corresponding to these functions in the field
of fractions Q(K[[T1, T2]]). We use the notation φJ also for the isomorphism extending the
map in Proposition 1.6.15 to the corresponding fields of fractions. For the functions defining
the map to the Kummer surface (1.17), we have ℘ij =

xij

x0
. To find the corresponding image in

Q(K[[T1, T2]]), we first work out the expansion of φJ(x0) in a bit more detail.

Lemma 1.6.16. The expansion φJ(x0) is of the form

φJ(x0) = −T 3
1α(T1, T2),

where α is of the form α(T1, T2) = 1 + f2T
2
1 + (terms of total degree ≥ 4).
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Proof. We already saw above that φJ(x0) = −T 3
1α(T1, T2) for some α ∈ 1 + (T1, T2)R[[T1, T2]].

Let us look at equation F8 and divide it by X3
111. It has to vanish on J by definition, so we

obtain the equation

x0 = x311 + f2x0x
2
11 + f1x0x11x12 − 3f0x0x11x22 − 2f0x

2
0x− (4f4f0 − f3f1)x

2
0x11 + 3f3f0x

2
0x12

− (3f2f0 − f21 )x
2
0x22 − (4f4f2f0 + f1f0 − f4f

2
1 − f23 f0)x

3
0.

We saw in (1.27) that in the expansions of x0, x12 and x22 all nonzero terms have total degree
at least 3, and we have x11 = −t1. By our observations above, we conclude that all terms on the
right-hand side, except the first two, are power series in t1 and t2 whose terms all have total
degree at least 7. The second term, f2x0x

2
11, only has terms of degree ≥ 5. We then deduce, by

comparing coefficients on the left- and right-hand side, that α30 = −1, α31 = α40 = α41 = α32 = 0,
α50 = f2α30 = −f2 and α60 = α51 = α42 = α31 = 0. This gives the desired result. ■

The series α is invertible in R[[T1, T2]], and its inverse is of the form

α−1(T1, T2) = 1− f2T
2
1 + (terms of total degree ≥ 4).

We get

φJ(x0)
−1 = −T−3

1 α−1(T1, T2).

Using the expansions in (1.27), we then find

℘T
22(T ) := φJ(℘22) = φJ(x22)/φJ(x0) = T−2

1

2T1T2 +
∑

i,j≥0, i+j≥3

β′ijT
i
1T

j
2


−℘T

12(T ) := φJ(−℘12) = −φJ(x12)/φJ(x0) = T−2
1

T 2
2 +

∑
i,j≥0, i+j≥3

γ′ijT
i
1T

j
2


℘T
11(T ) := φJ(℘11) = φJ(x11)/φJ(x0) = T−2

1 α−1(T1, T2) (1.29)

where β′ij , γ
′
ij ∈ R.

Now let us look at the case whereK = Qp and where the coefficients of f are in Zp. Note that when
P ∈ J1(Qp), we have ordp(X11(P )), ordp(X(P )) > ordp(X111(P )), and hence t1(P ), t2(P ) ∈ pZp.
It turns out there is a bijection ([16, Corollary 4.5])

ψJ : J1(Qp) → (pZp)
2

P 7→ (t1(P ), t2(P )). (1.30)

Furthermore, this bijection induces a formal group structure on (pZp)
2 (see [16, Theorem 4.6]).

In other words, using this bijection we can define a pair of power series F J(X,Y ) which is the
group law of a 2-parameter formal group Ĵ over Zp. This group law is defined in such a way
that ψJ is a group homomorphism from J1(Qp) to the group Ĵ

(
(pZp)

2
)
associated to the formal

group (Ĵ ,F J). We use the notation t(P ) = (t1(P ), t2(P )).

We note that t1 = − ℘11

℘111
and t2 = − ℘

℘111
are odd functions, in the sense that ti(−P ) = −ti(P ).

This follows from the fact that ℘11 and ℘ are even functions and ℘111 is an odd function on
J . This implies that the pair of power series defining the inverse on Ĵ is simply iJ(T ) = −T .
Because ψJ is a homomorphism, it furthermore follows that for all P,Q ∈ J1(Qp), we have

F J(−t(P ),−t(Q)) = F J(t(−P ), t(−Q)) = t(−P −Q) = −t(P +Q) = −F J(t(P ), t(Q)).
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We thus have F J(−X,−Y ) = −F J(X,Y ) as series, which implies that F J is an odd series in
the sense that it only has terms of total odd degree.

We have a result analogous to Lemma 1.6.12.

Lemma 1.6.17. Let P ∈ J1(Qp). Then

(t1([m]P ), t2([m]P )) = [m](t1(P ), t2(P )),

where on the left [m] denotes the multiplication-by-m map on J(Qp), and on the right we
evaluate the power series defining the multiplication-by-m homomorphism [m] ∈ Zp[[t1, t2]] at
(t1(P ), t2(P )).

Proof. Because ψJ is a group homomorphism from J1(Qp) to Ĵ
(
(pZp)

2
)
, we get

(t1([m]P ), t2([m]P ) = ψJ([m]P )

= m · ψJ(P )

= [m](t1(P ), t2(P )). (by Proposition 1.6.8)

■

Corollary 1.6.18. let P ∈ J1(Qp). For all n ≥ 0 and for i = 1, 2 we have

ordp(ti([p
n]P )) ≥ n+ 1.

Proof. Because t(P ) ∈ Ĵ
(
(pZp)

2
)
, Lemma 1.6.17 and Proposition 1.6.9 imply that for all n ≥ 0,

t([pn]P ) = [pn](t(P )) ∈
(
pn+1Zp

)2
.

■

1.6.4 The formal logarithm

Let (F ,F ) be an n-parameter commutative formal group over a commutative ring R with
identity. We define differential forms as expressions of the form ω(T ) =

∑n
i=1 Pi(T )dTi, where

Pi(T ) ∈ R[[T ]]. We say ω is an invariant differential if it satisfies ω(F (T ,S)) = ω(T ). Explicitly,
this is the case if for all i = 1, . . . , n, we have

n∑
j=1

Pj(F (T ,S))
∂Fj

∂Ti
(T ,S) = Pi(T )

(see [5, Equation (1)]). The collection of invariant differentials form an R-module of rank n (see
[5, Corollary 1.4]). We consider a specific basis ω1, . . . , ωn as defined in [5, Remark 1.7].

Theorem 1.6.19 ([5, Theorem 1.6]). Let R be a Q-algebra. Let Li(T ) ∈ R[[T ]] be the unique
power series satisfying

dLi(T ) =
n∑

j=1

∂Li

∂Tj
dTj = ωi(T ) and Li(0) = 0.

Then L = (L1, . . . ,Ln) is a formal group isomorphism from F to Ĝn
a . We call L the strict formal

logarithm.
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We denote the inverse of L by E : Ĝn
a → F , and call it the strict formal exponential.

Proposition 1.6.20 ([5, Proposition 1.8]). Let F be an n-parameter commutative formal
group over Z. Then the strict formal logarithm and exponential of F as a formal group over Q
are of the form

Li = Ti +
∑

j1,...,jn≥0
j1+···+jn≥2

aj1,...,jn
gcd{j1, . . . , jn}

T j1
1 · · ·T jn

n (1.31)

Ei = Ti +
∑

j1,...,jn≥0
j1+···+jn≥2

bj1,...,jn
j1! · · · jn!

T j1
1 · · ·T jn

n

with aj1,...,jn , bj1,...,jn ∈ Z.

The following theorem is a generalization of [32, IV, Theorem 6.4(a)].

Theorem 1.6.21. Let p be a prime. Let (F ,F ) be an n-parameter commutative formal group
defined over Z, and hence over Zp. Then the formal group logarithm L(T ) converges for
T ∈ (pZp)

n, and it induces a group homomorphism

L : F ((pZp)
n) → (Qp)

n (1.32)

where the group law on (Qp)
n is addition.

Proof. Let us consider T ∈ (pZp)
n, and hence ordp(Ti) ≥ 1 for each i = 1, . . . , n. Let us look at

a general term of the series (1.31) evaluated at T , and write m = j1 + . . .+ jn. We get

ordp

(
aj1,...,jn

gcd{j1, . . . , jn}
T j1
1 · · ·T jn

n

)
≥ m− ordp(gcd{j1, . . . , jn})

≥ m− log(p)(m)

where log(p) denotes the real logarithm with base p. Because this last expression approaches
infinity as m→ ∞, we conclude that the series (1.31) converges for each i. The fact that L is a
formal group homomorphism then implies that (1.32) is a group homomorphism. ■

1.6.5 Torsion in formal groups over Zp

In Section 1.6.2 and Section 1.6.3, we saw that the groups E1(Qp) for an elliptic curve E and
J1(Qp) for the Jacobian of a genus 2 curve are both isomorphic to a group associated to a formal
group over Zp. We will show that this means that the groups have trivial torsion subgroups. We
first show two more general lemmas that we use to prove the statement.

Lemma 1.6.22. Let (F ,F ) be an n-parameter commutative formal group over R with basis
of normalized invariant differentials ω1, . . . , ωn as in the previous section. Let f : F → F be a
homomorphism. Then for all k = 1, . . . , n, we have

ωk ◦ f =
n∑

i=1

∂fk
∂Ti

(0)ωi.
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Proof. Let us fix k ∈ {1, . . . , n}. Let us write ωk(T ) =
∑n

i=1 P
(k)
i (T )dTi with P

(k)
i ∈ R[[T ]].

First, we show that ωk ◦ f is an invariant differential. Indeed, we have

(ωk ◦ f)(F (T ,S)) = ωk(F (f(T ),f(S))) (because f is a homomorphism)

= ωk(f(T )). (because ωk is an invariant differential)

Because the ωi form a basis for R-module of invariant differentials, we thus have

ωk ◦ f =
n∑

i=1

d
(k)
i ωi

for some d
(k)
i ∈ R. The left-hand side can be expanded as

(ωk ◦ f)(T ) =
n∑

i=1

P
(k)
i (f(T ))dfi(T )

=
n∑

j=1

[
n∑

i=1

P
(k)
i (f(T ))

∂fi
∂Tj

(T )

]
dTj . (1.33)

For the right-hand side, we have

n∑
i=1

d
(k)
i ωi(T ) =

n∑
i=1

d
(k)
i

 n∑
j=1

P
(i)
j (T )dTj


=

n∑
j=1

[
n∑

i=1

d
(k)
i P

(i)
j (T )

]
dTj . (1.34)

Because (1.33) and (1.34) are equal, each pair of corresponding component functions evaluated at

0 must also be equal. Theorem 1.6.19 and Proposition 1.6.20 imply that P
(i)
j (0) = ∂Li

∂Tj
(0) = δij

for all i, j ∈ {1, . . . , n} (where δij is the Kronecker delta function). We also have f(0) = 0. We
thus get for each j = 1, . . . , n that

n∑
i=1

d
(k)
i P

(i)
j (0) =

n∑
i=1

P
(k)
i (f(0))

∂fi
∂Tj

(0) ⇒ d
(k)
j =

∂fk
∂Tj

(0).

■

Lemma 1.6.23. Let F be an n-parameter commutative formal group over R and let p ∈ Z>0 be
a prime. There are power series gk, hk ∈ R[[T ]] with gk ∈ Tk+(T1, . . . , Tn)

2R[[T ]] and hk(0) = 0
such that

[p]k(T ) = p · gk(T ) + hk(T
p
1 , . . . , T

p
n),

where [p]k denotes the k-th component of the multiplication-by-p homomorphism.

Proof. From Proposition 1.6.5, we deduce that ∂[p]i
∂Tj

(0) = δij p. Then Lemma 1.6.22 gives

pωk(T ) = (ωk ◦ [p])(T ). Expanding both sides and using the same notation as in Lemma 1.6.22,
for each i = 1, . . . , n we get the equality

p · P (k)
i (T ) =

n∑
j=1

P
(k)
j ([p](T ))

∂[p]j
∂Ti

(T ). (1.35)
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Note that for j ̸= k, we have P
(k)
j ([p](T )) ∈ pR[[T ]], and P

(k)
k ([p](T )) ∈ 1 + (T1, . . . , Tn)R[[T ]].

Then P
(k)
k ([p](T )) has a multiplicative inverse which is also in 1 + (T1, . . . , Tn)R[[T ]]. Using

these facts, (1.35) implies that ∂[p]k
∂Ti

(T ) ∈ pR[[T ]] for each i. If we write

[p]k =
∑

i1,...,in≥0

di1,...,inT
i1
1 · · ·T in

n

for some di1,...,in ∈ R, then for each term di1,...,inT
i1
1 · · ·T in

n we either have di1,...,in ∈ pR, or
p | gcd(i1, . . . , in). Hence we can write [p]k(T ) = pgk(T )+hk(T

p
1 , . . . , T

p
n) for some gk, hk ∈ R[[T ]].

The requirement on the coefficients of gk and hk follows from Proposition 1.6.5. ■

Theorem 1.6.24 (generalization of [32, IV, Example 6.1.1]). Let p be an odd prime. For
any n-parameter commutative formal group (F ,F ) over Zp, the associated group F ((pZp)

n) has
a trivial torsion group.

Proof. We first show that all torsion elements must have a power of p as order. Let m ∈ Z>0 such
that p ∤ m. Then m ∈ Z×

p , and hence [m] is a formal group isomorphism by Proposition 1.6.5.
But then also the multiplication-by-m map on F ((pZp)

n) is an isomorphism by Proposition
1.6.7 and Proposition 1.6.8, so [m](r) = 0 precisely when r = 0. Hence no point can have order
exactly m. But if a point r has order mpn for some n ≥ 0, then pnr has order m which is not
possible. We conclude that all torsion points have order pn for some n ≥ 0.

Now assume r has exact order p. Then we must have [p](r) = 0. Using Lemma 1.6.23, this
becomes

[p]k(r) = p · gk(r) + hk(r
p
1, . . . , r

p
n) = 0

for all k = 1, . . . , n, with gk and hk as in Lemma 1.6.23. By comparing the order at p of the
terms, we deduce that the only possibility for this expression to be 0 is that

ordp(rk) ≥ 2 ordp(ri)

for some i ∈ {1, . . . , n}. However, this cannot be satisfied for all k simultaneously unless r = 0.
We conclude that a point of exact order p cannot exist. But if r has exact order pn for some
n ≥ 1, then pn−1r has exact order p which is not possible. Hence there can be no nontrivial
torsion points. ■

Corollary 1.6.25. Let p be an odd prime, and let E/Qp be an elliptic curve given by a Weierstrass
equation with coefficients in Zp. Then E1(Qp) ∩ Etors = {O}.

Proof. This follows from Theorem 1.6.24 and the isomorphism ψ in (1.26). ■

Corollary 1.6.26. Let p be an odd prime, and let C be a smooth curve of genus 2 over Qp

defined by an affine equation y2 = f(x) where f is a polynomial of degree 5 with coefficients in
Zp, with Jacobian J . Then J1(Qp) ∩ Jtors = {O}.

Proof. This follows from Theorem 1.6.24 and the isomorphism ψJ in (1.30). ■
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Chapter 2

Height functions on elliptic curves

We apply the general theory that we discussed to the study of height functions. First, we discuss
the development of height functions on elliptic curves, starting with real-valued functions and
comparing these with the introduction of p-adic height functions.

2.1 Real-valued height functions on elliptic curves

We start by looking at a real valued height function on elliptic curves, which was found by Tate,
and by Néron [27] as a sum of local contributions at each place of Q. This section is largely
based on [32, Chapter VIII] and [31, Chapter VI].

2.1.1 A naive real height function

First, we define a naive height function on projective N -space over Q. Let P ∈ PN (Q). Then we
can write P = [x0 : · · · : xN ] with x0, . . . , xN ∈ Z and gcd(x0, . . . , xN ) = 1, uniquely up to sign.
We define a function H : PN (Q) → R by

H(P ) := max{|x0|∞, . . . , |xN |∞}. (2.1)

Note that this definition is independent of the choice of sign. We use this function to define
a height function on points of elliptic curves. Let us consider an elliptic curve E/Q. Recall
that we have the map κ in (1.6) from E to its Kummer variety P1. We define a height function
H : E(Q) → R by setting

H(P ) = H(κ(P )).

For P ̸= O we can write x(P ) = x1(P )
x2(P ) with gcd(x1(P ), x2(P )) = 1, and then the map H can

alternatively be described as

H(P ) =

{
0 if P = O
max{|x1(P )|∞, |x2(P )|∞} otherwise.

We consider the (natural) logarithm of this function to obtain a height function that behaves
additively.

Definition 2.1.1. Let E/Q be an elliptic curve. The naive real height function on E is the
function h : E(Q) → R given by

h(P ) = logH(κ(P )).
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The naive real height function satisfies the following properties.

Proposition 2.1.2 ([32, VIII, Theorem 6.2, Corollary 6.4, Proposition 6.1]). Let E/Q
be an elliptic curve. There exists a constant C1 = C1(E) ∈ R, and for all m ∈ Z, a constant
C2(m) = C2(E,m) ∈ R, such that

(a) For all P,Q ∈ E(Q), we have

|h(P +Q) + h(P −Q)− 2h(P )− 2h(Q)|∞ ≤ C1.

(b) Let m ∈ Z. For all P ∈ E(Q), we have

|h([m]P )−m2h(P )|∞ ≤ C2(m).

(c) For any constant C ∈ R, the set

{P ∈ E(Q) | h(P ) ≤ C}

is finite.

2.1.2 A canonical real height function

We now define what it means for a function to be a quadratic form. Proposition 2.1.2(a) then
says that h is not quite a quadratic form, but it is close in a sense.

Definition 2.1.3 ([32, p. 85, Definition]). Let G be an abelian group and let K be a field.
A function f : G→ K is a quadratic form if it satisfies:

1. f(g) = f(−g) for all g ∈ G (we say f is even).

2. The pairing G×G→ K given by (g1, g2) 7→ f(g1 + g2)− f(g1)− f(g2) is bilinear.

Proposition 2.1.4 ([32, VIII, proof of Theorem 9.3(c)]). Let G be an abelian group and
let K be a field. Let f : G→ K be a function satisfying the parallelogram law:

f(g1 + g2) + f(g1 − g2) = 2f(g1) + 2f(g2). (2.2)

Then f is a quadratic form.

Proposition 2.1.5. Let G be an abelian group, let K be a field, and let f : G→ K be a function
satisfying the parallelogram law (2.2). Then for all g ∈ G and all m ∈ Z, we have

f(mg) = m2f(g). (2.3)

Proof. This can be shown by induction. From the parallelogram law applied to g1 = g2 = 0, we
conclude that f(0) = 0. For m = 1 the statement is trivial. Now let m ≥ 1 and assume the
result holds for all integers i such that 0 ≤ i ≤ m. Then for all g ∈ G, we have

f((m+ 1)g) = 2f(mg) + 2f(g)− f((m− 1)g) (parallelogram law)

= 2m2f(g) + 2f(g)− (m− 1)2f(g) (induction hypothesis)

= (m+ 1)2f(g)

which shows the result form+1. Hence the statement is true for allm ∈ Z≥0. Finally, according to
Proposition 2.1.4 f is even, so for m < 0 and all g ∈ G we have f(mg) = f(−mg) = m2f(g). ■
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We say that a function satisfying (2.3) is a quadratic function (not to be confused with a
quadratic form).

Proposition 2.1.2(a) tells us that the naive height function h has a bounded difference from
being a quadratic form. We can use h to construct an actual quadratic form, which differs from
h by a bounded amount.

Definition 2.1.6. The canonical real height (or Néron-Tate height) on E/Q is the function

ĥ(P ) = lim
n→∞

1

4n
h ([2n]P ) .

The existence of this limit is proven in [32, VIII, Proposition 9.1].

Proposition 2.1.7 ([32, VIII, Theorem 9.3]). Let E/Q be an elliptic curve.

(a) For all P,Q ∈ E(Q) we have

ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q).

(b) For all P ∈ E(Q) and all m ∈ Z,

ĥ([m]P ) = m2ĥ(P ).

(c) ĥ is a quadratic form on E.

(d) Let P ∈ E(Q). Then ĥ(P ) ≥ 0, and ĥ(P ) = 0 if and only if P is a torsion point.

(e) |ĥ− h|∞ ≤ C, where C ∈ R depends only on E.

Alternatively, we can describe the canonical height by a different limit:

Proposition 2.1.8.

ĥ(P ) = lim
n→∞

1

n2
h([n]P ).

Proof. From Proposition 2.1.7(e), we know that there exists a constant C ∈ R, only depending
on E, such that

|ĥ([n]P )− h([n]P )|∞ ≤ C for all P ∈ E(Q) and all n ∈ Z>0.

Using Proposition 2.1.7(b), this becomes

|n2ĥ(P )− h([n]P )|∞ ≤ C

|ĥ(P )− 1

n2
h([n]P )|∞ ≤ C

n2
.

This implies the result. ■
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2.1.3 Local real height functions

Consider P ∈ E(Q) \ {O}. Let us write x(P ) = x1(P )
x2(P ) with gcd(x1(P ), x2(P )) = 1. Then

h(P ) = logH(κ(P ))

= log max{|x1(P )|∞, |x2(P )|∞}

= log
∏

v∈MQ

max{|x1(P )|v, |x2(P )|v} (2.4)

= log
∏

v∈MQ

|x2(P )|v max{|x(P )|v, 1}

= log
∏

v∈MQ

max{|x(P )|v, 1} (by Theorem 1.1.10)

=
∑
v∈MQ

log max{|x(P )|v, 1}.

The equality in (2.4) follows from the fact that max{|x1(P )|q, |x2(P )|q} = 1 for all primes q,
because x1(P ) and x2(P ) are coprime. This shows that away from O, the naive height can be
expressed as a sum over local contributions, one for every place of Q.

Definition 2.1.9. Let v ∈MQ. The naive local real height function associated to v,

λv : E(Qv) \ {O} → R,

is defined by
λv(P ) = log max{|x(P )|v, 1}.

We saw that h(P ) =
∑

v∈MQ
λv(P ) for all P ∈ E(Q) \ {O}. Similarly, we can express the

canonical height on E(Q) \ {O} as a sum of local contributions. For all v ∈MQ, we denote by
Qv the completion of Q with respect to | · |v. We construct functions λ̂v : E(Qv) \ {O} → R for
each v, which are almost quadratic in the sense of Proposition 2.1.10 property 3 below, such
that the equality

ĥ(P ) =
∑
v∈MQ

λ̂v(P )

holds for all P ∈ E(Q) \ {O}.

Proposition 2.1.10 ([31, VI, Theorem 1.1]). Let v be a place of Q. There exists a unique
function λ̂v : E(Qv) \ {O} → R with the following properties:

1. λ̂v is continuous on E(Qv) \ {O} and is bounded on the complement of any v-adic neigh-
borhood of O.

2. The limit limP→O{λ̂v(P )− log |x(P )|v} exists.

3. For all P ∈ E(Qv) with [2]P ̸= O,

λ̂v([2]P ) = 4λ̂v(P )− 2 log |ψ2(P )|v,

where ψ2 is the divison polynomial defined in Definition 1.3.2.

The continuity in property 1 is with respect to the v-adic topology on E(Qv), a definition of
which can be found in [31, p. 455]. We call λ̂v the local Néron height function associated to v.
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Proposition 2.1.11 ([31, VI, Theorem 2.1]). Let λ̂v : E(Qv) \ {O} → R be the local Néron
height function associated to v. Then

ĥ(P ) =
∑
v∈MQ

λ̂v(P )

for all P ∈ E(Q) \ {O}.

It is possible to find explicit formulas for the local heights. The local height corresponding to
the archimedean absolute value | · |∞ can be defined using the Weierstrass σ-function (see [32,
Chapter VI] for a general introduction). The explicit formula for λ̂∞ can be found in [31, VI,
Theorem 3.2].

For the non-archimedean absolute values | · |p, we can consider a Weierstrass equation for E/Q
with integral coefficients, and reduce the curve modulo p. For points on E that reduce to a
smooth point, we can describe the local height function as follows.

Theorem 2.1.12 ([31, VI, Theorem 4.1]). Let p be a prime. For all P ∈ E0(Qp) \ {O}, the
local Néron height function associated to p is given by

λ̂p(P ) = λp(P ) = log max{|x(P )|p, 1}.

In particular, when E has good reduction at p, we have E0(Qp) = E(Qp), and thus in that case

we have λ̂p = λp on all of E(Qp) \ {O}.

2.2 p-adic height functions on elliptic curves

Let us fix an odd prime number p. Instead of defining a height function mapping into R, we can
also define a height function that maps into the field of p-adic numbers Qp, which we want to
be a quadratic form. This can be done by defining local p-adic height functions that sum to a
height with the desired properties, in a similar way as the real local height functions in Section
2.1.3. The theory in this section follows [6, Section 2.2].

Let us look at an elliptic curve E/Q with Weierstrass equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.5)

with a1, . . . , a6 ∈ Z. We furthermore assume that E has good reduction at p.

Our goal is to define local height functions λv : E(Qv) \ {O} → Qp for all v ∈ MQ such that
hp :=

∑
v∈MQ

λv is a well defined function on E(Q) \ {O} which is a quadratic form. It turns out
that we can take λ∞ = 0. For primes different from p, we define local height functions in Section
2.2.1 that look very similar to the local real heights from Proposition 2.1.10. To define a local
p-adic height at p, we need some p-adic analysis. We will do this in Section 2.2.2. In Section
2.2.3 we combine the local p-adic heights into global p-adic heights that are quadratic forms.

2.2.1 Local p-adic heights at primes different from p

For primes q ̸= p, we have a result similar to Proposition 2.1.10. Recall that we write logp for
the p-adic logarithm as defined in Section 1.1.2.
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Proposition 2.2.1 ([6, p. 14]). Let q ̸= p be a prime. There exists a unique function

λ̂
(p)
q : E(Qq) \ {O} → Qp with the following properties:

(a) λ̂
(p)
q is continuous on E(Qq) \ {O} and bounded on the complement of any neighborhood of

O with respect to the q-adic topology.

(b) limP→O(λ̂
(p)
q (P )− logp |x(P )|q) exists.

(c) For all P,Q ∈ E(Qq) such that P,Q, P +Q,P −Q ̸= O, we have

λ̂(p)q (P +Q) + λ̂(p)q (P −Q) = 2λ̂(p)q (P ) + 2λ̂(p)q (Q)− 2 logp |x(P )− x(Q)|v.

This function also has the property

(d) For all P ∈ E(Qq) and all n ≥ 1 such that P, [n]P ̸= O, we have

λ̂(p)q ([n]P ) = n2λ̂(p)q (P )− 2 logp |ψn(P )|q,

where ψn denotes the n-th division polynomial defined in Definition 1.3.2.

For points of good reduction we also get a result similar to the real case.

Lemma 2.2.2 ([6, Lemma 2.2.2]). Let q ̸= p. If P ∈ E0(Qq) \ {O}, then

λ̂(p)q (P ) = logp max{|x(P )|q, 1}.

The p-adic local heights at primes different from p are thus very similar to the real local heights,
with the real logarithm replaced by the p-adic logarithm.

2.2.2 Local p-adic heights at p

For the local p-adic height at p, we want to mimic the properties of the Weierstrass σ-function,
so we need a p-adic analogue of this function. First of all, the Weierstrass ℘- and σ-function
corresponding to an elliptic curve are defined for a curve in short Weierstrass form (see [32,
Section VI.3]). For a curve E given by (2.5), we can perform a coordinate transformation by
substituting

y = y′ − 1

2
(a1x+ a3) and x = x′ − a21 + 4a2

12
(2.6)

to get an isomorphic elliptic curve given by a short Weierstrass equation

E : (y′)2 = (x′)3 − g2
4 x

′ − g3
4 (2.7)

for some g2, g3 in Q. Such a curve is isomorphic to C/Λ for some lattice Λ in C (see [32, VI,
Proposition 3.6]). We consider the Weierstrass ℘- and σ-function relative to Λ defined in [32, p.
165, Definition, p. 167, Definition]. When we talk about the Weierstrass ℘- and σ-function in
the context of the model (2.5), we mean the functions relative to the lattice Λ corresponding to
the model (2.7).
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Let σ(z) be the Taylor series expansion of the complex Weierstrass σ-function, and ℘(z) the
Laurent series for the Weierstrass ℘-function around z = 0. These satisfy the differential equation
([32, VI, Lemma 3.3(b)])

℘(z) = − d2

dz2
log σ(z) (2.8)

as well as the identity ([32, Exercise 6.3])

σ(z1 + z2)σ(z1 − z2)

σ(z1)2σ(z2)2
= ℘(z2)− ℘(z1). (2.9)

Lemma 2.2.3. We have ℘(z) ∈ z−2 + z2Q[[z2]] and σ(z) ∈ z + z5Q[[z]]. In particular, both
power series have coefficients in Q.

Proof. According to [32, VI, Theorem 3.5(a)] the Laurent series expansion for ℘(z) is of the form

℘(z) = z−2 +

∞∑
k=1

(2k + 1)G2k+2z
2k,

where G2k+2 are the Eisenstein series of weight 2k + 2 defined in [32, p. 165, Definition]. In
particular, ℘(z) ∈ z−2 + z2C[[z2]]. By definition we have g2 = 60G4 and g3 = 140G6 ([32, VI,
Remark 3.5.1]), so G4, G6 ∈ Q. We have the recurrence relation

(4k2 − 1)(k − 3)G2k = 3

k−2∑
j=2

(2j − 1)(2k − 2j − 1)G2jG2k−2j ,

for all k ≥ 4 [30, p. 67, Equation (10.7)]. This implies that all G2k+2 for k ≥ 1 can be computed
recursively as a polynomials in G4 and G6 with coefficients in Q, and hence they are themselves
elements of Q. We conclude that ℘(z)z−2 + z2Q[[z2]].

For the expansion of σ(z), we use the differential equation (2.8) and similar reasoning as in [6,
Proposition 2.2.3]. By integrating the expansion of ℘(z) once, we obtain

d

dz
log σ(z) ∈ z−1 + C1 + z3Q[[z]]

for some C1 ∈ C. Note that if we define θ(z) = z−1σ(z), we get

d

dz
log(θ(z)) =

1

θ(z)

dθ(z)

dz

=
z−1σ′(z)− z−2σ(z)

z−1σ(z)

=
d

dz
log(σ(z))− z−1 ∈ C1 + z3Q[[z]]

Integrating this expression and taking the exponential, we get

σ(z) = zθ(z) = z exp(C2 + C1z + z4g(z))

for some C2 ∈ C and g ∈ Q[[z]]. From the definition of the Weierstrass σ-function [32, p.
167, Definition], we see that the coefficient of z in σ(z) is equal to 1, and that σ(z) is an odd
function. The first observation implies that we must have C2 = 0, and the second implies
that the coefficient of the z2 term must be zero, hence C1 = 0. We then conclude that
σ(z) = z exp(z4g(z)) ∈ z + z5Q[[z]]. ■
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We define a series
σp(T ) = σ(L(T )) ∈ Q[[T ]],

where L is the strict formal logarithm corresponding to the formal group (Ê, F ), as introduced in
Section 1.6.4. We call σp the Bernardi p-adic σ-function, because it was introduced by Bernardi
in [3, p. 9].

We want to use property (2.9) of σ to derive a similar property for σp, but in order for the
right-hand side to be meaningful we need to know what we obtain when we compose the series
℘ with L. The resulting series is one we have already encountered before.

Proposition 2.2.4. ℘(L(T )) = xT (T ) +
a21+4a2

12 as series in Q((T )).

To prove this proposition, we first prove some intermediate results. Consider the elliptic curve E
given by the model (2.7) (to ease notation we write x, y for the coordinates rather than x′, y′).
We can consider E as a curve over C, and then there is a group homomorphism ϕ : C → E(C)
given by a 7→ [℘(a) : 1

2℘
′(a) : 1] (see [32, VI, Proposition 3.6(b)]).

The invariant differential on E(C) is given by dx
2y (see [32, Section III.1]), and we see that

ϕ∗(dx2y ) =
d℘(z)
℘′(z) = dz. We want to use the map ϕ to define a homomorphism of formal groups

Ĝ1
a → Ê over Q given by a power series h(z) which also satisfies h∗ω = dz, where dz is the

invariant differential of Ĝ1
a with parameter z, and ω = d(xT (T ))

2yT (T )
is the invariant differential of

Ê with parameter T ([32, p. 118]). Recall that to define the formal group associated to E,

we defined a series wT (T ) and used it to define xT (T ) and yT (T ) satisfying T = −xT (T )
yT (T )

. The

parameter t we started with corresponds to the coordinate function −X
Y on the elliptic curve,

which in our case can be represented by the series h(z) = −2 ℘(z)
℘′(z) . We will show that h defines

the formal homomorphism we need.

From [32, VI, Theorem 3.5(a)] we know that ℘(z) ∈ z−2 + z2Q[[z]] and ℘′(z) ∈ −2z−3 + zQ[[z]],
so we get h(z) ∈ z+ z2Q[[z]]. It then follows from [32, IV, Lemma 2.4] that there exists a unique
inverse power series k(T ) ∈ Q[[T ]] that satisfies k(h(z)) = z and h(k(T )) = T .

Lemma 2.2.5. We have wT (h(z)) = − 2
℘′(z) , x

T (h(z)) = ℘(z) and yT (h(z)) = 1
2℘

′(z) as Laurent

series in Q((z)).

Proof. Recall that wT (T ) is the unique power series in Q[[T ]] that satisfies wT (0) = 0 and
wT (T ) = f(T,wT (T )) with f(t, w) = t3 − g2

4 tw
2 − g3

4 w
3 (Proposition 1.6.10). Because k(T )

exists such that h(k(T )) = T and k(h(z)) = z, this implies that (wT ◦ h)(z) is the unique power
series in Q[[z]] satisfying (wT ◦ h)(0) = 0 and (wT ◦ h)(z) = f(h(z), (wT ◦ h)(z)). We will show
that the series − 2

℘′(z) also satisfies these properties. Namely, − 2
℘′(z) ∈ z3Q[[z]], so − 2

℘′(z) |z=0 = 0.
Furthermore, we know that

℘′(z)2

4
= ℘(z)3 − g2

4
℘(z)− g3

4

− 2

℘′(z)
= −8

℘(z)3

℘′(z)3
+ 2g2

℘(z)

℘′(z)3
+ g3

2

℘′(z)3

= h(z)3 − g2
4
h(z)

(
− 2

℘′(z)

)2

− g3
4

(
− 2

℘′(z)

)3

= f
(
h(z),− 2

℘′(z)

)
.
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We conclude that wT (h(z)) = − 2
℘′(z) . Finally we get

xT (h(z)) =
h(z)

wT (h(z))
= ℘(z),

yT (h(z)) = − 1

wT (h(z))
= 1

2℘
′(z).

■

Lemma 2.2.6. h(z) defines a formal group isomorphism from Ĝ1
a to (Ê, F ) as formal groups

over Q.

Proof. We already saw that h(z) ∈ z + z2Q[[z]]. We furthermore need to show that we have
h(z1 + z2) = F (h(z1), h(z2)). From how F was defined in Section 1.6.2, we know that h(z1),
h(z2) and i(F (h(z1), h(z2))) are the three roots of the cubic polynomial

λ(h(z1), h(z2))T + ν(h(z1), h(z2))− f(T, λ(h(z1), h(z2))T + ν(h(z1), h(z2))) (2.10)

in Q[[z1, z2]][T ]. We claim that i(h(z1 + z2)) is also a root of this polynomial. First of all, we
note that

i(h(z1 + z2)) =
xT (h(z1 + z2))

yT (h(z1 + z2))
(by definition of i)

=
℘(z1 + z2)
1
2℘

′(z1 + z2)
(by Lemma 2.2.5)

= −2
℘(−z1 − z2)

℘′(−z1 − z2)
(because ℘ is even)

= h(−z1 − z2).

Because ϕ is a homomorphism, we have for a1, a2 ∈ C, that the points ϕ(a1), ϕ(a2) and ϕ(−a1−a2)
on E(C) are colinear. When they are on the affine patch Y ̸= 0, we thus have that the point(
−2 ℘(−a1−a2)

℘′(−a1−a2)
,− 2

℘′(−a1−a2)

)
in the (t, w)-plane must lie on the line through

(
−2 ℘(a1)

℘′(a1)
,− 2

℘′(a1)

)
and

(
−2 ℘(a2)

℘′(a2)
,− 2

℘′(a2)

)
. Recall that as series, we have h(z) = −2 ℘(z)

℘′(z) and wT (h(z)) = − 2
℘′(z) .

Thus by taking Taylor expansions, we conclude that the point (h(−z1 − z2), w
T (h(−z1 − z2)))

must lie on the line
w = λ(h(z1), h(z2)) t+ ν(h(z1), h(z2))

in the (t, w)-plane. We know from Proposition 1.6.10 that

wT (h(−z1 − z2)) = f(h(−z1 − z2), w
T (h(−z1 − z2))),

so this shows that h(−z1 − z2) is a root of the polynomial (2.10).

We know that h(−z1− z2) = i(h(z1+ z2)) is not equal to h(z1) or h(z2) because it has nontrivial
terms in both variables. Then we must have i(h(z1 + z2)) = i(F (h(z1), h(z2))), and hence
h(z1 + z2) = F (h(z1), h(z2)) (where we use that i(i(T )) = T ). This shows that h is a formal
group homomorphism.
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We saw that there exists a unique power series k(z) ∈ Q[[z]] that satisfies k(h(z)) = z and
h(k(T )) = T . It can easily be seen that k(T ) is a formal group homomorphism from Ê to Ĝ1

a,
because the proof of [32, IV, Lemma 2.4] shows that k(T ) ∈ TQ[[T ]] and

k(T1) + k(T2) = k(h(k(T1) + k(T2)))

= k(F (h(k(T1)), h(k(T2))))

= k(F (T1, T2)).

Hence h is an isomorphism. ■

Corollary 2.2.7. h∗ω = dz.

Proof. We have ω = dxT (T )
2yT (T )

, and hence

h∗ω =
dxT (h(z))

2yT (h(z))
=
d℘(z)

℘′(z)
= dz.

■

Proposition 2.2.8. We have k(T ) = L(T ) as power series in Q[[T ]], where L is the strict
formal logarithm on Ê defined in Section 1.6.4.

Proof. Recall that k : Ê → Ĝ1
a is a homomorphism satisfying h(k(T )) = T . Because h∗ω = dz,

we also have ω = (h ◦ k)∗ω = k∗(h∗ω) = k∗dz. On the other hand, the strict formal logarithm is
also defined in such a way that ω = L′(T )dT = L∗dz. According to [38, Theorem 1.28], there is
a unique homomorphism with this property, so we must conclude that k(T ) = L(T ). ■

Proof of Proposition 2.2.4. Because we have xT (h(z)) = ℘(z), Proposition 2.2.8 implies that

℘(L(T )) = ℘(k(T )) = xT (h(k(T ))) = xT (T ).

Now if we go back to our original curve E given by the model (2.5), we performed the transfor-
mation (2.6) to obtain (2.7), hence we conclude

℘(L(T )) = xT (T ) +
a21 + 4a2

12

where xT (T ) is now the series defined with respect to the model (2.5). ■

Convergence of σp

Our goal is to use σp to construct a local height function, and to do this we want to evaluate it
at t(P ), where P ∈ E1(Qp) (see (1.26)). For this to be possible, we need to know something
about the convergence of σp on Qp. To show a convergence result, we first need a lemma, which
is a one-dimensional version of [5, Lemma 2.3].

Lemma 2.2.9. Let g(T ) ∈ Zp[[T ]]. Then g(E(z)) is of the form

g(E(z)) =
∞∑
n=0

dn
n!
zn with dn ∈ Zp.
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Proof. This is observed using exact same reasoning as in the proof of [5, Lemma 2.3]. ■

We now state a convergence result for σp which was shown in [3, p. 9]. We provide a more
elaborate proof, adapting the arguments used in the proof of [5, Theorem 2.4].

Proposition 2.2.10. σp(T ) converges for all T ∈ pZp.

Proof. Recall from Lemma 2.2.3 that the power series σ(z) is of the form σ(z) ∈ z + z5Q[[z]].
We also have E(z) ∈ z + z2Q[[z]] from Proposition 1.6.20, so z−1E(z) ∈ 1 + zQ[[z]] and thus
there exists a series g(z) ∈ 1 + zQ[[z]] such that z−1E(z)g(z) = 1. Hence we can write

σ(z) = E(z)u(z)

where u(z) = z−1σ(z)g(z) ∈ 1 + zQ[[z]]. We note from Proposition 1.6.20 that E is of the form
E(z) = z = c

2z
2 + . . . for some c ∈ Z, so we deduce that u is of the form

u(z) = 1− c

2
z + · · · . (2.11)

We write

σp(T ) = σ(L(T )) = E(L(T ))u(L(T )) = Tup(T ),

where up(T ) := u(L(T )). We will show the convergence result for σp by showing the convergence
of up first.

We have

d2

dz2
log(E(z))(L(T )) + d2

dz2
log(u(z))(L(T )) = d2

dz2
log(σ(z))(L(T ))

= −℘(L(T )) (by (2.8))

= −xT (T )− a21 + 4a2
12

(by Proposition 2.2.4)

as series in Q((T )), and thus

d2

dz2
log(u(z))(L(T )) + a21 + 4a2

12
= −xT (T )− d2

dz2
log(E(z))(L(T )). (2.12)

We want to show that the left-hand side of this equation is in Z[[T ]], so that we can apply

Lemma 2.2.9 to find the expansion of d2

dz2
log(u(z)). First of all, because u(z) ∈ 1 + zQ[[z]], we

have d2

dz2
log(u(z)) ∈ Q[[z]]. Hence d2

dz2
log(u(z))(L(T ))+ a21+4a2

12 ∈ Q[[T ]], so it has no terms with
negative powers of T .

Now let us look at the right-hand side of (2.12). Using the chain rule twice, we find that

d2

dz2
log(E(z))(L(T )) = 1

L′(T )

d

dT

(
d

dz
log(E(z))(L(T ))

)
=

1

L′(T )

d

dT

(
1

L′(T )

d log(T )

dT

)
=

1

L′(T )

d

dT

(
1

TL′(T )

)
. (2.13)
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Because L(T ) = T +
∑∞

n=2
cn−1

n Tn for some cn ∈ Z by Proposition 1.6.20, we have

L′(T ) = 1 +
∞∑
n=1

cnT
n ∈ 1 + TZ[[T ]].

Hence also 1
L′(T ) ∈ Z[[T ]]. It then follows from (2.13) that d2

dz2
log(E(z))(L(T )) ∈ Z((T )).

Furthermore, we also know that xT (T ) ∈ Z((T )). Hence the right-hand side of (2.12) has
coefficients in Z, and then so must the left-hand side. We conclude that

d2

dz2
log(u(z))(L(T )) + a21 + 4a2

12
∈ Z[[T ]].

If we evaluate at E(z), we find using Lemma 2.2.9 that

d2

dz2
log(u(z)) +

a21 + 4a2
12

=

∞∑
n=0

dn
n!
zn

log(u(z)) +
a21 + 4a2

24
z2 = C1 + C2z +

∞∑
n=2

dn−2

n!
zn (2.14)

for some dn ∈ Zp and C1, C2 ∈ Qp. Because u(z) is of the form (2.11), we see from the series
expansion of the logarithm that log(u(z)) = c

2z + · · · , so C1 = 0 and C2 = c
2 ∈ Zp (because

p ̸= 2).

When T ∈ pZp, we have that L(T ) converges and ordp(L(T )) > 0 by [32, IV, Lemma 6.3(b)]
(where we use that p ≥ 3). The same Lemma [32, IV, Lemma 6.3(b)] then also implies that the

right-hand side of (2.14) converges at L(T ) to a value in pZp. Because ordp

(
a21+4a2

24 L(T )2
)
> 0

we conclude that then also log(u(L(T ))) converges to a value in pZp. The Taylor series around 0
of the exponential function converges at this value, again by [32, IV, Lemma 6.3(b)], and hence
u(L(T )) = up(T ) converges. Then σp(T ) also converges for T ∈ pZp. ■

Recall that if P ∈ E1(Qp), the kernel of reduction modulo p, then t(P ) = −x(P )/y(P ) ∈ pZp

and hence σp converges at t(P ).

Properties of σp

From the expansions of σ (see Lemma 2.2.3) and L (see Proposition 1.6.20), we deduce that
σp(T ) ∈ T + T 2Q[[T ]], and hence for T in the domain of convergence pZp, we have σp(T ) = 0
precisely when T = 0.

From the identity (2.9), we deduce a similar identity for σp. Using Proposition 2.2.4, we see that

σ(L(T1) + L(T2))σ(L(T1)− L(T2))
σ(L(T1))2σ(L(T2))2

= ℘(L(T2))− ℘(L(T1))

σ(L(F (T1, T2))σ(L(F (T1, i(T2))))
σ(L(T1))2σ(L(T2))2

= ℘(L(T2))− ℘(L(T1))

σp(F (T1, T2))σp(F (T1, i(T2)))

σp(T1)2σp(T2)2
= xT (T2)− xT (T2).
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We saw that Proposition 2.2.10 implies that σp(T ) converges on t(P ) for P ∈ E1(Qp), and we
know xT (T ) converges on t(P ) for P ∈ E1(Qp) \ {O}. So for P,Q ∈ E1(Qp) \ {O}, we get the
identity

σp(t(P +Q))σp(t(P −Q))

σp(t(P ))2σp(t(Q))2
= x(Q)− x(P ). (2.15)

Other p-adic σ-functions

For any constant s ∈ Qp, we define a series

σ(s)p (T ) = σp(T ) expp

(
−s
2
L(T )2

)
(2.16)

where expp is the p-adic exponential. Note that σp = σ
(0)
p . These functions σ

(s)
p are different

p-adic σ-functions. The region of convergence of σ
(s)
p in Qp may depend on s, and we denote it

by Vs. We write V s = {P ∈ E1(Qp) | t(P ) ∈ Vs}.

We use the following general property of L.

Proposition 2.2.11. The map E1(Qp) → Qp defined by P 7→ L(t(P ))2 is a quadratic form.
Explicitly, for all P,Q ∈ E1(Qp) and m ∈ Z we have

L(t([m]P ))2 = m2L(t(P ))2,
L(t(P +Q))2 + L(t(P −Q))2 = 2L(t(P ))2 + 2L(t(Q))2.

Proof. This follows from Lemma 1.6.12 and the fact that the maps ψ−1 defined in (1.26) and L
from (1.32) are group homomorphisms. ■

Lemma 2.2.12. Let P ∈ E1(Qp) such that P,−P ∈ V s. We have

σ(s)p (t(−P )) = −σ(s)p (t(P )).

Proof. We have

σ(s)p (t(−P )) = σp(t(−P )) expp
(
−s
2
L(t(−P ))2

)
(using (2.16))

= σ(L(i(t(P )))) expp
(
−s
2
L(i(t(P )))2

)
(because (1.26) is a homomorphism)

= σ(−L(t(P ))) expp
(
−s
2
(−L(t(P )))2

)
(because L is a homomorphism)

= −σp(t(P )) expp
(
−s
2
L(t(P ))2

)
(because σ is odd)

= −σ(s)p (t(P )).

■

Lemma 2.2.13. Let s ∈ Qp, and let P,Q ∈ V s \ {O}. Then

σ
(s)
p (t(P +Q))σ

(s)
p (t(P −Q))

σ
(s)
p (t(P ))2σ

(s)
p (t(Q))2

= x(Q)− x(P ).
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Proof. From (2.16) we get

σ
(s)
p (t(P +Q))σ

(s)
p (t(P −Q))

σ
(s)
p (t(P ))2σ

(s)
p (t(Q))2

=
σp(t(P +Q))σp(t(P −Q))

σp(t(P ))2σp(t(Q))2
×

expp

(
−s
2

(
L(t(P +Q))2 + L(t(P −Q))2 − 2L(t(P ))2 − 2L(t(Q))2

))
.

This last factor is equal to 1 by Proposition 2.2.11. The result then follows from (2.15). ■

Lemma 2.2.14 ([6, Lemma 2.2.4(ii)]). Let s ∈ Qp, P ∈ V s \ {O}, and n ∈ Z>0. Then

σ(s)p (t([n]P )) = σ(s)p (t(P ))n
2
ψn(P ),

with ψn as defined in Definition 1.3.2.

We can use the p-adic σ-functions to define local heights λ̂
(s)
p : V s \ {O} → Qp by

λ̂(s)p (P ) = −2 logp(σ
(s)
p (t(P ))). (2.17)

This is only meaningful for values of s for which V s is larger than {O}, such as s = 0. In this

case, we want to extend λ̂
(s)
p to all nontorsion points of E(Qp).

Lemma 2.2.15. Let V be a neighbourhood of 0 in Qp. Let P ∈ E(Qp). Then there exists an
integer m > 0 such that [m]P ∈ E1(Qp) and t([m]P ) ∈ V .

Proof. We note that E1(Qp) has finite index in E0(Qp) = E(Qp) from [32, VII, Proposition 2.1].
Hence, the equivalence class of P in E(Qp)/E1(Qp) must have finite order k, which implies that
[k]P ∈ E1(Qp). Because V is a neighborhood of 0 in Qp, it contains a set of the form pnZp for
some n ∈ Z>0. Because [k]P ∈ E1(Qp), we find that ordp(t([p

n−1k]P )) ≥ n by Corollary 1.6.13.
Hence t([pn−1k]P ) ∈ pnZp ⊆ V . ■

For the rest of this section, let us fix an s ∈ Qp such that Vs is a neighborhood of 0.

Definition 2.2.16. Let P ∈ E(Qp) \ Etors. Let m ∈ Z>0 such that t([m]P ) ∈ Vs. We define

λ̂
(s)
p : E(Qp) \ Etors → Qp by

λ̂(s)p (P ) = − 2

m2

(
logp(σ

(s)
p (t([m]P )))− logp(ψm(P ))

)
.

Note that when P ∈ V s \ {O}, we can take m = 1 and this definition agrees with (2.17). This
definition does not depend on the choice of m, as the following lemma shows.

Lemma 2.2.17. Let P ∈ E(Qp) \ Etors. Let m,n ∈ Z>0 be such that t([m]P ), t([n]P ) ∈ Vs.
Then

− 2

m2

(
logp(σ

(s)
p (t([m]P )))− logp(ψm(P ))

)
= − 2

n2

(
logp(σ

(s)
p (t([n]P )))− logp(ψn(P ))

)
.

Proof. From Lemma 2.2.14, we have

σ(s)p (t([m]P ))n
2
ψn([m]P ) = σ(s)p (t([mn]P )) = σ(s)p (t([n]P ))m

2
ψm([n]P ).
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Using Proposition 1.3.3(v) we obtain

σ
(s)
p (t([m]P ))n

2

ψm(P )n2 =
σ
(s)
p (t([n]P ))m

2

ψn(P )m
2 .

This shows that

1

m2
logp

(
σ
(s)
p (t([m]P ))

ψm(P )

)
=

1

n2
logp

(
σ
(s)
p (t([n]P ))

ψn(P )

)
.

■

Proposition 2.2.18 ([6, p. 18]). The local height λ̂
(s)
p satisfies the following properties:

(a) For all P ∈ E(Qp) \ Etors and all n ≥ 1, we have

λ̂(s)p ([n]P ) = n2λ̂(s)p (P )− 2 logp(ψn(P )).

(b) For all P,Q ∈ E(Qp) such that P,Q, P +Q,P −Q /∈ Etors, we have

λ̂(s)p (P +Q) + λ̂(s)p (P −Q) = 2λ̂(s)p (P ) + 2λ̂(s)p (Q)− 2 logp(x(P )− x(Q)).

2.2.3 Global p-adic heights

Again we only consider s ∈ Qp for which Vs is a neighborhood of 0. For such s we define a global
height on all of E(Q).

Definition 2.2.19. We define a global height h
(s)
p : E(Q) → Qp by

h(s)p =

{
λ̂
(s)
p +

∑
q ̸=p λ̂

(p)
q if P /∈ Etors,

0 if P ∈ Etors.

To see that the sum in this definition is finite, we note that E has good reduction at all but a

finite number of primes, and at those primes we have we have λ̂
(p)
q (P ) = logp max{|x(P )|q, 1}

(see Lemma 2.2.2). For each P ∈ E(Q) \ {O}, we have |x(P )|q = 1 for all but finitely many

primes q. We conclude that λ̂
(p)
q (P ) is nonzero for only finitely many primes.

In order to find a more explicit description of h
(s)
p , we first consider it on a subset on which the

local heights have a simple description. Let us write

Egood(Q) =
⋂

q prime

E
(q)
0 (Q)

for the set of all P ∈ E(Q) that reduce to a nonsingular point modulo all primes (with respect
to the Weierstrass model (2.5)). Furthermore, we write

E(s)
p (Q) := Egood(Q) ∩ V s.

Proposition 2.2.20. Let P ∈ E(Q). Then there exists an m ∈ Z>0 such that [m]P ∈ E
(s)
p (Q).
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Proof. Note that E has bad reduction at a prime q precisely when q | ∆, so there are at most

a finite number of primes q1, . . . , qr for which P /∈ E
(qi)
0 (Q). But E

(qi)
0 (Q) has finite index in

E(Q) (see [32, VII, Corollary 6.2]), which implies that there is a positive integer mi such that

[mi]P ∈ E
(qi)
0 (Q) for each i ∈ {1, . . . , r}. Then [m1 · · ·mr]P ∈ Egood(Q). We already saw in

Lemma 2.2.15 that there exists a positive integer m0 such that [m0m1 · · ·mr]P ∈ V s, which
concludes the result. ■

Proposition 2.2.21. Let P ∈ E(Q) \ Etors and let m ∈ Z>0 such that [m]P ∈ E
(s)
p (Q). Then

h(s)p (P ) = − 2

m2
logp

(
σ
(s)
p (t([m]P ))

d([m]P )

)
,

with d([m]P ) as defined in Proposition 1.3.1.

Proof. Note that [m]P ̸= O because P /∈ Etors. We have

h(s)p (P ) = λ̂(s)p (P ) +
∑
q ̸=p

λ̂(p)q (P )

= − 2

m2

(
logp(σ

(s)
p (t([m]P )))− logp(ψm(P ))

)
+
∑
q ̸=p

1

m2

(
λ̂(p)q ([m]P ) + 2 logp |ψm(P )|q

)
(Def. 2.2.16, Prop. 2.2.1)

= − 1

m2

2 logp(σ(s)p (t([m]P )))−
∑
q ̸=p

logp max{|x([m]P )|q, 1}

 (Lemma 1.1.17, 2.2.2)

= − 1

m2

2 logp(σ(s)p (t([m]P ))) +
∑
q ̸=p

logp |d([m]P )2|q


= − 2

m2
logp

(
σ
(s)
p ([m]P ))

d([m]P )

)
. (Lemma 1.1.17)

■

Proposition 2.2.22 ([6, Properties 2.2.7]). The p-adic height h
(s)
p : E(Q) → Qp is a quadratic

form. Explicitly:

(a) For all P ∈ E(Q) and n ∈ Z, we have h
(s)
p ([n]P ) = n2h

(s)
p (P ).

(b) For all P,Q ∈ E(Q), we have h
(s)
p (P +Q) + h

(s)
p (P −Q) = 2h

(s)
p (P ) + h

(s)
p (Q).

Proof. In general, part (a) follows from part (b) by Proposition 2.1.5. However, to prove (b) on
torsion points, we will use part (a), and thus we prove part (a) first.

Part (a) is clearly satisfied when P ∈ Etors(Q). For P /∈ Etors and n ≥ 1, we use Proposition
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2.2.18 and Proposition 2.2.1 to get

h(s)p ([n]P ) = λ̂(s)p ([n]P ) +
∑
q ̸=p

λ̂(p)q ([n]P )

= n2λ̂(s)p (P )− 2 logp(ψn(P )) + n2
∑
q ̸=p

[
λ̂(p)q (P )− 2 logp |ψn(P )|q

]
= n2h(s)p (P ). (Lemma 1.1.17)

For n = 0, the statement is clear because both sides evaluate to 0. Finally, to show the statement

for n < 0, we note that h
(s)
p (P ) = h

(s)
p (−P ) for all P ∈ E(Q). This clear when P ∈ Etors, and

when P /∈ Etors, we can find m ∈ Z>0 such that [m]P, [−m]P ∈ E
(s)
p (Q). It then follows from

Proposition 2.2.21 that h
(s)
p (P ) = h

(s)
p (−P ), because σ

(s)
p (t(−P )) = −σ(s)p (t(P )) (Lemma 2.2.12),

d(−P ) = d(P ) and logp(−1) = 0. Then we have

h(s)p ([n]P ) = h(s)p ([−n]P ) = (−n)2h(s)p (P ) = n2h(s)p (P ).

For part (b), let us first consider P,Q ∈ E(Q) such that P,Q, P +Q,P −Q /∈ Etors. Then we
again use Proposition 2.2.18 and Proposition 2.2.1 to find

h(s)p (P +Q) + h(s)p (P −Q) = λ̂(s)p (P +Q) + λ̂(s)p (P −Q) +
∑
q ̸=p

λ̂(p)q (P +Q) +
∑
q ̸=p

λ̂(p)q (P −Q)

= 2λ̂(s)p (P ) + 2λ̂(s)p (Q)− 2 logp(x(P )− x(Q))

+
∑
q ̸=p

[
2λ̂(p)q (P ) + 2λ̂(p)q (Q)− 2 logp |x(P )− x(Q)|q

]
= 2h(s)p (P ) + 2h(s)p (Q). (Lemma 1.1.17)

If P ∈ Etors with [n]P = O, we get

h(s)p (P +Q) + h(s)p (P −Q) =
1

n2
h(s)p ([n](P +Q)) +

1

n2
h(s)p ([n](P −Q))

=
1

n2
h(s)p ([n]Q) +

1

n2
h(s)p ([−n]Q))

= 2h(s)p (Q)

= 2h(s)p (P ) + 2h(s)p (Q).

A similar argument shows that the parallelogram law is satisfied when Q is a torsion point. If
P +Q ∈ Etors with [n](P +Q) = O, we have [n]P = −[n]Q. We get

h(s)p (P +Q) + h(s)p (P −Q) = h(s)p (P −Q)

=
1

n2
h(s)p ([n]P − [n]Q)

=
1

n2
h(s)p ([2n]P )

=
2

n2
h(s)p ([n]P ) +

2

n2
h(s)p ([−n]Q)

= 2h(s)p (P ) + 2h(s)p (Q).

When P −Q ∈ Etors we have a similar argument. ■
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Finally, let us derive a relation between the height functions h
(s)
p for different values of s.

Proposition 2.2.23. For all P ∈ E1(Q), we have

h(s)p (P ) = h(0)p (P ) + sL(t(P ))2.

Proof. If P = O, both sides evaluate to 0 so the equality is satisfied. Otherwise, P /∈ Etors by

Corollary 1.6.25. Let m ∈ Z>0 such that [m]P ∈ E
(s)
p (Q). We find

h(s)p (P ) = − 2

m2
logp

(
σ
(s)
p (t([m]P ))

d([m]P )

)
(Proposition 2.2.21)

= − 2

m2
logp

(
σ
(0)
p (t([m]P ))

d([m]P )

)
+

s

m2
L(t([m]P ))2 (using (2.16))

= h(0)p (P ) + sL(t(P ))2. (Proposition 2.2.11)

■

2.3 Naive p-adic height functions on elliptic curves

We now introduce two naive p-adic height functions, which in a limit converge to quadratic
p-adic height functions, similarly to how the real canonical height was defined in Definition 2.1.6.

We compare these limits to the previously defined p-adic height function h
(0)
p . These naive p-adic

heights were first described by Perrin-Riou in [28], in the setting of elliptic curves over general
number fields, and using idèle class characters. The goal of this section is to give a more in
depth description and explanation of the results described in [28], specialized to the case where
E is an elliptic curve defined over Q. In this setting there is only one idèle class character up
to scaling, and for that reason we do not introduce the corresponding theory but instead do
everything explicitly for one normalization.

Let us again fix an odd prime p. We remain in the setting of the previous section, considering
an elliptic curve E/Q defined by (2.5). We focus on the subgroup

Ep(Q) := E(0)
p (Q) = Egood(Q) ∩ E(p)

1 (Q)

of points on E. Recall from Proposition 1.3.1 that for any P ∈ E(Q) \ {O} we can write

x(P ) = a(P )
d(P )2

and y(P ) = b(P )
d(P )3

for some unique integers a(P ), b(P ) and d(P ) with d(P ) > 0,

such that gcd(a(P ), d(P )) = gcd(b(P ), d(P )) = 1. We define the following functions from
Ep(Q) \ {O} to Qp:

H2(P ) = logp(a(P )) (2.18)

H3(P ) =
2

3
logp

(
d(P )3(2y(P ) + a1x(P ) + a3)/2

)
=

2

3
logp

(
b(P ) +

a1
2
a(P )d(P ) +

a3
2
d(P )3

)
.

Because P ∈ Ep(Q) ⊆ E
(p)
1 (Q), we know that P reduces to [0 : 1 : 0] modulo p. This implies

that ordp(y(P )) < 0 and then also ordp(x(P )) < 0, so we have ordp(a(P )) = ordp(b(P )) = 0 and
ordp(d(P )) > 0. Hence, since p ̸= 2, the arguments a(P ) and b(P ) + a1

2 a(P )d(P ) + a3
2 d(P )3 are

in Z×
p . We call H2 and H3 naive p-adic heights. The main result we discuss in this section is the

following, which is the main proposition in [28, Section 4].
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Theorem 2.3.1 ([28, p. 246, Proposition]). Let P ∈ Ep(Q) \ {O}. Then the following limits
exist in Qp:

(a) h2(P ) = limn→∞
1

p2n
H2([p

n]P ),

(b) h3(P ) = limn→∞
1

p2n
H3([p

n]P ).

The goal in this section is to work out Perrin-Riou’s proof of this result in detail, which will be
done in Section 2.3.2 and Section 2.3.3. We then show that h2 and h3 satisfy the parallelogram
law in Section 2.3.4. In section 2.3.5, we show how h2 and h3 can be extended from the restricted
domain Ep(Q) \ {O} to the entire group E(Q). Finally, in Section 2.3.6 we compare h2 and h3

with the quadratic height h
(s)
p of Section 2.2.3. In [29], Perrin-Riou proves a comparison result

under the assumption that E has good ordinary reduction at p. We present an adapted proof
that does not use this assumption.

2.3.1 Some useful lemmas

In order to prove Theorem 2.3.1, we first introduce some lemmas which will become useful
multiple times throughout the remainder of this chapter. The first lemma is based on [28, Lemme
a], but proven for a bigger class of functions (although stated over Qp rather than the more
general v-adic completion of a number field). This greater generality will allow us in Section

2.3.6 to compare h2 and h3 with the quadratic height h
(s)
p from Section 2.2.3 without requiring

that E has ordinary reduction at p, which is an assumption Perrin-Riou uses in [29] to obtain
such a comparison result.

Lemma 2.3.2. Let T = (T1, . . . , Tr) and g(T ) ∈ 1 + (T1, . . . , Tr)
kQp[[T ]] for some k ∈ Z>0,

such that g converges on some neighborhood of 0 in (Qp)
r. Let (x(n)) be a sequence of r-tuples in

(Qp)
r, satisfying ordp(x

(n)
i ) ≥ n for all n ≥ 0 and i = 1, . . . , r. Then for large enough n ∈ Z≥0,

g(x(n)) converges, and for m ∈ Z<k we have

lim
n→∞

1

pmn
logp(g(x

(n))) = 0.

Proof. Let us write

g(T ) = 1 +

∞∑
i1,...,ij≥0

i1+···+ir≥k

ai1,...,irT
i1
1 · · ·T ir

r

with ai1,...,ir ∈ Qp. Because g converges on a neighborhood of 0, we know there exists some
R ∈ Z such that g converges for all T ∈ (Qp)

r satisfying ordp(Ti) ≥ R for i = 1, . . . , r. In
particular, g(x(n)) converges for all n ∈ Z≥0 satisfying n ≥ R.

To prove the second statement, we first show that there exists a constant C ≥ 0 such that g(x(n)) ∈
1 + pk(n−C)Zp for all n ≥ C. Because g converges at (pR, . . . , pR), There is a minimal M ∈ Z≥k

such that for all i1, . . . , ir ∈ Z≥0 with i1 + · · ·+ ir ≥M , we have ordp(ai1,...,irp
(i1+···+ir)R) ≥ 0,

and hence

ordp(ai1,...,ir) ≥ −(i1 + · · ·+ ir)R. (2.19)
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If M > k, let us define N = −min{mini1+···ir<M ordp(ai1,...,ir), 0}. Consider any n ≥ N . Then
for all i1, . . . , ir with k ≤ i1 + · · ·+ ir < M , we get

ordp

(
ai1,...,ir(x

(n)
1 )i1 · · · (x(n)r )ir

)
= ordp(ai1,...,ir) +

r∑
j=1

ij ordp(x
(n)
j )

≥ −N + (i1 + · · ·+ ir)n

≥ −N + kn

≥ k(n−N) ≥ 0. (using k ≥ 1, N ≥ 0) (2.20)

Now consider n ≥ R. For all i1, . . . , ir with i1 + · · ·+ ir ≥M ≥ k, we get

ordp

(
ai1,...,ir(x

(n)
1 )i1 · · · (x(n)r )ir

)
= ordp(ai1,...,ir) +

r∑
j=1

ij ordp(x
(n)
j )

≥ −(i1 + · · ·+ ir)R+ (i1 + · · ·+ ir)n (using (2.19))

≥ k(n−R) ≥ 0. (2.21)

We set C = max{N,R} ≥ 0. Using (2.20) and (2.21) we get that if n ≥ C, then for all for all

i1, . . . , ir with k ≤ i1 + · · · + ir we have ordp

(
ai1,...,ir(x

(n)
1 )i1 · · · (x(n)r )ir

)
≥ k(n − C). Hence

g(x(n)) ∈ 1 + pk(n−C)Zp (by Lemma 1.1.7). We conclude that

ordp

(
1

pmn
logp(g(x

(n)))

)
= −mn+ ordp(logp(g(x

(n))))

≥ −mn+ k(n− C) (using Lemma 1.1.16)

= n(k −m)− kC.

Because m < k, this shows that ordp

(
1

pmn logp(g(x
(n)))

)
approaches infinity as n → ∞. This

implies the result. ■

Corollary 2.3.3. Let P ∈ E1(Qp). Let g(T ) ∈ 1 + T kQp[[T ]] for some k ∈ Z>0, such that
g converges on some neighborhood of 0 in Qp. Then for large enough n ∈ Z≥0, g(t([p

n]P ))
converges, and for m ∈ Z<k we have

lim
n→∞

1

pmn
logp(g(t([p

n]P ))) = 0.

Proof. We know that ordp(t([p
n]P )) ≥ n from Corollary 1.6.13. The result then follows immedi-

ately from Lemma 2.3.2. ■

Corollary 2.3.4 (variation on [29, Lemme part 1]). Let P ∈ E1(Qp). If g(T ) ∈ 1+T kZp[[t]]
for some k ∈ Z>0, then for m ∈ Z<k we have

lim
n→∞

1

pmn
logp(g(t([p

n]P ))) = 0.

Proof. Because g(T ) ∈ Zp[[T ]], g converges for all T ∈ pZp by Lemma 1.1.7. The result then
follows from Corollary 2.3.3. ■
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Lemma 2.3.5 ([29, Lemme part 3]). Let P ∈ E1(Qp). If d ∈ Qp, then

lim
n→∞

1

p2n
logp

(
1 + d t([pn]P )2

)
= dL(t(P ))2.

Proof. The statement is clearly true for d = 0. Let us assume d ̸= 0 and write C := ordp(d).
Recall from Corollary 1.6.13 that ordp(t([p

n]P )) > n for all n ≥ 0, so 1− d t([pn]P )2 ∈ 1 + pZp

for all n ≥ 0 satisfying 2n ≥ −C. For such n, we use (1.3) to obtain

logp
(
1 + d t([pn]P )2

)
= d t([pn]P )2 + t([pn]P )3

∞∑
i=2

(−1)i+1

i
dit([pn]P )2i−3.

Let us look at the terms in the sum for i ≥ 2 individually. We see that

ordp

(
(−1)i+1

i
dit([pn]P )2i−3

)
≥ −(i− 1) + (2i− 3) (using ordp(i) ≤ i− 1)

= i− 2 ≥ 0.

If C < 0, we consider n ≥ −2C, and we get

ordp

(
(−1)i+1

i
dit([pn]P )2i−3

)
≥ −(i− 1) + Ci+ (2i− 3)(n+ 1)

≥ −(i− 1) + Ci+ (2i− 3)(−2C + 1)

= −3Ci+ i+ 6C − 2

= (i− 2)(−3C + 1) ≥ 0.

Hence for all n ≥ max{−2C, 0}, we can write

logp(1 + d t([pn]P )2) = d t([pn]P )2 + t([pn]P )3 g(t([pn]P ))

with g(t) =
∑∞

i=2
(−1)i+1

i dit2i−3 and ordp(g(t([p
n]P ))) ≥ 0. We use this to split the argument of

the limit into two terms, after which we will show that the limit of each of these separate terms
exists, and thus that their sum is equal to the original limit. Assuming for now the limits indeed
exist we obtain the equality

lim
n→∞

1

p2n
logp

(
1 + d t([pn]P )2

)
= lim

n→∞

[
d t([pn]P )2

p2n
+
t([pn]P )3

p2n
g(t([pn]P ))

]
= d · lim

n→∞

(
t([pn]P )

pn

)2

+ lim
n→∞

[
t([pn]P )3

p2n
g(t([pn]P ))

]
. (2.22)

In order to rewrite the first term, we note that L(t([pn]P )) = pnL(t(P )) for all n ≥ 0, by
Theorem 1.6.21 and because the map ψ in (1.26) is a homomorphism. Hence we have

L(t(P )) = 1

pn
L(t([pn]P ))

=
1

pn

∞∑
i=1

ci−1

i
t([pn]P )i

for some ci ∈ Z with c0 = 1 by Proposition 1.6.20. For i ≥ 1, we have

ordp

(
1

pn
ci−1

i
t([pn]P )i

)
> −n− i+ in = (n− 1)i− n.
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We get

ordp

(
L(t(P ))− t([pn]P )

pn

)
= ordp

( ∞∑
i=2

1

pn
ci−1

i
t([pn]P )i

)
> 2(n− 1)− n = n− 2

for n ≥ 1. This implies that limn→∞

(
L(t(P ))− t([pn]P )

pn

)
= 0, and hence

lim
n→∞

(
t([pn]P )

pn

)2

= L(t(P ))2.

For the second term of (2.22), we note that for n ≥ max{−2C, 0}, we have

ordp

(
t([pn]P )3

p2n
g(t([pn]P ))

)
> 3n− 2n = n,

and hence limn→∞

[
t([pn]P )3

p2n
g(t([pn]P ))

]
= 0. Taking everything together, we conclude that

lim
n→∞

1

p2n
logp(1 + d t([pn]P )2) = dL(t(P ))2.

■

Corollary 2.3.6. Let d ∈ Zp, P ∈ E1(Qp), and let g(T ) ∈ 1 + dT 2 + T 3Qp[[T ]] such that g
converges on a neighborhood of 0 in Qp. Then for large enough n ∈ Z≥0, g(t([p

n]P )) converges
and

lim
n→∞

1

p2n
logp (g(t([p

n]P ))) = dL(t(P ))2.

Proof. If we view 1 + dT 2 as a power series in Zp[[T ]], it is invertible, and its inverse is of the
form

h(T ) ∈
∞∑
i=0

(−d)iT 2i.

For T with 2 ordp(T ) > − ordp(d), we get ordp((−d)iT 2i) ≥ i for all i ≥ 0, and hence h(T )
converges at T by Lemma 1.1.7. We conclude that h converges on a neighborhood of 0 in Qp.

We can write g(T ) = (1+ dT 2)h(T )g(T ), and, because both h and g converge on a neighborhood
of 0 in Qp, the same is true for k(T ) := h(T )g(T ). Furthermore, from the form of the expansions
we conclude that k(T ) ∈ 1 + T 3Qp[[T ]].

We obtain

lim
n→∞

1

p2n
logp (g(t([p

n]P ))) = lim
n→∞

1

p2n
logp

(
1 + d t([pn]P )2

)
+ lim

n→∞

1

p2n
logp (k(t([p

n]P )))

= dL(t(P ))2

using Lemma 2.3.5 and Corollary 2.3.3. ■
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2.3.2 Existence of h2

We start by proving the existence of the limit in Theorem 2.3.1(a). Our strategy is as follows:
Let us write G(P ) := H2([p]P )− p2H2(P ). Then if we show

lim
n→∞

1

p2(n+1)
G([pn]P ) = 0, (2.23)

this implies using Lemma 1.1.6 that the sequence
(

1
p2n

H2([p
n]P )

)
for n→ ∞ is Cauchy. This

then shows that the limit in Theorem 2.3.1(a) exists, because Qp is complete and hence every
Cauchy sequence has a limit. To be able to show (2.23), we need to rewrite G(P ) in a form for
which we can evaluate this limit.

Proposition 2.3.7. Let P =
(

a(P )
d(P )2

, b(P )
d(P )3

)
∈ Ep(Q) \ {O}. For all m ≥ 1 such that [m]P ̸= O,

we have

H2([m]P )−m2H2(P ) = logp

(
a([m]P )

a(P )m2

)
.

Proof. This follows directly from the definition of H2:

H2([m]P )−m2H2(P ) = logp(a([m]P ))−m2 logp(a(P ))

= logp

(
a([m]P )/a(P )m

2
)
.

■

To work with the expression above, we want to express the value a([m]P ) in terms of the point P
rather than [m]P . To be able to do this, we make use of some general properties of the division
polynomials, which were introduced in Section 1.3.3.

Lemma 2.3.8 ([28, Lemme b]). Let E/K be a possibly singular Weierstrass curve (1.4) over
a field K. Let P ∈ E(K) \ {O} be a nonsingular point. Then x(P ) cannot be a common zero of
ϕm and ψ2

m for any m ≥ 1.

Proof. By definition, a point P ̸= O is singular when it simultaneously satisfies

ψ2(P ) = 2y(P ) + a1x(P ) + a3 = 0 and η(P ) := 3x(P )2 + 2a2x(P ) + a4 − a1y(P ) = 0.

For m = 1 we have ϕm = ψ2
m = 1, so the statement is trivially true. Next, let us consider the

case m = 2. Some algebra shows that

ϕ2(x(P )) = x4 − b4x
2 − 2b6x− b8

= η(P )2 − 2x(P )ψ2
2(x(P )) + a1η(P )ψ2(P )− a2ψ

2
2(x(P )).

If we assume that ψ2(P ) = ϕ2(x(P )) = 0, the above equation implies that also η(P ) = 0, and
hence that P is a singular point.

Next we show the statement for arbitrary m > 2 by contradiction. Let m be the smallest integer
for which P is a common zero of ϕm and ψ2

m. Let us first assume that m is even. Then we can
write m = 2n. We distinguish two cases.
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1. If ψ2
n(x(P )) = 0, we see from (1.9) that ϕ2n(x(P )) = 0 implies that also ϕn(x(P )) = 0.

But this is not possible because of the minimality of m and the fact that n < m.

2. If ψ2
n(x(P )) ̸= 0, then (1.9), (1.10) and our assumption ϕm(x(P )) = ψ2

m(x(P )) = 0 imply
that

ϕ2

(
ϕn(x(P ))

ψ2
n(x(P ))

)
= ϕ2(x([n]P )) = 0 and ψ2

2

(
ϕn(x(P ))

ψ2
n(x(P ))

)
= ψ2

2(x([n]P )) = 0.

But we saw that this implies that [n]P is a singular point, which is not possible because
we assumed that P is nonsingular.

Now assume m is odd. Then ϕm(x(P )) = ψ2
m(x(P )) = 0 together with (1.7) imply that

ψm−1(P )ψm+1(P ) = 0. This gives two possibilities. If ψm+1(P ) = 0, then from (1.7) we know
that ϕm+1(x(P )) = x(P )ψ2

m+1(x(P ))−ψm(P )ψm+2(P ) = 0. But because m+1 is even, we just
saw that then also ϕ(m+1)/2(x(P )) = ψ(m+1)/2(P ) = 0. But this contradicts the minimality of m,
because (m+ 1)/2 < m for m ≥ 3. In a similar way we get a contradiction when ψm−1(P ) = 0.
Together this proves the lemma. ■

Corollary 2.3.9. Let E/K be an elliptic curve over a field K. Then ϕm and ψ2
m have no

common zeros in K, and hence they are coprime polynomials in K[x].

Proof. Assume x ∈ K is a common zero of ϕm and ψ2
m. Because K is algebraically closed, there

exists y ∈ K such that (x, y) ∈ E(K). This contradicts Lemma 2.3.8. ■

Lemma 2.3.10 ([28, Lemme c]). Let E/K be an elliptic curve, where K is a field with
char(K) not equal to 2 or 3. Then the coefficient of xm

2−1 in the polynomial ϕm is zero for all
m ≥ 1.

Proof. Let us consider the change of coordinates

y′ = y +
a1x+ a3

2
and x′ = x+

4a2 + a21
12

.

The corresponding Weierstrass equation (y′)2+a′1x
′y′+a′3y

′ = (x′)3+a′2(x
′)2+a′4x

′+a′6 satisfies
a′1 = a′2 = 0. We consider the polynomials ϕ′m and (ψ′

m)2 corresponding to this equation. We
know that ϕ′m is homogeneous of degree 2m2, where x has weight 2 (see Proposition 1.3.3(ii)).
The coefficient d′m2−1 ∈ Z[a′1, . . . a′6] of (x′)m

2−1 therefore needs to have weight 2, but because
the a′i have weight i, and a′1 = a′2 = 0, this is not possible and hence we must have d′m2−1 = 0.

Now if we set c =
4a2+a21

12 so that x′ = x+ c, we see that for all P with [m]P ̸= O,

ϕ′m(x(P ) + c)

(ψ′
m)2(x(P ) + c)

=
ϕ′m(x′(P ))

(ψ′
m)2(x′(P ))

= x′(mP )

= x(mP ) + c

=
ϕm(x(P )) + c ψ2

m(x(P ))

ψ2
m(x(P ))

.
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We conclude that

ϕ′m(x+ c)

(ψ′
m)2(x+ c)

=
ϕm(x) + c ψ2

m(x)

ψ2
m(x)

(2.24)

in K(x). It follows from Corollary 2.3.9 that the numerator and denominator of this fraction on
the right-hand side cannot have common factors. We also know that ϕ′m(x+ c) and (ψ′

m)2(x+ c)
have no common factors by the same corollary. Hence we conclude that the numerators in (2.24)
are equal, so we have

ϕ′m(x′) = ϕm(x′ − c) + cψ2
m(x′ − c).

Let us denote by dm2−1 the coefficient of xm
2−1 in ϕm. By comparing the coefficient of (x′)m

2−1

in the left- and right-hand side of the above equation, we obtain d′m2−1 = −m2c+dm2−1+ cm
2 =

dm2−1. We conclude that dm2−1 = d′m2−1 = 0. ■

Let us return to our original setting, with the elliptic curve E given by (2.5). Recall that we want
to rewrite a([m]P ) as an expression in terms of the point P . In order to do this, we introduce
the notation

ϕm(X,Z) = Zm2
ϕm(X/Z) and ψm

2
(X,Z) = Zm2

ψ2
m(X/Z).

Lemma 2.3.11 ([28, Lemme d]). Let P =
(

a(P )
d(P )2

, b(P )
d(P )3

)
∈ Egood(Q) \ {O}. Let m ≥ 1 such

that [m]P ̸= O. Then a([m]P ) = ±ϕm(m1,m
2
3).

Proof. To ease notation, let us write m1 = a(P ), m2 = b(P ) and m3 = d(P ). We also use the

notation αm = ϕm(m1,m
2
3) and βm = ψm

2
(m1,m

2
3). First of all, we note that

αm = m2m2

3 ϕm(x(P )),

βm = m2m2

3 ψ2
m(x(P )),

and hence x([m]P ) = αm
βm

by (1.8). Note that αm, βm ∈ Z. It now suffices to show that
gcd(αm, βm) = 1. In order to do this, let us consider any prime q. If q | m3, then q ∤ m1

as gcd(m1,m3) = 1. We know that ϕm(x) is monic in x, so we deduce that ϕm(X,Z) =
Xm2

+ Zg(X,Z) where g(X,Z) ∈ Z[X,Z] is homogeneous of degree m2 − 1. Hence αm =
ϕm(m1,m

2
3) ∈ mm2

1 +m2
3Z, which implies that q ∤ αm.

If q ∤ m3, this implies that m̃3 has a multiplicative inverse m̃−1
3 in Fq, and P̃ = (m̃1m̃

−2
3 , m̃2m̃

−3
3 )

(using the notation in Definition 1.1.12). We observe that

ϕ̃m(x(P̃ )) = ϕ̃m(m̃1m̃
−2
3 ) = m̃−2m2

3 ϕ̃m(m̃1, m̃
2
3).

We thus have q | αm precisely when ϕ̃m(x(P̃ )) = 0. Similarly, q | βm precisely when ψ̃2
m(x(P̃ )) = 0.

But because P ∈ Egood(Q), x(P̃ ) cannot be a common zero of ϕ̃m and ψ̃2
m by Lemma 2.3.8.

We conclude that q ∤ gcd(αm, βm), and because q is arbitrary we have gcd(αm, βm) = 1. This
implies that αm = ±a([m]P ). ■

Lemma 2.3.12. Let P =
(

a(P )
d(P )2

, b(P )
d(P )3

)
∈ Ep(Q) \ {O}. For all m ≥ 1, there exists a power

series lm(T ) ∈ 1 + T 4Z[[T ]], independent of P , such that a([m]P )/a(P )m
2
= lm(t(P )).
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Proof. First of all, note that Because P ∈ E
(p)
1 (Q) \ {O}, P is a nontorsion point by Corollary

1.6.25. Hence [m]P ̸= O for all m ≥ 1, so a([m]P ) is well-defined.

We again use the notation m1 = a(P ), m2 = b(P ) and m3 = d(P ). For m = 1 we get
a([m]P )/a(P )m

2
= 1, so we simply have l1(T ) = 1. For m ≥ 2, we use Lemma 2.3.11 to note

that

a([m]P )/a(P )m
2
=
m2m2

3

mm2

1

ϕm(m1/m
2
3) = x(P )−m2

ϕm(x(P )).

Because ϕm is monic and using Lemma 2.3.10, we get that ϕm(x) = xm
2
+
∑m2−2

i=0 dix
i for some

di ∈ Z. We obtain

a([m]P )/a(P )m
2
= 1 +

−2∑
i=−m2

di+m2 x(P )i.

Because P ∈ E1(Q), we have x(P ) = xT (t(P )) where xT has the expansion (1.24). It follows
that x(P )−1 ∈ t(P )2Z[[t(P )]]. This implies that a([m]P )/a(P )m

2 ∈ 1 + t(P )4Z[[t(P )]]. The
coefficients of this series only depend on E and m and not on P , so indeed there exists a power
series lm(T ) ∈ 1 + T 4Z[[T ]], independent of P , such that a([m]P )/a(P )m

2
= lm(t(P )). ■

Using the above lemmas, we can prove the existence of the limit in Theorem 2.3.1(a).

Proof of Theorem 2.3.1(a). Let P ∈ Ep(Q) \ {O}. Then by Corollary 1.6.25, we also have
[pn]P ∈ Ep(Q) \ {O} for all n ≥ 0. Recall that we want to show the limit (2.23). We get

1

p2(n+1)
H2([p

n+1]P )− 1

p2n
H2([p

n]P )

=
1

p2(n+1)

(
H2([p]([p

n]P ))− p2H2([p
n]P )

)
=

1

p2(n+1)
logp(a([p

n+1]P )/a([pn]P )p
2
) (Proposition 2.3.7)

=
1

p2(n+1)
logp(lp(t([p

n]P ))). (Lemma 2.3.12)

It then follows from Corollary 2.3.4 that the limit of this expression as n approaches ∞ is zero,

and hence by Lemma 1.1.6 the sequence
(

1
p2n

H2([p
n]P )

)
is Cauchy, as desired. ■

2.3.3 Existence of h3 and a relation between h2 and h3

Next, we show the existence of the limit in Theorem 2.3.1(b), following Perrin-Riou’s argument
in [28, pp. 247–248]. First, we find a relation between H2 and H3, and make use of the fact that
we know the limit h2 exists to find the limit h3. We prove the following relation between the
two limits.

Theorem 2.3.13 ([28, p. 246, Proposition]). Let P ∈ Ep(Q) \ {O}. Then

h3(P ) = h2(P ) +
a21 + 4a2

12
L(t(P ))2.
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Consider P ∈ Ep(Q) \ {O}. We write m1 = a(P ), m2 = b(P ) and m3 = d(P ), so that

P =
(
m1

m2
3
, m2

m3
3

)
. We have

3(H3(P )−H2(P )) = logp

((
m2 +

a1
2
m1m3 +

a3
2
m3

3

)2)
− logp(m

3
1). (2.25)

To find a relation between h2 and h3, we want to manipulate the right-hand side of this equation
into an expression at which we can evaluate the appropriate limit using the lemmas in Section
2.3.1.

Recall that because P ∈ E
(p)
1 (Q), we have t(P ) = −x(P )

y(P ) = −m1m3
m2

. We can rewrite the argument

of logp in the first term of (2.25) as

(
m2 +

a1
2
m1m3 +

a3
2
m3

3

)2
=

(
m2 −

a1
2
m2t(P )−

a3
2

m3
2

m3
1

t(P )3
)2

.

Because P ∈ E
(p)
1 (Q) we know that ordp(y(P )) < ordp(x(P )) < 0, and hence ordp(m1) =

ordp(m2) = 0. This means that m1,m2 ∈ Z×
p . Because p ̸= 2 we also have 2, 4 ∈ Z×

p . We can
rewrite the expression above as an element in Zp modulo the ideal generated by t(P )3 as follows:(
m2 −

a1
2
m2t(P )−

a3
2

m3
2

m3
1

t(P )3
)2

≡ m2
2

(
1− a1

2
t(P )

)2
mod t(P )3

≡ m2
2

(
(1− a1t(P ))

(
1 +

a21
4
t(P )2

)
+
a31
4
t(P )3

)
mod t(P )3

≡ m2
2(1− a1t(P ))

(
1 +

a21
4
t(P )2

)
mod t(P )3. (2.26)

Now let us rewrite the first factor in (2.26). By multiplying both sides of the Weierstrass equation
of the curve (2.5) by m6

3, we obtain

m2
2 + a1m1m2m3 + a3m2m

3
3 = m3

1 + a2m
2
1m

2
3 + a4m1m

4
3 + a6m

6
3

m2
2 − a1m

2
2t(P )− a3

m4
2

m3
1

t(P )3 = m3
1 + a2m

2
2t(P )

2 + a4
m4

2

m3
1

t(P )4 + a6
m6

2

m6
1

t(P )6. (2.27)

Because m1 ∈ Z×
p , we thus have

m2
2(1− a1t(P )) ≡ m3

1 + a2m
2
2t(P )

2 mod t(P )3. (2.28)

Equation (2.27) furthermore shows that m2
2 ≡ m3

1 mod t(P ), and hence (2.28) becomes

m2
2(1− a1t(P )) ≡ m3

1(1 + a2t(P )
2) mod t(P )3. (2.29)

We combine (2.26) and (2.29) to obtain(
m2 +

a1
2
m1m3 +

a3
2
m3

3

)2
≡ m3

1(1 + a2t(P )
2)

(
1 +

a21
4
t(P )2

)
mod t(P )3

≡ m3
1

(
1 +

a21 + 4a2
4

t(P )2
)

mod t(P )3.
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Substituting this into (2.25) gives

3(H3(P )−H2(P )) = logp

(
1 +

a21 + 4a2
4

t(P )2 + e t(P )3
)

for some e ∈ Zp. We find

lim
n→∞

1

p2n
H3([p

n]P )

= lim
n→∞

1

p2n

[
H2([p

n]P ) +
1

3
logp

(
1 +

a21 + 4a2
4

t([pn]P )2 + e t([pn]P )3
)]

= lim
n→∞

1

p2n
H2([p

n]P ) +
1

3
lim
n→∞

1

p2n
logp

(
1 +

a21 + 4a2
4

t([pn]P )2 + e t([pn]P )3
)

= h2(P ) +
a21 + 4a2

12
L(t(P ))2. (Corollary 2.3.6)

This proves both Theorem 2.3.1(b) and Theorem 2.3.13.

2.3.4 Quadraticity of h2 and h3

We now show that the functions h2 and h3 indeed qualify as height functions, in the sense
that they are quadratic functions and satisfy the parallelogram law. Quadraticity follows
straightforwardly from the results in Section 2.3.2.

Theorem 2.3.14. Let P ∈ Ep(Q) \ {O} and let m ∈ Z, m ̸= 0. Then

h2([m]P ) = m2h2(P ),

h3([m]P ) = m2h3(P ).

Proof. Let us first consider m > 0. Using the results from Section 2.3.2 we get

h2([m]P )−m2h2(P ) = lim
n→∞

1

p2n
(
H2([p

nm]P )−m2H2([p
n]P )

)
= lim

n→∞

1

p2n
logp

(
a([pnm]P )

a([pn]P )m2

)
(Proposition 2.3.7)

= lim
n→∞

1

p2n
logp (lm(t([pn]P ))) = 0. (Lemma 2.3.12, Corollary 2.3.4)

To show the result for m < 0, recall that for any P ∈ Ep(Q) \ {O} we have x(P ) = x(−P ), and
thus a(P ) = a(−P ) which implies H2(P ) = H2(−P ). We get

h2(−P ) = lim
n→∞

1

p2n
H2([p

n](−P ))

= lim
n→∞

1

p2n
H2([p

n](P ))

= h2(P ).

We conclude that for m < 0, we have

h2([m]P ) = h2([−m]P ) = (−m)2h2(P ) = m2h2(P ).

This shows the result for h2. The result for h3 then follows from Theorem 2.3.13 and Proposition
2.2.11. ■
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We now work out the details of the argument by Perrin-Riou in [28, pp. 251–253], which shows
that h2 satisfies the parallelogram law. This argument follows a standard approach for showing
the parallelogram law, it is for example analogous to the argument of Silverman in [32, VIII,
Theorem 6.2] showing that the Néron-Tate height satisfies the parallelogram law.

Let us start by introducing a map H : Q×Q → Zp as follows. Let a, b ∈ Q. Then we can write
a = α1

α3
and b = α2

α3
for some α1, α2, α3 ∈ Z such that gcd(α1, α2, α3) = 1, unique up to sign. Let

us define the set Bp = {i : p ∤ αi}. Note that i ∈ Bp precisely when αi ∈ Z×
p , and that Bp is

nonempty. We define

H(a, b) =
2

#Bp

∑
i∈Bp

logp(αi).

Note that this is well-defined because logp(αi) = logp(−αi).

Furthermore, for a ∈ Q× with ordp(a) < 0, we can write a = m1
m2

with m1,m2 ∈ Z and
gcd(m1,m2) = 1, again unique up to sign. Then p ∤ m1, and we define

H(a) = 2 logp(m1).

Lemma 2.3.15 ([28, p. 251]). Let a, b ∈ Q× with ordp(a) < 0 and ordp(b) < 0. Then

H(ab, a+ b) = H(a) +H(b).

Proof. Let a = m1
m3

and b = m2
m4

with mi ∈ Z such that gcd(m1,m3) = gcd(m2,m4) = 1. We

have ab = m1m2
m3m4

and a+ b = m1m4+m2m3
m3m4

. Let α1 = m1m2, α2 = m1m4+m2m3 and α3 = m3m4.
We want to show that gcd(α1, α2, α3) = 1. Assume q is a prime such that q | α1 and q | α3.
Without loss of generality we assume that q | m1. But because gcd(m1,m3) = 1 this implies
q ∤ m3. Then q | α3 implies that q | m4. Again, gcd(m2,m4) = 1 implies that q ∤ m2. Together
this implies that q ∤ m1m4 +m2m3 = α2. This shows that gcd(α1, α2, α3) = 1. To compute
H(ab, a+ b) we need to determine Bp = {i : p ∤ αi}. From our assumption on a and b we know
that ordp(m1) = ordp(m2) = 0 and ordp(m3), ordp(m4) > 0. We deduce that ordp(α1) = 0,
ordp(α2) > 0 and ordp(α3) > 0, so we have Bp = {α1}. We conclude that

H(ab, a+ b) = 2 logp(m1m2)

= 2 logp(m1) + 2 logp(m2)

= H(a) +H(b).

■

For P ∈ Ep(Q) \ {O}, we have ordp(x(P )) < 0 and H(x(P )) = 2H2(P ). Hence when P,Q, P +
Q,P −Q ∈ Ep(Q) \ {O}, Lemma 2.3.15 in particular implies

2H2(P +Q) + 2H2(P −Q) = H(x(P +Q)) +H(x(P −Q))

= H(x(P +Q)x(P −Q), x(P +Q) + x(P −Q)), (2.30)

2H2(P ) + 2H2(Q) = H(x(P )x(Q), x(P ) + x(Q)). (2.31)

We consider the following standard formulas, which can be derived from the group law on E
([32, III, Algorithm 2.3]). They are valid for any (possibly singular) Weierstrass curve E over a
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field K at points P,Q ∈ Ens(K) such that P,Q, P +Q,P −Q ̸= O.

x(P +Q) + x(P −Q) =
(x(P ) + x(Q))(b4 + 2x(P )x(Q)) + b2x(P )x(Q) + b6

(x(P )− x(Q))2
, (2.32)

x(P +Q)x(P −Q) =
(x(P )x(Q))2 − b4x(P )x(Q)− b6(x(P ) + x(Q))− b8

(x(P )− x(Q))2
. (2.33)

Lemma 2.3.16 ([28, Lemme e]). Consider a Weierstrass curve given by (1.4) over a field K.
If P and Q are two nonsingular points, then the numerators and denominator in the right-hand
side of (2.32) and (2.33) cannot all be simultaneously equal to zero.

Proof. Suppose that the denominator of both fractions is equal to 0. Then we have x(P ) = x(Q),
and the numerator of (2.32) reduces to

2x(P )(b4 + 2x(P )2) + b2x(P )
2 + b6 = 4x(P )3 + b2x(P )

2 + 2b4x(P ) + b6 = ψ2
2(x(P )).

The numerator of (2.33) reduces to

x(P )4 − b4x(P )
2 − 2b6x(P )− b8 = ϕ2(x(P )).

Because P is nonsingular, we cannot have ϕ2(x(P )) = ψ2
2(x(P )) = 0 by Lemma 2.3.8. Hence

the numerators of (2.32) and (2.33) cannot simultaneously be zero when the denominator is
zero. ■

Let us now consider two points P,Q ∈ Ep(Q) \ {O} such that also P + Q,P − Q ̸= O. Let

x(P ) = a(P )
d(P )2

and x(Q) = a(Q)
d(Q)2

. Then the reasoning in the proof of Lemma 2.3.15 shows that if
we write

u1 = a(P )d(Q)2 + a(Q)d(P )2,

u2 = a(P )a(Q),

u3 = d(P )2d(Q)2,

then x(P ) + x(Q) = u1
u3

and x(P )x(Q) = u2
u3

with gcd(u1, u2, u3) = 1. Then we see from (2.32)
that

x(P +Q) + x(P −Q) =
w1

w3

x(P +Q)x(P −Q) =
w2

w3

with

w1 = b4u1u3 + 2u1u2 + b2u2u3 + b6u
2
3,

w2 = u22 − b4u2u3 − b6u1u3 − b8u
2
3,

w3 = u21 − 4u2u3.

Lemma 2.3.17. We have gcd(w1, w2, w3) = 1.

Proof. Let q be any prime. We show that q ∤ gcd(w1, w2, w3). We consider separate cases,
depending on whether q divides the denominators of x(P ) and x(Q).
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1. If q | d(Q) and q | d(P ), we have q ∤ a(P )a(Q). Then q | u3 but q ∤ u2, and hence q ∤ w2.

2. If q | d(Q) and q ∤ d(P ), then q ∤ a(Q) and we get q | u3 but q ∤ u1. This shows that q ∤ w3.

3. If q ∤ d(Q) and q | d(P ), similar reasoning implies that q ∤ w3.

4. If q ∤ d(P ) and q ∤ d(Q), we have P̃ , Q̃ ̸= O modulo q, but both reductions are nonsingular
because P,Q ∈ Egood(Q). We have that ũ3 ∈ F×

q . Plugging in x(P̃ ) = (ã(P )d̃(P )−2) and

x(Q̃) = (ã(Q)d̃(Q)−2) into equations (2.32) and (2.33) gives

x(P̃ + Q̃) + x(P̃ − Q̃) =
ũ−2
3 w̃1

ũ−2
3 w̃3

and x(P̃ + Q̃)x(P̃ − Q̃) =
ũ−2
3 w̃2

ũ−2
3 w̃3

.

Lemma 2.3.16 then implies that w̃1, w̃2 and w̃3 cannot simultaneously be 0 modulo q. This
implies that q ∤ gcd(w1, w2, w3).

■

Because ordp(x(P )), ordp(x(Q)) < 0, we deduce that ordp(u1), ordp(u3) > 0 and ordp(u2) = 0.
This shows that ordp(w1), ordp(w3) > 0 and ordp(w2) = 0.

Let us define the notation

λ(P,Q) :=
w2

u22
= 1− b4

u3
u2

− b6
u1u3
u22

− b8
u23
u22
.

We obtain

2H2(P +Q) + 2H2(P −Q) = H

(
w2

w3
,
w1

w3

)
(using (2.30))

= 2 logp(w2)

= 4 logp(u2) + 2 logp(λ(P,Q))

= 2H

(
u2
u3
,
u1
u3

)
+ 2 logp(λ(P,Q))

= 2H (x(P )x(Q), x(P ) + x(Q)) + 2 logp(λ(P,Q))

= 2H(x(P )) + 2H(x(Q)) + 2 logp(λ(P,Q)) (using (2.31))

= 4H2(P ) + 4H2(Q) + 2 logp(λ(P,Q)). (2.34)

Recall that x(P ) = xT (t(P )) and x(Q) = xT (t(Q)). We use the expansion of xT in (1.24) to
find that

u3
u2

= (x(P )x(Q))−1 ∈ t(P )2t(Q)2Z[[t(P ), t(Q)]]

u1
u3

= x(P ) + x(Q) = t(P )−2 + t(Q)−2 − a1t(P )
−1 − a1t(Q)−1 + · · · .

This shows that λ(P,Q) = λT (t(P ), t(Q)) for some power series λT (T1, T2) ∈ 1+T 2
1 T

2
2Z[[T1, T2]].

We have a result very similar to Corollary 2.3.4 for power series in two variables.

Lemma 2.3.18. Let P,Q ∈ E1(Qp) \ {O}. Let g(T1, T2) ∈ 1 + (T1, T2)
kZp[[T1, T2]] for some

k ∈ Z>0. For m ∈ Z<k we have

lim
n→∞

1

pmn
logp(g(t([p

n]P ), t([pn]Q))) = 0.
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Proof. For P,Q ∈ E1(Qp) we have ordp(t([p
n]P )), ordp(t([p

n]Q)) > n for all n ≥ 0 (Corollary
1.6.13). Because g ∈ 1+ (T1, T2)

kZp[[T1, T2]] converges on (pZp)
2, the result follows from Lemma

2.3.2. ■

Theorem 2.3.19 ([28, p. 246, Proposition]). Let P,Q ∈ Ep(Q) be such that P , Q, P +Q,
P −Q ̸= O. Then

h2(P +Q) + h2(P −Q) = 2h2(P ) + 2h2(Q) and

h3(P +Q) + h3(P −Q) = 2h3(P ) + 2h3(Q).

Proof. Using (2.34), we find

h2(P +Q) + h2(P −Q) = lim
n→∞

1

p2n
(H2([p

n]P + [pn]Q) +H2([p
n]P − [pn]Q))

= lim
n→∞

1

p2n
(2H2([p

n]P ) + 2H2([p
n]Q) + logp(λ([p

n]P, [pn]Q)))

= 2h2(P ) + 2h2(Q) + lim
n→∞

1

p2n
logp(λ

T (t([pn]P ), t([pn]Q)))

= 2h2(P ) + 2h2(Q). (using Lemma 2.3.18)

The result for h3 then follows from Theorem 2.3.13 and Proposition 2.2.11. ■

2.3.5 Extension of h2 and h3 to E(Q)

We use the quadraticity of h2 and h3 to extend these functions to the entire group E(Q).

Definition 2.3.20. We define a function h2 : E(Q) → Qp and h3 : E(Q) → Qp as follows. For
P ∈ Etors(Q), we set

h2(P ) = h3(P ) = 0.

For P ∈ E(Q) \ Etors, let m ∈ Z>0 such that [m]P ∈ Ep(Q) \ {O} (which exists by Proposition
2.2.20). Then

h2(P ) =
1

m2
h2([m]P ) and h3(P ) =

1

m2
h3([m]P ).

The following Proposition shows that the definition does not depend on the choice of m.

Proposition 2.3.21. Let P ∈ E(Q) \ Etors, and let m1 and m2 be positive integers such that
[m1]P, [m2]P ∈ Ep(Q). Then

1

m2
1

h2([m1]P ) =
1

m2
2

h2([m2]P ) and
1

m2
1

h3([m1]P ) =
1

m2
2

h3([m2]P ).

Proof. Because Ep(Q) is a subgroup, we also have [m1m2]P ∈ Ep(Q) \ {O}. It follows from
Theorem 2.3.14 that

1

m2
1

h2([m1]P ) =
1

m2
1m

2
2

h2([m1m2]P ) =
1

m2
2

h2([m2]P ).

The same argument shows the statement for h3. ■
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Definition 2.3.20 agrees with the original definition of h2 and h3 on Ep(Q) \ {O}, because for
P ∈ Ep(Q) \ {O} we have P /∈ Etors by Corollary 1.6.25, so we can take m = 1 in Definition
2.3.20.

Proposition 2.3.22. h2 and h3 are quadratic forms on E(Q). Explicitly, let P,Q ∈ E(Q) and
let n ∈ Z. Then

(a) h2([n]P ) = n2h2(P ) and h3([n]P ) = n2h3(P ).

(b) h2(P +Q)+h2(P −Q) = 2h2(P )+2h2(Q) and h3(P +Q)+h3(P −Q) = 2h3(P )+2h3(Q).

Proof. We show the results for h2. The exact same arguments work for h3.

Part (a) is clearly satisfied for all P ∈ E(Q) when n = 0, because then both sides evaluate to 0.
Now let n ≠ 0. If P is a torsion point, again both sides evaluate to 0. Now let P /∈ Etors and let
m1 ∈ Z>0 be such that [m1]P ∈ Ep(Q)\{O}. For n ≠ 0, we then also have [m1n]P ∈ Ep(Q)\{O},
and we get

h2([n]P ) =
1

m2
1

h2([m1n]P ) (Definition 2.3.20)

=
n2

m2
1

h2([m1]P ) (Theorem 2.3.14)

= n2h2(P ). (Definition 2.3.20)

For (b), let us first assume that P,Q, P +Q,P −Q /∈ Etors. Let m1 be as before and let m2 ∈ Z>0

be such that [m2]Q ∈ Ep(Q) \ {O}. Then [m1m2]P , [m1m2]Q and their sum and difference are
all in Ep(Q) \ {O}. Therefore

h2(P +Q) + h2(P −Q) =
1

m2
1m

2
2

(h2([m1m2]P + [m1m2]Q) + h2([m1m2]P − [m1m2]Q))

=
1

m2
1m

2
2

(2h2([m1m2]P ) + 2h2([m1m2]Q)) (Theorem 2.3.19)

= 2h2(P ) + 2h2(Q).

If one of P,Q, P + Q,P − Q is a torsion point, we can use arguments like in the proof of
Proposition 2.2.22 to obtain the result. ■

2.3.6 A relation between the p-adic heights h2, h3 and h(s)
p

Next, we compare the quadratic heights h2 and h3 to the p-adic heights h
(s)
p described in Section

2.2.3. In [29], Perrin-Riou provides a relation between h2 and h
(s)
p for a specific value of s under

the assumption that E has ordinary reduction at p. The proof we provide here uses a similar
strategy, but we use the more general Corollary 2.3.6 instead of Corollary 2.3.4 and Lemma
2.3.5 in our argument, which allows us to show the relation without the assumption of ordinary
reduction at p.

Theorem 2.3.23 ([29, p. 292]). Let s ∈ Qp such that Vs is a neighborhood of 0. Let

P ∈ E
(s)
p (Q) \ {O}. Then

h(s)p (P ) = h2(P ) +

(
s+

a21 + 4a2
12

)
L(t(P ))2.
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Proof. Let us consider a point Q ∈ E
(s)
p (Q) \ {O}. We write x(Q) = a(Q)

d(Q)2
as before. Recall that

a(Q) ̸= 0 for Q ∈ E
(p)
1 (Q) \ {O}.

h(s)p (Q) = −2 logp

(
σ
(s)
p (t(Q))

d(Q)

)
(Proposition 2.2.21)

= − logp

(
σ(s)p (t(Q))2x(Q)

)
+ logp(a(Q))

= − logp

(
σ(s)p (t(Q))2xT (t(Q))

)
+H2(Q). (2.35)

Using the expansion of σ (Lemma 2.2.3), the expansion of expp in (1.1) and the expansion of L,
which can be found using Theorem 1.6.19 and the expansion of the invariant differential ω given

in [32, p. 118], we can deduce that the expansion of σ
(s)
p is of the form

σ(s)p (T ) = T +
a1
2
T 2 +

(
a21 + a2

3
− s

2

)
T 3 + · · ·

in Qp[[T ]]. Using the expansion of xT in (1.24), some algebra shows that

σ(s)p (T )2xT (T ) = 1−
(
s+

a21 + 4a2
12

)
T 2 + · · · ∈ Qp[[T ]].

Recall from Proposition 2.2.10 that the Bernardi σ-function σ
(0)
p (T ) converges for T ∈ pZp. We

also know that xT (T ) converges on pZp \ {0}. From the expansion we see that σ
(0)
p (0)xT (0) = 1.

Together, these facts imply that the series σ
(0)
p (T )2xT (T ) converges on a neighborhood of 0.

When P ∈ E
(0)
p (Q) \ {O}, then also [pn]P ∈ Ep(Q) \ {O} for all n ≥ 0 because P is a nontorsion

point by Corollary 1.6.25. We can thus use (2.35) to derive

h(0)p (P ) = lim
n→∞

1

p2n
h(0)p ([pn]P ) (because h(0)p is quadratic)

= lim
n→∞

1

p2n
H2([p

n]P )− lim
n→∞

1

p2n
logp(σ

(0)
p (t([pn]P ))2xT (t([pn]P )))

= h2(P ) +
a21 + 4a2

12
L(t(P ))2. (Corollary 2.3.6)

Finally, using Proposition 2.2.23 we find that for all P ∈ E
(s)
p (Q) \ {O},

h(s)p (P ) = h2(P ) +

(
s+

a21 + 4a2
12

)
L(t(P ))2.

■

Comparing this result with Theorem 2.3.13 gives the following Corollary.

Corollary 2.3.24. Let P ∈ Ep(Q) \ {O}. Then

h(s)p (P ) = h3(P ) + sL(t(P ))2.

In particular, we have h3(P ) = h
(0)
p (P ).
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We can extend this last equality to all of E(Q) using the definition in the previous section.

Proposition 2.3.25. We have h
(0)
p = h3 on E(Q).

Proof. For P ∈ Etors(Q), we have h
(0)
p (P ) = h3(P ) = 0. By Corollary 2.3.24 we know the equality

is satisfied for P ∈ Ep(Q) \ {O}. For P ∈ E(Q) \ Etors, let m ∈ Z>0 such that [m]P ∈ Ep(Q).
Then

h(s)p (P ) =
1

m2
h(s)p ([m]P ) (Proposition 2.2.22)

=
1

m2
h3([m]P ) (Corollary 2.3.24)

= h3(P ). (Proposition 2.3.22)

■
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Chapter 3

Height functions on the Jacobians of
genus 2 curves

Similarly to how we defined heights for elliptic curves, we can define heights on the Jacobian of
a genus 2 curve. In the case of elliptic curves we defined the height functions in such a way that
they only depend on the x-coordinate of a point. That way, each point has the same height as
its additive inverse. On the Jacobian, we will define heights that only depend on the image of a
point on the Kummer surface. Because the map from the Jacobian to the Kummer surface also
identifies points with their additive inverse, these height functions will have that same property.

Let us consider a smooth projective curve C of genus 2 defined over Q by an equation of the
form (1.13), with Jacobian J . A point P ∈ J(Q) has an image κ(P ) ∈ P3 on the Kummer
surface via the map (1.18). We introduce notation for a useful normalization of κ(P ). We
write κ(P ) = [x1(P ) : x2(P ) : x3(P ) : x4(P )] for the normalization that satisfies xi(P ) ∈ Z and
gcd(x1(P ), . . . , x4(P )) = 1. This normalization is defined uniquely only up to sign, but we only
consider the coordinates in the context of ratios, v-adic absolute values or the p-adic logarithm
of the coordinates, in which case the sign does not make a difference. Furthermore we use the
notation x(P ) = (x1(P ), x2(P ), x3(P ), x4(P )).

3.1 Real-valued heights on the Jacobian of a genus 2 curve

In order to define a naive height function, we take the standard height H on projective space
defined in (2.1), and apply it to the projective Kummer coordinates of a point on J .

Definition 3.1.1. We define hnaive : J(Q) → R by

hnaive(P ) = logH(κ(P )),

with H as defined in (2.1).

A canonical height is defined analogously to the canonical height for elliptic curves (Proposition
2.1.8).

Definition 3.1.2 ([14, p. 335]). We define the real canonical height ĥ : J(Q) → R by

ĥ(P ) = lim
n→∞

1

n2
hnaive([n]P ).

71



Proposition 3.1.3 ([14, p. 335]). The real canonical height ĥ : J(Q) → R is a quadratic form.

3.1.1 Local real height functions

In Section 2.1.3 we saw that we could write the naive and canonical real heights on an elliptic
curve as the sum of local components. We do a similar thing for the naive height in Definition
3.1.1 and the canonical height in Definition 3.1.2. For elliptic curves, we defined the local heights
everywhere except on the identity O of E. In the genus 2 case, we have to define the local
heights away from the support of a divisor on J (this is analogous in the sense that the divisor
O on an elliptic curve E can be seen as the genus 1 analogue of the Θ divisor, see [36, p. 281]).
Recall that Θ is a divisor on J , obtained as the image of the map Φ∞ (Section 1.5.1). We use it
to define the following divisors on J :

Θ1 = 2Θ, Θ2 = Θ1 + div℘22, Θ3 = Θ1 + div℘12, Θ4 = Θ1 + div℘11.

We denote by supp(D) the support of a divisor D, that is, the set of points that lie on the
components of D as subvarieties of J . Then P ∈ supp(Θ) precisely when x1(P ) = 0, and we
have supp(Θ1) = supp(Θ). Furthermore, we have P ∈ supp(Θi) precisely when xi(P ) = 0. For
every point P ∈ J , there thus exists i ∈ {1, 2, 3, 4} such that P /∈ supp(Θi). We introduce the
notation JD = J \ supp(D) for a divisor D.

Definition 3.1.4. Let v ∈ MQ. For i = 1, 2, 3, 4, we define the naive real local height
λi,v : JΘi(Qv) → R by

λi,v(P ) = log max
1≤j≤4

{∣∣∣∣xj(P )xi(P )

∣∣∣∣
v

}
.

When v is a prime q, we have max1≤j≤4

{
|xj(P )|v

}
= 1 because of how the normalization x(P )

is defined, and hence

λi,q(P ) = − log |xi(P )|q.

Proposition 3.1.5 ([35, Theorem 5.7]). Let P ∈ JΘi(Q). Then

hnaive(P ) =
∑
v∈MQ

λi,v(P ).

Proof. We note that λi,v(P ) = 0 for all but finitely many v. Using the observation that
max1≤j≤4{|xj(P )|q} = 1 for all primes q, we get

hnaive(P ) = log max
1≤j≤4

{|xj(P )|∞} = log
∏

v∈MQ

max
1≤j≤4

{|xj(P )|v}

= log
∏

v∈MQ

max
1≤j≤4

{∣∣∣∣xj(P )xi(P )

∣∣∣∣
v

}
(using Theorem 1.1.10)

=
∑
v∈MQ

log max
1≤j≤4

{∣∣∣∣xj(P )xi(P )

∣∣∣∣
v

}
.

■

We want a similar decomposition for the canonical height. To achieve this we introduce a more
general theory of Weil functions.
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Definition 3.1.6. An MQ-constant is a function γ : MQ → R such that γ(v) = 0 for all but
finitely many places.

Definition 3.1.7 ([35, p. 118]). Let D be a divisor on J . Consider a collection of functions
λD,v : JD(Qv) → R for v ∈ MQ. These are called Weil functions on J associated to D if the
following property holds: Let U be any Zariski open subset of J such that U ∩ supp(D) ̸= ∅
and D|U = div(g) for some rational function g on U . Then there exists a collection of functions
αv :

∐
U(Qv) → R that are locally MQ-bounded and continuous (see [35, p. 117] for a definition)

such that
λD,v(P ) = − log |g(P )|v + αv(P )

for all v ∈MQ and all P ∈ UD(Qv).

In particular, the naive local height functions λi,v are Weil functions associated to Θi for
i = 1, 2, 3, 4 ([35, p. 119]).

Theorem 3.1.8 ([22, Chapter 11, Theorem 1.1]). For any divisor D on J , there exists a
Weil function λ̂D,v : JD(Qv) → R for each v ∈MQ such that the following properties hold:

(i) For two divisors D,D′ on J , we have λ̂D+D′,v = λ̂D,v + λ̂D′,v + γ1(v) for all v ∈ MQ
wherever all of the functions are defined.

(ii) If D = div(f), then λ̂D,v(P ) = − log |f(P )|v + γ2(v) for all v ∈MQ and all P ∈ JD(Qv).

(iii) For all v ∈MQ and P ∈ J[2]∗D(Qv), we have λ̂[2]∗D,v(P ) = λ̂D,v([2]P ) + γ3(v).

The γi are MQ-constants. With these properties the functions λ̂D,v are defined uniquely up to an
MQ-constant. We call these functions canonical local height functions on J associated with D.
They furthermore have the following property:

(iv) Let φ : A→ J be a homomorphism of abelian varieties defined over Q. Then for all v ∈MQ
and P ∈ Jφ∗D(Qv), we have λ̂φ∗D,v(P ) = λ̂D,v(φ(P ))+ γ4(v), where γ4 is an MQ-constant.

Proposition 3.1.9 ([22, Chapter 11, Proof of Theorem 1.1]). Let D be a divisor on J
satisfying [2]∗D ∼ 4D. Let λD,v : JD(Qv) → R for v ∈ MQ be a collection of Weil functions
associated to D. Then the λD,v are canonical local height functions associated to D if and only
if they satisfy

λD,v([2]P ) = 4λD,v(P )− log |ϕ(P )|v (3.1)

for all v ∈MQ and all P such that P, [2]P ∈ JD(Qv), where ϕ is a rational function on J such
that [2]∗D = 4D + div(ϕ). Furthermore, each choice of such a function ϕ defines a unique
collection of canonical local height functions satisfying (3.1).

In [35, Section 5], Uchida provides explicit canonical local heights on J associated to the divisors
Θi for i ∈ {1, 2, 3, 4}. These can be obtained by adding an MQ-bounded continuous correction
term to the naive height functions from Definition 3.1.4. For all v ∈ MQ and P ∈ J(Qv), we
define

Φv(P ) :=
maxj |δj(x(P ))|v
(maxj |xj(P )|v)4

.
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Note that we define Φv(P ) in terms of the normalization x(P ) of κ(P ), but because the δi are
homogeneous polynomials of total degree 4, any other normalization gives the same result. When
v is a prime q, we get

Φq(P ) = max
j

|δj(x(P ))|q.

The collection of functions Φv(P ) is MQ-bounded and continuous (see [35, Lemma 5.1]). Hence
the following functions are well-defined Weil functions.

Definition 3.1.10. Let v ∈ MQ and i ∈ {1, 2, 3, 4}. We define the canonical local real height
λ̂i,v(P ) : JΘi(Qv) → R by

λ̂i,v(P ) = λi,v(P ) +

∞∑
n=0

1

4n+1
log Φv([2

n]P ).

Theorem 3.1.11 ([35, Theorem 5.3]). Let i ∈ {1, 2, 3, 4}, v ∈MQ. For all P ∈ J(Qv) such
that P, [2]P /∈ supp(Θi), we have

λ̂i,v([2]P ) = 4λ̂i,v(P )− log

∣∣∣∣δi(x(P ))xi(P )4

∣∣∣∣
v

.

In particular, λ̂i,v is a canonical local height function associated with Θi.

Proof. The identity follows by simply working out the definition.

λ̂i,v([2]P )− 4λ̂i,v(P )

= λi,v([2]P ) +
∞∑
n=0

1

4n+1
log Φv([2

n+1]P )− 4λi,v(P )−
∞∑
n=0

1

4n
log Φv([2

n]P )

= λi,v([2]P )− 4λi,v(P )− log Φv(P )

= log max
1≤j≤4

∣∣∣∣xj([2]P )xi([2]P )

∣∣∣∣
v

− 4 log max
1≤j≤4

∣∣∣∣xj(P )xi(P )

∣∣∣∣
v

− log
max1≤j≤4 |δj(x(P ))|v
(max1≤j≤4 |xj(P )|v)4

= log max
1≤j≤4

∣∣∣∣δj(x(P ))δi(x(P ))

∣∣∣∣
v

− log max
1≤j≤4

∣∣∣∣δj(x(P ))xi(P )4

∣∣∣∣
v

= − log

∣∣∣∣δi(x(P ))xi(P )4

∣∣∣∣
v

.

Because div
(
δi(x(P ))
xi(P )4

)
= [2]∗Θi − 4Θi, Proposition 3.1.9 implies that λ̂i,v is a canonical local

height function associated with Θi. ■

For any prime q, let us define the set

Uq(Qq) := {P ∈ J(Qq) | Φq(P ) = 1}.

Note that by definition of the normalization x(P ), we have maxi |xi(P )|q = 1 for all primes q.
Hence P ∈ Uq(Qq) precisely when maxi |δi(x(P ))|q = 1.

Proposition 3.1.12 ([34, Theorem 4.1], [14, Lemma 1]). Let q be a prime. Then

(a) Uq(Qq) is a subgroup of J(Qq) of finite index, and J1(Qq) ⊆ Uq(Qq).
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(b) If q is odd and J/Q has good reduction at q, then Uq(Qq) = J(Qq).

Proposition 3.1.13. Let P ∈ Uq(Qq) \ supp(Θi) for some i ∈ {1, 2, 3, 4}. Then

λ̂i,q(P ) = λi,q(P ).

In particular, if q is odd and J has good reduction at q, this is true for all P ∈ JΘi(Qq).

Proof. By Proposition 3.1.12(a), we know that Uq(Qq) is a group. Hence if P ∈ Uq(Qq),
then also [2n]P ∈ Uq(Qq) for all n ≥ 0. Hence Φq([2

n]P ) = 1 for all n ≥ 0, so we conclude

λ̂i,q(P ) = λi,q(P ). The second claim follows directly from Proposition 3.1.12(b). ■

Recall that C has bad reduction at a prime q for only finitely many primes, and hence the same
is true for its Jacobian J (Section 1.5.4). For each P ∈ JΘi(Qq), we thus have λ̂i,q(P ) = λi,q(P )

for all but finitely many primes, and hence λ̂i,q(P ) = 0 for all but finitely many places.

Theorem 3.1.14 ([35, Theorem 5.7]). Let P ∈ JΘi(Q) for some i ∈ {1, 2, 3, 4}. Then we
have

ĥ(P ) =
∑
v∈MQ

λ̂i,v(P ).

We thus get a local decomposition of the canonical real height ĥ this way. In [14, p. 341], Flynn
and Smart define local height functions on all of J(Q) as follows. For each point P ∈ J(Q), let i
be the smallest index such that xi(P ) ̸= 0. They define the local height at P as λ̂i,v(P ) for that
index i.

In [36, Section 7], Uchida notes that the division polynomial ϕ2 defined in Section 1.5.5 satisfies
[2]∗Θ = 4Θ + div(ϕ2). Hence there exists a canonical local height function λ̂Θ,v associated with
Θ for each v ∈MQ that satisfies

λ̂Θ,v([2]P ) = 4λ̂Θ,v(P )− log |ϕ2(P )|v.

We also have [2]∗(Θ1) = 2 [2]∗(Θ) = 4Θ1 + div(ϕ22), and hence λ̂Θ1,v := 2λ̂Θ,v is a canonical local

height function associated with Θ1. Because λ̂Θ1,v and λ̂1,v defined in Definition 3.1.10 are both
canonical local height functions on J associated with Θ1, they must differ by an MQ-constant
γ(v). In [18, Proposition 6.1], it is shown that we actually have

λ̂Θ1,v = λ̂1,v (3.2)

on JΘ1(Qv) for each place v. In [36, Theorem 7.5], Uchida shows that these functions have the
following properties on JΘ1(Qv):

Theorem 3.1.15 ([36, Theorem 7.5]). Let v be a place of Q and P,Q ∈ JΘ1(Qv). Then

(a) If P +Q,P −Q /∈ supp(Θ1), we have

λ̂Θ1,v(P +Q) + λ̂Θ1,v(P −Q) = 2λ̂Θ1,v(P ) + 2λ̂Θ1,v(Q)

− 2 log | − ℘11(P ) + ℘11(Q)− ℘12(P )℘22(Q) + ℘22(P )℘12(Q)|v.

(b) If n ∈ Z \ {0} and [n]P /∈ supp(Θ1), we have

λ̂Θ1,v([n]P ) = n2λ̂Θ1,v(P )− 2 log |ϕn(P )|v,

where ϕn is the division polynomial defined in Section 1.5.5.
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3.2 A p-adic height on the Jacobian of a genus 2 curve

Similarly to what we did for elliptic curves in Section 2.2, we can define a p-adic height function
on a Jacobian by defining local heights at each place. Fix an odd prime p. We consider a smooth
curve C of genus 2 over Q given by an equation of the form

C : y2 = f(x) = x5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0 (3.3)

with fi ∈ Z, such that C has good reduction at p. We introduce local height functions away from
the divisor Θ at each place of Q, as defined by Bianchi [4]. Again, the local p-adic height at ∞
is equal to 0. For the other places, we have to distinguish between p and primes away from p, as
we did in Section 2.2.

3.2.1 Local p-adic heights at primes different from p

Let q ̸= p be a prime. Then we can define a local height at q by taking the height λ̂1,q from the
previous section, and replacing the real logarithm by the p-adic logarithm logp.

Definition 3.2.1. Let q ≠ p be a prime. Let P ∈ Uq(Qq) \ supp(Θ). We define a local p-adic

height λ̂q : Uq(Qq) \ supp(Θ) → Qp by

λ̂q(P ) = − logp |x1(P )|q.

The local p-adic heights satisfy the following properties.

Theorem 3.2.2. Let q ̸= p be a prime, and P,Q ∈ Uq(Qq) \ supp(Θ). Then

(a) If P +Q,P −Q /∈ supp(Θ), we have

λ̂q(P +Q) + λ̂q(P −Q) = 2λ̂q(P ) + 2λ̂q(Q)

− 2 logp | − ℘11(P ) + ℘11(Q)− ℘12(P )℘22(Q) + ℘22(P )℘12(Q)|q.

(b) If n ∈ Z \ {0} and [n]P /∈ supp(Θ), we have

λ̂q([n]P ) = n2λ̂q(P )− 2 logp |ϕn(P )|q.

Proof. We note that λ̂q looks very similar to the local real height λ̂1,q, because in Proposition

3.1.13 we saw that on Uq(Qq) \ supp(Θ), we have λ̂1,q(P ) = λ1,q(P ) = − log |x1(P )|q. We also

saw in (3.2) that λ̂Θ1,q = λ̂1,q. So we have λ̂q(P ) = logp(exp(λ̂Θ1,q(P ))) on Uq(Qq) \ supp(Θ).

We know that λ̂Θ1,q satisfies the properties in Theorem 3.1.15, and by subsequently taking the
exponential and p-adic logarithm on both sides of the equations there, we obtain the result. ■

3.2.2 Local p-adic height at p

To construct a local p-adic height at p we use a p-adic σ-function, as we did in Section 2.2.2
for elliptic curves. This function is defined in [5, Theorem 2.4]. It is based on the complex
σ-function associated to the Jacobian of C. The σ-function is an odd function in two variables
that has a Taylor expansion around (0, 0) of the form σ(z1, z2) ∈ z1 + (z1, z2)

3Q[[z1, z2]] (see [36,
Proposition 2.1, Proposition 2.3]). We define

σp(T ) := σ(L(T )),
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where L is the strict formal logarithm on the formal group Ĵ corresponding to J as defined in
Section 1.6.4. Because σ is odd and L is a formal group homomorphism from Ĵ to Ĝ2

a, and we
saw that the formal inverse on Ĵ is iJ(T ) = −T (Section 1.6.3), we conclude that also σp is odd
in the sense that it has only terms of total odd degree.

Theorem 3.2.3 ([5, Theorem 2.4]). The series σp(T ) converges on (pZp)
2.

Recall that when P ∈ J1(Qp), we have t1(P ), t2(P ) ∈ pZp, where t(P ) = (t1(P ), t2(P )) is the
image of P under the map ψJ in (1.30) and the functions t1 and t2 are defined in Lemma 1.6.14.
This implies that σp(T ) converges at t(P ).

We have σp(T ) ∈ T1(1+(T1, T2)Q[[T ]]) (see [5, Appendix A]), so it vanishes for (T1, T2) ∈ (pZp)
2

precisely when T1 = 0.

Lemma 3.2.4. Let P ∈ J1(Qp). Then t1(P ) = 0 if and only if P ∈ supp(Θ).

Proof. Recall from Lemma 1.6.14 that t1 = −X11/X111. From the explicit description of
the map (1.15) in [20, Remark 2], we see that X11(P )/X111(P ) = 0 for all P ∈ supp(Θ).
When P /∈ supp(Θ), we have t1(P ) = ℘11(P )/℘111(P ). Note that for P ∈ J1(Qp) we have
κ̃(P ) = [0 : 0 : 0 : 1], because the diagram (1.20) is commutative. In particular, because
κ(P ) = [1 : ℘22(P ) : −℘12(P ) : ℘11(P )] (see (1.17)), this implies that ℘11(P ) ̸= 0. Hence
t1(P ) ̸= 0. ■

It follows that σp(T ) is nonzero on J1(Qp) \ supp(Θ). It has the following properties.

Proposition 3.2.5. Let P,Q ∈ J1(Qp) \ supp(Θ). Then

σp(t(P +Q))σp(t(P −Q))

σp(t(P ))2σp(t(Q))2
= −℘11(P ) + ℘11(Q)− ℘12(P )℘22(Q) + ℘22(P )℘12(Q),

and for all n ̸= 0,

σp(t([n]P ))

σp(t(P ))n
2 = ϕn(P ). (3.4)

Proof. This follows from [5, Theorem 2.4] using the facts that φJ(ϕn)(t(P )) = ϕn(P ) and
℘T
ij(t(P )) = ℘ij(P ), which follows from (1.28). The second statement is only shown for n > 0,

but for n < 0 we note that

σp(t([n]P ))

σp(t(P ))n
2 =

−σp(t([−n]P ))
σp(t(P ))(−n)2

= −ϕ−n(P ) = ϕn(P ).

using (1.21) and the fact that σp is an odd function. ■

We use σp to define a local p-adic height at p.

Definition 3.2.6. We define a local p-adic height λ̂p : J1(Qp) \ supp(Θ) → Qp by

λ̂p(P ) = −2 logp(σp(t(P ))).

Proposition 3.2.7. Let λ̂p : J1(Qp) \ supp(Θ) → Qp be as defined in Definition 3.2.6.
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(a) For all P ∈ J1(Qp) \ supp(Θ) and for all n ̸= 0 such that [n]P /∈ supp(Θ), we have

λ̂p([n]P ) = n2λ̂p(P )− 2 logp(ϕn(P )).

(b) For all P,Q ∈ J1(Qp) \ supp(Θ) such that also P +Q,P −Q /∈ supp(Θ), we have

λ̂p(P +Q) + λ̂p(P −Q) = 2λ̂p(P ) + 2λ̂p(Q)

− 2 logp(−℘11(P ) + ℘11(Q)− ℘12(P )℘22(Q) + ℘22(P )℘12(Q)).

Proof. For (a), from Definition 3.2.6, we get

λ̂p([n]P ) = −2 logp(σp(t([n]P )))

= −2 logp(σp(t(P ))
n2
ϕn(P )) (Proposition 3.2.5)

= −2n2 logp(σp(t(P )))− 2 logp(ϕn(P ))

= n2λ̂p(P )− 2 logp(ϕn(P )).

For (b), we again use Proposition 3.2.5 to get

λ̂p(P +Q) + λ̂p(P −Q) = −2 logp(σp(t(P +Q))σp(t(P −Q)))

= −2 logp(σp(t(P ))
2σp(t(Q))2)

− 2 logp(−℘11(P ) + ℘11(Q)− ℘12(P )℘22(Q) + ℘22(P )℘12(Q))

= 2λ̂p(P ) + 2λ̂p(Q)

− 2 logp(−℘11(P ) + ℘11(Q)− ℘12(P )℘22(Q) + ℘22(P )℘12(Q)).

■

3.2.3 A global p-adic height on J

Now we define a global p-adic height as the sum of the local contributions in Definition 3.2.1 and
Definition 3.2.6. We first construct a suitable subgroup on which all local heights are defined.
Let us define Uq(Q) := Uq(Qq) ∩ J(Q). We furthermore write JU (Q) := ∩q primeUq(Q), and

Jp(Q) := J
(p)
1 (Q) ∩ JU (Q), (3.5)

where J
(p)
1 (Q) is the kernel of reduction as defined in Section 1.5.4. These are all subgroups of

J(Q).

Lemma 3.2.8. Let P ∈ JU (Q). Then λ̂q(P ) = 0 for all but finitely many primes q.

Proof. Because x1(P ) ∈ Z \ {0} we have that |x1(P )|q = 1 and hence λ̂q(P ) = 0 for all but
finitely many q. ■

Proposition 3.2.9. Jp(Q) is a subgroup of finite index of J(Q).
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Proof. We know that C has bad reduction at only finitely many primes q1, . . . , qr, and when C
has good reduction at an odd prime q, then the same is true for J . So for odd q /∈ {q1, . . . , qr},
we have Uq(Q) = J(Q) by Proposition 3.1.12(b). Hence

Jp(Q) = J
(p)
1 (Q) ∩ U2(Q) ∩ Uq1(Q) ∩ · · · ∩ Uqr(Q).

From Proposition 3.1.12(a), we know that for each prime q, the subgroup Uq(Qq) has finite index

in J(Qq). We also have that J
(p)
1 (Q) has finite index in J(Q), because J

(p)
1 (Q) is the kernel of

the reduction map J(Q) → J̃(Fp) modulo p. We conclude that Jp(Q) is a finite intersection of
subgroups of finite index, which thus has finite index in J(Q). ■

Lemma 3.2.10 ([18, Lemma 8.1]). Let P ∈ J(Q) \ Jtors be such that P ∈ supp(Θ). Then
one of [2]P, [3]P, [4]P is in JΘ(Q).

Definition 3.2.11. We define a global height ĥp : J(Q) → Qp as follows. For P /∈ Jtors, we set

ĥp(P ) = 0. For P ∈ J(Q) \ Jtors, let m ∈ Z>0 such that [m]P ∈ Jp(Q) \ supp(Θ) (which exists
by Proposition 3.2.9 and Lemma 3.2.10). We define

ĥp(P ) =
∑

q prime

1

m2
λ̂q([m]P ), (3.6)

with λ̂q as defined in Definition 3.2.1 and Definition 3.2.6.

To see that this function is well-defined, first of all note that the sum in (3.6) is finite by Lemma
3.2.8. The following result shows that the definition is not dependent on the choice of m.

Proposition 3.2.12. Let P ∈ J(Q) \ Jtors, and let m and n be positive integers such that
[m]P, [n]P ∈ Jp(Q) \ supp(Θ). Then∑

q prime

1

m2
λ̂q([m]P ) =

∑
q prime

1

n2
λ̂q([n]P ).

Proof. Let l ∈ Z>0 be such that [mnl]P ∈ Jp(Q) \ supp(Θ). For each prime q ̸= p, Theorem
3.2.2 implies that

λ̂q([mnl]P ) = (nl)2λ̂q([m]P )− 2 logp |ϕnl([m]P )|q
= (ml)2λ̂q([n]P )− 2 logp |ϕml([n]P )|q.

We use this to deduce

1

m2
λ̂q([m]P )− 1

n2
λ̂q([n]P ) =

2

(mnl)2
(
logp |ϕnl([m]P )|q − logp |ϕml([n]P )|q

)
At p, we get a similar equality from Proposition 3.2.7:

λ̂p([mnl]P ) = (nl)2λ̂p([m]P )− 2 logp(ϕnl([m]P ))

= (ml)2λ̂p([n]P )− 2 logp(ϕml([n]P )),

which implies

1

m2
λ̂p([m]P )− 1

n2
λ̂p([n]P ) =

2

(mnl)2
(
logp(ϕln([m]P ))− logp(ϕlm([n]P ))

)
.
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The product formula in Lemma 1.1.17 then implies that∑
q prime

1

m2
λ̂q([m]P )−

∑
q prime

1

n2
λ̂q([n]P ) = 0.

■

We can give a more explicit description of ĥp using the explicit descriptions of the local p-adic
heights.

Proposition 3.2.13. Let P ∈ J(Q) \ Jtors and let m ∈ Z>0 such that [m]P ∈ Jp(Q) \ supp(Θ).
Then

ĥp(P ) = − 1

m2
logp

(
σ2p(t([m]P ))

x1([m]P )

)
.

Proof. We have

ĥp(P ) =
∑

q prime

1

m2
λ̂q([m]P )

= − 1

m2

2 logp(σp(t([m]P ))) +
∑
q ̸=p

logp |x1([m]P )|q

 (Definition 3.2.6, 3.2.1)

= − 1

m2
logp

(
σ2p(t([m]P ))

x1([m]P )

)
. (Lemma 1.1.17)

■

Proposition 3.2.14. The p-adic height ĥp is a quadratic function, that is, for all P ∈ J(Q)
and n ∈ Z, we have

ĥp([n]P ) = n2ĥ(P ).

Proof. If P is a torsion point, the statement is clear for all n ∈ Z. Now assume P /∈ Jtors
and n ∈ Z. For n = 0 the result is immediate. Let n ̸= 0, and let m ∈ Z>0 be such that
[mn]P ∈ Jp(Q) \ supp(Θ). Then by definition of ĥp we get

ĥp([n]P ) =
∑

q prime

1

m2
λ̂q([mn]P ) = n2

∑
q prime

1

(mn)2
λ̂q([mn]P ) = n2ĥp(P ).

■

The height ĥp actually also satisfies the parallelogram law, and thus is a quadratic form. We do
not show this here, but in the next section (Section 3.3), we define a height hp in a different way

and show that it is a quadratic form in Theorem 3.3.19. In Theorem 3.3.25 we show that ĥp is

equal to hp, which then implies that ĥp is a quadratic from.
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3.3 A naive p-adic height on the Jacobian of a genus 2 curve

We consider the same setting as in the previous section, with an odd prime p and a smooth
curve C of genus 2 over Q defined by (3.3) with integer coefficients and good reduction at p. In
this section, our goal is to construct a quadratic p-adic height in a way that is different from the
method we saw in Section 3.2, namely with a naive height and a construction analogous to the
construction of Perrin-Riou in Section 2.3.

We start by considering points in the group Jp(Q) as defined in (3.5). Note that when P ∈ J
(p)
1 (Q),

we have P̃ = O modulo p, and then also κ̃(P ) = [0 : 0 : 0 : 1] because the diagram (1.20) is
commutative. In particular, we have that x4(P ) is not divisible by p and that x4(P ) ̸= 0. We
define a naive p-adic height Hp : Jp(Q) → Qp as follows:

Hp(P ) = logp(x4(P )).

Note the similarity between this function and the naive height function H2 on elliptic curves in
(2.18). For P ∈ Ep(Q) \ {O}, if we write κ(P ) = [x1(P ) : x2(P )] with x1(P ), x2(P ) ∈ Z such
that gcd(x1(P ), x2(P )) = 1 (with κ as in (1.6)), we have H2(P ) = logp(x1(P )). Both H2 and
Hp are defined at P ∈ Ep(Q) \ {O} and P ∈ Jp(Q), respectively, as the p-adic logarithm of the
coordinate of κ(P ) with the lowest p-adic valuation.

The goal of this section is to prove the following result, which is an analogue of Theorem 2.3.1:

Theorem 3.3.1. Let P ∈ Jp(Q). Then the following limit exists:

hp(P ) = lim
n→∞

1

p2n
Hp([p

n]P ). (3.7)

We show the existence of the limit (3.7) in Section 3.3.1. In Section 3.3.2 we show that the
resulting function hp satisfies the parallelogram law. In Section 3.3.3 we show how the definition
of hp can be extended to obtain a quadratic form on all of J(Q). Finally, in Section 3.3.4, we

compare hp to the height ĥp from Section 3.2.3, and we show that they are actually the same.

3.3.1 Existence of the limit defining hp

Let us start by proving that the limit (3.7) exists. We do this by showing that the sequence
1

p2n
Hp([p

n]P ) is a Cauchy sequence in the complete metric space Qp. Using Lemma 1.1.6, we
can instead show that as n approaches infinity, we have

1

p2(n+1)
Hp([p

n+1]P )− 1

p2n
Hp([p

n]P )
n→∞−−−→ 0. (3.8)

Let us start by looking at the expression Hp([p]P ) − p2Hp(P ) for P ∈ Jp(Q). To evaluate
Hp at the point [p]P , we need a description of its image on the Kummer surface. We use
the multiplication formulas defined in Theorem 1.5.4. The functions µm evaluated at P give
projective coordinates for κ([m]P ), but the theorem does not tell us which specific normalization
for κ([m]P ) we obtain. Uchida has the following result about the normalization when P = O.

Lemma 3.3.2 ([35, Lemma 3.9]). We have µm(0, 0, 0, 1) = (0, 0, 0, 1) for all m ≥ 0.

We want to determine the normalization of κ([m]P ) we obtain from the functions µm,i also
at other points P . Specifically, we show that for points P in the subgroup Jp(Q), we have
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gcd(µm,1(x(P )), µm,2(x(P )), µm,3(x(P )), µm,4(x(P ))) = 1. Note that for m = 2, this is true
by definition of Jp(Q). Namely, if P ∈ Jp(Q), then P ∈ Uq(Q) for all primes q. Hence
Φq(P ) = maxj |δj(x(P ))|q = 1 for all q, which implies that gcd(δ1(x(P )), . . . , δ4(x(P ))) = 1. To
show that the same is satisfied for all other µm, we use some theory about real local height
functions on the Jacobian, which we already saw in Section 3.1.1. Recall that we presented
Uchida’s naive and canonical local real height functions in Definition 3.1.4 and Definition 3.1.10,
respectively. We make use of a property of these canonical local height functions that was proven
by Uchida in [35, Theorem 5.3]. We reproduce the result here and fill in some details in Uchida’s
proof for the case i = 4. This case is of interest in the current setting because we consider points

P ∈ Jp(Q) ⊆ J
(p)
1 (Q), and for these points we have κ̃(P ) = [0 : 0 : 0 : 1], which implies that

x4(P ) ̸= 0. We thus have J
(p)
1 (Q) ⊆ JΘ4(Q).

Theorem 3.3.3 ([35, Theorem 5.3]). Let q be a prime. Let λ̂4,q be the canonical local real
height defined in Definition 3.1.10. For any m ∈ Z>0 and P ∈ J(Qq) with P, [m]P /∈ supp(Θ4),
we have

λ̂4,q([m]P )−m2λ̂4,q(P ) = − log

∣∣∣∣µm,4(x(P ))

x4(P )m
2

∣∣∣∣
q

.

Proof. For m = 1 the statement is trivial. For m = 2, we showed the statement in Theorem
3.1.11. In that theorem, we also saw that λ̂4,q is a canonical local height function associated
with the divisor Θ4, and hence it satisfies the properties in Theorem 3.1.8. We note that

div

(
µm,4(x(P ))

x4(P )m
2

)
= [m]∗Θ4 −m2Θ4.

We can then use the properties in Theorem 3.1.8 to find

λ̂4,q([m]P )−m2λ̂4,q(P ) = λ̂[m]∗Θ4,q(P )− λ̂m2Θ4,q(P ) + γ1 (property (iv), (i))

= λ̂([m]∗Θ4−m2Θ4),q(P ) + γ2 (property (i))

= − log

∣∣∣∣µm,4(x(P ))

x4(P )m
2

∣∣∣∣
q

+ γ3, (property (ii)) (3.9)

where the γi are constants. We thus need

γ3 = λ̂4,q([m]P )−m2λ̂4,q(P ) + log

∣∣∣∣µm,4(x(P ))

x4(P )m
2

∣∣∣∣
q

(3.10)

for all P such that P, [m]P ∈ JΘ4(Qq), so in particular for P = O with κ(O) = [0 : 0 : 0 : 1]. But
we know that µm(0, 0, 0, 1) = (0, 0, 0, 1) by Lemma 3.3.2, and hence also Φq(O) = 1. This shows

that λ̂4,q(O) = 0, and thus that all terms on the right-hand side of (3.10) evaluate to 0 at O,
which implies γ3 = 0 independently of P . Then (3.9) gives the desired result. ■

Theorem 3.3.4. Let P ∈ Jp(Q). Then xi([m]P ) = ±µm,i(x(P )) for all 1 ≤ i ≤ 4 and all
m ≥ 1.

Proof. Consider any prime q and any m ∈ Z>0. Recall that J
(p)
1 (Q) ⊆ JΘ4(Q), and thus

P, [m]P ∈ JΘ4(Q). We apply Theorem 3.3.3 to obtain

λ̂4,q([m]P )−m2λ̂4,q(P ) = − log

∣∣∣∣µm,4(x(P ))

x4(P )m
2

∣∣∣∣
q

= − log |µm,4(x(P ))|q +m2 log |x4(P )|q . (3.11)
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On the other hand, because P, [m]P ∈ JU (Q), we have from Proposition 3.1.13 that

λ̂4,q([m]P )−m2λ̂4,q(P ) = λ4,q([m]P )−m2λ4,q(P )

= − log |x4([m]P )|q +m2 log |x4(P )|q . (3.12)

Equating (3.11) and (3.12) then gives

− log |x4([m]P )|q = − log |µm,4(x(P ))|q .

We thus know that x4([m]P ), µm,4(x(P )) ∈ Z such that |x4([m]P )|q = |µm,4(x(P ))|q for all
primes q. This implies that x4([m]P ) = ±µm,4(x(P )). Because

κ([m]P ) = [x1([m]P ) : x2([m]P ) : x3([m]P ) : x4([m]P )]

= [µm,1(x(P )) : µm,2(x(P )) : µm,3(x(P )) : µm,4(x(P ))],

this implies that xi([m]P ) = ±µm,i(x(P )) for all 1 ≤ i ≤ 4. ■

In particular, we deduce that gcd(µm,1(x(P )), µm,2(x(P )), µm,3(x(P )), µm,4(x(P ))) = 1 for all
m ≥ 0.

Corollary 3.3.5. Let P ∈ Jp(Q) and m ≥ 1. Then

Hp([m]P )−m2Hp(P ) = logp

(
µm,4(x(P ))

x4(P )m
2

)
. (3.13)

We now need to rewrite the argument of the logarithm in (3.13). If P ∈ J
(p)
1 (Q), we know that

x4(P ) ̸= 0. Note that we can view

µm,4(x1, x2, x3, x4)

xm
2

4

= µm,4

(
x1
x4
,
x2
x4
,
x3
x4
, 1

)
as a polynomial of total degree at most m2 in Z

[
x1
x4
, x2
x4
, x3
x4

]
. Because x4(P ) ̸= 0, we get from

(1.18) that
x1(P )

x4(P )
=

1

℘11
(P ),

x2(P )

x4(P )
=
℘22

℘11
(P ) and

x3(P )

x4(P )
= −℘12

℘11
(P ). (3.14)

Hence we have

µm,4(x(P ))

x4(P )m
2 = µm,4

(
1

℘11
(P ),

℘22

℘11
(P ),−℘12

℘11
(P ), 1

)
. (3.15)

We now use the 2-parameter formal group associated to J , which we defined in Section 1.6.3.
Recall that in (1.29), we have expansions of the coordinate functions ℘ij defining the map to
the Kummer surface in the parameters t1 and t2. Using these, we find

1

℘11
= t21 + (terms of total degree ≥ 3)

℘22

℘11
= 2t1t2 + (terms of total degree ≥ 3)

−℘12

℘11
= t22 + (terms of total degree ≥ 3) (3.16)

which are all in Z[[t1, t2]]. To find an expansion for µm,4

(
1

℘11
, ℘22

℘11
,−℘12

℘11
, 1
)
in t1 and t2, we first

look more closely at the coefficients of the polynomial µm,4. We prove a few properties, using
the equations for δ given in [13, Appendix C] and the equations for the biquadratic formulas Bij

from [12]. We do not reproduce the equations here, but we highlight some properties.
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Properties 3.3.6. The polynomials δi(k1, k2, k3, k4) have the following property:

(a) The coefficient of k44 in δi is 0 for i = 1, 2, 3, and 1 for i = 4.

(b) The terms k34k1, k
3
4k2, k

3
4k3 have coefficient 0 in δ4.

The biquadratic polynomials Bii((k1, k2, k3, k4), (l1, l2, l3, l4)) have the following properties:

(c) In Bii for i = 1, 2, 3, the coefficients of the terms of the form k24ljl4 and kjk4l
2
4 for

j = 1, 2, 3, 4 are 0.

(d) In B44, the coefficients of terms of the form k24lilj and kikjl
2
4 for i, j ∈ {1, 2, 3, 4}, are 0,

unless i = j = 4, in which case the coefficient is 1.

Lemma 3.3.7. The coefficient of km
2

4 in the homogeneous polynomial µm,i(k1, k2, k3, k4) is equal
to 0 for i = 1, 2, 3, and 1 for i = 4.

Proof. Let us show this by induction on m using the inductive definition of µm in Theorem
1.5.4. It is clear from the definition that the statement is true for µ0 = (0, 0, 0, 1) and µ1 =
(k1, k2, k3, k4).

We now show that if the statement is true for µl with l ≥ 1, then it is also true for µ2l. Namely,
by definition µ2l,i(k) = δi(µl(k)). Because the coefficient of kl

2

4 is 0 in µl,1, µl,2 and µl,3 by the

induction hypothesis, the only term in δi(µl) that can contribute to the k
(2l)2

4 -term in δi(µl(k))
is the µ4l,4-term. However, we see from Properties 3.3.6(a) that this term vanishes in δi(µl) for

i = 1, 2, 3. In δ4(µl), its coefficient is 1, and the coefficient of kl
2

4 in µl,4 is also 1 by the induction
hypothesis. This shows the statement for m = 2l.

Now we show that if the statement is true for µl and µl+1 with l ≥ 1, then it is also true for µ2l+1.
Namely, by definition µ2l+1,i(k) ki = Bii(µl+1(k), µl(k)) for i = 1, 2, 3, 4. Hence the coefficient

of k
(2l+1)2

4 in µ2l+1,i(k) corresponds to the coefficient of kik
(2l+1)2

4 in Bii(µl+1(k), µl(k)). By the
induction hypothesis, we know that µl+1,4 and µl,4 are the only coordinates that have a nonzero

coefficient of k
(l+1)2

4 and kl
2

4 , respectively. Therefore, the only terms in Bii(µl+1, µl) that could

contribute to the kik
(2l+1)2

4 -term in Bii(µl+1(k), µl(k)) are terms of the form µ2l+1,4µl,jµl,4 and

µl+1,jµl+1,4µ
2
l,4 for some j ∈ {1, 2, 3, 4}. However, Properties 3.3.6(c) shows that for i = 1, 2, 3,

all these terms have coefficient 0. For i = 4, Properties 3.3.6(d) tells us that the coefficient

of µ2l+1,4µ
2
l,4 in B44(µl+1(k), µl) is 1. By the induction hypothesis, the coefficient of k

(l+1)2

4 in

µl+1,4 and the coefficient of kl
2

4 in µl,4 are 1. These facts show that the coefficient of k
(2l+1)2

4 in
µ2l+1,i(k) is equal to 0 for i = 1, 2, 3 and equal to 1 for i = 4. ■

Lemma 3.3.8. Let m ≥ 1. The coefficient of km
2−1

4 ki in µm,4(k1, k2, k3, k4) is equal to 0 for
i = 1, 2, 3.

Proof. We again use induction on m. Note that the statement is true for m = 1 because
µ1,4 = k4.

Let us assume the statement is true for m = l, and show it is true for m = 2l. Let us fix
i ∈ {1, 2, 3}. From Lemma 3.3.7, we deduce that the only terms in δ4(µl) that can contribute

to the km
2−1

4 ki-term in δ4(µl(k)) = µ2l,4(k) are of the form µ3l,4µl,j for some j ∈ {1, 2, 3, 4}.
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Properties 3.3.6(b) tells us that for j = 1, 2, 3, these terms have coefficient 0. Hence they cannot

contribute, and the only term left is µ4l,4. However, the coefficient of kl
2−1
4 ki is equal to 0 in

µl,4(k) by the induction hypothesis. Hence this term also cannot contribute. We conclude that

the coefficient of k
(2l)2−1
4 ki in µ2l,4(k) is 0.

Now we assume the statement is true for m = l and m = l+1, and show it is true for m = 2l+1.

Let us again fix i ∈ {1, 2, 3}. By definition, the coefficient of k
(2l+1)2−1
4 ki in µ2l+1,4(k) corresponds

to the coefficient of k
(2l+1)2

4 ki in B44(µl+1(k), µl(k)). It follows from Lemma 3.3.7 that the only

terms in B44(µl+1, µl) that can contribute to the k
(2l+1)2

4 ki-term in B44(µl+1(k), µl(k)) are the
terms of the form µ2l+1,4µl,jµl,4 and µl+1,jµl+1,4µ

2
l,4. However, from Properties 3.3.6(d) it follows

that for j = 1, 2, 3 these terms have coefficient 0. For j = 4 we get the term µ2l+1,4µ
2
l,4, but from

the induction hypothesis we know that the coefficient of kl
2−1
4 ki in µl,4(k) and the coefficient

of k
(l+1)2−1
4 ki in µl+1,4(k) are 0. Then this term can also not contribute to the k

(2l+1)2

4 ki-term
in B44(µl+1(k), µl(k)), so the latter must have coefficient 0. This shows that the coefficient of

k
(2l+1)2−1
4 ki in µ2l+1,4(k) is 0. ■

We can use these facts about the polynomial µm,4 to say something about the (t1, t2)-expansion

of µm,4

(
1

℘11
, ℘22

℘11
,−℘12

℘11
, 1
)
.

Proposition 3.3.9. Let m ≥ 1. Then µm,4

(
1

℘11
, ℘22

℘11
,−℘12

℘11
, 1
)
has an expansion in t1 and t2 of

the form
um(t1, t2) ∈ 1 + (t1, t2)

4Zp[[t1, t2]].

Proof. Recall that µm,4 is a homogeneous polynomial of degree m2. Let us write

µm,4(k1, k2, k3, k4) =
∑

i+j+l+w=m2

aijlwk
i
1k

j
2k

l
3k

w
4 .

Then Lemma 3.3.7 says that a0,0,0,m2 = 1, and Lemma 3.3.8 says that a1,0,0,m2−1 = a0,1,0,m2−1 =
a0,0,1,m2−1 = 0. We thus get

µm,4

(
1

℘11
,
℘22

℘11
,−℘12

℘11
, 1

)
=

∑
i+j+l+w=m2

aijlw

(
1

℘11

)i(℘22

℘11

)j (
−℘12

℘11

)l

= 1 +
∑

i+j+l+w=m2

i+j+l≥2

aijlw

(
1

℘11

)i(℘22

℘11

)j (
−℘12

℘11

)l

. (3.17)

From the expansions in (3.16) we note that 1
℘11

, ℘22

℘11
,−℘12

℘11
∈ (t1, t2)

2Z[[t1, t2]]. In the last sum
in (3.17), each term satisfies i+ j + l ≥ 2, and hence we conclude that this sum is contained in
(t1, t2)

4Z[[t1, t2]]. This implies the result. ■

For P ∈ J
(p)
1 (Q), we then get from (3.15) that

um(t1(P ), t2(P )) =
µm,4(x(P ))

x4(P )m
2 . (3.18)

We have the following convergence results, which are very similar to Corollary 2.3.3 and Corollary
2.3.4 for elliptic curves.

85



Corollary 3.3.10. Let P ∈ J1(Qp). Let g(T1, T2) ∈ 1 + (T1, T2)
kQp[[T1, T2]] for some integer

k > 0, such that g converges on some neighborhood of (0, 0). Then for large enough n ∈ Z≥0,
g(t1([p

n]P ), t2([p
n]P )) converges, and for m ∈ Z<k we have

lim
n→∞

1

pmn
logp(g(t1([p

n]P ), t2([p
n]P ))) = 0.

Proof. Because P ∈ J1(Qp), we have ordp(t1([p
n]P )), ordp(t2([p

n]P )) ≥ n for all n ≥ 0 (Corollary
1.6.18). The result then follows from Lemma 2.3.2. ■

Corollary 3.3.11. Let P ∈ J1(Qp). Let g(T1, T2) ∈ 1 + (T1, T2)
3Zp[[T1, T2]]. Then

lim
n→∞

1

p2n
logp(g(t1([p

n]P ), t2([p
n]P ))) = 0.

Proof. The series g(T1, T2) converges for T1, T2 ∈ pZp. The result follows from Corollary
3.3.10. ■

We use this to show the existence of the limit (3.7).

Proof of Theorem 3.3.1. Recall that we can prove the theorem by showing the limit in (3.8).
Note that [pn]P ∈ Jp(Q) for all n ≥ 0. We have

lim
n→∞

(
1

p2(n+1)
Hp([p

(n+1)]P )− 1

p2n
Hp([p

n]P )

)
= lim

n→∞

1

p2(n+1)

(
Hp([p]([p

n]P ))− p2Hp([p
n]P )

)
=

1

p2
lim
n→∞

1

p2n
logp

(
µp,4(x([p

n]P ))

x4([pn]P )p
2

)
(Corollary 3.3.5)

=
1

p2
lim
n→∞

1

p2n
logp (up(t1([p

n]P ), t2([p
n]P ))) (using (3.18))

= 0. (Proposition 3.3.9, Corollary 3.3.11)

■

3.3.2 Quadraticity of hp

Next, our goal is to prove that the function hp satisfies the parallelogram law on Jp(Q). Explicitly
we want to show the following theorem.

Theorem 3.3.12. Let P,Q ∈ Jp(Q). Then

hp(P +Q) + hp(P −Q) = 2hp(P ) + 2hp(Q).

We first note that by definition, for P,Q ∈ Jp(Q) we have

Hp(P +Q) +Hp(P −Q) = logp(x4(P +Q)x4(P −Q)). (3.19)

Our goal is to rewrite the right-hand side in such a way that it depends on the coordinates of
P and Q instead. As in the previous section, we use theory on the canonical local real height
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function by Uchida which were introduced in Section 3.1.1. Again, we only need to consider the
local height away from Θ4, because we know that Jp(Q) ⊆ JΘ4(Q). We use the following result
by Uchida. Uchida states this result for all Θi with i = 1, 2, 3, 4, but we only need the case i = 4
and we fill in some details in the proof for this case.

Lemma 3.3.13 ([35, Theorem 5.6]). Let q be a prime, and let λ̂4,q be the canonical local real
height defined in Definition 3.1.10. Let P,Q ∈ J(Qq) be such that P,Q, P +Q,P −Q /∈ supp(Θ4).
Then

λ̂4,q(P +Q) + λ̂4,q(P −Q)− 2λ̂4,q(P )− 2λ̂4,q(Q) = − log

∣∣∣∣B44(x(P ), x(Q))

x4(P )2x4(Q)2

∣∣∣∣
q

.

Proof. Recall from the proof of Theorem 3.1.11 that λ̂4,q is a canonical local height corresponding
to Θ4. If we define the morphisms σ, ϵ, π1, π2 : J × J → J by σ(P,Q) = P +Q, ϵ(P,Q) = P −Q,
π1(P,Q) = P and π2(P,Q) = Q, we have

div

(
B44(x(P ), x(Q))

x4(P )2x4(Q)2

)
= σ∗Θ4 + ϵ∗Θ4 − 2π∗1Θ4 − 2π∗2Θ4.

We use the properties of canonical local height functions in Theorem 3.1.8 to conclude that

λ̂4,q(P +Q) + λ̂4,q(P −Q)− 2λ̂4,q(P )− 2λ̂4,q(Q)

= λ̂σ∗Θ4,q(P,Q) + λ̂ϵ∗Θ4,q(P,Q)− 2λ̂π∗
1Θ4,q(P,Q)− 2λ̂π∗

2Θ4,q(P,Q) + γ1 (property (iv))

= λ̂σ∗Θ4+ϵ∗Θ4−2π∗
1Θ4−2π∗

2Θ4,q(P,Q) + γ2 (property (i))

= − log

∣∣∣∣B44(x(P ), x(Q))

x4(P )2x4(Q)2

∣∣∣∣
q

+ γ3, (property (ii))

(3.20)

where the γi are constants. We rearrange this equation to get an expression for γ3:

γ3 = λ̂4,q(P +Q) + λ̂4,q(P −Q)− 2λ̂4,q(P )− 2λ̂4,q(Q) + log

∣∣∣∣B44(x(P ), x(Q))

x4(P )2x4(Q)2

∣∣∣∣
q

.

This equality holds in particular for P = Q = O with κ(O) = [0 : 0 : 0 : 1]. In that case we have
λ̂4,q(O) = 0, and we also conclude that B44(x(P ), x(Q)) = 1 from Properties 3.3.6(d). Hence all
terms on the right-hand side evaluate to 0, so γ3 = 0. But as this value is independent of P and
Q, we conclude from (3.20) that the desired equation is satisfied. ■

Proposition 3.3.14. Let P,Q ∈ Jp(Q). Then Bii(x(P ), x(Q)) = ±xi(P + Q)xi(P − Q) for
i = 1, 2, 3, 4.

Proof. Recall that J
(p)
1 (Q) ⊆ JΘ4(Q). Hence we can apply Lemma 3.3.13 for any prime q, which

gives us

λ̂4,q(P +Q) + λ̂4,q(P −Q)− 2λ̂4,q(P )− 2λ̂4,q(Q) = − log

∣∣∣∣B44(x(P ), x(Q))

x4(P )2x4(Q)2

∣∣∣∣
q

= − log |B44(x(P ), x(Q))|q
+ 2 log |x4(P )|q + 2 log |x4(Q)|q. (3.21)
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On the other hand, because P,Q ∈ JU (Q), and hence P +Q,P −Q ∈ JU (Q), Proposition 3.1.13
implies

λ̂4,q(P +Q) + λ̂4,q(P −Q)− 2λ̂4,q(P )− 2λ̂4,q(Q)

= λ4,q(P +Q) + λ4,q(P −Q)− 2λ4,q(P )− 2λ4,q(Q)

= − log |x4(P +Q)|q − log |x4(P −Q)|q + 2 log |x4(P )|q + 2 log |x4(Q)|q. (3.22)

Equating (3.21) and (3.22) gives

− log |B44(x(P ), x(Q))|q = − log |x4(P +Q)x4(P −Q)|q.

We conclude that ordq(B44(x(P ), x(Q))) = ordq(x4(P +Q)x4(P−Q)) for every prime q. Because
x4(P +Q)x4(P −Q) is nonzero, this implies that

B44(x(P ), x(Q)) = ±x4(P +Q)x4(P −Q).

From Theorem 1.5.2 we deduce that

[B11(x(P ), x(Q)) : B22(x(P ), x(Q)) : B33(x(P ), x(Q)) : B44(x(P ), x(Q))] =

[x1(P +Q)x1(P −Q) : x2(P +Q)x2(P −Q) : x3(P +Q)x3(P −Q) : x4(P +Q)x4(P −Q)]

as projective points. Therefore Bii(x(P ), x(Q)) = ±xi(P +Q)xi(P −Q) for all i = 1, 2, 3, 4. ■

Together, (3.19) and Proposition 3.3.14 give

Hp(P +Q) +Hp(P −Q) = logp(B44(x(P ), x(Q))). (3.23)

We write B44(x(P ), x(Q)) = x4(P )
2x4(Q)2λ(P,Q), where by definition

λ(P,Q) :=
B44(x(P ), x(Q))

x4(P )2x4(Q)2
.

Because B44(k, l) is a biquadratic form in the variables k1, k2, k3, k4 and l1, l2, l3, l4, we can view
λ(P,Q) as a polynomial

λ(P,Q) ∈ Z
[
x1(P )

x4(P )
,
x2(P )

x4(P )
,
x3(P )

x4(P )
,
x1(Q)

x4(Q)
,
x2(Q)

x4(Q)
,
x3(Q)

x4(Q)

]
.

From Properties 3.3.6(d), we conclude that the constant coefficient of λ is 1. It also says that
k24l

2
4 is the only term in B44(k, l) that involves k

2
4 or l24, and therefore all nonconstant terms in the

polynomial λ(P,Q) contain at least one factor xi(P )
x4(P ) and one factor

xj(Q)
x4(Q) for some i, j ∈ {1, 2, 3}.

Recall that because P,Q ∈ J
(p)
1 (Q), we have (3.14) for P and Q. Using (3.14) and (3.16), we

then conclude that there is a series

λT (T1, T2, S1, S2) ∈ 1 + (T1, T2)
2(S1, S2)

2Z[[T1, T2, S1, S2]] (3.24)

such that λ(P,Q) = λT (t(P ), t(Q)).

Lemma 3.3.15. Let P,Q ∈ J
(p)
1 (Qp) and

g(T1, T2, S1, S2) ∈ 1 + (T1, T2)
2(S1, S2)

2Zp[[T1, T2, S1, S2]].

Then

lim
n→∞

1

p2n
logp(g(t([p

n]P ), t([pn]Q))) = 0.
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Proof. Recall from Corollary 1.6.18 that ordp(ti([p
n]P )), ordp(ti([p

n]Q)) ≥ n for i = 1, 2. Because
g has coefficients in Zp, it converges when ordp(ti), ordp(si) > 0 for i = 1, 2 by Lemma 1.1.7.
Then the result follows from Lemma 2.3.2 with r = 4, k = 4 and m = 2. ■

We rewrite (3.23) as

Hp(P +Q) +Hp(P −Q) = logp
(
x4(P )

2x4(Q)2λ(P,Q)
)

= 2 logp(x4(P )) + 2 logp(x4(Q)) + logp(λ(P,Q))

= 2Hp(P ) + 2Hp(Q) + logp(λ
T (t(P ), t(Q))).

We use this to show that hp satisfies the parallelogram law.

Proof of Theorem 3.3.12. For P,Q ∈ Jp(Q), we obtain

hp(P +Q) + hp(P −Q) = lim
n→∞

1

p2n
(Hp([p

n]P + [pn]Q) +Hp([p
n]P − [pn]Q))

= lim
n→∞

1

p2n
(
2Hp([p

n]P ) + 2Hp([p
n]Q) + logp(λ

T (t([pn]P ), t([pn]Q)))
)

= 2hp(P ) + 2hp(Q). (using (3.24) and Lemma 3.3.15)

■

Corollary 3.3.16. Let P ∈ Jp(Q) and let n ∈ Z. Then

hp([n]P ) = n2hp(P ).

Proof. Because Jp(Q) is an abelian group, this follows from Proposition 2.1.5 and Theorem
3.3.12. Alternatively, this can be shown directly using Corollary 3.3.5 and an argument similar
to the proof of Theorem 3.3.1. ■

3.3.3 Extension of hp to J(Q)

We defined hp only on Jp(Q). We now extend the definition to J(Q) in such a way that the
resulting function is a quadratic form on J(Q). Recall that Jp(Q) is a subgroup of finite index
in J(Q) (Proposition 3.2.9), and hence each point P ∈ J(Q) has a multiple that lies in Jp(Q).

Definition 3.3.17. Let P ∈ J(Q). Let m ∈ Z>0 such that [m]P ∈ Jp(Q). Then we define

hp(P ) =
1

m2
hp([m]P ).

To show that this definition makes sense, we need the following property.

Lemma 3.3.18. Let P ∈ J(Q) and m1,m2 ∈ Z>0 such that [m1]P, [m2]P ∈ Jp(Q). Then

1

m2
1

hp([m1]P ) =
1

m2
2

hp([m2]P ).
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Proof. Because also [m1m2]P ∈ Jp(Q), we can use Corollary 3.3.16 to conclude that

1

m2
1

hp([m1]P ) =
1

m2
1m

2
2

hp([m1m2]P )

=
1

m2
2

hp([m2]P ).

■

It is then also clear that Definition 3.3.17 does not conflict with the original definition of hp on
Jp(Q), because we can take m = 1 when P ∈ Jp(Q).

Theorem 3.3.19. The function hp : J(Q) → Qp is a quadratic form. Explicitly, it has the
following properties.

(a) For all P,Q ∈ J(Q), we have hp(P +Q) + hp(P −Q) = 2hp(P ) + 2hp(Q).

(b) For all P ∈ J(Q) and n ∈ Z, we have hp([n]P ) = n2hp(P ).

Proof. Let m1,m2 ∈ Z>0 be such that [m1]P, [m2]Q ∈ Jp(Q). These exist by Proposition 3.2.9.
Then also [m1m2]P , [m1m2]Q and their sum and difference are all in Jp(Q). Therefore, using
Definition 3.3.17 we get

hp(P +Q) + hp(P −Q) =
1

m2
1m

2
2

(hp([m1m2]P + [m1m2]Q) + hp([m1m2]P − [m1m2]Q))

=
1

m2
1m

2
2

(2hp([m1m2]P ) + 2hp([m1m2]Q)) (Theorem 3.3.12)

= 2hp(P ) + 2hp(Q).

This shows part (a). Part (b) follows from part (a) and Proposition 2.1.5. ■

3.3.4 Comparison of hp and ĥp

Now that we have found a quadratic p-adic height hp as a limit of the naive height Hp, we

compare it with the p-adic height ĥp from Section 3.2.3. In this section, we show that the two
heights turn out to be identical. We first show this on the subset Jp(Q) \ supp(Θ), because there

we have more straightforward descriptions of hp and ĥp. We then use that result to show that
the heights must be equal on all of J(Q).

We take a similar approach as in Section 2.3.6 for elliptic curves. First we find an expression g(P )
such that ĥp(P ) = Hp(P )+ g(P ) for all P ∈ Jp(Q) \ supp(Θ). Then we want to take a limit over
p-power multiples of P on both sides such that the term involving g vanishes, and we obtain hp(P )
on the right-hand side. However, because we only have this expression for P ∈ Jp(Q) \ supp(Θ),
we can only take the limit over multiples [pn]P of P that are also not in supp(Θ). We thus first
show that for any P ∈ J1(Q) \ {O}, the set S(P ) = {n ∈ Z>0 | [pn]P /∈ supp(Θ)} is infinite, so
that we can take the limit over the multiples [pn]P with n ∈ S(P ) rather than over all n ∈ Z>0.
To show that S(P ) is infinite, we first need some lemmas about the multiplication-by-p map on
the formal group associated to J .
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Lemma 3.3.20. Let m ≥ 1. Let [m] = ([m]1, [m]2) be the multiplication-by-m homomorphism
from Definition 1.6.4. The series [m]1(0, T2) ∈ Zp[[T2]] is of the form

[m]1(0, T2) = ξmT
3
2 + (terms of degree ≥ 5),

where ξm := −
∑m

i=1 i(i− 1).

Proof. The formal group law F J of Ĵ can be computed explicitly, and it is shown in [4] that F J

has an expansion of the form

FJ,1(X1, X2, Y1, Y2) = X1 + Y1 − f2X
2
1Y1 − f2X1Y

2
1 −X2

2Y2 −X2Y
2
2

+ (terms of total degree ≥ 5)

FJ,2(X1, X2, Y1, Y2) = X2 + Y2 − f1X
2
1Y1 − f1X1Y

2
1 + 2f4X

2
2Y2 + 2f4X2Y

2
2

+ (terms of total degree ≥ 5).

We noted in Section 1.6.3 that the series F1,J , F2,J only have terms of total odd degree, and
from the definition of [m] we deduce that the same is then true for the [m]1 and [m]2.

For m = 1, we find that

[1]1(0, T2) = FJ,1(0, 0, 0, T2) ∈ T 5
2Zp[[T2]]

and hence it has the desired form with ξ1 = 0.

For induction, let k ≥ 1 and let us assume that [m]1(0, T2) = ξmT
3
2 + (terms of degree ≥ 5) for

all m ≤ k. We note that [k]2(0, T2) = kT2 + (terms of degree ≥ 3) by Proposition 1.6.5 and
because [k]2 is odd. We then get

[k + 1]1(0, T2) = FJ,1 ([k]1(0, T2), [k]2(0, T2), 0, T2)

= [k]1(0, T2)− T2([k]2(0, T2))
2 − T 2

2 [k]2(0, T2) + (terms of degree ≥ 5)

= ξkT
3
2 − k2T 3

2 − kT 3
2 + (terms of degree ≥ 5)

= (ξk − k(k + 1))T 3
2 + (terms of degree ≥ 5).

Because ξk+1 = ξk − k(k + 1), this implies the result. ■

Lemma 3.3.21. Let p be a prime. Then for ξp as defined in Lemma 3.3.20, we have ord3(ξ3) = 0,
and ordp(ξp) = 1 for p ̸= 3.

Proof. We note that

ξp = −
p∑

i=1

i(i− 1) = −p(p+ 1)(2p+ 1)

6
+
p(p+ 1)

2
= −p(p+ 1)(p− 1)

3
.

Because ordp(p+ 1) = ordp(p− 1) = 0, we find ord3(ξ3) = 0 and ordp(ξp) = 1 for p ̸= 3. ■

Theorem 3.3.22. Let P ∈ J1(Qp) ∩ supp(Θ) and P ̸= O. Then [p]P ∈ JΘ(Qp).
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Proof. We know from Lemma 3.2.4 that P ∈ supp(Θ) implies that t1(P ) = 0. If we assume that
[p]P ∈ supp(Θ), then we must have t1([p]P ) = 0. From Lemma 3.3.20 we know that

t1([p]P ) = [p]1(0, t2(P )) = t22(P ) (ξp + (terms of degree ≥ 2 in t2(P ))) .

Because ordp(ξp) ≤ 1 by Lemma 3.3.21, this can only be zero when t2(P ) = 0. But t(P ) = (0, 0) if
and only if P = O. This contradicts our assumption, and hence we must have [p]P /∈ supp(Θ). ■

Corollary 3.3.23. Let P ∈ J1(Qp) \ {O}. Then the set S(P ) = {n ∈ Z>0 | [pn]P /∈ supp(Θ)}
is infinite.

Proof. If Z>0 \ S(P ) is finite, this is immediate. Now assume Z>0 \ S(P ) is infinite. Corollary
1.6.26 implies that P is a nontorsion point, and hence for every n ∈ Z>0 \ S(P ), we have
[pn]P ∈ supp(Θ) \ {O}. Then Theorem 3.3.22 implies that n+ 1 ∈ S(P ). Hence S(P ) must also
be infinite. ■

We now use this fact to show that hp and ĥp are equal.

Theorem 3.3.24. Let P ∈ Jp(Q) \ supp(Θ). Then

ĥp(P ) = hp(P ).

Proof. Let us consider a point Q ∈ Jp(Q) \ supp(Θ). Note that Corollary 1.6.26 implies that

Q /∈ Jtors. Furthermore, because Q ∈ J
(p)
1 (Q), we have x4(P ) ̸= 0. We get

ĥp(Q) = − logp

(
σp(t(Q))2

x1(Q)

)
(Proposition 3.2.13)

= − logp

(
σp(t(Q))2

x4(Q)

x1(Q)

)
+ logp(x4(Q))

= − logp
(
σp(t(Q))2℘T

11(t(Q))
)
+Hp(Q). (3.25)

In the last step we used that because Q /∈ supp(Θ), we know from (1.17) and (1.28) that
x4(Q)/x1(Q) = ℘11(Q) = ℘T

11(t(Q)), the expansion of which is given in (1.29). We see in [5,
Appendix A] that σp(T ) has an expansion of the form

σp(T ) ∈ T1

(
1 +

f2
2
T 2
1 + (T1, T2)

4Q[[T1, T2]]

)
.

Using these expansions we deduce that

σp(T )2℘T
11(T ) ∈ 1 + (T1, T2)

4Qp[[T1, T2]]. (3.26)

Recall that σp(T ) converges for T ∈ (pZp)
2 (Theorem 3.2.3). We also know that ℘T

11(T ) with
expansion (1.29) converges on (pZp)

2 \ {(0, 0)}, and σp(T )2℘T
11(T ) evaluates to 1 at (0, 0). We

conclude that the series σp(T )2℘T
11(T ) converges on a neighborhood of (0, 0).
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Recall from Corollary 3.3.23 that S(P ) is an infinite set, so we can take a limit over n ∈ S(P ).
We get

ĥp(P ) = lim
n→∞
n∈S(P )

1

p2n
ĥp([p

n]P ) (because ĥp is quadratic)

= lim
n→∞
n∈S(P )

1

p2n
Hp([p

n]P )− lim
n→∞
n∈S(P )

1

p2n
logp

(
σp(t([p

n]P ))2℘T
11(t([p

n]P ))
)

(using (3.25))

= lim
n→∞

1

p2n
Hp([p

n]P )− lim
n→∞

1

p2n
logp

(
σp(t([p

n]P ))2℘T
11(t([p

n]P ))
)

= hp(P ). (using Theorem 3.3.1, (3.26) and Corollary 3.3.10)

The equality between the second and third line is satisfied provided the limits exist, which is
shown in the final step. ■

Finally, we show that hp = ĥp on all of J(Q).

Theorem 3.3.25. For all P ∈ J(Q), we have ĥp(P ) = hp(P ).

Proof. First of all, let us consider P ∈ Jtors(Q) with m ∈ Z>0 such that [m]P = O. We have
ĥp(P ) = 0 by Definition 3.2.11. On the other hand, hp(P ) = 1

m2hp(O), and we note that

Hp(O) = 0 which implies by definition that hp(O) = 0. Hence ĥp(P ) = hp(P ) = 0.

For P ∈ J(Q) \ Jtors, let us consider m ∈ Z>0 such that [m]P ∈ Jp(Q) \ supp(Θ), which exists
by Proposition 3.2.9 and Lemma 3.2.10. Then

ĥp(P ) =
1

m2
ĥp([m]P ) (Proposition 3.2.14)

=
1

m2
hp([m]P ) (Theorem 3.3.24)

= hp([m]P ). (Theorem 3.3.19)

■

In particular, because we showed that hp is a quadratic form on J(Q), the same is true for

ĥp. This way we indirectly showed that the global height defined in Section 3.2.3 satisfies the
parallelogram law.

In conclusion, we indeed succeeded in providing an alternate construction of a quadratic p-adic
height on the Jacobian of a genus 2 curve, by defining a naive height and using a limit process.
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Appendix

Consider a smooth projective curve C of genus 2 over a perfect field K with char(K) ̸= 2, defined
by the affine equation

C : y2 = x5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0

with fi ∈ K. The corresponding Jacobian J can be defined as the zero set of the following 13
polynomials in P8, as shown in [16, Section 2].

F2 = 2X0X −X11X22 +X2
12 − f3X0X12 + f1X

2
0 ,

F3 = X0X112 −X222X12 +X122X22,

F4 = X0X111 +X222X11 +X122X12 − 2X112X22 − 2f4X0X112 + f3X0X122,

F5 = X0X
2
122 −X11X

2
22 + 2X0XX22 +X0X11X12 − f4X0X11X22 − f3X0X12X22 + 2f4X

2
0X

− f4f3X
2
0X12 + f1X

2
0X22 + (f4f1 − f0)X

3
0 ,

F6 = X0X
2
222 −X3

22 −X0X12X22 − f4X0X
2
22 −X2

0X11 − f3X
2
0X22 − f2X

3
0 ,

F7 = X0X122X222 −X12X
2
22 +X2

0X − f3X
2
0X12 − f4X0X12X22,

F8 = X0X
2
111 −X3

11 − f2X0X
2
11 − f1X0X11X12 + 3f0X0X11X22 + 2f0X

2
0X

+ (4f4f0 − f3f1)X
2
0X11 − 3f3f0X

2
0X12 + (3f2f0 − f21 )X

2
0X22

+ (4f4f2f0 + f1f0 − f4f
2
1 − f23 f0)X

3
0 ,

F9 = −X111X112 + f4X111X122 − f3X112X122 + f2X112X222 − f1X122X222 + f0X
2
222 −X2

− f4XX11 + f3XX12 − f2XX22 − f2X11X12 + f4f2X11X22 − (f0 + f4f1)X12X22

+ 2f4f0X
2
22 − 2(f4f2 + f1)X0X − 2f0X0X11

+ (2f3f1 + f4f3f2 + f4f0 − f22 − f24 f1)X0X12 + 2f0(f
2
4 − f3)X0X22

+ (f4f3f0 − f4f2f1 − 2f2f0)X
2
0 ,

F10 = X2
112 −X111X122 +X11X − f2X11X22 + 2f1X12X22 − 3f0X

2
22 + 2f2X0X

+ (f4f1 − f2f3 − f0)X0X12 − 2f4f0X0X22 + (f2f1 − f3f0)X
2
0 ,

F11 = X111X222 −X112X122 − 2XX12 +X2
11 − 2f4X11X12 + 3f3X11X22 − 2f2X12X22 + f1X

2
22

− 5f3X0X + f2X0X11 + (3f23 − 2f4f2)X0X12 + (f4f1 − f0)X0X22 − 2f3f1X
2
0 ,

F12 = X2
122 −X112X222 +X22X + 2X11X12 − f4X11X22 + 2f4X0X + (f2 − f4f3)X0X12

+ (f4f1 − f0)X
2
0 ,

F13 = X111X12 −X112X11 − f1X0X122 + 2f0X0X222,

F14 = 2X122X11 −X112X12 −X111X22 − f3X112 + 2f2X0X122 − f1X0X222.
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[4] F. Bianchi. p-adic sigma functions and heights on Jacobians of genus 2 curves. In prepara-
tion.

[5] F. Bianchi. Bernardi-like p-adic sigma function in genus 2. https://sites.google.com/
view/francescabianchi/mt_ns_note. 2022.

[6] F. Bianchi. “Topics in the theory of p-adic heights on elliptic curves”. PhD thesis. University
of Oxford, 2019.

[7] C. Birkenhake and H. Lange. Complex abelian varieties. Second Edition. Vol. 302. Grundlehren
der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, 2004.

[8] C. Blakestad. “On Generalizations of p-Adic Weierstrass Sigma and Zeta Functions”.
PhD thesis. University of Colorado, 2018.

[9] J. W. S. Cassels. Lectures on elliptic curves. Vol. 24. London Mathematical Society Student
Texts. Cambridge University Press, 1991.

[10] J. W. S. Cassels and E. V. Flynn. Prolegomena to a middlebrow arithmetic of curves of
genus 2. Vol. 230. London Mathematical Society Lecture Note Series. Cambridge University
Press, 1996.
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