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1 Introduction

Irrationality is a property of numbers that we are all too familiar with. Rational numbers are those
that can be written as the ratio between two integers. Every other number is irrational. It is rather
straightforward to show a number is rational by finding its numerator and denominator. The difficulty
of showing a number is irrational, however, can range from rather trivial to nearly impossible. Consider
for example the square root of two. In Pythagoras’ time (circa 580 - 500 B.C.), the Pythagoreans
initially believed everything to be constructed by whole numbers and ratios of whole numbers (Spencer,
2022). This is reflected perhaps best in the Pythagoras’ motto “All is Number”, that was carved above
the entrance of their school. At some point, it was discovered that the diagonal of a square with unit
length had to be irrational. This discovery is most often credited to Hippasus of Metapontum, who
may or may not have paid for revealing this fact with his life. The Pythagoreans tried to keep
this discovery a secret. Some believe that Hippasus’ death by drowning was unrelated to the fact
that he revealed the secret existence of irrational numbers, while others believe he was murdered for
this revelation (Clegg, 2014). Whatever the truth may be, it is safe to say that irrational numbers
have their fair share of interesting history. Luckily, we currently live in more accepting time where
discussing the irrationality of numbers does not result in a watery grave. With this history in mind,
let’s look at a proof of the irrationality of

√
2.

Theorem 1.1.
√

2 is irrational.

Proof. Assume
√

2 = a
b for a, b ∈ N, and let the fraction be in its simplest possible form, i.e. a and

b are co-prime. Then we can square the identity and rewrite the it as 2b2 = a2. This means that a
is an even number. So we can write a as a = 2 · c, where c is also a natural number. We can then
substitute this into our expression and simplify to get b2 = 2a2. This implies that b is even and that
contradicts our assumption that a and b are co-prime. Hence our assumption that

√
2 is rational is

false and we must conclude that
√

2 is irrational.

In this thesis we will focus on the constant π and e to discuss some different methods of proving
irrationality, what underlying principles they use, and try to make a comparison between the constants
by trying to apply methods meant for one constant on the other. Like in the example shown above,
we will start our proofs by assuming our constant is rational and then reach a contradiction due to
that assumption, forcing us to conclude our constant is irrational instead. We also show this result a
different way, namely by the use of continued fractions. Every number can be written as a continued
fraction, the definition of which will become clear in a moment. For

√
2 we have that

√
2 = 1 +

√
2− 1 = 1 +

1

1 +
√

2
= 1 +

1

1 +

(
1 +

1

1 +
√

2

) = 1 +
1

2 +
1

1 +
√

2

.

This pattern continue, where we can keep substituting 1 +
1

1 +
√

2
for
√

2 to obtain the continued

fraction
√

2 = 1 +
1

2 +
1

2 +
1

2 + · · ·

.

This continued fraction is infinite, which means, for reasons we will see later, that
√

2 is irrational.
In particular, simple continued fractions that are infinite are always irrational. We can use the same
method to show the irrationality of a different constant, namely the golden ration.
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Theorem 1.2. The golden ration, ϕ = 1+
√
5

2 , is irrational.

Proof. Since ϕ is a solution to x = 1 + 1/x, we can quickly find its continued fraction as

ϕ = 1 +
1

ϕ
= 1 +

1

1 +
1

ϕ

= 1 +
1

1 +
1

1 +
1

ϕ

= 1 +
1

1 +
1

1 +
1

1 +
1

1 + · · ·

.

This is infinite and hence ϕ is irrational.

This lets us conclude not only that ϕ is irrational but also that using this method of observing the
continued fraction can be used for several constants. However, it is clear that this would not be the
obvious way to prove the irrationality of ϕ. The proof of irrationality of

√
2 can be applied to the

square root of any prime number. In particular, we can see through that proof that
√

5 is irrational,
and when we know this, it is straightforward that ϕ is also irrational.

Proof. Assume 1+
√
5

2 = a
b for some a, b ∈ N. Then we would have

√
5 = 2a−b

b which would mean
√

5
is rational as well, which we know not to be the case. Hence, ϕ is irrational.

Lastly, if we can show that a constant c is irrational, it follows immediately that
√
c is also irrational.

Since if
√
c were irrational, we could say

√
c = a

b and consequently c = a2

b2 . Here, we see an example
of the same constant being proven to be irrational in two different ways.

In this thesis, we will look at different proofs for the constants e and π. These proofs will be far
less trivial than the ones above, especially for π. We will work out these proofs in detail, providing
extra theorems and lemma’s were needed. When we have explored these proofs, we will compare
them and look at the similarities and differences between them. We will discuss the complexity of
the methods, taking into account the mathematical tools used, the interchangeability of the methods
between constants.
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2 Proofs of irrationality of e

The constant e is one of the most well-known constants in mathematics and it shows up in many
different fields. Its irrationality has been proven several times and in this section we will highlight
and explain some of them in more detail. We will often use the expansion e =

∑∞
n=0

1
n! = 1

0! + 1
1! +

1
2! + 1

3! + 1
4! + · · · and make the assumption that e = a/b for two natural numbers a, b, to arrive at a

contradiction.

Theorem 2.1. e is irrational.

2.1 Kifowit, repeated integration by parts

Our first proof is by Steve Kifowit from 2009. It starts by taking the definite integral of e−x from
0 to 1 and applying integration by parts a variable, but finite, amount of times. This allows us to
split the resulting expression in a part that consists only of numbers that are necessarily integer and
a part that is strictly between 0 and 1. This then gives us the contradiction since a number cannot
be integer and strictly between 0 and 1 simultaneously.

Proof. Suppose e = a/b for a, b ∈ N. Consider the integral∫ 1

0

e−x dx = 1− 1

e

and take an integer n ≥ max{b, e}. We integrate by parts. Re-imagining the integral as∫ 1

0

e−x · 1 dx

and integrating by parts once gives us gives us

∫ 1

0

e−x · 1 dx =
[
xe−x

]1
0
−
∫ 1

0

−e−x · x dx

=
1

e
+

∫ 1

0

e−x · x dx.

This does not yet give us a clear general form so we integrate by parts again.

∫ 1

0

e−x · 1 dx =
1

e
+

[
1

2
x2e−x

]1
0

−
∫ 1

0

−e−x · 1

2
x2 dx

=
1

e

(
1 +

1

2

)
+

∫ 1

0

e−x · x
2

2
dx

Here, we see a pattern start to emerge. When we compare the expression to the one after a single
integration by parts, we see that the amount we multiply e with starts to grow and the polynomial
in the integral starts to change. We apply integration by part again to see this this another iteration
in this pattern.

∫ 1

0

e−x · 1 dx =
1

e

(
1 +

1

2

)
+

[
x3

3!
e−x

]1
0

−
∫ 1

0

−e−x · x
3

3!
dx

=
1

e

(
1 +

1

2!
+

1

3!

)
+

∫ 1

0

e−x · x
3

3!
dx
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Here, the pattern is especially clear. We rewrite the terms after the after the 1
e term to make clear

that the terms are the reciprocals of factorials. From this, we can see that applying integration by
parts n many times gives us

1− 1

e
=

1

e

(
1 +

1

2!
+

1

3!
+

1

4!
+ · · ·+ 1

n!

)
+

∫ 1

0

xn

n!
e−x dx.

Multiplying by n!e and isolating the integral gives us

n!(e− 1)− n!

(
1 +

1

2!
+

1

3!
+

1

4!
+ · · ·+ 1

n!

)
= e

∫ 1

0

xne−x dx.

Because of our choice of n, the left hand reduces to an integer. However the right hand side is strictly
between zero and one:

0 < e

∫ 1

0

xne−x dx ≤ e
∫ 1

0

xn dx =
e

n+ 1
< 1.

Hence, we have reached a contradiction and so e is irrational (Kifowit, 2009).

We see here that manipulating the identity given by the integral allows us to separate a term that we
know is an integer and equate it to something we can make arbitrarily small to force a contradiction.
We do this here by choosing n specifically to be larger than e in advance. This condition could also
have been omitted and replaced with an argument at the end of the proof that states that the fraction
of e over n+ 1 can be made smaller than 1 for n sufficiently large. However, because we already know
how large n has to be we can include this earlier. It might otherwise seem odd at first to require n
to be larger than b and e, since for an integer to be larger than e only means it has to be larger than
2. And since n is also required to be larger than b this seems redundant at first, since b will most
definitely be larger than 2. For if it wasn’t, then 2e = 5.4366 would be natural, which it clearly is not.
The proof concludes with a contradiction that the quantity we reasoned to be an integer under the
assumption that e is irrational has to be in the interval (0, 1). This is a conclusion we will see more
often, though not always, when discussing proofs of irrationality of e.

2.2 Proofs from THE BOOK I

The proof in Proofs from THE BOOK (Aigner and Zeigler, 2005) is again a proof by contradiction
where we manipulate the expansion of e and separate the integer terms and are left with a term that
is necessarily in the interval (0, 1). This is a clear contradiction which proves the theorem.

Proof. Suppose e = a/b for a, b ∈ N
Then, n!be = n!a for all n ≥ 0. On the right hand side, we again have an integer. While on the left
hand side, we have

n!b

(
1 +

1

1!
+

1

2!
+ · · ·+ 1

n!
+

1

(n+ 1)!
+

1

(n+ 2)!
+

1

(n+ 3)!
+ · · ·

)
= n!a,

which we can rewrite as

n!b

(
1 +

1

1!
+

1

2!
+ · · ·+ 1

n!

)
+ n!b

(
1

(n+ 1)!
+

1

(n+ 2)!
+

1

(n+ 3)!
+ · · ·

)
= n!a.

While the first term reduces to an integer, the second part falls strictly between zero and one. For
this, notice that
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n!b

(
1

(n+ 1)!
+

1

(n+ 2)!
+

1

(n+ 3)!
+ · · ·

)
= b

(
1

(n+ 1)
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ · · ·

)
< b

(
1

n+ 1
+

1

(n+ 1)2
+

1

(n+ 1)3
+ · · ·

)
= b · 1

n
.

The last equality is due to the geometric series which tells us that

∞∑
k=1

1

rk
=

1

r − 1
, for r > 1.

We use r = n + 1. For n sufficiently large (greater than b), this is clearly less than one. So we have
reached a contradiction.

This proof is rather short an straightforward. The equality n!be = n!a follows directly from the
assumption that e = a/b. Since we specify at the start of the proof that the equality holds for all
values of n greater or equal to 0, we can comfortably let n be greater than b at the end of the proof.
The contradiction in this proof doesn’t arise because the equality n!bx = n!a is false when x = a/b
but because when we use e in place of x we have to take into account the special properties of the
number e that then show it cannot be expressed as the ration between two natural numbers.

2.3 MathOnline and variations

An adaptation of the proof from MathOnline revolves around multiplying the expansion of e by the
factorial of b, where b is again the assumed denominator of e as a fraction of natural numbers. This
time, we look at the difference between two integers, calledM and apply different bounds on b to see
that it cannot be larger than 1. We will explore two different ways that a suitable upper bound onM
can be attained. One assumes b is at least 1, which is trivially true, and the second assumes b is at
least 2, which can be seen quite easily as 2e ≈ 7.389 which is clearly not a natural number, so b 6= 2.
If we increase the minimum value of b, we can also lower the upper bound ofM (MathOnline, 2017).

Proof. Suppose e = a/b for a, b ∈ N
Consider

b!e =b!

∞∑
n=0

1

n!

=b!

(
1

0!
+

1

1!
+

1

2!
+

1

3!
+

1

4!
+ · · ·

)
=b!

(
1

0!
+

1

1!
+

1

2!
+ · · ·+ 1

b!

)
+ b!

(
1

(b+ 1)!
+

1

(b+ 2)!
+

1

(b+ 3)!
+ · · ·

)
Here, the first term on the right hand side is an finite sum of integers, while the second is an infinite
sum of numbers less than one. Clearly, the first term is an integer while the second is clearly greater
than zero. Since b!e is also an integer, we define a new number M as
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M =b!e− b!
(

1

0!
+

1

1!
+

1

2!
+ · · ·+ 1

b!

)
=b!

(
1

(b+ 1)!
+

1

(b+ 2)!
+

1

(b+ 3)!
+ · · ·

)
=

1

(b+ 1)
+

1

(b+ 1)(b+ 2)
+

1

(b+ 1)(b+ 2)(b+ 3)
+ · · · .

This is similar to the previous proof, where we now have to show that M < 1. We could use the
geometric series again, but for now we will show two different methods of obtaining this upper bound.
First, we will bound the denominator of each term by a single power of b. We then substitute 2 for
b to get an upper bound. This is because M decreases as b increases. For the second method, we
immediately substitute 1 for b to obtain an upper bound.

Method 1 Using b ≥ 2

M =
1

(b+ 1)
+

1

(b+ 1)(b+ 2)
+

1

(b+ 1)(b+ 2)(b+ 3)
+ . . .

<
1

b
+

1

b2
+

1

b3
+ · · ·

≤1

2
+

1

22
+

1

23
+ · · ·

=
1

2
+

1

4
+

1

8
+ · · ·

=1

Since M gets smaller as b gets larger, we can upper bound it by the lowest value of b. This assumes
that b 6= 1, which means we would have to show that e isn’t an integer. This is clear.

Method 2 Using b ≥ 1

M =
1

(b+ 1)
+

1

(b+ 1)(b+ 2)
+

1

(b+ 1)(b+ 2)(b+ 3)
+ · · ·

≤ 1

(1 + 1)
+

1

(1 + 1)(1 + 2)
+

1

(1 + 1)(1 + 2)(1 + 3)
+ · · ·

=
1

2
+

1

2 · 3
+

1

2 · 3 · 4
+ · · ·

=
1

2!
+

1

3!
+

1

4!
+ · · ·

=e− 2

≈0.71828
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Here, we use again that M decreases as b increases. We use b ≥ 1, if we instead use b ≥ 2 as we did
in the proof above, we get a lower upper bound. Namely,

M <
1

(2 + 1)
+

1

(2 + 1)(2 + 2)
+

1

(2 + 1)(2 + 2)(2 + 3)
+ · · ·

=
1

3
+

1

3 · 4
+

1

3 · 4 · 5
+ · · ·

=
2

2
· 1

3
+

2

2
· 1

3 · 4
+

2

2
· 1

3 · 4 · 5
+ · · ·

=
2

3!
+

2

4!
+

2

5!
+ · · ·

=2 · (e− 2.5)

≈0.4366

Both methods (and sub-methods) produce a sufficient upper bound for M. The fact that M > 0
follows directly from the definition of M as a sum of positive numbers.

This proof uses the identity of e as a series most directly and cuts it up in two parts, one inte-
ger and one non-integer and less than 1. The multiplication with b! only serves to makes the left
hand side, b!e, an integer. Multiplying just by b would suffice in this, the factorial allows us to also
make sure all the terms in the series up to b!/b! are integers as well. In theory, we wouldn’t have
to multiply by b!, just by the smallest integer that is a multiple of b and a multiple of exclusively
factorials. For example, if b = 12, then 24 divides 12 and the first five factorials, and 24 is a lot
smaller than 12! = 479001600. Finding an expression for this, however, would require more explana-
tion and more complicated notation and doesn’t make the argument any stronger. Therefore, we can
take a larger number than necessary and simply multiply by b! to keep the proof simple to understand.

After we have separated the integer and non-integer part of n!b and factoring out the b! term, we
are left with showing thatM is less than 1. As we have seen, this can be done is multiply ways, each
yielding a different valid bound. When we look at the second method we used to show thatM is less
than 1, we can see that increasing the value of b gives us an increasingly smaller upper bound forM.

In the end, this proof also relies on showing that a quantity which is reasoned to be an integer,
based on the assumption that e = a/b, is contained in the interval (0, 1).

2.4 Sondow, nested intervals

This proof takes a different approach than the ones we have seen before. Instead, we construct set of
nested closed intervals around e. We will call these intervals In. We define

In =

 n∑
i=0

1

i!
,

n∑
i=0

1

i!
+

1

n!

 .
This means the first three intervals are

I1 =

[
2

1!
,

3

1!

]
= [2, 3] ,

I2 =

[
5

2!
,

6

2!

]
= [2.5, 3] ,

I3 =

[
16

3!
,

17

3!

]
= [2.666 . . . , 2.8333 . . . ] .
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We will show that the intervals each contain e and that the intersection of all intervals contains only
e. Then, we will argue that e cannot be on the boundary of any In. After this, we will reason that
this means e cannot be rational.

Figure 1: The intervals I1, I2, I3, and I4.

Lemma 2.2. e ∈ In for every n ∈ N.

We will show this by showing that e is greater than the left bound of In, and less than the right
bound.

Proof. For the left bound, since the left bound of In is the n-th partial sum in the expansion of e
which contains strictly positive terms, it follows immediately that

n∑
i=0

1

i!
< e.

For the right endpoint, note that

∞∑
i=1

n!

(n+ i)!
=

1

n+ 1
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ · · ·

is decreasing as n increases and is equal to e− 2 for n = 1, hence

∞∑
i=1

n!

(n+ i)!
≤ e− 2 < 1

for all values of n ≥ 1. If we multiply by 1
n! , we find that

∞∑
i=1

1

(n+ i)!
=

∞∑
i=n+1

1

i!
<

1

n!
.

This means that

e =

∞∑
i=0

1

i!
<

n∑
i=0

1

i!
+

1

n!
.

Pairing the results for each endpoint we can conclude that

n∑
i=0

1

i!
< e =

∞∑
i=0

1

i!
<

n∑
i=0

1

i!
+

1

n!
.
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Lemma 2.3. In =
[
an
n! ,

an+1
n!

]
, where an is a natural number depending on n.

Proof. This follows immediately from the definition of In. The left bound is equal to
∑n
i=1

1
i! =

1
1! + 1

2! + 1
3! + · · · + 1

n! and we can rewrite each term in this sum to have n! as the denominator by
multiplying both sides of the i-th faction by each number from 1 to n except i. The difference between
the left and right bound is immediate from the definition.

Knowing this, we also want to show that no two intervals share a boundary. The way we have currently
defined In does not rule out. To complete this proof, we need to see that, except for n = 2, no interval
shares a boundary with the previous interval.

Lemma 2.4. For n ≥ 2, In does not share a boundary with Im with m > n.

Proof. The definition of In forces the left boundary to be different for each interval, specifically to be
higher than the previous. Also by the definition, the right boundary is given by

∑n
i=0

1
i! + 1

n! meaning
that the right boundary of In is equal the to right boundary of In+1 if and only if

∑n
i=0

1
i! + 1

n! =∑n+1
i=0

1
i! + 1

(n+1)! . In this case, 1
n! = 2

(n+1)! , and this is only true if n = 1.

We wil now look at the intersection of all these intervals and show that in contains the element e and
nothing else. This will then allow us to prove that e cannot be a fraction with n! as denominator,
after which we are only one step away from completing the proof.

Lemma 2.5.
⋂∞
n=1 In = {e}.

Proof. Since e is in each interval In, by lemma 2.2, it must also be in the intersection. To see why it
cannot contain any other element, suppose some constant α ∈ R\{e} exists in this intersection, then
it must be in each of the intervals. Let d = |α− e| be the distance from e to α. By construction, the
length of interval In is equal to 1

n! and this length gets arbitrarily small for a large enough value of n.
This means it will eventually become smaller than d and so this element cannot exist in all intervals
and therefore is not in the intersection.

Proof. We now know that for n ≥ 2, each subinterval In lies strictly within the endpoints of In−1
(lemma 2.4) which are a

n! and a+1
n! . This means that e cannot be on the boundary of any of the

intervals. Suppose now that e = b
n! for some b ∈ N. Then we b

n! ∈
[
an
n! ,

an+1
n!

]
. And since b cannot be

equal to an or an + 1, it has be between an and an + 1 but there clearly aren’t any whole numbers
between an and an + 1, so e cannot be a fraction with a factorial as denominator. However, any
fraction with denominator n can be written as

m

n
=

(n− 1)!m

n!

for any pair of integers m and n. So this is equivalent to e not being a fraction with denominator n,
where n is any integer. Hence, e cannot be a fraction (Sondow, 2006).

Originally, the intervals In were defined as dividing In−1 into n equally long closed sub-intervals and
choosing In as the sub-interval that contains e. This, however, would make proving things like lemma
2.3 a more complicated. That is why we instead defined this way. It ultimately didn’t take anything
away from the proof or any of the arguments and uncluttered the proof.
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2.5 Diao, decreasing sequence of natural numbers

This proof requires little to no calculus and relies on the identity instead of the one we have used so
far. Recall that

e = 1 +
1

1!
+

1

2!
+

1

3!
+ · · · = 1 +

1

1

(
1 +

1

2

(
1 +

1

3
(1 + · · · )

))
.

Define a sequence (xn) as

xn =

∞∑
i=1

(n− 1)!

(n+ i)!
=

1

n
+

1

n(n+ 1)
+

1

n(n+ 1)(n+ 2)
+ · · ·

We claim the following two properties:
1. xn = 1

n (1 + xn+1).
2. xn > xn+1 > 0 for all n ∈ N.

Property 1 can be shown with a straightforward computation:

xn =
1

n
+

1

n(n+ 1)
+

1

n(n+ 1)(n+ 2)
+ · · ·

=
1

n

(
1 +

1

(n+ 1)
+

1

(n+ 1)(n+ 2)
+ · · ·

)
=

1

n

(
1 + xn+1

)
.

For property 2, we compare xn to xn+1:

xn =
1

n
+

1

n(n+ 1)
+

1

n(n+ 1)(n+ 2)
+ · · ·

xn+1 =
1

(n+ 1)
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ · · · .

We can see that in xn+1, the denominators are smaller than the ones of the respective fractions in xn.
Because e = 1 + x1, if e is irrational, then so is x1. Pair this with property 1 and we see that if e is
rational then so is each xn. Lets assume this is the case and write

xn =
pn
qn
,

where pn and qn are natural numbers that are relatively prime. Using property 1 and substituting
this, we see that

pn
qn

=
1

n

(
1 +

pn+1

qn+1

)
.

We then isolate xn+1 and write it in terms of pn, qn, and n and get

pn+1

qn+1
=
npn − qn

qn
.

The fraction pn+1

qn+1
is in its simplest form. If qn were smaller than qn+1, then npn−qn would have to be

less than pn+1, since the fractions are equal, and in that case, we would have a fraction with a smaller
numerator and denominator, which is not possible. Hence, qn ≥ qn+1. When we combine this with
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property 3, which tells us that pn
qn
> pn+1

qn+1
, we can conclude that pn > pn+1 meaning pn is a decreasing

sequence of natural numbers, which is impossible. Hence we have arrived at a contradiction and so e
must be irrational (Diao, 2012).

Here, we see another proof that does not rely on showing an integer quantity is also in the inter-
val (0, 1). Instead, we arrive at a contradiction by constructing a sequence of natural numbers that is
strictly decreasing. This proof also leans less heavily on the series expansion of e and the assumption
that e is rational. Instead, it relies more heavily on the sequence xn and its properties.

2.6 Proofs from THE BOOK II

To close the section of proofs of irrationality of e, we will provide a proof that takes a completely
different route from the ones we have seen before, as well as show a result that dwarfs the ones we
have seen so far. We will show that any rational power of e is irrational, making the irrationality of
e a specific case of this statement.

Theorem 2.6. er is irrational for every r ∈ Q \ {0}.

We will construct a specific family of polynomials, fn that will have a number of properties that will
keep important values as integers. We then sum the derivatives of these polynomials and integrate
over them. The result should then also be an integer but we will show that it is simultaneously in the
interval (0, 1), giving rise to a contradiction.
For any fixed n ∈ N, define

fn(x) =
xn(1− x)n

n!
.

While this is one way to write fn(x), it is also a polynomial of the form

fn(x) =
1

n!

2n∑
i=0

cix
i,

where ci are integers.

Lemma 2.7. The k-th derivative of fn(x) has an integer value if x = 0 or x = 1, for all natural
numbers k.

Proof. We will prove this for two separate cases.

First, in case 0 ≤ k < n. In this case, f
(k)
n still has an xn−k term and an (1 − x)n−k term, which

means that f
(k)
n (0) = 0 and f

(k)
n (1) = 0.

Second, in the case that n ≤ k ≤ 2n, we can see from the polynomial expression that f
(k)
n (0) = k!

n!ck

and since k ≥ n, k!
n! is an integer, f

(k)
n (0) is the product of two integers and thus an integer. We know

that f(x) = f(1−x) so the k-th derivative satisfies f
(k)
n (1−x) = (−1)kf

(k)
n (x). With this, we can see

that f
(k)
n (1) = (−1)kf

(k)
n (0) which is an integer.

It suffices to show that er is irrational for r ∈ N since if e
p
q were rational then

(
e
p
q

)q
= ep would be

rational too.
Define

Fn(x) = r2nfn(x)− r2n−1f ′n(x) + r2n−2f ′′n (x)− · · · − rf (2n−1)(x) + f (2n)n (x),

which has derivative

F ′n(x) = r2nf ′n(x)− r2n−1f ′′n (x) + r2n−2f ′′′n (x)− · · · − f (2n)n (x).
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We know from lemma 2.7 that f
(k)
n (0) and f

(k)
n (1) are integers for all k ≥ 0. Since r and all of its

powers are integers, it follows that Fn(0) and Fn(1) are integers as well. With this, we can see that

F ′n(x) = −rFn(x) + f (2n+1)
n (x).

Next, we will differentiate the function erxFn(x) which, by the previous result, gives us

d

dx
erxFn(x) =rerxFn(x) + erxF ′n(x)

=rerxFn(x)− rerxFn(x) + r2n+1erxfn(x)

=r2n+1erxfn(x)

Now assume er = a
b for two natural numbers a and b and define a new quantity, N as

N = b

∫ 1

0

r2n+1erxfn(x) dx

where b is the natural number we assumed to be the denominator of er. We can evaluate N to be

N =b

∫ 1

0

r2n+1erxfn(x) dx

=b
[
erxFn(x)

]1
0

=b
[
er·1Fn(1)− er·0Fn(0)

]
=b

[
a

b
Fn(1)− Fn(0)

]
=aFn(1)− bFn(0)

And we know that a, b, Fn(0), and Fn(1) are all integers by definition and by lemma 2.7, hence N
has to be an integer. Recall that fn(x) = xn(1−x)n

n! . From this we can see easily that 0 < fn(x) < 1
n!

for 0 < x < 1 with fn(x) = 0 if x = 0 or x = 1. We can use his inequality to bound N , namely

0 < N = b

∫ 1

0

r2n+1erxfn(x) dx < br2n+1er
1

n!
=
ar2n+1

n!
< 1.

Here, the last inequality is if n is large enough. This gives us a contradiction, namely that N is both
and integer and in the interval (0, 1). Therefore, our assumption that er is rational must be false, so
er must be irrational.

2.7 Euler, continued fraction

One way of expressing a (real) number is by means of a continued fraction. The continued fraction of
a real number r is typically of the form.

r = a0 +
b1

a1 +
b2

a2 +
b3

a3 + · · ·

,

where each ai and bi is an integer although there are more than one way to generalise the structure
of a continued fraction. In this representation, if bi = 1 for all values of i then we call the continued
fraction a simple continued fraction. For example, in 1737, Leonhard Euler gave the simple continued
fraction for (e− 1)/2, namely
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e− 1

2
=

1

1 +
1

6 +
1

10 +
1

14 + · · ·
(Roegel, 2020; Euler, 1748). We will use this continued fraction to prove the irrationality of e. For
this, we will use a lemma by Lambert that was used to originally prove that π is irrational (Lambert,
1761). The outline of that proof will be discussed later. As mention in the introduction, a number
is irrational if and only if its simple continued fraction is infinite. To see this, we will first introduce
some notation. For any real number x we can write x = n + u where n ∈ N and 0 ≤ u < 1 and
moreover this representation is unique. If u = 0 then x is an integer. If instead u > 0, then 1/u > 1.
We can use this to decompose x and construct a sequence ui and ni. For any real x we can then write
x = n1 + u1 and if u1 > 0 then 1/u1 = n2 + u2 and we can start forming the continued fraction

x = n1 +
1

n2 + u2
.

Theorem 2.8. The simple continued fraction of a real number is finite if and only if that number is
rational.

Proof. We will first prove the statement from right to left. Let x = a
b with a, b ∈ Z with b > 0. We

can then write
a

b
=
a0
b0

= n0 +
a0 − n0b0

b0
:= n0 +

a1
b0
,

where n0 is a natural number such that b0 > a0, or zero if it is already the case that b0 > a0. We can
then repeat this process and write

n0 +
a1
b0

=
1(
b0

a1

) = n0 +
1

n1 +
b0 − n1a1

a1

= n0 +
1

n1 +
b1

a1

Since b0 > a0, we have n1 ≥ 1 and we can repeat this process and keep adding layers, introducing a
new ni, ai, and bi each time. We define ni each time through division with remainder, we have that
ai > ai+1 and bi > bi+1 we have two decreasing sequences of natural numbers so they converge to 1.
As soon as one of them reaches 1, the algorithm stops and we have a finite continued simple fraction.
The proof from left to right is rather straightforward. If a continued fraction is finite, we can repeatedly
reduce the fraction to one as a ratio of only two numbers. In conclusion, a continued fraction is finite
exactly when it is rational.

It is important here that we construct the continued to be simple. Otherwise, we can easily construct
a counter example that seemingly contradicts the theorem. Consider for example

7

4
= 1 +

6

4 +
11

1 +
7

4

.

Here, we deliberately didn’t construct a simple continued fraction and have ended up with sequences
ai and bi that weren’t decreasing and we can extend this continued fraction to be infinite by reiterating
7/4 indefinitely. So it is necessary for the theorem that the continued fraction is simple. We will later
see an example where this requirement can be somewhat relaxed, however.
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We can see in our example for e that the continued fraction has a pattern where each next ni is
4 larger than the previous. Since the continued fraction is infinite, we can apply theorem 2.8 and
conclude that e is irrational. Like mentioned before, we will generalize theorem 2.8 to allow for a
larger class of continued fractions. Let a general continued fraction be of the form

ϕ =
b1

a1 −
b2

a2 −
b3

a3 − · · ·

,

where we have an, bn ∈ N we have the following theorem.

Theorem 2.9. If 1 + bn ≤ an for all n ∈ N, and 1 + bn < an infinitely many times, then ϕ is
irrational.

This theorem is proven by contradiction by constructing a strictly decreasing sequence of natural
numbers. In our notation omit the a0 term in our representation so we can also write

ϕ =
b1

a1 − p1
, pn =

bn+1

an+1 − pn+1
.

Omitting a0 can be justified by reasoning that it does not change the rationality of ϕ so it does not
matter for our purposes.

Proof. Assume instead that ϕ = λ1

λ0
for two natural numbers λ0 and λ1. We then have

λ1
λ0

=
b1

a1 −
b2

a2 −
b3

a3 − · · ·

.

Because of our assumption, this will be less than 1, or equivalently λ0 > λ1. If we use the notation
involving pn, we get the equation

λ1
λ0

=
b1

a1 − p1
.

We can rewrite this to

p1 =
a1λ1 − b1λ0

λ1
< 1.

This means we can write p1 as p1 = λ2

λ1
. Continuing this, we obtain a strictly decreasing sequence

of positive integers. λ0 > λ1 > λ2 > . . . , which is not possible. The contradiction means that if
1 + bn ≤ an for all n, and an inequality infinitely many times, then ϕ is irrational.

We can see that if our continued fraction is simple, then bn = −1 for all n so the condition 1+bn ≤ an
is always satisfied as the left hand side vanishes and an > 0. The only condition left is for the strict
inequality to happen infinitely many times, which only means we need our simple continued fraction
to be infinite and so we have reached theorem 2.8. Since, our continued fraction for (e − 1)/2 is
simple, the term bn is equal to 1 for all n ∈ N and we can see that an = 2 + 4n for all n ∈ N \ {1}
and a1 = 1. This means that 1 + bn = 2 and so 1 + bn ≤ an for n ≥ 2. Therefore, by theorem 2.9
we can conclude that 2/(e − 1) − 1 is irrational, and equivalently, e is irrational. We also note that
the criterion 1 + bn ≤ an for all n ∈ N can be relaxed slightly. As long as there exists an N ∈ N
such that all the criterion holds for all n ≥ N , the conclusion holds as we can use finitely many
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transformations (addition, subtraction, multiplication, division) by non-zero rational numbers on our
original number to be equal to a continued fraction that satisfies the original theorem, and none of
these transformations change the (ir)rationality of our number.

2.8 Discussion

Having seen a number of proofs of irrationality of e and powers thereof, we can note a number of
similarities between them. To start, all of them are proofs by contradiction, assuming e or a power
of e is equal to a fraction a

b and showing this can’t be the case. In the first few proofs, we saw how
different identities involving e were manipulated to allows us to collect integer terms which would
equal an expression that was then shown to be strictly between 0 and 1, leading to a contradiction.
In the final proof, we saw the use of a family of functions, fn, which we will visit again when discussing
proofs of irrationality of π and powers thereof. It is no surprise that this proof is more complicated
than the ones before it, since it proves a far stronger statement.
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3 Proofs of irrationality of π

The irrationality of π is more difficult to show than the irrationality of e. While there are many infinite
sums that result in a power of π divided by a natural number, we can’t assume π = a/b, multiply by
a variation of b! and shuffle some terms around.

Theorem 3.1. π is irrational.

3.1 Original proof

The first proof of the irrationality of π is credited to Johann Heinrich Lambert who showed the
result in 1761 in his work Mémoire sur quelques propriétés remarquables des quantités transcendantes
circulaires et logarithmiques (Lambert, 1761). He first showed that the function tan(x) can be written
as the continued fraction

tan(x) =
x

1−
x2

1−
x2

3−
x2

5−
x2

7− · · ·

.

Then, he showed that if x is non-zero and rational then this expression is irrational. Since tan(π/4) =
1, it follows that π/4 is irrational, so then also π is irrational. Following is a brief outline of the proof
that non-zero rational values of x give irrational values for this expression. Recall theorem 2.9 which
stated that, for a continued fraction given by

ϕ =
b1

a1 −
b2

a2 −
b3

a3 − · · ·

,

if 1 + bn ≤ an for all n ∈ N, and 1 + bn < an infinitely many times, then ϕ is irrational, where we
noted that the condition “for all n ∈ N can be relaxed to “for all n ≥ N for some N ∈ N. Knowing
this, we can prove that π is irrational by substituting x = π/4 into Lambert’s continued fraction for
tan(x). We assume that π/4 is rational, equivalent to saying π is rational, and show that this leads
to a contradiction with theorem 2.9. Assume π/4 = p/q for p, q ∈ N. We write

tan

(
π

4

)
= 1 =

p
q

1−
p2

q2

3−
p2

q2

5− · · ·

.

And this can be rewritten to

tan

(
π

4

)
= 1 =

p

q −
p2

3q −
p2

5q − · · ·

.

For a sufficiently large value of n the term (2n − 1)q > p2 + 1 meaning that the continued fraction
from that point on is irrational according to theorem 2.9. Since this happens after a finite amount
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of ‘steps’, the entire continued fraction must be irrational. But this clearly cannot be the case, since
the continued fraction equal 1. This contradictions leads us to conclude that π/4 must be irrational
(Schipperus, 2014).

The finer details of this proof, such as showing the continued fraction for tan(x), are rather com-
plicated. Later on, we will see a simplified proof by Laczkovich that follows the original proof, and
the steps omitted here, closely.

3.2 Continued fractions

We have seen earlier that continued fractions can be used to show irrationality. Recall theorem 2.9
which stated that for a continued fraction given by

ϕ =
b1

a1 −
b2

a2 −
b3

a3 − · · ·

,

ϕ is irrational if 1 + bn ≤ an for all n > N ∈ N, for some fixed N ∈ N and 1 + bn < an infinitely many
times. We can also apply this to show the irrationality of π. We have the following continued fraction
involving π:

4

π
= 1 +

12

2 +
32

2 +
52

2 +
72

2 +
92

2 +
112

2 + · · ·

.

This fraction is not simple so we cannot apply theorem 2.8. We can see that all our valued of bn are
negative and decreasing and an = 2 for all n. So the conditions of the theorem are met and we can
conclude that 4

π is irrational and thus that π is irrational. If we want to try to apply theorem 2.8,
we have to find a simple continued fraction containing π. We can apply the algorithm in section 2.7.
People have of course computed the simple continued fraction of π to great length and we know the
first values are given by

π =
1

7 +
1

15 +
1

1 +
1

292 +
1

1 +
1

1 + · · ·

.

This fraction does not have a known pattern so we cannot tell if it satisfies the theorem 2.9 or theorem
2.8. Since the continued fraction is simple, the theorems are equivalent. So using this method we
cannot conclude whether or not π is irrational (Weisstein, 2022). Of course, knowing that π is irrational
and using either theorem 2.9 or 2.8 we can conclude that the contingued fraction must be irrational,
but we cannot use this method to prove the irrationality of π.
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3.3 Proofs from THE BOOK III

Continuing in using the ideas from “Proofs from THE BOOK”, we use the same family of functions
fn(x) as we did in section 2.6. We will use a different function Fn(x) where we will use π2n instead
of r2n. We will then again define an integer N which will be used to arrive at a contradiction by
showing it is simultaneously an integer and in the interval (0, 1). In this proof, we will take a detour
by showing that π2 is irrational, which is a stronger statement than saying π is irrational, since if π
were rational, so would π2.

Theorem 3.2. π2 is irrational.

We will construct a function Fn similar to the proofs we have seen before. We will define fn the same
way we did in section 2.6 and define Fn as

Fn(x) = bn
(
π2nfn(x)− π2n−2f (2)n (x) + π(2n−4)f (4)n (x)− · · · ± f (2n)n (x)

)
.

We know from lemma 2.7 that f
(k)
n (0) and f

(k)
n (1) are integers for all integer values of k. And since

each power of π is a fraction with denominator bm with m ≤ n, the multiplication with bn makes
all the powers of π a product of powers of a and b which are integers. Hence, Fn(0) and Fn(1) are
integers. Similarly to the derivative of Fn in section 2.6, we now have that the second derivative of
Fn(x) satisfies

F ′′n (x) = −π2Fn(x) + bnπ2n+2fn(x).

We compute the derivative of F ′n(x) sin(πx) − πFn(x) cos(πx), which will be easier given the above
result and will help us in an integration we perform later.

d

dx

[
F ′n(x) sin(πx)− πFn(x) cos(πx)

]
=F ′′n (x) sin(πx) + π2Fn(x) sin(πx)

=
(
F ′′n (x) + π2Fn(x)

)
sin(πx)

=bnπ2n+2fn(x) sin(πx)

=π2anfn(x) sin(πx).

We now define the quatity N as

N = πan
∫ 1

0

fn(x) sin(πx) dx.

We evaluate this to find

N =πan
∫ 1

0

fn(x) sin(πx) dx

=

[
1

π
F ′n(x) sin(πx)− Fn(x) cos(πx)

]1
0

=
1

π
F ′n(1) sin(π)− Fn(1) cos(π)− 1

π
F ′n(0) sin(0) + Fn(0) cos(0)

=Fn(0) + Fn(1).

Since Fn(0) and Fn(1) are integers, N is an integer as well. However, since N is defined as an integral
of a non-negative function that is only equal to 0 on it’s boundary, it must be positive. Furthermore,
since fn(x) < 1

n! for 0 < x < 1 and 0 < sin(πx) < 1, we have
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0 < N = π

∫ 1

0

anfn(x) sin(πx) dx <
πan

n!

And this can be made arbitrarily small for n arbitrarily large. Hence we can make it smaller than 1
and so N is both an integer and in the interval (0, 1), which is not possible. So π2 is irrational.

3.4 Niven

Here, we will use a technique similar to the ones we have seen from Proofs from THE BOOK. We use
a more specific family of functions fn which allows for an extra property, namely that fn(π) = fn(0).
This property is necessary for the proof to be completed. Assume that π = a/b for a, b ∈ N and define
the following polynomials:

fn(x) =
xn (a− bx)

n

n!
,

Fn(x) =fn(x)− f (2)n (x) + f (4)n (x)− f (6)n (x) + · · ·+ (−1)
n
f (2n)n (x).

These polynomials will be our tools to show the irrationality of π and are similar to the ones we first
saw in section 2.6. Due to the way they are constructed, some necessary properties regarding their
derivatives can be used to get the result we want. First, lets expand fn as a polynomial to make some
generalisations. Recall that we can write

fn(x) =
1

n!

2n∑
i=0

cix
i.

Note that these ci may be different from the ones in Proofs from THE BOOK. Since (a−bx)n expands
into a polynomial of degree n, fn has degree 2n. Since a and b are natural numbers, all ci must be
natural numbers. Furthermore, since we multiply by xn, we must have that ci = 0 for all i < n. So
we can write

fn(x) =
1

n!

2n∑
i=n

cix
i.

For the j-th derivative of fn we have the general form

f (j)n (x) =
1

n!

2n∑
i=n

j!cix
i−j .

From this, we can see that for j < n, we have f
(j)
n (0) = 0. For j ≥ n, the fraction j!

n! is strictly greater
than 1 and, moreover, a natural number. Together with the knowledge that ai is a natural number,
this means that in these cases f (j)(0) is a natural number, as all the terms with a power of x vanish
and the constant reduced to a natural number. We want some of the properties of fn(0) to also be
true for fn(π). This is why fn(x) is set up in such a way that it gives the same values for π as for 0,
which means we can show the derivatives of fn(π) are also integers.
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Lemma 3.3. fn(x) = fn(a/b− x).

Proof. We substitute a
b − x for x

n!fn

(
a

b
− x
)

=

(
a

b
− x
)n
·

(
a− b

(
a

b
− x
))n

=

((
a

b
− x
)
bx

)n
=xn (a− bx)

n

=n!fn(x).

This concludes the proof that fn(x) = fn(a/b− x).

With this, we can conclude that fn(x) and all of its derivatives have a natural number as their value
at x = 0 or x = π. Using the fundamental theorem of calculus, we have

d

dx

[
F ′n(x) sin(x)− F ′n(x) cos(x)

]
= F ′′n (x) sin(x) + Fn(x) sin(x) = fn(x) sin(x)

as well as ∫ π

0

fn(x) sin(x) dx =
[
F ′n(x) sin(x)− F ′n(x) cos(x)

]π
0

= Fn(π) + Fn(0).

Recall that Fn(x) = fn(x)−f (2)n (x)+f
(4)
n (x)−f (6)n (x)+ · · ·+(−1)

n
f
(2n)
n (x) and that f

(j)
n (0) = f

(j)
n (π)

and that these values are integers. Hence, F (π) +F (0) is an integer. However, for 0 < x < π, we have
that

0 < fn(x) sin(x) <
πnan

n!

which we can make arbitrarily small by making n arbitrarily large. This means that we can get an
arbitrarily small result when integrating over it from 0 to π. Hence, π cannot be rational (Niven,
1947).

3.5 Laczkovich

Miklós Laczkovich wrote a paper in 1997 discussing the proof by Lambert of the irrationality of π
from 1761 and provides a somewhat different, simplified proof. It involves a family of functions, fk(x),
and a theorem which tells us that if x2 is rational, then fk(x) 6= 0 and fk+1(x)/fk(x) is irrational
(Laczkovich, 1997). In this section, we will define and discuss fk and the aforementioned theorem,
after which we will see some straightforward proofs that follow quickly from the theorem.
Define the family of functions

fk(x) =1− x2

k
+

x4

k(k + 1) · 2!
− x6

k(k + 1)(k + 2) · 3!
+ · · ·

=

∞∑
n=0

(−1)n
x2n

n−1∏
i=0

(k + i) · n!

.

For convenience we define
−1∏
i=0

(k + i) = 1.
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Lemma 3.4. The series fk converges absolutely for all x ∈ R.

Proof. By the ratio test, a series converges absolutely if L = lim
n→∞

∣∣∣an+1

an

∣∣∣ < 1, where an is the n-th

term of the series. Because an is given by

an = (−1)n
x2n

k(k + 1) · . . . · (k + n− 1) · n!

we can find that L is given by

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
= lim
n→∞

∣∣∣∣∣− x2

(n+ 1)(k + n)

∣∣∣∣∣
= lim
n→∞

x2

(n+ 1)|k + n|
.

Clearly, this tends to 0 as n tends to infinity so we can conclude that L < 1.

The way fk is defined is very deliberate. Which becomes apparent when we recall the Taylor expansion
of cos(x) and sin(x):

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

=

∞∑
n=0

(−1)n
x2n

(2n)!
. =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

With this in mind, it becomes clear that fk is related to the sin and cos functions and that with the
right choice of k we can get fk to be a variation of one of these functions. Knowing this, we will look
at a few examples of fk for particular values of k. First, consider the case where k = 1/2. First we

compute
n−1∏
i=0

(k + i) for k = 1/2.

n−1∏
i=0

(
1

2
+ i

)
=

1

2
· 3

2
· 5

2
· . . . · 2n− 1

2
=

(2n− 1)!!

2n
.

Here, n!! denotes the double factorial which is defined for a natural number n as

n!! =

{
n · (n− 2) · (n− 4) · . . . · 2 for n even,

n · (n− 2) · (n− 4) · . . . · 1 for n odd.

We will use the double factorial again to rewrite n!. Namely, if we multiply each term in n! by 2, we

get a product of every even term up to 2n, i.e. 2nn! = (2n)!!. This means we can write
n−1∏
i=0

(
1
2 + i

)
·n!

as

n−1∏
i=0

(
1

2
+ i

)
· n! =

(2n− 1)!!

2n
(2n)!!

2n
=

(2n)!

4n
.
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With this, we can make the necessary substitutions and write the expression for f1/2. Keeping in
mind the aforementioned Taylor expansion we can see that

f1/2(x) =

∞∑
n=0

(−1)n
x2n

n−1∏
i=0

(
1
2 + i

)
· n!

=

∞∑
n=0

(−1)n
x2n · 4n

(2n)!
=

∞∑
n=0

(−1)n
(2x)2n

(2n)!
= cos(2x).

We can get a similar result for k = 3/2 with some quick steps. First, note that

n−1∏
i=0

(
3

2
+ i

)
=

n−1∏
i=0

(
1

2
+ i+ 1

)
=

n∏
i=1

(
1

2
+ i

)
=

1

2
· 3

2
· 5

2
· . . . · 2n+ 1

2
=

(2n+ 1)!!

2n
.

And consequently
n−1∏
i=0

(
3
2 + i

)
· n! is equal to

n−1∏
i=0

(
3

2
+ i

)
· n! =

(2n+ 1)!!

2n
(2n)!!

2n
=

(2n+ 1)!

4n
.

Resulting in the following identity for f3/2:

f3/2(x) =

∞∑
n=0

(−1)n
x2n

n−1∏
i=0

(
3
2 + i

)
· n!

=

∞∑
n=0

(−1)n
x2n · 4n

(2n+ 1)!
· 2x

2x
=

∞∑
n=0

(−1)n
(2x)2n+1

(2n+ 1)!
· 1

2x
=

sin(2x)

2x
.

Now that we have a grasp of what fk is, we want to show a lemma about the relationship between
fk+2, fn+1, and fn which will be instrumental in proving the theorem we will discus later.

Lemma 3.5. For all x ∈ R and k ∈ Q \ {0,−1,−2, . . . } we have x2

k(k+1)fk+2(x) = fk+1(x)− fk(x).

Proof. From the definition of fk we get that fk+1 is given by

fk+1(x) =

∞∑
n=0

(−1)n
x2n

n−1∏
i=0

(k + 1 + i) · n!

.

We first subtract the two series component-wise in closed form after which we will compare it to the

series for x2

k(k+1)fk+2(x).

fk+1(x)− fk(x) =

∞∑
n=0

(−1)n

 1
n−1∏
i=0

(k + 1 + i)

− 1
n−1∏
i=0

(k + i)

 · x2nn!

=

∞∑
n=0

(−1)n

 k
n∏
i=0

(k + i)
− k + n

n∏
i=0

(k + i)

 · x2nn!

=

∞∑
n=0

(−1)n
−n

n∏
i=0

(k + i)
· x

2n

n!
.
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The −n cancels out if we reduce the n! to (n− 1)! and change the parity of the (−1)n term. We have
to remember that the term for n = 0 vanishes, so we will start counting at n = 1. This means that
we are left with

fk+1(x)− fk(x) =

∞∑
n=1

(−1)n+1 x2n

n∏
i=0

(k + i) · (n− 1)!
.

Next, we will look at the series of x2

k(k+1)fk+2(x) and its closed form and compare it to the one for

fk+1(x)− fk(x) that we have seen just now. From the definition, we immediately get

fk+2(x) =

∞∑
m=0

(−1)m
x2m

m−1∏
i=0

(k + 2 + i) ·m!

=
∞∑
m=0

(−1)m
x2m

m+1∏
i=2

(k + i) ·m!

.

We use the variable m instead of n because we want to make a substitution later. For now, we will

multiply by the fraction x2

k(k+1) to get

x2

k(k + 1)
fk+2(x) =

∞∑
m=0

(−1)m
x2m+2

m+1∏
i=0

(k + i) ·m!

.

Lastly, we will make the aforementioned substitution, namely n = m+ 1 to get

x2

k(k + 1)
fk+2(x) =

∞∑
n=1

(−1)n+1 x2n

n∏
i=0

(k + i) · (n− 1)!
.

This lemma will be used later to aid our reasoning in the proof of the theorem and later to inductively
show a result that is necessary for the theorem. Before proceeding to the theorem and its proof, we
first have to visit one more lemma.

Lemma 3.6. For all x ∈ R we have lim
k→∞

fk(x) = 1

Proof. We know that lim
n→∞

x2n

n! = 0. This means there exists some natural number N such that∣∣∣x2n

n!

∣∣∣ ≤ N for every n ∈ N. Therefore, if k > 1 then
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∣∣fk(x)− 1
∣∣ =

∣∣∣∣∣∣∣∣∣
∞∑
n=1

(−1)n
x2n

n−1∏
i=0

(k + i) · n!

∣∣∣∣∣∣∣∣∣
≤
∞∑
n=1

∣∣∣∣∣∣∣∣∣
1

n−1∏
i=0

(k + i)

x2n

n!

∣∣∣∣∣∣∣∣∣
≤
∞∑
n=1

1

kn
N

=
N

k − 1
.

This clearly tends to zero as k tends to infinity.

With these lemmas in mind, we can move on to the theorem that will help us prove that π2 is
irrational. After the theorem and the proof, the proof of the irrationality of π2, and subsequently of
π, will follow immediately.

Theorem 3.7. If x 6= 0 and x2 is rational, then fk(x) 6= 0 and fk+1(x)/fk(x) is irrational for every
k ∈ Q \ {0,−1,−2,−3, . . .}.

Proof. Let x be a non-zero real number such that x2 is rational and let k ∈ Q \ {0,−1,−2,−3, . . .} be

fixed. Assume that for those given fk(x) = 0 or fk+1(x)
fk(x)

is rational. In either case, fk+1(x) and fk(x)

are multiples of the same number, say fk(x) = ay and fk+1(x) = by for two integers a and b. We
allow a or b to be zero and we allow y to be any real number except zero because if y were equal to
zero, then fk(x) = fk+1(x) and lemma 3.5 would imply that fk+m(x) = 0 for all m ∈ N, which would
contradict lemma 3.6.

Next, let q be a positive integer such that bq
k , kq

x2 , and q
x2 are all integers. Now, we will define a

sequence Gn. First, G0(x) = fk(x) and

Gn(x) =
qn

k(k + 1) · · · (k + n− 1)
fk+n(x) =

qn

n−1∏
i=0

(k + i)

fk+n(x)

for n ∈ N. Then, G0 = fk(x) = ay, G1 = q
k by = bq

k y. Using lemma 3.5 we can see that

Gn+2 =

(
kq

x2
+

q

x2
n

)
Gn+1 −

(
q2

x2

)
Gn.

This means Gn is an integer multiple of y for every value of n. We know from lemma 3.6 that fk+n(x)
converges to 1. At the same time, qn/

(
k(k + 1) · · · (k + n− 1)

)
is is non-zero and converges to 0. This

means that Gn converges to 0. However, lemma 3.6 implies that Gn is non-zero for sufficiently large
values of n. If we define Hn = Gn/y, then Hn is an integer for every n and converges to 0. However,
a sequence of positive integers cannot converge to zero. This leads to a contradiction which means
our assumption was wrong and fk(x) 6= 0 and fk+1(x)/fk(x) is irrational.

Remark 3.8. In the original paper by Laczkovich, he argues that Gn is positive for all n instead of
just non-zero. This is however not the case. To see this, consider the case where k = − 1

2 . The fraction
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qn/
(
k(k + 1) · · · (k + n− 1)

)
will be negative for each value of n and as we have seen in lemma 3.6,

fn+k tends to 1, making it positive for sufficiently large n. Here, we corrected this by arguing Gn is
non-zero for large enough values of n. Alternatively, we could have restricted k to be strictly positive.
This would have allowed for Gn to be positive and gets rid of the aforementioned counter-example.
We also only ever use positive values of k in our examples and to show the irrationality of π2.

Having seen this. We can prove the irrationality of π2 rather straightforwardly. Namely consider the
case where k = 1

2 and x = π
4 . As we have seen, this means that

f1/2

(
π

4

)
= cos

(
π

2

)
= 0.

Since fk(x) = 0, the condition for the theorem has not been met and since x 6= 0, this means that x2

must be irrational. This then means that π2

16 is irrational, and thus that π2 is irrational.

Here, we have not used the full scope of the theorem. Since the theorem states that if x 6= 0 and
x2 is rational then fk(x) 6= and the fraction fk+1(x)/fk(x) is irrational and we have only used the
implication that fk(x) 6= 0 to show that pi2 is irrational. We can use the full result of the theorem to
show the irrationality of a different set of numbers.

Theorem 3.9. If x ∈ Q \ {0} then tan(x) is irrational.

Proof. If x is non-zero and rational then so is
(
x
2

)2
. It then follows from theorem 3.7 that

f3/2

(
x
2

)
f1/2

(
x
2

) =
sin (x)

x · cos (x)
=

tan(x)

x

is irrational. We know that x is non-zero and rational so this means that tan(x) is irrational.

3.6 Australian HSC exam problem

The Higher School Certificate (HSC) is the highest educational award that students can achieve in
their high school career in New South Wales, Australia. In 2003 their Mathematics Extension 2 exams
featured a question in which the students had to prove the irrationality of π by proving a number
of steps (commmittee of the Education Standards Authority, 2003). We will adapt this proof and
provide a bit more commentary. Generally, the structure of the proof as it was shown in the question,
will be maintained.

The proof revolves around a family of definite integrals called In which involve π. We will show that
In is a natural number for each n ∈ N and moreover that the sequence In tends to 0 for sufficiently
large values of n, which will be the contradiction that leads to the conclusion that π cannot be rational.

Assume that π = p
q for two natural numbers p and q. We define the family of integrals In as

In =
q2n

n!

∫ π
2

−π2

(
π2

4
− x2

)n
cos(x) dx

for all n ∈ Z+. We can compute that I0 = 2 and I1 = 4q2. We want to show that each value of In is
a natural number and we will do this by induction. First, we will do this by applying integration by
parts twice.
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Lemma 3.10. In ∈ Z for all n ∈ Z+.

Proof. Assume n ≥ 2. After one integration by parts we obtain

In =
q2n

n!

∫ π
2

−π2

(
π2

4
− x2

)n
cos(x) dx

=
q2n

n!

(π2

4
− x2

)n
sin(x)

x=π
2

x=−π2

+
q2n

n!
· 2n ·

∫ π
2

−π2

(
π2

4
− x2

)n−1
· x · sin(x) dx

=
2q2n

(n− 1)!

∫ π
2

−π2
x

(
π2

4
− x2

)n−1
sin(x) dx

Integrating by parts a second time gives us

In =
2q2n

(n− 1)!

∫ π
2

−π2
x

(
π2

4
− x2

)n−1
sin(x) dx

=
2q2n

(n− 1)!

−x(π2

n!
− x2

)n−1
cos(x)

x=π
2

x=−π2

+
2q2n

(n− 1)!

∫ π
2

−π2

(π2

4
− x2

)n−1
− 2(n− 1)x2

(
π2

4
− x2

)n−2 cos(x) dx.

Rearanging the fraction 2q2n

(n−1)! and the cos(x) term, we arrive at

In =
2q2n

(n− 1)!

∫ π
2

−π2

(
π2

4
− x2

)n−1
cos(x) dx− 4q2n

(n− 2)!

∫ π
2

−π2
x2

(
π2

4
− x2

)n−2
cos(x) dx.

While this is quite a cumbersome expression for In, we recognise the expressions for In−1 and In−2 in

this expression and with a simple substitution of x2 = π2

4 −
(
π2

4 − x
2
)

we can rewrite this expression
as

In = (4n− 2)q2In−1 − p2q2In−2, for n ≥ 2.

We know that I0 = 2, I1 = 4q2, p, q, and n are all integers, hence In is an integer for all n.

Now that we know In is an integer, we will show that 0 < In < 1 for n sufficiently large. This will
then contradict lemma 3.10 and prove that π cannot be written as a fraction of natural numbers. We
will first bound In by approximating the integral it is defined by and then argue that the upper bound
approaches 1 as n increases.

Lemma 3.11. 0 < In <
p
q

(
p
2

)2 1
n! .

Proof. Recall that In is defined as

In =
q2n

n!

∫ π
2

−π2

(
π2

4
− x2

)n
cos(x) dx,
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with q assumed to be a positive whole number and n ∈ Z+. For any value of n ∈ Z+ we can see that
q2n
n! > 0 and for any value of x ∈

[
−π2 ,

π
2

]
we can see that

(
π2

4 − x
2
)
≥ 0 and cos(x) ≥ 0. Hence

In > 0. This proves the lower bound for In. For the upper bound, we will use the fact that a definite
integral is the area under the curve of the function over which we integrate. Which can be bound by
a rectangle that has a height equal the maximum value of the function in the domain over which we
integrate and a length equal to the length of the domain. Hence

∫ π
2

−π2

(
π2

4
− x2

)n
cos(x) dx < π · max

x∈[−π2 ,
π
2 ]


(
π2

4
− x2

)n
cos(x)


≤ π · max

x∈[−π2 ,
π
2 ]


(
π2

4
− x2

)n · max
x∈[−π2 ,

π
2 ]

{
cos(x)

}
= π ·

(
π2

4

)n
· 1

=
p

q

(
p

2q

)2n

Which means that we can bound In as well after canceling out the q2n terms.

In <
q2n

n!
· p
q

(
p

2q

)2n

=
p

q

(
p

2

)2n
1

n!
.

We know that we can make this arbitrarily small with a large enough value of n, so we can certainly
make it smaller than 1, which means that we can conclude that 0 < In < 1 for n sufficiently large,
which clearly contradicts with lemma 3.10, meaning π must be irrational.

3.7 Discussion

In this section, we looked at proofs of irrationality of π. These are again all proofs by contradiction.
We saw how we could apply theorem 2.9 to the continued fraction of 4/π to prove it’s irrationality.
Furthermore, we saw in section 3.3, section 3.4 and section 3.5 that both Proofs the THE BOOK,
Niven, and Laczkovich use a family of functions fn to show the irrationality of π in very similar
ways, which again made use of the technique of a quantity depending on n being both an integer and
between 0 and 1 for a large enough value of n. Lastly, in section 3.6 we again saw the use of restricting
an integer to the interval (0, 1).
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4 Differences between methods

We have seen several methods of proving the irrationality of e and π. We would like to see if these
methods are roughly interchangeable. Specifically, the methods for π almost all rely on families of
functions (Proofs from THE BOOK, Niven, Laczkovich), while the proofs for e revolve more around
some expression of e as a series are generally more straightforward. Therefore, we would like to see if
we can use the methods for e, or variations thereof, to prove the irrationality of π.

4.1 Kifowit

In this proof, we relied on integrating by parts several times. There are several identities of π that
involve integrals. In the original proof, we used the identity∫ 1

0

e−x dx = 1− 1

e

We could try using a similar interval
∞∫
−∞

e−x
2

dx =
√
π

or an interval over a finite domain such as

π

2
=

1∫
−1

√
1− x2 dx or

π

4
=

1∫
0

√
1− x2 dx.

When we try the first, we will find that applying integration by parts the same way we did in the
original proof will leave us with some meaningless results, first, we cannot use the fundamental theorem
of calculus, since it is only defined for finite intervals. Instead, we have to rewrite it as a limit and
continue from there. We would have

∞∫
−∞

e−x
2

dx =

∞∫
−∞

e−x
2

· 1 dx

= lim
a→∞

a∫
0

e−x
2

· 1 dx+ lim
a→−∞

0∫
a

e−x
2

· 1 dx

= lim
a→∞

[
xe−x

2
]a
0
− lim
a→−∞

[
xe−x

2
]0
a︸ ︷︷ ︸

= 0

+2

∞∫
−∞

e−x
2

· x2 dx

To see that the difference of limits is equal to zero, we have to rewrite the limits and apply l’Hospital’s
rule for limits to get

lim
a→∞

[
xe−x

2
]a
0
− lim
a→−∞

[
xe−x

2
]0
a

= lim
a→∞

a

ea2
− lim
a→−∞

a

ea2

= lim
a→∞

d
daa
d
dae

a2
− lim
a→−∞

d
daa
d
dae

a2

= lim
a→∞

1

2a · ea2
− lim
a→−∞

1

2a · ea2

= 0.
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So we are left with
∞∫
−∞

e−x
2

dx = 2

∞∫
−∞

e−x
2

· x2 dx.

If we apply integration by parts again, we will see that that the evaluated term vanished after applying
l’Hospital, so we are left with

∞∫
−∞

e−x
2

dx = 4

∞∫
−∞

e−x
2

· 1

3
x4 dx.

Every time we integrate, the exponent adds a 2 to the term in front of the integral and increases
the power of x by one. The integration of the monomial increases the power of x by one and divides
everything by the new power, which is now 2 higher than before we applied integration by parts. The
term we evaluate at a and vanishes each time before we take the limit so the limit is also equal to
zero. In general we then have the expression

∞∫
−∞

e−x
2

dx = 2n
∞∫
−∞

e−x
2

·
n∏
i=1

1

2i− 1
· x2n dx.

We can rewrite this expression slightly by recognizing the product can be written in a closed form.
Namely

n∏
i=1

1

2i− 1
=

1

1 · 3 · 5 · . . . · (2n− 1)
=

2 · 4 · 6 · . . . · (2n)

1 · 2 · 3 · . . . · (2n− 1) · (2n)
=

2nn!

(2n)!
.

Plugging this into our equality and taking out the 2n term to the front, we get that

√
π =

∞∫
−∞

e−x
2

dx = 4n
∞∫
−∞

e−x
2

· n!

(2n)!
· x2n dx.

If we want to roughly follow the structure of the proof for the irrationality of e. We would assume
that π = a/b or maybe that

√
π = a/b for two integers a and b and then use some cleaver bound to

show part of the integral is strictly between 0 and 1 while also being an integer. But we can’t take
any integer terms out of the expression easily. Additionally, because we cannot separate the original
integral into a sum and an integral, the value of resulting integral doesn’t change if n changes so we
cannot steer the result by changing n either. Moreover, we had to work with limits to infinity to
obtain our result, which wasn’t the case when we treated e.

The second identity also doesn’t give us much to work with. It doesn’t allow us to apply inte-
gration by parts nicely, since there are no two functions being multiplied and the square root also
complicates things. We could attempt to apply a u substitution or and Euler substitution but both
of those methods are considerably less straightforward than the original prove and do not guarantee
giving us an expression that allows us to prove our result, as they are more often used to evaluate the
value of the integral directly.

4.2 Sondow

The core of this proof relies on showing that e cannot be written as a fraction with denominator n!
for any n in the natural numbers. We could also try to use this concept for π by, for example, taking
the identity
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π2

6
=

1

12
+

1

22
+

1

32
+

1

42
+ · · ·

and define sn as the sum of the first n terms, which can be written in the form

sn =

n∑
i=0

1

i2
=

an
(n!)2

for some natural number an depending on n. We would like to repeat our earlier reasoning and
conclude that π2 is irrational. But as we will see, this isn’t quite as straightforward as we would like.
Suppose that

an
(n!)2

<
π2

6
<
an + 1

(n!)2
.

On the left had side we have that π2/6 is less than sn. On the left hand side, it must be true that

π2

6
<
an + 1

(n!)2

=
an

(n!)2
+

1

(n!)2

≤ an
(n!)2

+
1

(n+ 1)2

= sn+1

This contradicts the fact that π2/6 is greater than sn for all natural values of n. As such, the argument
that π2/6 cannot be written as a fraction with a denominator of the form (n!)2 cannot be made.

4.3 Proofs from THE BOOK & Niven

In Proofs from THE BOOK, specifically in sections 2.6 and section 3.3 we used a family of functions
fn and a function Fn where we summed multiples of the different derivatives of fn which satisfied
desirable properties which allowed us to define a quantity we called N . In both cases we use an
identity in which the first or second derivative of Fn depended on Fn and fn. We then showed that N
depended solely on (integer multiples of) F (1) and F (1) which we could show were also integers. We
then showed that N would also have to be contained in the interval (0, 1), leading to a contradiction.

In Niven’s proof in section 3.4 we saw a similar approach as in section 3.3. Here, we notice a number
of things. First is that we use the method of reaching a contradiction through showing that something
which is necessarily an integer is also strictly between 0 and 1. This is the same as we have seen in
sections 2.1 through 2.3. Second, when looking at the aforementioned identities involving the deriva-
tive of Fn and its dependence on Fn and fn, if we look at the proof revolving around e, we had F ′n
depending on Fn and fn while in the proof revolving around π we had F ′′n depending on Fn and fn.
This is because when working with e, functions involving powers of e usually have derivatives involving
the original functions and when working with π there are usually trigonometric functions like sin and
cos involved, whose second derivatives involve themselves. While this didn’t complicate the proof a
lot, it is worth noticing. Lastly, for comparable effort to show that π is irrational, we get that er is
irrational for all non-zero rational values of r. So even though the methods are very comparable and
applicable for both constants, being roughly equally complicated, we get a much stronger result for e
than we do for π.
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4.4 Continued fractions

We have seen two ways of checking the irrationality of a number using continued fractions. One for
simple continued fractions and one for general continued fractions. For e, we used the continued
fraction

e− 1

2
=

1

1 +
1

6 +
1

10 +
1

14 + · · ·

,

which showed us very straightforwardly that e is irrational by using either the theorem or the lemma.
On the other hand, when we try to do the same for π, we run into a few issues. We have already seen
that the continued fraction given by

4

π
= 1 +

12

2 +
32

2 +
52

2 +
72

2 +
92

2 +
112

2 + · · ·

.

Satisfies theorem 2.9 and can therefore be shown to be irrational. But showing this via theorem 2.8
remains elusive. Like we have seen, if we consider the simple continued fraction for π, we have to deal
with

π =
1

7 +
1

15 +
1

1 +
1

292 +
1

1 +
1

1 + · · ·

.

which does not have an established pattern (Weisstein, 2022). Since the continued fraction is simple,
the theorems are equivalent and the only thing we need is for the continued fraction to be infinite,
and because no pattern is apparent, we cannot assume this without external knowledge. Of course,
we know π is irrational and so we know this continued fraction has to be infinite, but if we can only
argue that based on the knowledge that π is irrational, then we cannot use this line of reasoning to
prove its irrationality. If we instead consider the continued fraction for half π, we surprisingly get a
very well behaved continued fraction, namely

π

2
= 1−

1

3−
2 · 3

1−
1 · 2

3−
4 · 5

1−
3 · 4

3−
6 · 7

1− · · ·

.
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While this seems helpful at first, as we try to apply theorem 2.9, we find that bn is increasing and an
is always either 1 or 3 for all n. So the term 1 + bn will quickly surpass 3 and so we cannot apply the
theorem. Using theorem 2.8 is also not a possibility because the continued fraction is not simple.

4.5 Summary

Having compared the methods, we can comfortably conclude that showing the irrationality of π is
substantially more difficult than showing the irrationality of e. When we considered methods using
series or identities involving either constant, it has been consistently simpler to rewrite the expression
in a way that isolates integer terms and work towards a conclusion that a certain quantity is both
an integer and in the interval (0, 1). When we looked at Sondow’s method using intervals, it was not
possible to bound π as easily in an interval while this was not at all difficult for e. This may be due to
the structure of the series expansion of e that allows us to multiply by a factorial to reduce a specific
range of terms to integers without multiplying by an absurdly large term and without creating more
integer terms after that point, which happens when we try to do this for the series involving π. We
also saw that identities involving π more often involve limits to infinity which makes, among other
things, methods using integration a lot less simple. These more ‘complicated’ properties all seem
to be integral to π. Additionally, the methods used to proof the irrationality of e more often used
sums than they used integrals, which is exactly the other way around for methods that proved the
irrationality of π. Of course, though it might be harder or more complicated, in many cases, to show
the irrationality of π, this does not make the irrationality of π any less true.

Of course, we have not checked every single possible series or identity involving either constant,
so it remains entirely possible that there is some series that, when paired with the right method,
gives a much simpler result, but working through established methods, no such combination or proof
has been found. We also have to mention that some methods worked about equally well for both
constants. The polynomial method that we first saw in section 2.6 allowed us to show the irrationality
of both π and er with relatively similar amounts of work / complication. It should be mentioned that
showing the irrationality of er for all rational non-zero r is a much stronger result than showing the
irrationality of any specific power of e. Not only because we can just fill in any rational value for r
but also because if er is irrational then the irrationality of ed is immediate for d a divisor of r. So
with this, even when we can apply the method to both constants, we can get a stronger result for e
than we get for π, fitting with the conclusion that the irrationality of e is much easier to show than
the irrationality of π.
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