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Abstract

Minkowski’s question mark function ?(x) establishes a relation between
quadratic irrationals, non-dyadic rationals and dyadic rational numbers. This
paper will work out the preliminary notions of modified Farey sequences,
dyadic rational sequences and continued fraction expansions. We will prove
certain properties of these notions, and use those to establish an equivalent
but more workable definition of Minkwoski’s question mark function. We
will use both definitions to approximate some as of yet unknown fixed points
of ?(x). We will conclude with a proof that this function is singular. This
amounts to showing that it is continuous and non-constant, yet has derivative
0 almost everywhere.
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1 Introduction

Hermann Minkowski first defined the question mark function ?(x) in 1904
[11, pp 50-51] with the aim to shed a new light on Lagrange’s theorem on the
relation between continued fractions and quadratic irrationals. This theorem
states that any quadratic irrational can be written as a periodic continued
fraction. Euler had already proven the converse, that any periodic contin-
ued fraction must be a quadratic irrational [5]. Minkowski’s writing on the
question mark function is quite short, only setting out its construction and
concluding with the property he set out to achieve: ?(x) maps any quadratic
irrational to a non-dyadic rational. Likewise, any non-dyadic rational gets
mapped to a dyadic rational. Dyadic rationals are those rationals with a
power of 2 as denominator.

Three decades after Minkowski’s original definition, A. Denjoy [2] proved
that Minkowski’s question mark function is a singular function, meaning it is
continuous and non-constant, yet has derivative 0 almost everywhere. Shortly
after, R. Salem [12] provided an alternative proof for the singularity of ?(x).
He also noted that, at the time, ?(x) is the only known singular function
that is strictly increasing and relatively easy to construct. This paper will
elaborate on Salem’s proof of singularity by filling in many details and work-
ing out preliminaries. We will also approximate some of the fixed points of
Minkowski’s question mark function.

To be able to define Minkowski’s question mark function, we will need
some preliminary notions. These notions of modified Farey sequences and
dyadic rational sequences will be introduced in section 2. In that section we
will also introduce continued fraction expansions, which will be crucial for
further proofs. We will also prove some useful properties of these concepts.
Once those are established, section 3 will begin by providing Minkowski’s
original definition of ?(x). We will then follow Denjoy in establishing an
equivalent definition of this function and use both definitions to calculate some
example values. In section 4, we will make a slight detour to examine the fixed
points of the question mark function. C. Bower has according to [3] made an
unpublished note in 1999 on the fixed values of ?(x), conjecturing that the
function has five fixed points of which two as of yet unknown. D. Gayfulin
and N. Shulga are currently writing [4], where they prove that the unknown
points are irrational and that there are exactly two of them. In this paper, we
will use both definitions of ?(x) to make rudimentary approximations of the
unknown fixed points through MATLAB. In section 5, we will elaborate on
Salem’s proof of the singularity of ?(x). We will find a subset of measure 1 on
the interval [0, 1] and prove that on this subset the derivative ?′(x) equals 0.
This will let us conclude that Minkowski’s question mark function is indeed
singular.

2 Preliminary notions

In this section we will set the stage for defining and analysing ?(x) by defining
some preliminary notions and proving some necessary properties.
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2.1 Quadratic irrationals

Definition 2.1. A quadratic irrational is an irrational number which is the
root of some quadratic equation with integer coefficients.

Examples of quadratic irrationals are therefore
√
2 (solution of x2−2 = 0)

and 1
6 −

√
13
6 (solution of 3x2 − x− 1 = 0).

2.2 Continued fraction expansion

This subsection follows [6]. A continued fraction expansion is a way to uniquely
express any real number as a sequence of integers. This is done through re-
peated mod one decomposition: For a given x, the floor of x is a = ⌊x⌋, the
largest integer a such that a ≤ x. The remainder u = x− a then falls in the
unit interval [0, 1). This lets us write any x uniquely as

x = a+ u.

The first step towards a continued fraction expansion is simply applying this
decomposition. Let

x = a0 + u0.

If u0 = 0, we are done and our continued fraction expansion can be denoted as
x = [a0]. If not, then since u0 is on the unit interval and nonzero, 1/u0 is larger
than 1 and therefore again an appropriate target for mod one decomposition:
if

1

u0
= a1 + u1

then

x = a0 +
1

a1 + u1

and again u1 ∈ [0, 1). This process repeats until un = 0 for some n, or
infinitely if this does not happen. The continued fraction expansion of x is
denoted as

x = [a0; a1, a2, . . . ] = a0 +
1

a1 +
1

a2 +
1

. . .

. (1)

Definition 2.2. If x = [a0; a1, . . . , an, . . . ], then the nth convergent of x is

pn
qn

= [a0; a1, . . . , an]. (2)

These convergents have the following property:

Proposition 2.3. For any integer n ≥ 2, if x = [a0; a1, . . . , an, . . . ], and
pn−1

qn−1
and pn−2

qn−2
are the (n − 1)th and (n − 2)th convergent of x, then the nth

convergent of x is given by

pn
qn

=
anpn−1 + pn−2

anqn−1 + qn−2
. (3)
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Proof. We will prove this by induction. Since

p0
q0

= a0,
p1
q1

= a0 +
1

a1
=

a1a0 + 1

a1
,

and

p2
q2

= a0 +
1

a1 +
1

a2

= a0 +
a2

a2a1 + 1
=

a2a1a0 + a0 + a2
a2a1 + 1

=
a2p1 + p0
a2q1 + q0

,

the proposition holds for n = 2. Now assume it holds for some n ∈ N. By
construction of the convergent,

pn+1

qn+1
= [a0; a1, . . . , an−1, an, an+1] = [a0; a1, . . . , an−1, an +

1

an+1
],

so
pn+1

qn+1
=

(an + 1
an+1

)pn−1 + pn−2

(an + 1
an+1

)qn−1 + qn−2
.

Multiplying by 1 = an+1

an+1
gives

pn+1

qn+1
=

(an+1an + 1)pn−1 + an+1pn−2

(an+1an + 1)qn−1 + an+1qn−2
=

an+1(anpn−1 + pn−2) + pn−1

an+1(anqn−1 + qn−2) + qn−1
,

which, since equation (3) holds for n, gives

pn+1

qn+1
=

an+1pn + pn−1

an+1qn + qn−1
,

so equation (3) holds for n+ 1 and by induction for all integer n ≥ 2.

Since the rationals are closed under addition and division we also get the
following theorem:

Theorem 2.4. The continued fraction expansion of a real number is finite if
and only if that real number is rational.

This begs the question of whether we can say anything useful about infi-
nite continued fraction expansions. This is exactly what Minkowski set out
to illustrate with his question mark function. Where Euler already proved
that any infinite periodic continued fraction expansion must be a quadratic
irrational, Lagrange proved the converse [5]. Together this gives the following
theorem.

Theorem 2.5. A real number is a quadratic irrational if and only if its con-
tinued fraction expansion is infinite and eventually periodic.
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2.3 Farey sequences

Minkowski defined his question mark function on the basis of modified Farey
sequences and dyadic rational sequences. As regular Farey sequences are more
common, we will introduce these first. Farey sequences are a way of ordering
the rational numbers on the interval [0, 1], defined as follows:

Definition 2.6. The Farey sequence Fn of order n consists of all completely
reduced rationals on the interval [0, 1] with denominator no larger than n,
arranged in ascending order.

The first four Farey sequences are therefore:

F1 = {0
1 ,

1
1}

F2 = {0
1 ,

1
2 ,

1
1}

F3 = {0
1 ,

1
3 ,

1
2 ,

2
3 ,

1
1}

F4 = {0
1 ,

1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

1
1}.

By definition, any rational number p
q ∈ [0, 1] is contained (in reduced form)

in Fn for large enough n. An observation about the newly added fractions to
each Fn+1 follows from the definition of the mediant:

Definition 2.7. The mediant of two fractions p
q and p′

q′ is p+p′

q+q′ .

Note that the mediant of two fractions depends on the form the fractions
are written in; a pair of non-reduced fractions may give a different resulting
mediant than their reduced forms. We will generally only use reduced forms
here.

Lemma 2.8 (from [1]). If p
q < p′

q′ , then their mediant has the property p
q <

p+p′

q+q′ <
p′

q′ .

Proof. For the first inequality, we have

p+ p′

q + q′
− p

q
=

p′q − pq′

(q + q′)q
=

p′

q′ −
p
q

(q + q′) 1
q′

> 0,

and in a similar way one can show the second inequality.

In the first four Farey sequences it already becomes apparent that every
new member of Fn is the mediant of its two neighbours. We still need to prove
this however. The following theorems and proofs about Farey sequences follow
[7, Ch. 3].

Theorem 2.9. If p
q ,

p′′

q′′ and p′

q′ are three consecutive fractions in Fn in that
order, then

p′′

q′′
=

p+ p′

q + q′
.

Or, as we will show, equivalently:

Theorem 2.10. If p
q and p′

q′ are two consecutive fractions in Fn with p
q < p′

q′ ,

then qp′ − q′p = 1.
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We will first prove that these two theorems are equivalent, and then prove
that they both hold for all Fn.

Proof that theorem 2.10 implies theorem 2.9. Assume theorem 2.10 holds, then
for three consecutive fractions in Fn with p

q < p′′

q′′ <
p′

q′ we have:

qp′′ − q′′p = 1, q′′p′ − q′p′′ = 1, (4)

or, equivalently:

p′′ =
1 + q′′p

q
, q′′ =

1 + q′p′′

p′
.

Multiplying by the denominator and substituting for respectively q′′ and p′′:

p′′q = 1 + p
1 + q′p′′

p′
, q′′p′ = 1 + q′

1 + q′′p

q
.

Again multiplying by the denominator and rearranging we get

p′′(qp′ − q′p) = p′ + p, q′′(qp′ − q′p) = q + q′,

dividing the left equality by the right one (which is nonzero, as q, q′ > 0),

p′′

q′′
=

p+ p′

q + q′

which is theorem 2.9.

For the other direction we need an extra lemma:

Lemma 2.11. If n > 1, then no two consecutive terms of Fn have the same
denominator.

Proof. Let p
q < p′

q be two consecutive terms of Fn with q > 1. Then p+ 1 ≤
p′ < q, so

p

q
<

p

q − 1
<

p+ 1

q
≤ p′

q
,

so p
q−1 would appear between p

q and p′

q , which is a contradiction. The middle
inequality above follows from:

p

q − 1
− p+ 1

q
=

pq − (q − 1)(p− 1)

(q − 1)q
=

p+ 1− q

q2 − q
< 0.

Proof that theorem 2.9 implies theorem 2.10. Assume theorem 2.9 holds in gen-
eral, observe that theorem 2.10 holds for F1, and assume that theorem 2.10
holds for Fn for some n ∈ N. Let p′′

q′′ be an element of Fn+1 but not of Fn.
Then, since theorem 2.9 holds,

p′′

q′′
=

p+ p′

q + q′
,
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for p
q < p′′

q′′ <
p′

q′ consecutive. So

λp′′ = p+ p′, λq′′ = q + q′

for some integer λ. Since p′′

q′′ is irreducible (as it is an element of Fn) we have

λ ≥ 1, and since q and q′ must both be less than q′′ (due to lemma 2.11) we
get λ < 2. Thus, λ = 1 and

p′′ = p+ p′, q′′ = q + q′. (5)

Cross-multiplying these, we get

p′′(q + q′) = q′′(p+ p′′),

or, equivalently,
p′′q − q′′p = q′′p′ − p′′q′.

By substituting equations (5) we obtain:

p′′q − q′′p = (q + q′)p′ − (p+ p′)q′

= qp′ − pq′ = 1,

with the final equality due to theorem 2.10 holding in Fn, where
p
q and p′

q′ are
consecutive. If either were not in Fn, it must be new in Fn+1 and therefore
have the same denominator as p′′

q′′ , which contradicts lemma 2.11. This shows
that theorem 2.10 also holds for Fn+1, and thus by induction for all Farey
sequences.

Now we are ready to prove theorems 2.9 and 2.10 for all Fn.

Proof of theorems 2.9 and 2.10. Both theorems hold for F1. We assume they
hold for Fn for some n ∈ N and show that they hold for Fn+1, so by induc-
tion they hold for all Farey sequences. Suppose that p

q < p′

q′ are consecutive

fractions in Fn, with
p′′

q′′ between them in Fn+1. Then

p

q
<

p′′

q′′
,

p′′

q′′
<

p′

q′
,

so
p

q
+

r

q′′q
=

p′′

q′′
,

p′′

q′′
+

s

q′′q
=

p′

q′

for some integer r, s > 0, so

qp′′ − pq′′ = r, q′′p′ − p′′q′ = s. (6)

Rearranging we get

p′′ =
r + q′′p

q
, q′′ =

s+ q′p′′

p′
.

Multiplying by the denominator and cross-substituting gives

p′′q = r + p
s+ q′p′′

p′
, q′′p′ = s+ q′

r + q′′p

q
,
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and multiplying by the denominator again and rearranging:

p′′(qp′ − q′p) = sp+ rp′, q′′(qp′ − q′p) = sq + rq′.

Since theorem 2.9 holds for Fn we have qp′ − q′p = 1, so

p′′ = sp+ rp′, q′′ = sq + rq′.

Now all we need to do is show that r = s = 1. Let gcd(r, s) = a. Then
r = ab, s = ac for some b, c ∈ N. This would give

p′′ = a(cp+ bp′), q′′ = a(cq + bq′)

making a also a common factor of p′′ and q′′. However, p′′

q′′ was already in
reduced form since it appears in a Farey sequence, so gcd(r, s) = a = 1.

Now consider the set of fractions

S =

{
P

Q
: P = µp+ λp′, Q = µq + λq′

}
with µ and λ positive integers and gcd(µ, λ) = 1. This set must contain p′′

q′′ .

Due to lemma 2.8, all fractions in S are between p
q and p′

q′ . We can also show
that all fractions in S are in reduced form; assume a divides both P and Q.
Then a also divides

q′P − p′Q = q′(µp+ λp′)− p′(µq + λq′)

= (q′p− p′q)µ+ (q′p′ − p′q′)λ

= µ

and

qP − pQ = q(µp+ λp′)− p(µq + λq′)

= (qp− pq)µ+ (qp′ − pq′)λ

= λ,

hence a must be 1. Since all fractions in S are in reduced form and between p
q

and p′

q′ , all of them will appear in a Farey sequence at some point. The first to
do so will clearly be the one with the lowest value for Q, so with λ = µ = 1.
This must be p′′

q′′ , so we have

p′′ = p+ p′, q′′ = q + q′.

Substitute this into equation (6), and we get:

q(p+ p′)− p(q + q′) = r, (q + q′)p′ − (p+ p′)q′ = s

qp− pq + qp′ − pq′ = r, qp′ − pq′ + q′p′ − p′q′ = s

1 = r, 1 = s

which proves theorem 2.10 for Fn+1, equivalent to theorem 2.9 for Fn+1 and
by induction both theorems hold for all Farey sequences.
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2.4 Modified Farey sequences

Now that we have established that all newly added members to the (n+1)th
Farey sequence are mediants of fractions in the nth Farey sequence, we can
construct the modified Farey sequences Sn [8].

Definition 2.12. The 0th modified Farey sequence is S0 = {0
1 ,

1
1}. Any sub-

sequent modified Farey sequence Sn is the union of Sn−1 with all the reduced
mediants of consecutive fractions in Sn−1, arranged in ascending order.

The first 4 modified Farey sequences therefore are:

S0 = {0
1 ,

1
1},

S1 = {0
1 ,

1
2 ,

1
1},

S2 = {0
1 ,

1
3 ,

1
2 ,

2
3 ,

1
1}, and

S3 = {0
1 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

1
1}.

According to theorem 2.9 and lemma 2.11 every new Farey fraction in Fn is
the mediant of two consecutive fractions in Fn−1, so we have

Fn ⊂ Sn−1.

Therefore, by definition 2.6, any reduced rational p
q ∈ [0, 1] will show up in

Sn for large enough n.

2.5 Dyadic rationals

In order to be able to define Minkowski’s question mark function, we need to
introduce one more sequence of sequences.

Definition 2.13. A dyadic rational is a rational with a power of 2 as denom-
inator.

Dyadic rationals are thus all of the form i · 2−n, with i, n ∈ Z. Like we
did with the modified Farey sequences, we can construct sequences of reduced
dyadic rationals on the interval [0,1].

Definition 2.14. The 0th dyadic rational sequence is D0 = {0
1 ,

1
1}. Any

subsequent dyadic rational sequence Dn is the union of Dn−1 with all the
averages of consecutive fractions in Dn−1, arranged in ascending order.

The first 4 dyadic rational sequences therefore are:

D0 = {0
1 ,

1
1},

D1 = {0
1 ,

1
2 ,

1
1},

D2 = {0
1 ,

1
4 ,

1
2 ,

3
4 ,

1
1}, and

D3 = {0
1 ,

1
8 ,

1
4 ,

3
8 ,

1
2 ,

5
8 ,

3
4 ,

7
8 ,

1
1}.

Clearly we have #Dn = #Sn, as we have #D0 = #S0 = 2 and for both
sequences #Dn = 2 ·#Dn−1 − 1 and #Sn = 2 ·#Sn−1 − 1. This leads to

Proposition 2.15. For any n ∈ N, the number of elements in Dn equals the
number of elements in Sn and:

#Dn = #Sn = 2n + 1. (7)
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Proof. Equation (7) holds for n = 0. Now assume it holds for some n ∈ N.
Then

#Sn+1 = 2 ·#Sn − 1

= 2(2n + 1)− 1

= 2n+1 + 1,

so it holds for n+ 1 and by induction for all n ∈ N.

Definition 2.14 need not be recursive. An equal definition would be

Proposition 2.16. The n-th dyadic rational sequence Dn is the set of all
fractions with denominator 2n in the interval [0, 1], reduced where possible,
arranged in ascending order.

Proof. The proposition is true for n = 0. Assume it holds for some n ∈ N.
Let d ∈ Dn+1. Then either it was in Dn, in which case d was of the form
d = i · 2−n = 2i · 2−(n+1), or d was not in Dn. In that case it must be the
average of two fractions in Dn, say d′ = i′ · 2−n and d′′ = i′′ · 2−n. Then

d =
d′ + d′′

2
=

i′ + i′′

2n+1
,

so in either case d has denominator 2n+1. Conversely, we can write any fraction
with denominator 2n+1 as the average of two fractions with denominator 2n.
the proposition therefore holds for n+ 1 and by induction for all Dn.

Corollary 2.17. If d(n, i) is the ith element of Dn, then

d(n, i) =
i− 1

2n
.

3 Definition of ?(x)

3.1 Minkowski’s definition

There are multiple ways to define ?(x), but we will start with the method used
by Minkowski himself. His method was to order the rationals according to
modified Farey sequences as in subsection 2.4, and assign them through this
ordering to the dyadic rationals. We have already seen that both sequences
have an equal number of elements for equal orders, so this means we can simply
map the nth modified Farey sequence to the nth dyadic rational sequence:

Definition 3.1. If r(n, i) is the i-th member of modified Farey sequence Sn

and d(n, i) is the i-th member of dyadic rational sequence Dn, then Minkowski’s
question mark function is:

?(r(n, i)) = d(n, i). (8)

Or, due to corollary 2.17, ?(r(n, i)) = i−1
2n .

Since the modified Farey sequence and the dyadic rational sequence can
be defined recursively, we can also write this definition recursively:

12



Proposition 3.2. For consecutive fractions a
b ,

c
d ∈ Sn, we have:

?

(
a+ c

b+ d

)
=

?
(
a
b

)
+ ?

(
c
d

)
2

.

Proof. Since a
b and c

d are consecutive in Sn, we have

?
(a
b

)
=

i− 1

2n
, ?

( c

d

)
=

i

2n

when a
b is the ith element of Sn. By construction, a+c

b+d comes between them
in Sn+1, where it will be the (2i)th element. Therefore,

?

(
a+ c

b+ d

)
=

2i− 1

2n+1
=

i−1
2n + i

2n

2
=

?
(
a
b

)
+ ?

(
c
d

)
2

.

Following proposition 2.15, S15 already has 32769 elements. Constructing
these and plotting them gives us figure 1. The code for this follows [9] and
can be found in appendix A.

0 1/4 1/3 2/5 1/2 3/5 2/3 3/4 1

0

1/8

1/4

3/8

1/2

5/8

3/4

7/8

1

Figure 1: Minkowski’s question mark function, ?(x). Along the x-axis is the 3rd
modified Farey sequence, along the y-axis the 3rd dyadic rational sequence.

3.2 Continued fraction definition of ?(x)

In this way we have only defined values of ?(x) for rational x. Since the
rationals are dense in the reals, Minkowski simply defines the values of ?(x) for

13



irrational x by continuity. How can this tell us anything about the quadratic
irrationals though? This is done through their property of being uniquely
written as periodic continued fractions. First, we must translate our current
definition to continued fractions. This will allow for a more explicit definition
by continuity for irrational x. We can then conclude several properties of
?(x) based on the properties of continued fractions. The following is based on
Denjoy’s work [2] as translated by Salem [12].

Theorem 3.3. For any x ∈ [0, 1] with continued fraction expansion x =
[0; a1, a2, . . . ] we have

?(x) =
∞∑

m=1

(−1)m−1

2(a1+···+am)−1
. (9)

Proof. Let pn
qn

= [0; a1, . . . , an] be the n-th convergent of x. While constructing

the modified Farey sequences, at some point two successive convergents
pk−2

qk−2

and
pk−1

qk−1
will appear as consecutive in a modified Farey sequence, say Sm. This

is sure to happen: p0
q0

= 0 and p1
q1

= 1
a1

will be consecutive in the (a1 − 1)-th

modified Farey sequence since r(n, 2) = 1
n+1 . Let yn = ?

(
pn
qn

)
. Then

?

(
pk−1 + pk−2

qk−1 + qk−2

)
=

yk−1 + yk−2

2

due to proposition 3.2.
Since

pk−2

qk−2
and

pk−1

qk−1
were consecutive in Sm,

pk−1+pk−2

qk−1+qk−2
will appear in

between them in Sm+1. In Sm+2 we will then have
2pk−1+pk−2

2qk−1+qk−2
, with

?

(
2pk−1 + pk−2

2qk−1 + qk−2

)
=

yk−1 + (yk−1 + yk−2)/2

2
.

From proposition 2.3 we have that for any convergent pn
qn

= anpn−1+pn−2

anqn−1+qn−2
. By

continuing in the way above, since
pk−1

qk−1
is again consecutive to every mediant

we construct, we get

?

(
pk
qk

)
= ?

(
akpk−1 + pk−2

akqk−1 + qk−2

)
=

yk−1

2
+

yk−1

22
+ · · ·+ yk−1

2ak
+

yk−2

2ak
.

Therefore,

yk =

(
1− 1

2ak

)
yk−1 +

yk−2

2ak

and

yk − yk−1 =
−1

2ak
(yk−1 − yk−2).

Since pk
qk

is again consecutive to
pk−1

qk−1
, and as shown above p0

q0
and p1

q1
are also

consecutive, we can extend this to yn for any n, obtaining

yn − yn−1 =
−1

2an
· −1

2an−1
· · · −1

2a2
(y1 − y0).
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From equation (8) we get y0 = ?(0) = 0 and y1 = ?
(

1
a1

)
= ?(r(a1 − 1, 2)) =

1
2(a1−1) , so

yn − yn−1 =
(−1)n−1

2(a1+···+an)−1

and

?

(
pn
qn

)
= yn =

n∑
m=1

(−1)m−1

2(a1+···+am)−1
. (10)

The demand for continuity then gives us

?(x) =
∞∑

m=1

(−1)m−1

2(a1+···+am)−1
,

concluding the proof.

This indirectly proves a property of dyadic rationals:

Corollary 3.4. Any dyadic rational d ∈ (0, 1) can be written in the form of
the right hand side of equation (10).

Proof. This follows from the established equality of equations (10) and (8),
combined with the fact that any dyadic rational d ∈ (0, 1) will appear in Dn

for large enough n.

From this new definition we can also deduce several properties of ?(x),
based on the properties of continued fraction expansions shown in subsection
2.2.

Corollary 3.5. The sum (9) is infinite iff x is irrational.

Proof. This also follows from theorem 2.4; if the sum is infinite, the contin-
ued fraction expansion of x must be infinite so the number cannot be rational.
Conversely, if x is irrational, it cannot have a finite continued fraction expan-
sion, so the sum cannot be finite.

Corollary 3.6. ?(x) is a non-dyadic rational iff x is a quadratic irrational.

Proof. This is a consequence of the fact that quadratic irrationals can be
written as infinite periodic continued fractions. Under ?(x), such an infinite
periodic continued fraction gets mapped to an infinite dyadic periodic series.
This series can be split up in a positive and a negative series, both of which
converge to a rational number. What is left is the difference between two
rational numbers, and therefore itself a rational number. Conversely, if ?(x)
is a non-dyadic rational, we know that the continued fraction expansion of x
cannot be finite. We also know that the sum must converge to a rational, so
there must be periodicity in it. Hence the continued fraction representation of
x must be infinite and after some point periodic, so x is a quadratic irrational
according to theorem 2.5.
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3.3 Some examples

To illustrate the workings of ?(x) we will calculate it for some example values
of x; A dyadic rational, a non-dyadic rational, a quadratic irrational and a
non-quadratic irrational.

1. x = 5
8 : This is the mediant of the 6th and 7th members of S3, so it will

be the 12th member of S4. It gets mapped to the 12th member of D4

(the average of the 6th and 7th members of D3), so ?(58) =
11
16 , another

dyadic rational.

2. x = 2
7 : Fourth member of S4, so ?(27) = 3

16 . Alternatively, using the
algorithm in subsection 2.2:

2

7
= 0 +

1
7
2

= 0 +
1

3 +
1

2

= [0; 3, 2],

for which equation (9) gives us

?

(
2

7

)
= ? ([0; 3, 2]) =

1

4
− 1

16
=

3

16
,

again a dyadic rational.

3. x =
√
6− 2: This is a quadratic irrational, as it is a root of x2 + 4x− 2.

It will not occur in any modified Farey sequence Sn, so we will have to
do the continued fraction decomposition:

√
6− 2 = 0 +

1

1
√
6− 2

=
1

√
6 + 2

2

=
1

2 +

√
6− 2

2

Repeating this process once more:

√
6− 2 =

1

2 +
1

2
√
6− 2

=
1

2 +
1

4 + (
√
6− 2)

.

Note that the left hand
√
6 − 2 appears again in the right hand side

of the decomposition so far, so the continued fraction expansion will be
periodic:

√
6− 2 =

1

2 +
1

4 +
1

2 +
1

4 +
1

. . .

= [0; 2, 4].
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Then equation (9) gives us:

?([0; 2, 4, 2, 4, . . . ]) =
1

2
− 1

25
+

1

27
− 1

211
+ · · · =

∞∑
i=0

1

21+6i
−

∞∑
i=0

1

25+6i
.

These series can be evaluated. Taking the left series first, multiplying
by 26:

26
∞∑
i=0

1

21+6i
= 26

(
1

2
+

1

27
+

1

213
+ · · ·

)
= 25 +

1

2
+

1

27
+

1

213
+ · · ·

= 25 +
∞∑
i=0

1

21+6i
,

so

25 = (26 − 1)

∞∑
i=0

1

21+6i
,

and then
∞∑
i=0

1

21+6i
=

25

26 − 1
=

32

63
.

A similar computation for the right hand series gives:

∞∑
i=0

1

25+6i
=

2

26 − 1
=

2

63
.

Putting these results together we get:

?(
√
6− 2) = ?([0; 2, 4, 2, 4, . . . ]) =

∞∑
i=0

1

21+6i
−

∞∑
i=0

1

25+6i
=

32− 2

63
=

10

21
.

Which is, as expected, a rational. It is not a dyadic rational though,
since

√
6− 2 is not a rational number.

4. x = π − 3: This will neither appear in any modified Farey sequence nor
have a periodic continued fraction expansion. A quick search gives us
the first part of its infinite continued fraction expansion:

π − 3 = [0; 7, 15, 1, 292, . . . ].

and computing the sum (9) with this first part gives:

?([0; 7, 15, 1, 292]) =
1

26
− 1

221
+

1

222
− 1

2314
= 0.015624761581421 . . .

Which already gives such an immense amount of decimals (about 1094)
that we can no longer do anything meaningful with it. Since there is no
periodicity in the continued fraction expansion either, we cannot evalu-
ate the sum as for quadratic irrationals. It does however illustrate nicely
that the value of ?(x) for any given x can be approximated quite closely
with only the first few coefficients of its continued fraction expansion.
As subsequent terms of the sum (9) will have even larger denominators,
they will have progressively less impact on our estimate.
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4 Fixed points of ?(x)

While it is easily verified that 0, 1
2 , and 1 are fixed points of ?(x), there appear

to be at least two more (see figure 2). Appendix B contains two approaches at
finding these two apparent fixed points by iterative methods. Let us assume
for now that these unknown fixed points are exactly two. We will denote the
fixed point in (0, 12) by x1 and the one in (12 , 1) by x2. Due to the symmetry
of ?(x), we have x2 = 1− x1.

0 1/4 1/3 2/5 1/2 3/5 2/3 3/4 1

0

1/8

1/4

3/8

1/2

5/8

3/4

7/8

1

Figure 2: Minkowski’s question mark function ?(x) together with y(x) = x. Note
that there appear to be three intersections in (0, 1).

Note that at both of these apparent fixed points ?′(xi) > 1 (assuming the
derivative exists), so we can iteratively approach the fixed points by decreasing
x when x < ?(x) and increasing x when x > ?(x).

4.1 Modified Farey sequences

The first approach is based on the iterative construction of modified Farey
sequences. A starting value of x is taken, the ith member of modified Farey
sequence Sn, and two members rn,1 and rn,2 of Sn are located for which
rn,1 > ?(rn,1) but rn,2 < ?(rn,2). Our fixed point x1 should then be between
these two points, so we construct the mediant and repeat the process to find
on which side of the mediant it is. By repeatedly applying this procedure,
we obtain better approximations of x1. By applying this until S50, we ob-
tained x = 0.420372339423223 . . . , with an error of |x − ?(x)| ≈ 2 · 10−13.
Further iterations were not pursued due to calculation time. The code could
be made much more efficient to decrease calculation time, for example by not
re-calculating every member of Sn+1 when it was already a member of Sn).
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4.2 Continued fraction expansions

The second approach is based on the continued fraction expansion of x and
the calculation of ?(x) from its continued fraction as in equation (9). The
following properties were used:

Proposition 4.1. If x = [a0; a1, a2, . . . , ai, . . . ], then an increase in ai will
result in an increase in x for even i, and a decrease in x for odd i.

Proof. We prove this by induction. Recall that the continued fraction expan-
sion of x is

x = [a0; a1, a2, . . . ] = a0 +
1

a1 +
1

a2 +
1

. . .

. (11)

Increasing a0 simply adds to the sum, so clearly it increases x. Likewise,
increasing a1 makes the denominator larger in the right hand side of the sum,
thereby decreasing x. Now suppose that for a given i ∈ N0, increasing ai
will lead to an increase in x. We will look at the tail end ti of the continued
fraction expansion, starting from ai. We can represent this by

ti = [ai, ai+1, ai+2, . . . ] = ai +
1

ai+1 +
1

ai+2 +
1

. . .

.

Note that

x = [a0; a1, a2, . . . , ai−1, ai, ai+1, . . . ] = [a0; a1, a2, . . . , ai−1, ti].

Since increasing ai would increase x, increasing ti would also increase x. Ob-
serve that increasing ai+1 leads to a decrease in ti, and as therefore a decrease
in x. By the same reasoning, increasing ai+2 will again lead to an increase
in ti and therefore x. Since the effect of increasing ai alternates on i, and
increasing a0 has positive effect on x, we conclude that increasing ai leads to
an increase in x for even i and a decrease in x for odd i.

Proposition 4.2. If xn = [a0; a1, a2, . . . , an] is the nth convergent of x, then
xn < x for even n and xn > x for odd n.

Proof. Note that for xn, the continued fraction expansion terminates after
n. This equates to setting tn = an in the notation of proposition 4.1. Since
ti > ai for all i as long as the continued fraction expansion does not terminate
after ai, this means a decrease in tn and by the reasoning of proposition 4.1
a decrease in x for even n and an increase in x for odd n. Hence we conclude
that xn < x for even n and xn > x for odd n.

The fixed points x1 and x2 were then approximated by going through the
successive convergents, where for each odd i the highest ai was found for
which xn < ?(xn), and for each even i the highest ai was found for which
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xn > ?(xn). This method proved much more efficient than the earlier one.
The code for the first method was very ill-optimized, having to do recursive
calculations through increasing layers of Farey sequences for every single eval-
uation. This second method also has the advantage of using the continued
fraction expansion, which allows for direct computation of values of ?(x). As
the example calculation of ?(π−3) in subsection 3.3 illustrated, the continued
fraction expansions method also has rapidly increasing accuracy. It gave the
following approximations:

x1 = [0; 2, 2, 1, 1, 1, 3, 2, 3, 1, 2, 4, 1, 1, 2, 3, 1, 2, 5, 1, 3, 2, 3, 1, 3, 1, 1, 1]

=
802890961

1909951930
≈ 0.420372339423223 . . . .

Changing the initial value to [1,1,2,1,1] gave an approximation for the upper
fixed point:

x2 = [0; 1, 1, 2, 1, 1, 1, 3, 2, 3, 1, 2, 4, 1, 1, 2, 3, 1, 2, 5, 1, 3, 2, 3, 1, 3, 1, 1, 1]

=
1107060969

1909951930
= 1− x1

≈ 0.579627660576777 . . . .

The fact that x1 = 1 − x2 was to be expected due to the symmetry of ?(x).
These approximations exceed the standard tolerance of MATLAB in accuracy,
which is why the code terminated. It should be noted that the denominator
1909951930 is not a power of 2, so the approximations are non-dyadic ra-
tionals, which means they get mapped to dyadic rationals by the original
definition of ?(x) and thus cannot be the exact fixed points.

5 The singularity of ?(x)

This section will follow Salem’s proof [12] that ?(x) is a singular function,
with added details.

Definition 5.1. A function f is singular on the interval [a, b] if it has the
following properties:

1. f is continuous on [a, b],

2. the derivative of f vanishes almost everywhere, and

3. f is non-constant on [a, b].

The first and third conditions clearly hold for ?(x) on [0, 1]. The second
condition requires some additional specification before we can show that it
also holds for ?(x). We will need to show that there is a subset N of [0, 1],
where N has measure 1. We will then need to show that the derivative of ?(x)
exists and equals zero on this subset.
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5.1 The set N of measure 1

In this subsection we will show that the set of x = [a0; a1, a2, . . . ] ∈ [0, 1] such
that supi∈N ai = ∞ is of measure 1. We will follow [13, Ch. 19] with additional
details from [10]. Measure is a generalization of ideas such as length, area and
volume. The measure of a subset of the real numbers therefore coincides with
the length of such a subset, or, if the subset is disjoint, the sum of the lengths
of its parts. This allows us to make our first useful observation.

Lemma 5.2. The measure of the set of x = [0; a1, a2, . . . ] ∈ [0, 1] such that
a1 = k is 1

k(k+1) .

Proof. Note that any number x = [0; a1, a2, . . . ] for which a1 = k is of the
form

x =
1

k +
1

a2 +
1

. . .

.

This means that x ≤ 1
k . Since x ≤ 1

k+1 would imply a1 ≥ k+1 and vice versa,
we get

x ∈
(

1

k + 1
,
1

k

]
⇐⇒ a1 = k.

The measure of the set of x = [0; a1, a2, . . . ] ∈ [0, 1] such that a1 = k is then

1

k
− 1

k + 1
=

1

k(k + 1)

We would like to generalize this to all an. Due to the influence of the
preceding an this is however much more difficult, but we can obtain a general
bound that does not depend on n.

Proposition 5.3. The measure of the set Ian=k = {x = [0; a1, . . . , an, . . . ] :
an = k} is between 1

3k2
and 2

k2
.

Proof. We want to find the measure of the subset of (0, 1) for which an = k
for given n and k, independent of the ai for i < n. We will start by trying to
find this measure for given preceding ai. Let

Ik = {x = [0; b1, b2, . . . ] : bi = ai for i < n, bi = k for i = n} ,

and likewise

Ian−1 = {x = [0; b1, b2, . . . ] : bi = ai for i < n} .

Recall that for given x = [0; a1, a2, . . . , an−1, k], proposition 2.3 gives us

[0; a1, a2, . . . , an−2, an−1, k] =
kpn−1 + pn−2

kqn−1 + qn−2
,
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where pn
qn

= xn again denotes the nth convergent of x, i.e. xn = [0; a1, a2, . . . , an].
The proof of theorem 3.3 also shows that any consecutive convergents will be
neighbours in some Farey sequence, and therefore theorem 2.10 holds here as
well:

|pn−1qn−2 − pn−2qn−1| = 1,

with the absolute bars due to the fact that we do not know which convergent
is larger. By the same reasoning as for a1 = k above, Ik is equal to the interval
between [0; a1, . . . , an−1, k] and [0; a1, . . . , an−1, k+1]. Depending on whether
n is even or odd (see prop 4.1), this gives us either

Ik =

[
kpn−1 + pn−2

kqn−1 + qn−2
,
(k + 1)pn−1 + pn−2

(k + 1)qn−1 + qn−2

)
(12)

or

Ik =

(
(k + 1)pn−1 + pn−2

(k + 1)qn−1 + qn−2
,
kpn−1 + pn−2

kqn−1 + qn−2

]
.

Without loss of generality, let us assume the interval is of the form (12). The
measure of this interval is

|Ik| =
∣∣∣∣kpn−1 + pn−2

kqn−1 + qn−2
− (k + 1)pn−1 + pn−2

(k + 1)qn−1 + qn−2

∣∣∣∣ . (13)

The interval Ian−1 is then equal to the union of this interval over all possible
k:

Ian−1 =
⋃
k∈N

Ik,

which allows us to compute its measure. Note that the intervals Ik are pairwise
disjoint, so we get

|Ian−1 | =
∑
k∈N

|Ik| =
∑
k∈N

∣∣∣∣kpn−1 + pn−2

kqn−1 + qn−2
− (k + 1)pn−1 + pn−2

(k + 1)qn−1 + qn−2

∣∣∣∣ .
Observe that this is a telescoping sum. This allows us to compute the sum by
taking k = 1 on one side and limk→∞ on the other:

|Ian−1 | = lim
k→∞

∣∣∣∣pn−1 + pn−2

qn−1 + qn−2
− kpn−1 + pn−2

kqn−1 + qn−2

∣∣∣∣ = ∣∣∣∣pn−1 + pn−2

qn−1 + qn−2
− pn−1

qn−1

∣∣∣∣
Cross-multiplying this gives

|Ian−1 | =
∣∣∣∣pn−2qn−1 − pn−1qn−2

q2n−1 + qn−2qn−1

∣∣∣∣ ,
and applying theorem 2.10 we get

|Ian−1 | =

∣∣∣∣∣ 1

q2n−1(1 +
qn−2

qn−1
)

∣∣∣∣∣ .
This measure still depends on the denominators of the convergents and there-
fore on the ai, but it will have to do for now. Let us shift our focus to the
measure of Ik itself.
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For the measure of Ik, we go back to equation (13). Cross-multiplying and
working out some brackets gives

|Ik| =
∣∣∣∣k(pn−1qn−2 − qn−1pn−2) + (k + 1)(pn−2qn−1 − qn−2pn−1)

(kqn−1 + qn−2)((k + 1)qn−1 + qn−2)

∣∣∣∣ .
Using theorem 2.10 we can simplify the numerator to:

|k(pn−1qn−2−qn−1pn−2)+(k+1)(pn−2qn−1−qn−2pn−1)| = |±k∓(k+1)| = 1,

which gives us

|Ik| =
∣∣∣∣ 1

q2n−1k
2 + q2n−1k + 2qn−1qn−2k + qn−1qn−2 + q2n−2

∣∣∣∣ .
Factoring out the term q2n−2k

2 for reasons that will become apparent soon:

|Ik| =

∣∣∣∣∣∣∣
1

q2n−1k
2(1 + 1

k + 2qn−2

kqn−1
+ qn−2

k2qn−1
+

q2n−2

q2n−1k
2 )

∣∣∣∣∣∣∣ ,
and once again factoring:

|Ik| =

∣∣∣∣∣ 1

q2n−1k
2(1 + 1

k + qn−2

kqn−1
)(1 + qn−2

kqn−1
)

∣∣∣∣∣ .
Now that we have an expression for both |Ik| and |Ian−1 |, let us compare

them:
|Ik|

|Ian−1 |
=

q2n−1(1 +
qn−2

qn−1
)

q2n−1k
2(1 + 1

k + qn−2

kqn−1
)(1 + qn−2

kqn−1
)
.

This simplifies to

|Ik|
|Ian−1 |

=
1

k2
·

1 + qn−2

qn−1

(1 + 1
k + qn−2

kqn−1
)(1 + qn−2

kqn−1
)
. (14)

We can bound the rightmost fraction in this equation. Taking limk→∞ mini-
mizes the denominator, giving us

lim
k→∞

1 + qn−2

qn−1

(1 + 1
k + qn−2

kqn−1
)(1 + qn−2

kqn−1
)
=

1 + qn−2

qn−1

1
.

As shown in the proof of theorem 3.3, higher order convergents only appear in
higher order modified Farey sequences, and therefore have larger denominator.
This gives us qn−2

qn−1
< 1, so

1 + qn−2

qn−1

(1 + 1
k + qn−2

kqn−1
)(1 + qn−2

kqn−1
)
<

1 + qn−2

qn−1

1
< 2.

The lower bound for this same fraction we obtain by maximizing the denom-
inator, by setting k = 1:

1 + qn−2

qn−1

(1 + 1
k + qn−2

kqn−1
)(1 + qn−2

kqn−1
)
≥

1 + qn−2

qn−1

(2 + qn−2

qn−1
)(1 + qn−2

qn−1
)
=

1

2 + qn−2

qn−1

>
1

3
.
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Which gives us
1

3k2
<

|Ik|
|Ian−1 |

<
2

k2
,

or
1

3k2
|Ian−1 | < |Ik| <

2

k2
|Ian−1 |.

Summing over all possible ai for i < n gives∑
1≤a1,...,an−1<∞

|Ian−1 | = 1 and
∑

1≤a1,...,an−1<∞
|Ik| = |Ian=k|,

so we finally get
1

3k2
< |Ian=k| <

2

k2
.

Corollary 5.4. For all k, n ∈ N+,

1

3k
< |{x = [0; a1, a2, . . . ] : an ≥ k}| < 4

k
.

Proof. For any given k, n ∈ N+, we have

|{x = [0; a1, a2, . . . ] : an ≥ k}| =
∞∑
i=k

|Ian=i|

and
∞∑
i=k

1

3i2
<

∞∑
i=k

|Ian=i| <
∞∑
i=k

2

i2
.

Now we need to find bounds for the left- and rightmost sums in this inequality.
Note that both are some multiple of

∞∑
i=k

1

i2
=

1

k2
+

1

(k + 1)2
+

1

(k + 2)2
+ · · · .

We can transform this into a telescoping sum by adding to the denominator
in every summand, thereby decreasing the total sum:

∞∑
i=k

1

i2
≥

∞∑
i=k

1

i(i+ 1)
=

∞∑
i=k

(
1

i
− 1

i+ 1

)
=

1

k
− lim

i→∞

1

i
=

1

k
.

Decreasing the summand in the denominator instead gives us the other bound:

∞∑
i=k

1

i2
≤

∞∑
i=k

1

(i− 1)i
=

∞∑
i=k

(
1

i− 1
− 1

i

)
=

1

k − 1
− lim

i→∞

1

i
=

1

k − 1
≤ 2

k
.

Note that this last bound only works for k > 1. For k = 1 however, we can
easily see that

|{x = [0; a1, a2, . . . ] : an ≥ 1}| = 1.

Therefore, we obtain

1

3k
< |{x = [0; a1, a2, . . . ] : an ≥ k}| < 4

k
.
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This last result allows us to get to the point of this subsection: the measure
of the set of x = [a0; a1, a2, . . . ] ∈ [0, 1] such that supi∈N ai = ∞.

Theorem 5.5. The set N = {x = [a0; a1, a2, . . . ] ∈ [0, 1] : supi∈N ai = ∞}
has measure 1.

Proof. Consider the complement of N in [0, 1]:

B = {x = [a0; a1, a2, . . . ] ∈ [0, 1] : sup
i∈N

ai = K for some K < ∞}.

If we then define, for given K,

BK = {x = [a0; a1, a2, . . . ] ∈ [0, 1] : sup
i∈N

ai = K}

and
BK,n = {x = [a0; a1, a2, . . . ] ∈ [0, 1] : sup

1≤i≤n
ai = K},

we get
∞⋃

K=1

Bk = B,

and
∞⋂
n=1

BK,n = BK .

Since every next BK,n is contained in all previous BK,i for i < n,

|BK | =

∣∣∣∣∣
∞⋂
n=1

BK,n

∣∣∣∣∣ = lim
n→∞

|BK,n|.

Now let us determine the measure of BK,n inductively. For BK,1, we have

|BK,1| = |{x = [a0; a1, a2, . . . ] ∈ [0, 1] : a1 < K}|,

so by corollary 5.4 we have

|BK,1| = 1− |{x = [0; a1, a2, . . . ] : a1 ≥ K}| < 1− 1

3K
.

Assume we have |BK,n| <
(
1− 1

3K

)n
for some n ∈ N. Then

|BK,n+1| = |BK,n| −
|{x = [0; a1, a2, . . . ] : an+1 ≥ K}|

|BK,n|
,

since BK,n+1 ⊂ BK,n and we only lose that part of BK,n for which an+1 ≥ K.
Since an+1 is independent of the earlier ai, this can be represented by the
fraction shown above. Therefore,

|BK,n+1| = (1− |{x = [0; a1, a2, . . . ] : an+1 ≥ K}|) · |BK,n| < (1− 1

3K
)n+1.

This proves by induction that |BK,n| < (1− 1
3K )n. Since

0 <
1

3K
< 1,

25



we have 0 < (1− 1
3K ) < 1, so we get

|BK | = lim
n→∞

|BK,n| ≤ lim
n→∞

(1− 1

3K
)n = 0.

Since B is the countable union of BK , this gives us

|B| ≤
∞∑

K=1

|BK | =
∞∑

K=1

0 = 0.

Since the complement of N ⊂ [0, 1] has measure 0 while |[0, 1]| = 1, we get

|N | = |[0, 1]| − |B| = 1.

5.2 The derivative of ?(x) on N

Now that we have a subset N ⊂ (0, 1) with measure |N | = 1, we can go back
to Salem’s proof and look at the derivative of ?(x) on that subset. We will do
so by looking at the convergents.

Proposition 5.6. For any x = [0; a1, a2, . . . ] ∈ N with pn
qn

= xn = [0; a1, a2, . . . , an]
the nth convergent of x, we have

1

(an+1 + 2)q2n
< |x− xn| <

1

an+1q2n
. (15)

Proof. We will denote the ‘tail end’ tn of the continued fraction expansion as
in the proof of proposition 4.1:

tn = [an, an+1, an+2, . . . ] = an +
1

an+1 +
1

an+2 +
1

. . .

.

Note again that

x = [0; a1, a2, . . . ] = [0; a1, a2, . . . , an, tn+1].

This gives us, by proposition 2.3,

x =
tn+1pn + pn−1

tn+1qn + qn+1

Subtracting xn = pn
qn

from both sides gives

x− xn =
tn+1pn + pn−1

tn+1qn + qn−1
− pn

qn
=

tn+1pnqn + pn−1qn − tn+1qnpn − qn−1pn
(tn+1qn + qn−1)qn

.

Applying theorem 2.10 gives

x− xn =
tn+1pnqn − tn+1qnpn ± 1

(tn+1qn + qn−1)qn
,
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so

|x− xn| =
1

(tn+1qn + qn−1)qn
.

Note that since

tn+1 = an+1 +
1

an+2 +
1

an+3 +
1

. . .

,

we have an+1 < tn+1 < an+1 + 1, so

1

((an+1 + 1)qn + qn−1)qn
< |x− xn| <

1

(an+1qn + qn−1)qn
.

As shown in the proof of theorem 3.3, higher order convergents only appear in
higher order modified Farey sequences, and therefore have larger denominator.
Therefore qn > qn−1, so we can simplify the above inequalities to

1

(an+1 + 2)q2n
< |x− xn| <

1

an+1q2n
.

Proposition 5.7. For any x = [0; a1, a2, . . . ] ∈ N with pn
qn

= xn = [0; a1, a2, . . . , an]
the nth convergent of x, and y = ?(x), yn = ?(xn), we have

1

2a1+···+an+1
< |y − yn| <

1

2(a1+···+an+1)−1
. (16)

Proof. From theorem 3.3 we have

y = ?(x) =
∞∑

m=1

(−1)m−1

2(a1+···+am)−1

and

yn = ?(xn) =

n∑
m=1

(−1)m−1

2(a1+···+am)−1
,

so

y−yn =
∞∑

m=n+1

(−1)m−1

2(a1+···+am)−1
= (−1)n

(
1

2(a1+···+an+1)−1
− 1

2(a1+···+an+2)−1
+ · · ·

)
.

Note that, since all the ai are positive integers, each consecutive summand is
of smaller magnitude than the previous one, so

|y − yn| ≤
∣∣∣∣ 1

2(a1+···+an+1)−1
− 1

2(a1+···+an+2)−1
+ · · ·

∣∣∣∣ < 1

2(a1+···+an+1)−1
.

Also,

|y−yn| >
1

2(a1+···+an+1)−1
− 1

2(a1+···+an+2)−1
≥ 1

2(a1+···+an+1)−1
− 1

2(a1+···+an+1)
,
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which leads to

|y − yn| >
1

2(a1+···+an+1)−1
− 1

2(a1+···+an+1)
=

1

2(a1+···+an+1)
.

Combining this gives

1

2a1+···+an+1
< |y − yn| <

1

2(a1+···+an+1)−1
.

Now that we have bounds for both the error in the convergent and the
difference in value between ?(x) and ?(xn), we can combine them.

Proposition 5.8. For any x = [0; a1, a2, . . . ] ∈ N with pn
qn

= xn = [0; a1, a2, . . . , an]
the nth convergent of x, and y = ?(x), yn = ?(xn), with

δn =

∣∣∣∣ y − yn
x− xn

∣∣∣∣
we have

lim inf
n→∞

δn
δn−1

= 0.

Proof. From inequalities (15) and (16) we get

δn =

∣∣∣∣ y − yn
x− xn

∣∣∣∣ < (an+1 + 2)q2n
2(a1+···+an+1)−1

and

δn−1 =

∣∣∣∣ y − yn−1

x− xn−1

∣∣∣∣ > anq
2
n−1

2a1+···+an
.

Therefore,

δn
δn−1

<
(an+1 + 2)q2n · 2a1+···+an

2(a1+···+an+1)−1 · anq2n−1

=
2

2an+1
· an+1 + 2

an

(
qn
qn−1

)2

. (17)

Since
pn
qn

=
anpn−1 + pn−2

anqn−1 + qn−2
,

we have
qn ≤ anqn−1 + qn−2

and therefore
qn
qn−1

≤ an +
qn−2

qn−1
< an + 1.

Combining this with inequality (17) gives us

δn
δn−1

<
2

2an+1
·an+1 + 2

an
(an + 1)2 =

2anan+1 + 4an + 4an+1 + 8 + 2an+1

an
+ 4

an

2an+1
.

Since we always have an, an+1 ≥ 1, we get

δn
δn−1

< 24
anan+1

2an+1
.
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Recall that we took x ∈ N = {x = [a0; a1, a2, . . . ] ∈ [0, 1] : supi∈N ai = ∞}.
This ensures that there is an infinite subsequence (ank

) of the an such that
ank

< ank+1
and limk→∞ ank

= ∞. Therefore,

lim inf
n→∞

δn
δn−1

≤ lim
k→∞

24
ank

ank+1

2ank+1
≤ lim

x→∞
24

x2

2x
= 0.

Theorem 5.9. Minkowski’s question mark function ?(x) is a singular func-
tion.

Proof. Lebesgue’s theorem for the differentiability of monotone functions tells
us that the monotone function ?(x) is differentiable almost everywhere. The
subset of N for which ?′(x) exists and is finite is therefore also of measure 1.
Now assume that x is in this subset and ?′(x) is nonzero. Then we should
have

?′(x) = lim
h→0

?(x+ h)− ?(x)

h
̸= 0

Since the convergents xn converge to x, we should get

lim inf
n→∞

δn
δn−1

= lim inf
n→∞

∣∣∣ y−yn
x−xn

∣∣∣∣∣∣ y−yn−1

x−xn−1

∣∣∣ = lim
h→0

(
?(x+h)−?(x)

h

)
(
?(x+h)−?(x)

h

) = 1.

Proposition 5.8 however gives us

lim inf
n→∞

δn
δn−1

= 0,

so by contradiction ?′(x) cannot be nonzero. Since this implies ?′(x) = 0
on a subset measure 1 of the interval [0, 1], and since ?(x) is continuous and
non-constant on [0, 1], we conclude that ?(x) is singular on [0, 1].
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A Plotting ?(x)

The following MATLAB code was used to construct the first 15 modified
Farey sequences and corresponding dyadic fraction sequences, and plot ?(x)
from this.

Listing 1: p.m

1 func t i on [ output ] = p(x , y )
2 i f x == 0
3 i f y == 0
4 output = 0 ;
5 e l s e i f y == 1
6 output = 1 ;
7 end
8 e l s e i f f l o o r ( y/2) == y/2
9 output = p(x−1,y/2) ;

10 e l s e
11 output = p(x−1, ( y+1)/2 − 1) + p(x−1, ( y+1)/2) ;
12 end

Listing 2: q.m

1 func t i on [ output ] = q (x , y )
2 i f x == 0
3 i f y == 0
4 output = 1 ;
5 e l s e i f y == 1
6 output = 1 ;
7 end
8 e l s e i f f l o o r ( y/2) == y/2
9 output = q(x−1,y/2) ;

10 e l s e
11 output = q(x−1, ( y+1)/2 − 1) + q(x−1, ( y+1)/2) ;
12 end

Listing 3: r.m

1 func t i on [ output ] = r (x , y )
2 output = p(x , y ) /q (x , y ) ;
3 end

Listing 4: Kinney.m

1 f o r n = 1:15
2 i = 0 ;
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3 check = 0 ;
4 whi l e check == 0
5 S(n , i +1)=r (n , i ) ;
6 M(n , i +1)=i *2.ˆ(−n) ;
7 i = i +1;
8 i f S (n , i ) == 1
9 check = 1 ;

10 end
11 end
12 end
13 p l o t (S ( 1 5 , : ) ,M( 1 5 , : ) )

B Finding fixed points of ?(x)

B.1 Modified Farey sequences

The following Matlab code was used to approximate the fixed point of ?(x)
that lies between 0 and 1

2 , using the function r.m as shown in appendix A,
and a starting point as read off from figure 2.

Listing 5: fixedpts.m

1 i = 13775;
2 rva l = r (16 ,2* i ) ;
3 su c c e s s = 0 ;
4 f o r n = 16:50
5 i = 2* i ;
6 check = 0 ;
7 whi l e check == 0
8 rmin = rva l ;
9 i = i +1;

10 rva l = r (n , i ) ;
11 i f i *2.ˆ(−n) == rva l
12 su c c e s s = 1 ;
13 break
14 end
15 i f i *2.ˆ(−n) > r va l
16 i f ( i −1)*2.ˆ(−n) < rmin
17 i = i −1;
18 check = 1 ;
19 e l s e
20 i = i −2;
21 end
22 end
23
24 end
25 end
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26 rva l

with as best approximation x = 0.420372339423223 . . . . (|x−?(x)| ≈ 2·10−13)

B.2 Continued fraction expansions

The following is another approach at finding the same fixed point, instead
using the continued fraction representation and calculation.

Listing 6: infsum.m

1 func t i on [ que ] = infsum ( f r a c )
2 n = s i z e ( f rac , 2 ) ;
3 que = 0 ;
4 a = 0 ;
5 f o r i = 1 : n
6 a = a + f r a c ( i ) ;
7 que = que + (−1) ˆ( i −1) / 2ˆ(a−1) ;
8 end
9 end

Listing 7: contfrac.m

1 func t i on [ va lue ] = con t f r a c ( f r a c )
2 n = s i z e ( f rac , 2 ) ;
3 va lue = 0 ;
4 f o r i = 1 : n
5 a = n+1− i ;
6 va lue = 1/( f r a c ( a )+value ) ;
7 end
8 end

Listing 8: fixedpts.m

1 f r a c = [ 2 , 2 , 1 , 1 , 1 ] ;
2 n = 5 ;
3 whi l e infsum ( f r a c )−con t f r a c ( f r a c ) ˜= 0
4 d = infsum ( f r a c )−con t f r a c ( f r a c ) ;
5 f r a c p l u s = [ f r a c ( 1 : ( n−1) ) , f r a c (n) +1] ;
6 dplus = infsum ( f r a c p l u s )−con t f r a c ( f r a c p l u s ) ;
7 i f rem(n , 2 ) == 0
8 i f dplus < 0
9 f r a c = f r a c p l u s ;

10 e l s e
11 n = n+1;
12 f r a c (n) = 1 ;
13 end
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14 e l s e
15 i f dplus > 0
16 f r a c = f r a c p l u s ;
17 e l s e
18 n = n+1;
19 f r a c (n) = 1 ;
20 end
21 end
22 end

with as best approximation

x1 = [0; 2, 2, 1, 1, 1, 3, 2, 3, 1, 2, 4, 1, 1, 2, 3, 1, 2, 5, 1, 3, 2, 3, 1, 3, 1, 1, 1]

=
802890961

1909951930
≈ 0.420372339423223 . . . .

Changing the initial value to [1,1,2,1,1] gave an approximation for the
upper fixed point:

x2 = [0; 1, 1, 2, 1, 1, 1, 3, 2, 3, 1, 2, 4, 1, 1, 2, 3, 1, 2, 5, 1, 3, 2, 3, 1, 3, 1, 1, 1]

=
1107060969

1909951930
= 1− x1

≈ 0.579627660576777 . . . .
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