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Abstract
When a non-magnetic conductor is in contact with a magnetic insulator, the resistance of the conductor is
modulated by the magnetization direction in the insulator. This effect is known as the Spin Hall Magnetoresistence.
The current theory of the Spin Hall Magnetoresistence relates this phenomenon to a non-equilibrium spin
accumulation at the interface accompanied by the simultaneous action of the Spin Hall and Inverse Spin
Hall Effects. In this work, we review this theory emphasizing later modifications introduced to explain a
significant disagreement between theory and experiments on non-collinear magnets. In addition, we explore
the possibility of employing this magnetoresistence for applications in next-generation spintronics, such as
the purely electrical detection of complex magnetic textures.
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1 Introduction

In his 1959 seminal talk “There’s Plenty of Room
at the Bottom”, Richard P. Feynman presented to
the American Physical Society the following idea: if
one were to store information using a binary system
in which each bit consist of a 5x5x5-atoms cube of
either silver or gold, all of the information from all of
the books in the world could be written in a cube of
material no bigger than the smallest spec of dust the
human eye can see [1].

NO-IMAGE-AVAILABLE.png

Figure 1: Exponential growth of areal density storage
(update 2022). Note that 1000GiB = 125GB. Image
taken from [2].
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Although we are still far from the length scales
Feynman envisioned, there is no doubt that the
density at which information can be stored has
experienced a tremendous and consistent exponential
growth during the last few decades (see Fig. 1) [2, 3].
In 1959 —the year of Feynman’s speech— the state-
of-the-art computers could store merely 132 bytes per
in2 [4–6]. In contrast, current hard disk drives [HDD]
can easily store more than 120GB per in2 [3, 7]. A
109-fold increment in areal density!

This massive increase in storage density has created
industrial sectors worth billion with growing markets
[8]. Undoubtedly, a key factor in this success story
has been the pursue of miniaturization in electronics
components [3, 9, 10]. However, miniaturization
brings new scientific and technological challenges as
it approaches nanometer scales. At those scales heat
dissipation becomes crucial: it negatively impacts
device lifetime and reliability [10, 11]. Furthermore,
thermal fluctuations impose fundamental physical
limits1, which restricts the scales and efficiencies
achievable with conventional design strategies
[12–14]. Aiming to sustain the present growth in
information density, researchers have spent the last
few decades exploring novel and unconventional
properties of matter for its use in memory devices
[9]. In that regard, the field of spintronics stands out
as a promising candidate for 21st-century electronics
[15, 16].

Unlike conventional electronics, which solely
employs the electron charge, spintronics
simultaneously employs both the electron spin and
charge2 [17]. Spintronics has evolved considerably
since its origins in the late 80s [15], and today this
field is developing into several roads to tackle the
limitation of modern designs [17, 18]. One of such
directions proposes the use of spin arrangements
—called skyrmions— as information carriers [see
Fig. 2] [19, 20]. This arrangements cannot be
continuously deformed into a uniform magnetic
state, and thus exhibit a property called topological
protection [21, 22]. Therefore, skyrmions appear to
be suitable candidates for ultra-dense memory and
logic devices that could overcome current limits [22].

Nevertheless, several design challenges must be
surmounted for a successful incorporation of these
quasi-particles as information carriers. Primarily,
techniques to easily create, transport, annihilate,
and detect skyrmions are indispensable [23]. For
instance, standard procedures to detect the presence

of a magnetic order usually involve sophisticated
techniques with enormous experimental set-ups such
as neutron diffraction [24] or Lorentz transmission
electron microscopy [LTEM] [25]. Not surprisingly,
a considerable amount of research has been focused
on developing simple and reliable detection methods.
In particular, electrical detection is highly pursued
since it could easily be incorporated with current
electronics technology [26, 27]. In recent years,
a new technique for an all-electrical detection
of spin arrangements based on the Spin Hall
Magnetoresistence [SMR] was put forward [28].

(A)

(B)

Figure 2: (A) Schematic representation of the a
single skyrmion. Image taken from [25]. (B) In the
skyrmionic phase, the quasi-particles arrange in a
honeycomb structure. Image taken from Ref. [24].

SMR is a new type of magnetoresistence which was
inadvertently detected for the first time by Weiler
et al. [29, 30] in 2012. They noticed that the
resistance of a platinum [Pt] layer deposited on
top of the ferrimagnetic insulator made of yittrium
iron garnets Ye3Fe5O12 [YIG] was affected by the

1For magnetic storage, this limit is known as the superparamagnetic limit.
2Spin + Electronics = Spintronics
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direction of insulator’s magnetization. Subsequent
experiments carried out by Huang et al. [31]
corroborated these findings. Originally, both
groups [29, 31] attributed this effect to an induced
magnetization created by the insulator in the Pt
layer. The magnetized platinum layer would exhibit
the standard Anisotropic Magnetoresistence [AMR]3.
Their findings are schematically illustrated in Fig. 3.

YIG

PT

J⃗

M⃗

Resistance

Figure 3: Schematic representation of the Spin
Hall Magnetoresistence [SMR]. The resistance of the
conductor [Pt] is modulated by the magnetization
direction of the insulating layer [YIG].

Even though this analysis was consistent with
previous reports form Wilhelm et al. [33] in
which Pt develops an induced magnetization, the
magnetoresistence [MR] was still observed when
an additional copper [Cu] layer was deposited in
between the ferrimagnet and the Pt layer [34]. Copper
is not easily magnetized; thus, the explanation based
on an induced magnetization seems unlikely. This
motivated Chen et al. to suggest that this effect is a
new type of magnetoresistence [30, 34, 35]. In their
first 2013-paper [34], they argued that this new MR
originates due to a non-equilibrium spin accumulation
at the Pt|YIG interface and involves the simultaneous
action of the spin Hall and inverse spin Hall effect
(see Fig. 8).

Aqeel et al. [28] speculated that if the length-scales
at which spin textures vary are much longer than
the spin diffusion length, then the physical elements
at the basis of the theory for SMR should still
hold. Therefore, SMR could be use to electrically
probe those textures. In 2016, the first experiment
[28] employing SMR to detect spiral spin structures
was published. Soon, other non-collinear magnetic
orders were studied [36–42]. Surprisingly, some
of the measurements [42] disclosed gaps in the
current theoretical understanding of the SMR. For
instance, new symmetry-allowed phenomenological
terms —not predicted by Chen et al.— had to be
introduced. To this day, the microscopic origin
of these phenomenological terms is unclear. Thus,
in order for SMR to further establish as a viable
method to detect non-uniform magnetic textures, a
comprehensive theoretical understanding of the effect
is needed.

Overview
In this work, we discuss the theoretical assumption
at the basis of the current theory for the SMR.
We review the experimental results which employ
this technique for detecting magnetic textures
emphasizing the mismatch between theoretical
predictions and measurements —whenever present.
Finally, we compare this approach with other
electrical detection techniques, and discuss its
possible role in next-generation spintronics.

To that end, the necessary theoretical background and
assumptions on which the main theory is built are
introduced in section 2. We comment on the known
limitations of the model based on previous theoretical
investigations of the Spin Hall and Inverse Spin
Hall Effects —quintessential elements in the current
model. In section 3, we briefly describe some of the
“exotic” magnetic orderings in ferrimagnetic crystals.
We discuss the relevant physics that gives rise to
those structures such as the Dzyaloshinskii–Moriya
interactions [DMIs]. Additionally, we summarize the
most widely used experimental techniques to observe
these magnetic textures including novel electrical
detection methods.

In section 4, we link the contents of section 2
and 3 by explaining how the signal generated by
the SMR is able to give insight into the magnetic
ordering. Additionally, we introduce the subsequent
modifications made to the theory in order to explain
the discrepancy between theoretical predictions and
experimental measurements. We discuss some of the

3A dependence of the electrical conductance of a magnetic material on its magnetization direction [32].
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theoretical weak points of the current SMR theory
and speculate on how those points could be related
to the theoretical modifications. Finally, we conclude
the work with section 5 by shortly commenting on
the perspectives that SMR has for next-generation
spintronics and comparing and contrasting it with
other all-electrical detection techniques.

2 Theoretical background
In this section we present the theoretical elements
necessary for understanding the current theory [30,
34]. We introduce the relevant physical interactions
that are evoked to describe the SMR. This include the
Spin Hall Effect, the Inverse Spin Hall Effect, and
the quantum mechanical boundary conditions (spin-
mixing conductance). No previous knowledge of the
field is assumed.

2.1 Hall Effects
Ordinary Hall Effect
When current flows through a non-magnetic
conducting material [NM] in the presence of a
perpendicular magnetic field, a voltage transverse
to the direction of the current can be measured (see
Fig. 4A ). This effect is known as the Ordinary
Hall Effect [OHE] and was discovered by Edwin
Hall in 1880 [43, 44]. Today, it is a well-known and
established phenomenon which has played a crucial
role in the development of solid state physics and
continues to be important for a variety of applications
[45–47].

The effect is typically explained by treating the
conductor as a sea of nearly-free charged carriers
(Drude’s model [45]). The presence of the
magnetic field deflects the carriers’ trajectories which
then accumulate at the boundaries thus creating
a measurable voltage difference (see Fig. 4B)
[45, 48–50]. A relation between the transverse
voltage (VH), the longitudinal current (Ilong), and the
magnitude of the magnetic field (B) can be deduce
by solving the carriers equation of motion4 with the
additional boundary condition that no current leaves
the conductor in the transverse direction (i.e. Itrans =
0)5.

It is possible to prove that the transverse voltage (VH )
scales linearly with the longitudinal current (Ilong)

and the magnitude of the magnetic field (B) —for
weak fields. This is expressed in Eq. 1. [51].
The proportionality constant (RH ) depends on the
geometry of the material and on the mobilities and
concentration of the carriers [51]. In fact, finding
the proportionality constant via a series of transverse
voltage vs magnetic field measurements has been
a standard way of measuring (Hall) mobilities and
carrier concentration in semiconducting materials
[52].

VH

Ilong

J⃗

B⃗

J⃗

B⃗

(A)

(B)
E⃗H

+
+ - -

-
-

Figure 4: (A) Schematic illustration of the Original
Hall Effect [OHE]: a perpendicularly applied
magnetic field B⃗ and a longitudinal current J⃗
generate a transverse voltage known as the Hall
voltage (VH ). This voltage depends linearly on the
intensity of the magnetic field. (B) Representation
of charge carriers getting deflected by the magnetic
field. At equilibrium, an electric field E⃗H

perpendicular to B⃗ and J⃗ will be developed; this
gives rise to the Hall voltage.

E⃗H = −RH

[
J⃗ × B⃗

]
=⇒ VH ∝ BIlong

(1)

It is interesting to note, that the relation between
current density J⃗ , electric E⃗H and magnetic field
B⃗ stated in Eq. 1 is the only combination of these
quantities —to first order in both— that is consistent
with the full symmetries of the problem. Indeed,
let us assume, that an electric field parallel to the
magnetic field was present, say E⃗∥. To first order,
this field would have to satisfy Eq. 2, where K⃗ is

4The equation usually takes the form of Newton’s law in the presence of the Lorentz force and an additional momentum-relaxation
term arising from microscopic collisions. This last term is related to the carrier’s (constant) mobilities for stationary solutions [45, 51].
An alternative approach involves solving Boltzmann’s equation for the charge density.

5This condition can be replaced by the requirement that the nearly-free carriers experience no net force only in the case in which
a single type of carrier is present. Both Ref. [48] and Ref. [49] present the no-net-force condition while Ref. [45] presents the more
general boundary condition.
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a constant vector determined by the geometry of the
problem. By performing a mirror reflection through
the plane perpendicular to B⃗, we can obtain: B⃗ → B⃗,
J⃗ → J⃗ , and E⃗∥ → −E⃗∥. These transformations
follow from the fact that B⃗ is an axial vector, J⃗ lies
in-plane, and E⃗∥ is a polar vector [53]. Substituting
those values in Eq. 2 gives Eq. 3. Both Eqs. 2
and 3 can be simultaneously satisfied only in the case
when E⃗∥ is identically zero, as was to be shown6.
This small example illustrates the power of symmetry
arguments in deducing functional relation. A similar
technique will be employed in section 4.2.

E⃗∥ = B⃗
[
K⃗ · J⃗

]
(2)

=⇒
Mirror

(−E⃗∥) = (+B⃗)
[
K⃗ · (+J⃗)

]
(3)

Today, a whole zoo of Hall effects has been reported
and although some bare little resemblance to the
original effect described by Hall, they all can be
described as some type of transverse response due to
a longitudinal current [54]. For example, the OHE
can be re-expressed as a longitudinal charge-current
generating a transverse charge-accumulation as a
result of the magnetic field deviation via the Lorentz
force. Another example is the Spin Hall Effect [SHE];
this effect describes how a charge-current generates
a transverse spin-accumulation. The description and
the physical interactions that give rise to this effect
are the topic of next section.

Spin Hall Effect
In 1928, Dirac introduced a new relativistically
invariant quantum equation of motion for the
electrons [55]. The equation incorporated spin as
an intrinsic property of the particle, and predicted
that its direction could be affected by the motion of
the electron in the relativistic limit [56]. Mott [57]
proposed that this relativistic effect would lead to
spin-dependent scattering7; in other words, when an
unpolarized beam of electrons (i.e. electrons without
a preferential direction of their spin) interacts with a
scattering center spin-up electrons will preferentially
scatter in one direction —say the right— while spin
down electrons will scatter in the opposite direction
—left. This is illustrated in Fig. 5A.

Mott’s asymmetric scattering was experimentally
observed in the 50s [58]. This paved the way
for Dyakonov and Perel [59] to theorized that a

similar effect could occur due to impurities in
a semiconductor crystal. The interactions would
effectively “separate” a longitudinal current into spin
up and spin down contributions at opposite ends of
the semiconductor; therefore creating a transverse
spin-polarized current. Since a non-magnetic material
has equal number of spin up and down electrons,
no net charge unbalance would be created. The
effect was generalized to other types of materials
and subsequently became known as the Spin Hall
Effect [SHE]. This effect is illustrated in Fig. 5B.
In analogy with the OHE, a longitudinal input creates
a transverse response, but unlike the OHE, the SHE
does not require an external magnetic field.

J⃗ long

J⃗SHE

(A) Mott scattering

Scattering
center

(B) Spin Hall Effect

J⃗ ISHE

(C) Inverse Spin Hall Effect

Preferencial
scattering

Figure 5: (A) Schematic representation of Mott
scattering. The electrons will preferentially
scattered in the direction that “respect their spinning
direction”. (B) In the Spin Hall Effect [SHE], the
spin-dependent scattering converts a charge current
(J⃗long) into a perpendicular spin current (J⃗SHE); the
spin-direction is perpendicular to these both charge
and spin currents. (C) The spin currents can be
recombined via the Inverse Hall Effect [ISHE] to
create a new charge current (J⃗ISHE).

The first experimental investigation on the SHE
[60] obtained results inconsistent with the theoretical

6A component of the electric field parallel to the current density is ruled out by performing a 2-fold rotation around the current
direction, in this situation, only B⃗ would change sign.

7In lay terms, we can think that the electron spin interacts with the nucleus via spin-orbit coupling. This coupling is completely
relativistic in origin.
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predictions. Following studies, however, succeed in
detecting the SHE signal [61] and now the effect
is a standard procedure for measuring spin currents
[54]. Most likely, the original experiments observed
contradicting results due to inhomogeneous current
injection and thus high levels of background noise
created by the use of ohmic contacts as oppose to
tunnel barriers [54]. This serves as a cautionary
tale that transport experiments are particularly hard to
interpret and often depend strongly on device quality.

The original theoretical description adopted by
Dyakonov and Perel followed phenomenological
grounds based on symmetry and drift-diffusion
equations [54, 59]. In other words, they treated
the spin currents and charged currents as classical
fields obeying diffusion-like partial differential
equations. Later on, Hirsch [62] and Zhang
[63] realized that contributions completely intrinsic
to the band structure could create spin-dependent
scattering events. Zhang’s work employed the semi-
classical Boltzmann equation; this equation models
the probability density function of thermodynamic
variables near equilibrium, and thus, operates at a
“more microscopical” approach than Dyakonov and
Perel diffusion equations.

The connection of these intrinsic and extrinsic (Mott
asymmetric scattering) effects and their contributions
to the overall SHE and the related Anomalous
Hall Effect [AHE]8 have already been thoroughly
investigated in other review articles [54] and will not
be included in this work. Suffice it to say, that the
formalism based on the Boltzmann equation reduces
to Dyakonov and Perel phenomenological equations
in the limit of weak spin-orbit coupling. In the
strong spin-orbit regime, the intrinsic contribution
give rise to coherent effects9 —completely quantum
mechanical in nature— which are hard to incorporate
into the diffusion equations. [54, 66].

Turning back to Dyakonov’s and Perel’s
phenomenological description, it is surprising that all
the complex microscopical processes and interactions
(spin-orbit coupling, Berry curvature, band transport,
etc.) can be reduced to a simple diffusion model
employing elementary concepts of near-equilibrium
thermodynamics as those introduced by Onsager
and Prigogine [67–70]. The model correctly

describes the SHE (in the weak limit) [66] —
while completely disregarding its microscopic
origin. This phenomenological approach has
even been successfully applied to describe other
effects within spintronics like in the emerging field
of spin caloritronics [71]. In this framework,
inhomogeneities of the intensive thermodynamic
variables create fluxes of their conjugate variable.
For example, an inhomogeneity in chemical potential
will create a particle/mole current (Fick’s law), an
inhomogeneity in temperature will create a heat
flux (Fourier’s law) and so forth [67]. These
fluxes are related to their conjugated variables
via conservation/diffusion-like equations. Under
the assumption that the system does not deviate
significantly from its equilibrium state, and that
memory effects can be ignored, a linear relationship
between the gradients and the currents is justified.

In this approach the SHE is described by treating the
polarized-electrons as different species of particles
and allowing their chemical potentials to differ from
the chemical potential solely due to charge. This is
a mathematical trick, and no fundamental distinction
between polarized and unpolarized electrons should
be understood (they are still the same type of
particles!). The difference between the spin-
up(down) and charge chemical potential is referred to
as the spin accumulation. The inhomogeneities of
this spin density drive a spin-current via Onsager’s
linear relation, and the diffusion equations connect
the spin-current with the charge current.

Onsager’s relationship is symbolically expressed in
Eq. 4. For simplicity, we have neglected the
vector nature of this currents, the spin and charge
current should be understood to be perpendicular to
each other. In equation 4, je represents the charge-
current, js represent the excess spin current, σ is
the bulk electrical conductivity, µc is the charge
chemical potential, µs is the spin accumulation
(excess chemical potential due to spin), e is the
electron charge, and θH is a dimensionless parameter
called the Hall angle.

[
je
js

]
= σ

[
1 θH
θH 1

] [
−∇µc/e

−∇µs/(2e)

]
(4)

The matrix of the response coefficients, which
8The AHE describes the appearance of a transverse charge accumulation in a magnetized conductor whenever a longitudinal charge

current is present. Unlike in the OHE, the AHE does not require an external magnetic field. The extrinsic contribution to this effect
arise from atoms with magnetic moments which scatter the charge carriers of the original longitudinal current. Similar to the SHE,
intrinsic contributions due to the band structure are also present [64].

9In Quantum Mechanics, a carrier can be in a superposition of spin states. This does not hold classically thus interference effects
cannot be reproduced. One example of a coherent effect is the collective spin procession of a spin current in the presence of a magnetic
field known as the Hanle effect [65].
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connects the fluxes with the gradients, is symmetric
by virtue of Onsager’s reciprocal relations
(microscopic reversibility) [69, 70]. The diagonal
terms capture Ohm’s law of conduction, where the
gradient of a chemical potential (∇µe) is understood
as an effective electromotive force or voltage (Veff).
The lower off-diagonal term relates how this voltage
can create an excess spin current (js) and thus
describe the SHE. The strength of this interaction is
determined by the value of θH , where a higher value
implies a more efficient conversion of charge current
into spin current.

The Hall angle and the conductivity are intrinsic
properties of each material and —in principle—
depend on the intensive parameters of the system,
such as temperature, pressure, and even chemical
potential itself! At the phenomenological level, no
further information can be given. In practice, θH also
shows a dependence on the purity and the deposition
technique used to create the devices [72]. Therefore,
consensus on the true value of the Hall angle for each
material is hard to achieve [54].

Nevertheless, some clear trends have been observed;
for example, the magnitude of θH seems to scale with
the fourth power of the nuclear charge (Z4) [73]. This
means that heavy 5d metals such as platinum [Pt]
tend to display a larger SHE than 4d metals such as
palladium [Pd] [54]. This is the reason why Pt in
particular, is the go-to choice when making devices
exhibiting the SHE. The Z4 dependence also appears
in the spin-orbit interaction [74] and thus corroborates
the role of this effect in the SHE. Furthermore, the
variations due to deposition techniques are consistent
with the model that the (extrinsic) SHE arises due to
Mott scattering in material defects.

Inverse Spin Hall Effect
Since the response matrix in Eq. 4 is invertible, it
is possible to interpret this equation in an inverse but
equivalent way. In this new interpretation, currents
drive the gradients of chemical potential. Thus, a
spin-current (js) can generate a gradient in the charge
chemical potential (-∇µc/e) which manifested as a
voltage difference. This is illustrated in Fig. 5C.

The inverse Onsager relation is expressed
symbolically in Eq. 5. The conversion of a spin-
current into a voltage is determined by the upper off-
diagonal elements. Just like in the SHE, this effect is
dominated by the Hall angle (θH ). Thus, the effect is
more easily observed in 5d heavy metals.

[
−∇µc/e

−∇µs/(2e)

]
=

1

σ(θ2H − 1)

[
−1 θH
θH −1

] [
je
js

]
(5)

The generation of a transverse voltage via a spin-
currant has been observed experimentally [61] and
today is known as the Inverse Spin Hall Effect
[ISHE]. The usefulness of this phenomenon was
quickly recognized by the spintronics community and
now, ISHE-measurements have been established as
a standard way of measuring spin-polarized currents
[54].

Boundary Conditions
To complete the phenomenological description of the
SHE, the diffusion/conservation equations must be
added. This equations tend to be multi-dimensional
partial differential equations, and as such require
appropriate boundary conditions to be solved. To
begin, we consider the simplest case in which a
non-magnetic/normal metal [NM] has an interface
with the vacuum [vac]. In that situation, no charges
leave the conductor through the interface. Thus, the
component of the current perpendicular to the surface
must be zero [75]. This condition is identical to the
one used in the derivation of the OHE.

The interfaces between a NM and magnetic
materials [FM] (ferromagnets, ferrimagnets)10 are
more subtle and have been the topic of considerable
theoretical investigations [75–78]. A comprehensive
review of this topic can be found in Ref. [78]. The
complication stems from the fact that the electron spin
can interact with the local magnetic moments of the
FM via exchange interactions, such as the Hund’s rule
coupling, allowing for spin mixing and even transfer
of angular momentum to the FM [30, 76, 79].

A simple and extremely successful approach to model
NM|FM interfaces is given by the two-channel
model [78]. In this framework, the electrons are
divided into majority carriers (electrons whose spin
aligns with the magnetization direction) and minority
carriers (their spin is anti-align). These two types
of carriers move in different conduction channels
within the materials and are allowed to have different
probabilities of reflection and transmission at the
interface (see Fig. 6A and 6B). Surprisingly, these
elements are enough to explain effects such as
the gigant magnetoresistence [GMR] and the tunnel
magnetoresistence [TMR] [32, 80]. The former being
the topic of the 2007 Nobel prize in Physics [81].

10The SMR has mainly been observed between a heavy metal (like Pt) and an insulating ferrimagnet. In the literature, however, there
seems to be an implicit convention of ignoring the ferrimagnetic character and refer to this layer as a ferromagnet.
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(A) Majority
carriers

FM NM

J⃗Transmited

M⃗

J⃗Reflected

(B) Minority
carriers

J⃗Absorbed (C) Perpendicular
carriers

(E) Spin-flip

FM|NM interface

(D) Separation of
carriers

= √
2

√
2

+(D)

Flip!

Figure 6: Schematic illustration of different
phenomena at the interface. In panel (A), electrons
with the spin aligned in the same direction as the
magnetization —majority carriers— tend to have
a high probability of transmission. In panel (B),
electrons with anti-align spins —minority carriers—,
tend to be reflected. In panel (C), electrons with
spin perpendicular to the magnetization will be
absorbed by the FM and induce a torque. In (D), the
perpendicular spin is expressed as a superposition
of parallel and anti-parallel spins; the former is
transmitted while the latter is reflected. This explains
the disappearance/absorption of perpendicular
carriers. In (E), the interface mediates a spin-flip.

If we denote by r
↑(↓)
nm the reflectance of majority

(minority) carriers from channel n in the NM to
channel m in the FM, we can define two spin-
dependent conductances [30, 78]. These are given
in Eq. 6, where h is Plank’s constant and δnm is
Kronecker’s delta.

G↑ = e2

h

∑
nm

[
δnm − |r↑nm|2

]
G↓ = e2

h

∑
nm

[
δnm − |r↓nm|2

] (6)

As discuss previously, inhomogeneities in the charge
and spin chemical potentials drive current of these
quantities (diagonal terms in Eq. 4). In the two-

channel model, an analogous condition holds at the
boundary —where discontinuities play the role of
the inhomogeneities. If we denote by µ

NM(FM)
c

the charge chemical potential at the interface of the
NM (FM), a current of majority (j↑) (minority (j↓))
carriers will flow according to Eq. 7. Interpreting the
chemical potentials as an effective voltage, Eq. 7 has
the form of the familiar Ohm’s law.

ej↑|charge = G↑ [µNM
c − µFM

c

]
ej↓|charge = G↓ [µNM

c − µFM
c

] (7)

Discontinuities in µs will also drive currents of
majority/minority carriers. However, the full vector
nature of the electron spin must be taken into account.
We introduce the quantity µ⃗s = (µsx , µsy , µsz),
where µsi is the spin-chemical potential of carriers
with spin in the i-direction. Since we are
treating electrons as either align or anti-align to the
magnetization, only the component of µ⃗s parallel to
the FM’s magnetization will induce a current of the
carriers in a similar fashion as the discontinuities in
µc. Mathematically, this is expressed in Eq. 8,
where m̂ is a unit vector in the direction of the
FM’s magnetization, and µFM

s is the spin chemical
potential in the ferromagnet. The vector character
of µFM

s is not taken into account, since the strong
exchange interactions will tend to align (anti-align)
all carriers, thus the perpendicular component of
µFM
s is negligible.

ej↑|∥ = G↑ [(µ⃗NM
s ) · (m̂)− µFM

s

]
ej↓|∥ = G↓ [(µ⃗NM

s ) · (m̂)− µFM
s

] (8)

To account for spin-accumulation orthogonal
to the magnetization direction, the two-channel
model appeals to the notion that a carrier with
a perpendicular spin can be described as a
superposition of an align and an anti-align state (see
Fig. 6D). The align contribution enters into the FM
while the anti-align is reflected back into the NM. The
parallel spin current is conserved in this interaction11,
while the perpendicular current is not. This can be
summarized in the rule-of-thumb: “perpendicular
currents get absorbed” (see Fig. 6C) [78]. To model
the interconversion of perpendicular current into
parallel current, a spin-mixing conductance (G↑↓)
is introduced [78]. This is given in Eq. 9, were ∗
denotes the complex conjugate. It is worth remarking
that this conductance will, in general, be a complex
number, and thus we can separate it into its real (Gr)
and imaginary part (Gi).

11The total parallel current at the beginning is zero. At the end, equal and opposite parallel contributions are created.

8



G. Ch. Ponce de León April 2022

G↑↓ = Gr + iGi =
e2

h

∑
nm

[
δnm − (r↑nm)(r↓nm)∗

]
(9)

Due to the conservation of angular momentum, the
absorbed perpendicular current must induce a torque
in the FM. The two-channel model usually describes
this torque by means of the phenomenological
Landau–Lifshitz–Gilbert-Slonczewski equation
[LLGS]12, where the spin-accumulation plays the
role of an effective magnetic field [78, 82]. The
rate of change of the magnetization will generate
an electromotive force (Faraday’s law) which can
be related to the spin current via the spin-mixing
conductance (Ohm’s law).

The contribution of the orthogonal components of the
spin accumulation to the spin current are expressed
in Eq. 10. The vector character of the spin is now
taken into account, here j⃗s = (jsx , jsy , jsz); in other
words, the components of the vector j⃗s represent spin
direction, not flow directions13. We also note that
Gr is related to the procession of the magnetization
while Gi is related to its damping. First-principle
calculations have shown that for the majority of cases
of interest Gi ≪ Gr [77, 78, 83] and thus, the first
term in Eq. 10 tends to dominate the interaction.

j⃗s|⊥ = −Gr

[
m̂× (m̂× µ⃗NM

s )
]
−Gi

[
m̂× µ⃗NM

s

]
(10)

Combining equations 7, 8, and 10, we obtain the most
general boundary condition used in the two channel
model [77, 78]. This condition is summarized in Eq.
11. Now, the charge and parallel contribution of the
current include the term m̂ to indicate that the spin
is align with the magnetization direction; moreover,
the spin current is shown to arise from the asymmetry
between the currents of the two types of carriers (up
minus down).

j⃗NM→FM
s = (j↑|charge+j↑|∥−j↓|charge−j↓|∥)m̂+j⃗s|⊥

(11)

In our discussion so far, no direct appearance of
spin flipping (see Fig. 6E) was taken into account.
The standard methods used in the fabrication of
these heterostructures —DC-sputtering or E-beam
deposition— create samples that are significantly

different from perfect epitaxialy-grown crystals; in
other words, the samples are said to be “dirty”.
This implies that discontinuities in the band structure
between the FM and the NM occur at atomic
scales [78]. First-principle calculations have reveal
that interfacial spin flipping and scattering tend to
dominate the properties of devices [84]. Nevertheless,
these effects can be included in Eq. 11 by replacing
the spin conductances defined in Eqs. 6 and 9 by
effective values of these quantities [85]. Indeed,
scattering theory has be used to theoretically predict
these conductance even when disorder is taken into
account without the need to introduce more free
parameters [86].

2.2 Spin Hall Magnetoresistence
With all of the required theoretical background
introduced, we present the model put forward by
Chen et al. [30, 34] for SMR. We aim to follow their
derivation as close as possible.

The system under investigation is a bilayer structure
of a NM on top of an insulating FM (see Fig. 7).
Without loss of generality, the z-direction will be
chosen parallel to the normal at the interface and
the longitudinal current will flow in the x-direction.
Furthermore, the medium is assumed to be isotropic
and homogeneous in the xy-plane, i.e. the equations
and boundary conditions must be invariant under
in-plane rotations and translations. The layers are
assumed to be infinite in the x and y direction, the
insulating FM also extends to minus infinity in the z-
direction.

J⃗c

M⃗

NM

Insulating
FM

x̂

ẑ

ŷ

d
α

Figure 7: Bilayer heterostructure used to theoretically
model the SMR. The figure shows the labeling
convention used in this work. The angle α lies in the
xy-plane.

The theory builds upon the phenomenological drift-
diffusion equations employed to describe the SHE
(see section 2.1). The spin current is described by
a rank-2 tensor jskl , where the index k indicates the

12This equation describes the evolution of the magnetization with time as a function of applied torques. It includes some well-known
terms like the giromagnetic procession around and external field.

13The flow direction is given by the normal direction to the interface.
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direction of the current, and the index l indicates the
direction of the spin14. To simplify notation, we
introduce j⃗sx = (jsxx , jsyx , jszx) —the current of
x-polarized electrons. Similar notation will be used
for y and z spin directions. In addition, we denote
the spin components to the flow in the k-direction as
j⃗ks = (jskx , jsky , jskz).

Following the discussion of section 2.1, we express
Onsager’s linear relation in Eq. 12. The response
matrix [L] is given given by Eq. 13, where x̂
represents the Cartesian unit vector in the x-direction
(and similar for ŷ and ẑ). In accordance to equation
4, the matrix is symmetric owing to microscopic
reversibility and the absence of an external magnetic
field. The diagonal terms give Ohm’s law and the
lower-off-diagonal terms represent the SHE. It is
worth noticing that the vector nature of the current,
spin and transverse response is taken into account via
the cross product (×). As a rule of thumb, it is useful
to keep in mind that the charge current direction,
the direction of the spin-current, and the direction
of the spin form a right-handed orthogonal basis.
Finally, the zero elements in the matrix assume that
the excess spin can only create currents of the same
spin (no mixed spin contribution). First-principles
calculations have shown that this assumptions holds
true for cubic systems. However, anisotropic effects
can be present in other crystalline systems, such as
hexagonal closed packed lattices [87].


j⃗e
j⃗sx
j⃗sy
j⃗sx

 = σ[L]


−∇µc/e

−∇µsx/(2e)
−∇µsy/(2e)
−∇µsz/(2e)

 (12)

[L] =


1 θH x̂× θH ŷ× θH ẑ×

θH x̂× 1 0 0
θH ŷ× 0 1 0
θH ẑ× 0 0 1

 (13)

Under steady-state conditions, the chemical potential
inside the NM is assumed to satisfy Eq. 14. This
equation was first postulated by Johnson et. al.
[88, 89] and independently by van Son et al. [90]
on purely phenomenological grounds. It differs
from the usual steady-state diffusion equation by
the addition of an extra term proportional to the
chemical potential. This term originates from the
spin-relaxation and spin-flipping and tends to drive

the spin-excess chemical potential to zero. Valet
and Fert [91] showed that in the limit when the spin
diffusion length (λ) is much bigger than the electron
mean free path, the Boltzmann equation agrees with
Eq. 14.

∇2µ⃗s = +
µ⃗s

λ2
, (14)

The solutions of Eq. 14 under the assumption of x
and y transnational invariance are given by Eq. 15,
where A⃗ and B⃗ are constants to be determined by
the boundary conditions. In the bilayer structure, one
of the interfaces of the NM is exposed to vacuum,
while the other satisfies the boundary conditions for
an insulating FM.

µ⃗s = A⃗e−z/λ + B⃗e+z/λ (15)

As previously discussed, at the vacuum interface
the components of the currents perpendicular to the
surface must vanish. In our structure, ẑ is the normal
vector to the vacuum interface. Therefore all the flows
in the z-direction must vanish. These conditions are
given by Eq. 16, where the second equality captures
the fact that no spin direction flows outside the NM.

j⃗e · ẑ = 0 j⃗zs

∣∣∣
vac

= 0⃗ (16)

For the FM interface, Eq. 11 must be modified to
account for the insulating properties of this layer.
Under the assumption of a perfect insulator, the
reflection coefficient must be equal to unity for
either type of carriers (|r↑(↓)n m|2 = 1) [30, 78]15.
This conditions implies that the spin-dependent
conductances are identically zero (G↑ = G↓ = 0),
but a non-zero spin-mixing conductance is possible
as can be seen from Eq. 17.

|r↑(↓)nm |2 = 1 =⇒ r↑(↓)nm = eiϕ
↑(↓)
nm (17)

=⇒ Gr + iGi ∝
∑
nm

δnm − ei(ϕ
↑
nm−ϕ↓

nm) ̸= 0

Therefore, only the perpendicular component of the
interface current remains (see Eq. 10). The boundary
condition at the FM is given by Eq. 18, where the
minus sign appears because the normal at the FM
interface is −ẑ [30].

14For example, the component jsxy answers the question: How many electrons are traveling in the x-direction with spin aligned in
the y-direction per unit area per unit time?

15In essence, we are not allowing either spin up or down to travel inside the insulator

10



G. Ch. Ponce de León April 2022

− j⃗zs (m̂)
∣∣∣
FM

= Grm̂×(m̂× µ⃗s)+Gi(m̂× µ⃗s) (18)

Combining equations 12, 15, 16, and 18 with
the additional assumption that the charge chemical
potential (µc) scales linearly with x (this models
the original voltage difference that creates the
longitudinal charge current), one can obtain a unique
solution of the problem. The algebraic manipulation
of the equations is cumbersome and non-trivial; for
example, the boundary condition in Eq. 18 effectively
relates the spin-current to the spin accumulation,
while Eq. 12 relates the same current with the
gradient of the spin accumulation.

Nevertheless, the main result for SMR can still
be presented in an easy-to-use expression. The
modulation of the resistance (ρ) of the NM by the
magnetization direction of the insulating FM is given
in Eq. 19, where the transverse resistance (ρtrans) is
defined as the ratio between the transverse current
(⃗je · ŷ) and the longitudinal voltage (parallel to x̂),
mi is the component of the unit magnetization in the
i-direction16.

ρlong = ρ+∆ρ0 +∆ρ1(m
2
x +m2

z)
ρtrans = ∆ρ1(mxmy) + ∆ρ2(mz)

(19)

In their original paper, Chen et al. [34] give the
approximate expressions for ∆ρ0, ∆ρ1, and ∆ρ2 in
terms of the spin-diffusion length λ, the Hall angle
θH , the spin-conductance Gr+ iGi, and the thickness
of the NM layer. In general, all of the ∆ρ terms scale
quadratically with the Hall angle (θH ). Additionally,
even though the final expressions for ∆ρ in Chen’s et
al. paper are approximate, the functional dependence
with the magnetization components is not affected by
their approximation. Just as in the discussion of the
OHE (see section 2.1), symmetry arguments can be
used to prove that Eq. 19 is the most general form
—to second order in magnetization— consistent with
the symmetries of the problem [42].

We can describe the conclusions of this theory in a
more intuitive way. To that end, we shall assume
that the magnetization lies in-plane (mz = 0). The
external electric current creates a transverse spin
current due to the SHE. When the spin current reaches
the insulating FM interface, two limit scenarios are
possible. If the magnetization is parallel to the current
direction (mx = 1), the longitudinal resistance
increases (ρlong depends quadratically on mx). This
can be understood as the FM absorbing the incoming

spin current. Indeed, in this scenario, the direction
of the spins in the SHE-current is perpendicular to the
magnetization (i.e. they are in the y direction) and can
be absorbed by the FM, as was discussed in section
2.1 (see Fig. 8A).

Insulating FM

NM J⃗ long

J⃗SHE

M⃗

(A) High resistance

J⃗ long

J⃗SHE

M⃗

(B) Low resitance

J⃗ ISHE

Absorbed

Reflected

NM

Insulating FM

Figure 8: (A) When the current direction and
the magnetization are parallel, the spin of the
electrons generated by the SHE is orthogonal to
the magnetization; thus, it will get absorbed at
the surface. (B) If the current direction and the
magnetization are perpendicular, the spin of the
carriers will be collinear with the magnetization.
Since the carriers cannot penetrate into the insulator,
they will get reflected at the interface and later
recombine via the ISHE to create an additional
charge current, thus lowering the resistance.

The second scenario involves a magnetization
perpendicular to the current direction (mx = 0),
in which case the resistance decreases. This can
be explained by a reflection of the incoming spin-
current at the boundary between the NM and the FM.
Indeed, in this case, the magnetization and the spin
direction are parallel, and because of the insulating
properties of the FM no currents are allowed to
propagate. Subsequently, the reflected spin-current is
recombined via the ISHE into the main longitudinal
current increasing its value for any given longitudinal
voltage. This extra contribution to the current will
act as an effective reduction of the resistance. This is
illustrated schematically in Fig 8B.

When the magnetization direction is in-between those
states, both scenarios will happen simultaneously.
This explanation also gives insight into why the

16One must keep in mind that z indicates the out-of-plane component and x the direction of the longitudinal charge current.
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coefficients in Eq. 19 depend quadratically on the
Hall angle: the SMR involves the action of both the
SHE and the ISHE. In summary, the theory describes
the SMR as a non-equilibrium process (using the
diffussion/near-equillibrium thermodynamic models)
in which a spin accumulation µ⃗s|FM ̸= 0⃗ occurs at
the interface, with the simultaneous action of the Spin
Hall and Inverse Spin Hall Effects.

Experimental studies
Ever since the first SMR signal was inadvertently
detected by Weiler et al. in 2012 [29], multiple
experiments have been performed exploring the
physical consequences of this magnetoresistence. In
what follows, we will describe some of the most
relevant results for non-uniform magnetization. The
list is not —by any means— an exhaustive one and
the interest reader is referred to Ref. [30] for more
information.

The original explanation proposed by Weiler et
al. [29] and Huang et al. [31] claims that the
signal originates from the standard AMR displayed
by a magnetized Pt layer. The Pt would be
magnetize due to proximity effects by the already
magnetized YIG. This is analogous to the induced
magnetization observed in Pt|Ni bilayers as reported
by Wilhelm et al. [33]. The dependence of the
resistance on magnetization direction given by the
AMR satisfies Eq. 20 [30], a simple inspection
reveals that both Eq. 19 and Eq. 20 have the same
phenomenological dependence for a completely in-
plane magnetization (mz = 0). Therefore, the models
are indistinguishable for these sort of measurements,
which was exactly the configuration used by Weiler et
al. and Huang et al..

ρAMR
long = ρ+∆ρAMR

0 (m2
x) (20)

ρAMR
trans = ∆ρAMR

1 (mxmy)

To settle this issue, Nakayama et al. [35] study
the MR displayed by a Pt|Cu|YIG heterostructure.
Copper, is not easily magnetized but has a
considerable spin-diffusion length (hundreds of nm).
Therefore, if the effect truly arises due to proximity
effects, the copper layer should make the signal
vanish. Their measurements showed the presence
of a MR even when a 12nm layer of Cu was
introduced, thus ruling out the possibility of an
induced magnetization in the Pt layer.

Vlietstra et al. [92] carried out experiments
to determine the MR dependence for out-of-plane
magnetizations, their results are in agreement with

Eq. 19 corroborating the role of the SMR. In addition,
they tried to use the functional expression for ∆ρ0,
∆ρ1, ∆ρ2 in Eq. 19 as a way to determine parameters
such as Gi or θH , both of which are particularly
hard to measure —as discussed in section 2.1 and
2.1. Their experiment consisted in measuring both
longitudinal and transverse resistance of a Pt|YIG
bilayer as a function of magnetic field direction.
Subsequently, a fitting procedure was carried to
determine the unknown parameters. Unfortunately,
the results were not promising since the parameters
in Eq. 19 are strongly correlated during the fitting
procedures.

Vlieststra et al. [93] also studied the dependence of
the SMR with Pt thickness. Their result show that
the signal is stronger at smaller thickness which is
consistent with the description of the simultaneous
action of the SHE and ISHE. This can be rationalized
as follows: at larger thickness, the reflection of
the SHE spin-current in both the vacuum and
FM interface cannot occur due to losses of spin
polarization therefore diminishing the contribution
of the ISHE and thus the reduction of resistance.
They additionally investigated the dependence of the
signal with deposition method. The signal for a
device fabricated using DC-sputtering was orders of
magnitude stronger than the one fabricated using E-
beam evaporation. Sputtering is known to create
more uniform depositions than E-beam and thus,
their findings further stress the relevance of interface
quality on magneto-transport experiments.

To conclude this section, it is worth mentioning that
although the original investigations of the SMR were
almost exclusively carried out in Pt|YIG bilayer [29,
31, 34, 35, 92, 93], the effect has now been reported
for a variety of metals and insulators pairs such as:
Pt|Fe3O4 [94], Pt|CoFe2O4 [95], Au|YIG [96], and
may others [30]. Moreover, SMR has been the topic
of a recent patent filed by Saitoh E., Nakayama H.,
and Harii K. for an electrical detection of an insulator
magnetization using SMR [97].

3 Magnetic Ordering

In this section we briefly introduce the theoretical
background to describe non-collinear magnetic orders
and the microscopic and macroscopic interactions
that give rise to them. Furthermore, we shortly
comment on the techniques commonly used for their
detection.
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3.1 Magnetic phase diagrams
Its is well-known that classical physics —if applied
consistently— predicts no permanent magnetization
at thermal equilibrium17 [98]. Therefore, a quantum
mechanical approach to magnetic condensed matter
seems unavoidable. This would entail the study of
a highly non-trivial hamiltonian operator accounting
for the interactions of the various atomic magnetic
moments inside the the crystal.

In this regard, Landau and Lifshitz made a
monumental contribution to Physics by introducing
their theory of phase transitions [99]. This
theory considerably simplified the complexity of the
problem and makes theoretical studies possible. In
this framework, the individual atomic magnetization
inside a crystal are replaced by a continuous (vector)
field M⃗(r⃗) which accounts for the magnetization
density; this field also receives the name of the
order parameter. The dynamics of the system are
determined by the free energy density which takes the
form of a functional18 of the order parameter [100].

The fundamental assumption of Landau and Lifshitz
is that the functional (βH)19 can be expressed
as a power series of the order parameter in
which all terms consistent with the symmetry
of the system must be included. A typical
example of this free energy functional is given in
Eq. 21 [101], where full-rotation and inversion
symmetry are assumed. Coefficients t,u,k, etc.,
are phenomenological functions of the intensive
parameters of the systems such as temperature,
pressure, external magnetic field, etc. In the saddle
point approximation [100, 101], the different phases
and their transition are explored by solving the (field)
Euler-Lagrange equation of a given functional.

(βH)[M⃗(r⃗)] = (21)∫
R3

t

2

(
M⃗ · M⃗

)
+ u|M⃗ |4 + k

2

(
∇⃗M⃗ : ∇⃗M⃗

)
+ ...

In 1958, Dilashenskii studied the ferrimagnetism
(“weak” ferromagnetism) displayed by crystals such
as α-Fe2O3, MnCO3, and CoCO3 [102] using
Landau and Lifshitz formalism. To that end, he

introduced new phenomenological terms to the free
energy functional consistent with a cubic crystalline
systems without inversion symmetry. His addition
is summarized in Eq. 22, where D is the
phenomenological constant related to Dilashenskii’s
new term, and B⃗ represents the coupling of the
magnetization with an external magnetic field [22].

DMI : (βH)[M⃗(r⃗)] = (22)∫
R3

k

2

(
∇⃗M⃗ : ∇⃗M⃗

)
+DM⃗ ·

(
∇⃗ × M⃗

)
−B⃗ ·M⃗+...

At the time, only the microscopical Heisenberg
interaction between atomic magnetic dipoles was
known. This interaction is expressed in Eq. 23, where

Ĥ is the hamilton operator, ˆ⃗
Si is the spin (vector)

operator at site i, and Ji,j is a coupling constant
between sites i and j [103]. The presence of the dot
product (·) between the two spin operators grants full-
rotation and inversion symmetry. Thus, Heisenberg
interaction cannot account for Dilashenskii’s term.

ĤHeisenberg =
∑
i,j

Ji,j

(
ˆ⃗
Si ·

ˆ⃗
Sj

)
(23)

By including relativistic effects, such as the spin-orbit
coupling between the different lattice sites, Moriya
showed that new anti-symmetric interactions appear
in the hamiltonian. These interactions are given by
Eq. 24, where now the coupling between site i and j
is governed by the vector D⃗i,j [104]. The presence of
the cross product breaks inversion symmetry and the
crystal system is taken into account by the functional
form of the coupling vector20. This interaction
recovers the term proportional to the curl in Eq. 22 in
the continuous limit for a cubic crystal system [105].

ĤDMI =
∑
i,j

D⃗i,j ·
(
ˆ⃗
Si ×

ˆ⃗
Sj

)
(24)

Today, the hamiltonian expressed in Eq. 24 and the
term proportional to the curl in Eq. 22 are known as
the Dilashenskii-Morija interactions [DMI] or anti-
symmetric exchange, their inclusion to the (free)
energy had unexpected consequences for the ground

17This is known as the Bohr–Van Leeuwen theorem.
18A functional is a function that takes a field as is input (the field can be a vector field or a scalar field) and returns a real number. In

general, the functional can depend on properties of the input field such as its derivatives. If the interactions are assumed to be local, the
functional can be expressed in an integral form.

19In Eq. 21, (βH) must be understood as a single symbol. The choice is historical and is made to resemble the notation used in
Statistical Physics to calculate partition functions [68, 101]. We are following the convention

↔
a :

↔
c =

∑
i,j(

↔
a )i,j(

↔
c )i,j .

20Under inversion neither of the spin operators change sign since angular momentum has even parity, but the right handed system
turns into a left handed system, and thus the cross product must change sign. If D⃗i,j also has even parity, the entire interaction changes
sign under inversion and thus is anti-symmetric.
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state of magnetic materials. Indeed, the Euler-
Lagrange equations of the functional in Eq. 22 predict
that —for certain values of the phenomenological
coefficients k,D,B⃗,etc.— the state of minimum (free)
energy is given by a non-uniform magnetization, such
as helices, cones[105], skyrmions [22, 106], etc. (See
Fig. 9 and Fig. 2).

Because the phenomenological coefficients are
analytic functions of the intensive parameters,
the same crystal can exhibit different magnetic
arrangements depending on its temperature, pressure,
external magnetic field, etc. To capture this scenario,
a magnetic phase diagram is employed (see Fig. 9). In
these diagrams, the axis label the intensive parameters
and regions inside the diagram are colored according
to which magnetic texture the crystal exhibits. This
situation is not unlike the phase diagrams typically
shown for paramagnetic-ferromagnetic [103]. The
boundary between these regions represents a phase
transition, and for a fixed temperature T , it usually
occurs at a critical value of the external field Bc(T ).

3.2 Skyrmions
From all the previously discussed non-uniform
phases, the skyrmionic phase (A-phase in Fig. 9)
has attracted the most attention from the spintronics
community [19, 22, 23]. This phase is populated
by multiple skyrmions and was originally theorized
by Bogdanov and Yablonskii in 1989 [106]. Each
individual skyrmions —which receives its name from
the pioneering work of Skyrme [107]— is a spin
arrangement that cannot be continuously deformed
into a uniform magnetic state (see Fig. 2A)21 [22].
This defining property grants skyrmions particle-like
properties such as a size (typically 5 to 100nm)22

[22], and the ability to move under the application
of electrical currents [108]. Today, it is understood
that other mechanisms besides DMI can give rise
to skyrmions [22], some examples include frustrated
exchange interactions [109] and four-spin exchange
interactions [110].

The presence of skyrmions is not limited to their
equilibrium region in the magnetic phase diagram.
Indeed, researchers have found that these quasi-
particles can exist in a metastable state for a
considerable range of temperature and applied
magnetic field. These metastable regions have been
reported in crystals, such as Fe 1−xCoxSi [111],
Co8Zn8Mn4 [112], MnSi [23], and Cu2OSeO3 [113].

The latter —copper oxide selenite [CSO]— stands
out since it displays a tilted conical phase and two
stable skyrmionic phases: one at low temperature
(near the field-polarized region) and one at high
temperature (near the paramagnetic region) [113].

Q⃗

M⃗(x, y, z)

θ

Conical

Q⃗

Helical Field-polarized
Collinear

B⃗

Figure 9: Examples of Magnetic phases. The
textures are displayed by the crystal of manganese
monosilicide [MnSi]. A-phase is the skyrmionic
phase. Phase diagram taken from [24]. Spin
drawings by the authors.

All of these properties have lead some scientist to
propose skyrmions as possible information carriers
for ultra-dense memory applications [19, 23]. This
vision, called skyrmionics23, is not without its
challenges. Theoretical investigations have shown
that in the presence of boundaries or other crystal
defects, the energy barrier for the transition between
a skyrmion and an uniform magnetization —which
in bulk materials is dominated by the topological
protection— is severely diminished. Moreover, its

21Different types of skyrmions exist according to their topological properties, such as vorticity and helicity. The mathematical
definition of these parameters is outside the scope of the present work.

22These skyrmions, however, are typically around 1nm in size and cannot be studied using the continuum description of section 3.1.
23Skyrmions + electronics = skyrmionics.
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magnitude is such that at room temperature thermal
fluctuations can easily surpass it [114]. Even so,
researchers remain optimistic that studies into device
material and design will be able to address those
difficulties [23].

In spite of all of its challenges, skyrmionics continues
to be a promising field of research and has achieved
impressive milestones. Indeed, on March 2022,
Wang et al. [115] successfully demonstrated that
nanosecond electrical pulses are able to create,
delete, and deterministically transport skyrmions
through a Co8Zn 10Mn2 magnet at room temperature.
Nevertheless, Wang’s et al. experiment still relayed
on LTEM measurements to visualize these quasi-
particles, making their device far from a stand-alone
all-electrical component.

3.3 Experimental techniques
The first experimental observations of non-uniform
magnetic textures, such as helices or cones (see
section 3.1), were carried out in the 70s [116]. The
skyrmionic phase, however, was not experimentally
verified until 2009, when neutron scattering
experiments confirmed its presence in MnSi magnets
[24, 117, 118]. Currently, two main technique for the
detection of skyrmions are used: neutron scattering
for reciprocal-space imaging and LTEM for real-
space images [22].

Neutrons posses an intrinsic magnetic moment which
allows them to probe magnetic arrays within a
crystal. In scattering experiments, the neutron
wavefunction constructive interference whenever the
Bragg’s condition is satisfied. This condition is stated
in Eq. 25, where λn is the neutron wavelength, dn is
the effective distance between parallel crystal planes,
and θ is the scattering angle. The situation is similar
to conventional X-ray diffraction experiments24 with
the important difference that now the periodicity
will take into account the magnetic order of the
crystal [120]; thus, dn is considerably bigger than
the crystal lattice constant. As a consequence,
the diffraction condition can only be satisfied for
small angles. Indeed, in section 3.1 we mentioned
that DMI give rise to skyrmions in the order of
5-100nm. In neutron scattering experiments λn

ranges from 0.04-3nm [120]. This implies dn ≫
λn =⇒ sin(θ) ≪ 1. Which explains the small
angle requirements. Therefore, the observation of
skyrmions in reciprocal space involves small angle
neutron scattering [SANS] measurements [22, 24].

sin(θ) =
λn

2dn
(25)

(A)

(B)

Figure 10: (A) Reciprocal-space image using SANS
of the skyrmionic phase. The skyrmions arrange in
a honeycomb structure as can be seen in the real-
space image (B) taken with LTEM measurements.
This explains the appearance of a hexagon in the
diffraction pattern (the Fourier transform of the
honeycomb lattice is a rotated honeycomb lattice).
Image (A) taken from [24], image (B) taken from Ref.
[25].

At equilibrium, the skyrmions arrange in a
honeycomb structure (see Fig. 2B), which is reflected
in the SANS measurements by the presence of 6
diffraction spots in reciprocal space (see Fig. 10A).
The spots disappear in the conical phase [22, 24].

In LTEM experiments, a high-energy beam of
electrons is incident on a thin ( 100nm) specimen
of a magnet displaying non-uniform magnetization.
The magnetic texture gives rise to a local variation
of the magnetization within the specimen, which
in turn creates variations in the local magnetic
field. Electrons passing through different regions
of magnetization will experience distinct Lorentz
forces which result in the formation of interference

24There are current efforts directed at employing resonant soft X-ray scattering for detecting skyrmions. This technique, however, is
still to be demonstrated [119].
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pattern at defocused positions [121]. With help
of transport-of-intensity equations [122], the in-
plane magnetization of the sample can be recovered
from the measurements [22, 121]. Although the
technique is limited to only in-plane magnetization
imaging, it is powerful enough to allow the resolution
of magnetic structures at nanometer scales and
has been successfully employed to visualize single
skyrmions[25] (see Fig. 10B).

Both of these techniques involve sophisticated
experimental set-ups. It is clear that for a successfully
incorporation of skyrmionics into commercial devices
the complexity of the detection methods must be
reduced. A promising direction strives to use
all-electrical means, which has the advantage of
being compatible with current electronic technology
[123]. In 2015, the fist electrical detection of
skyrmions was carried out by Hanneken et al.
[26] and followed by Crum et al. [124]. Their
experiments exploited the difference in tunneling
magnetoresistance arising from the non-collinear
texture of skyrmions compared with the uniformly
magnetized background. Today, a great variety of
magneto-transport phenomena have been proposed
[123], some of them include: the anomalous Hall
effect [125], the topological Hall effect [22], and the
SMR [28]. The latter being the topic of the following
section.

4 All-electric detection of magnetic
textures

With the necessary theoretical background to
comprehend the main theory for SMR, and with a
better understanding of various magnetic textures
displayed by crystals, we proceed with the description
of the method by which SMR can distinguish these
textures.

4.1 SMR-detection
In section 2.2, we discussed how the transverse and
longitudinal resistance of a NM in contact with an
insulating FM depend on the magnetization direction
of the FM. The dependence is given in Eqs. 19.
Eqs. 19 was derived under the assumption that the
magnetization of the insulating FM was uniform.
Clearly, this condition no longer holds for more
complicated magnetic orders such as helices, cones,
and skyrmions. However, if the length scale at which
the magnetic texture changes are much bigger than
the spin diffusion length25, the SMR can be locally

calculated using Eqs. 19 (see Fig. 11A). Thus,
the resulting resistance would be the sum of each
individual surface contribution [28]. Mathematically,
this is equivalent to replacing the products of the
magnetization in 19 by their average values. This is
expressed in Eqs. 26 where the average (<>) is taken
over the NM|FM interface.

ρlong = ρ+∆ρ0 +∆ρ1⟨m2
x +m2

z⟩
ρtrans = ∆ρ1⟨mxmy⟩+∆ρ2⟨mz⟩

(26)

In general, different magnetic textures have different
magnetization averages for the same applied
magnetic field. Therefore, it is possible to use
the measurements of the SMR as a function of
applied magnetic field to determine the presence
of a particular spin order. Take for example the
case of a collinear magnetic arrangement in an in-
plane external magnetic field. In this situation,
the magnetization direction coincides with the
direction of the applied magnetic field26. If we
denote by α the angle between the applied field
and the longitudinal current (see Fig. 7), then
(mx,my,mz) = (cos(α), sin(α), 0). Substituting
those values in equation 26 implies that the transverse
resistance should shown a mxmy = cos(α) sin(α) =
2 sin(2α) dependence. This is illustrated in figure
11C.

If instead, a conical magnetic order is present in the
FM, the magnetization direction will be given by Eq.
27, where θ is the cone angle, Q⃗ is the spiral pitch
direction, and {êi} form a right-handed orthogonal
basis. When an external magnetic field is applied, ê3
and Q⃗ are parallel to the field direction.

m⃗ = cos(θ)ê3+sin(θ)(ê1 cos(Q⃗ · x⃗)+ ê2 sin(Q⃗ · x⃗))
(27)

Substituting Eq. 27 in Eq. 26 gives Eq. 28 [28].
In addition to the sin(2α) dependence, which is the
same as for the uniform magnetic state, ρtrans depends
on the cone angle θ that decreases with increasing
magnetic field. Eq. 28 implies that the amplitude
of the SMR resistance decreases until cos(θ) =
1/
√
3. Subsequently, the amplitude changes signs, or

equivalently, the SMR phase changes by π. This is
illustrated in Fig. 11C.

ρtrans ∝ sin(2α)(3 cos2(θ)− 1) (28)

25For example, in spirals arraignments, this length scale would be related to the spiral period.
26Assuming the system is isotropic in the xy directions and that the magnetic field is strong enough to complete saturate the FM.
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Single unit

J⃗

M⃗(x, y)

M⃗(x, y, z)

ẑ Surface twist
(Dephased)

B⃗
Bulk

(A) (B)

(D)(C) Collinear

Conical

Helical

Figure 11: (A) When the spin diffusion length is smaller than the variations at which magnetization changes,
we divide the bilayer structures into units. Each unit will effectively experience a uniform magnetization and
thus, the total SMR signal will be the sum of each unit contribution, i.e. the SMR signal will be averaged over
the surface. (B) Due to bulk DMI, a surface twist is present; therefore, the SMR signal will be given by a
magnetization different from the bulk magnetization. (C) Expected signal of the SMR as a function of applied
magnetic field angle. Graphs adapted from [28]. The conical signal represents the change of sign of the SMR
signal. (D) Measured phase of the SMR in a Pt|CSO structure. The black and white dots represents the bulk-
phase boundaries of the CSO crystal. The contour plot closely resembles the magnetic phase diagram (see Fig.
12). Image taken from [42].

A similar analysis can be carried out for other spin
textures such as helices and skyrmions [28, 42], their
analysis is complicated and lies outside the scopes of
the present work. One of the SMR signals for the
helical phase is illustrated in Fig. 11C. In general, the
angle dependence (α) turns out to be different enough
to distinguish between the various magnetic phases.

In summary, to electrically detect a magnetic textures,
the SMR signal is measured as a function of the angle
α. By determining the corresponding amplitude and
phase information of this signal, as well as deviations
from the sin(2α + ϕ) behavior, the signal can be
related to a unique magnetization texture.

4.2 Experimental studies
The experimental procedure described in the previous
sections have been carried out by Aqeel et al. in
2016 [28]. In their experiments, the transverse
resistance as a function of an applied magnetic field
was measured in a Pt|CSO bilayer structure. The
experiment was carried out at a temperature of 5
K and the different magnetic phases were explored
by changing the magnitude of the applied magnetic
field. At that temperature, CSO displays 5 distinct
magnetic arrangements: helical, conical, tilted spiral,
low-temperature skyrmion state, and field polarized
[FP] or collinear state (see Fig. 12)[113]. Their
results, however, could only determine the presence
of the helical, conical, and collinear textures. In this
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regard, the expected decrease of SMR amplitude in
the conical region was observed, in agreement with
Eq. 28. The absence of a tilted conical and low-
temperature skyrmion phase in the SMR detection
could be due to the fact that not enough values of the
SMR amplitude with magnetic field magnitude were
measured.

Figure 12: Magnetic phase diagram of CSO. FP =
Field polarized. PM = paramagnetic. Image taken
from [113].

In 2021, Aqeel et al. performed the same type
of experiments at higher temperature to explore the
skyrmionic lattice of CSO. Their findings showed
a considerable disagreement to those predicted by
Eq. 26. To begin, the dependence of the SMR
signal on the strength of the magnetic field was not
reproduced. The SMR resistance in the conical spiral
state decreased as the magnetic field increased for
all fields B < Bc2, while Eq. 28 predicts that
the SMR amplitude should decrease for θ ⪅ 55.7
and then increase as the spins in the conical spiral
become more and more aligned with the applied field.
Moreover, they also reported a constant phase shift of
the sin(2α) in the SMR signal. This effect is observed
even in the collinear case. A phase shift implies
that the magnetization experienced by the SMR at the
interface is different from the bulk magnetization of
the insulating FM. These observations are even more
puzzling since it appears to contradict their previous
findings at low temperature (T=5K) where no phase
shift was detected for the collinear case and the Eq.

28 was reproduced [28].

To account for the discrepancy in the SMR amplitude
as a function of the magnitude of the applied
field, new phenomenological terms were added to
the expression for ρtrans on the basis of symmetry
arguments. This procedure bares close resemblece to
the discussion of the OHE in section 2.1. Eq. 26
was replaced by Eq. 29, where A, B, and C are
treated as phenomenological constants. The best fit
of experimental data was obtained for C = 0 and
B = −1.59A/|Q|. To this day, the microscopic
origin of this phenomenological parameters is not
well understood. A corollary of Eq. 29 is the fact that
the phenomenological expression given in Eq. 19 are
uniquely determined by the symmetry of the device.

ρtrans = A⟨mxmy⟩+B⟨mz
∂mx
∂y − ∂mz

∂y mx⟩
+C⟨m2

zmxmy⟩
, (29)

To explain the constant phase shift, Aqeel et al.
appeal to the Dilashenskii-Morija interaction in the
free energy density expansion given by Eq. 22.
The presence of an interface breaks the symmetry
requirements for the solutions. As a consequence,
the state of minimum energy is no longer a uniform
collinear phase, but rather, an arrangements with a
twist near the surface (see Fig. 11B). With this
in mind, the magnetization direction at the surface
would always be shifted compared with the bulk
magnetization, thus accounting for the constant phase
shift.

The breaking of symmetry at the interface has
additional consequences for the other spin textures.
For example, the conical phase would also experience
a constant shift combined with a contraction of the
cone angle. This contraction effectively diminish the
necessary magnitude of the magnetic field required
to achieve the collinear state at the interface, and
thus should be reflected in the SMR since it is only
sensitive to surface magnetization. This effect, was
not observed (see Fig. 11D), which motivated Aqeel
et al. to introduce interfacial DMI and surface
anisotropy [42].

In summary, three main corrections to the current
theory were necessary: (1) a constant surface twist
originating from bulk DMI, (2) the addition of
new phenomenological terms in the expression for
the magnetoresistance, and (3) the introduction of
interfacial DMI and surface anisotropy. Nevertheless,
by just looking at the measurements of SMR
phase and amplitude —disregarding their origin—
it is possible to recover the presence of the

18



G. Ch. Ponce de León April 2022

skyrmion lattice [SkL]. This phase is characterized by
significant diminish in the SMR phase as compared
with the values for the conical phase as can be seen in
Fig. 11D.

4.3 Discussion
The current theoretical description of SMR correctly
captures the experimental behavior reported in
collinear insulating ferrimagnets as was discussed in
section 2.2 [30]. The practical results for collinear
states are robust enough that the implementation of
SMR measurements in commercial devices seems
possible in the near future, the main challenges being
the control of the growth and mass-production of
insulating FM.

On the other hand, the theoretical assumptions
underlying Chen’s et al. theory [34] continue to
be opened to debate. Indeed, as was commented
in section 4.2, the physical elements of this theory
should be equally valid for non-uniform magnetic
states, yet significant experimental mismatch is
observed. The possibility of systematic errors in the
experiments discussed in section 4.2 cannot be ruled
out27. However, we believe that the discrepancies are
significant enough that questions can be raised about
the validity of some of the theoretical assumptions
underlying this theory.

In our opinion, two points stand out. Firstly, the
theoretical model was deduced under the assumption
of no-external magnetic field. This situation is far
from what is present in the experiments in which
an external magnetic field is required to sustain the
magnetic texture. The inclusion of this field would
have impacts in the diffusion equations such as Eq.
14. Indeed, Dyakonov and Perel already commented
in their seminal paper [59] on the SHE that an external
magnetic field could destroy the spin current. The
presence of this external field in the theoretical model
could also have consequences for coherent effects;
for example, a coherent procession of the electron
spin could occur near the boundary, giving rise to
a more complicated magnetoresistance than the one
described in section 2.2.

The second point concerns the boundary conditions
stated in Eq. 10. The assumption of a perfect
insulator may not hold for CSO which would require
the introduction of parallel currents. The deviations
from a perfect insulator could lead to some of the
carriers exploring “more of the bulk” explaining why
the magnetic phase transitions measured with SMR

still occurred at their bulk values ignoring the cone
contraction.

Finally, we should not be surprised by the fact that
Chen’s et al. model correctly predicts the magnetic
field dependence in Eq. 19. The deduction of
the symmetry allowed phenomenological terms in
Eq. 26 shows that those expressions are the only
combinations allowed by symmetry. Indeed, the
fact that Vlietstra et al. [92] could not recover the
functional dependence of the coefficients predicted by
Chen’s et al. (see section 2.2) should be interpreted
as another point of concern. That is the power
of symmetry arguments, it does not matter which
microscopic theory or assumptions one uses, as
long as they are consistent with the symmetry of
the system, the same phenomenological relationship
will be obtained. Therefore, a more robust test
of a theory for SMR must come from the correct
determination of the values of ∆ρ. This will not
be without its challenges, as previously mentioned,
interfacial disorder and the quality of deposition plays
a significant role in the values of parameters of the
model such as spin-mixing conductance and Hall
angle.

Perhaps, advances in deposition techniques such as
pulsed laser deposition [PLD] may be able to create
devices with expitaxially smooth surfaces which
could be use to further test the current theory for
SMR.

5 Final Remarks
Leaving aside the theoretical aspects of SMR.
The method presents a series of advantages and
disadvantages: (1) it substitutes SANS and LTEM by
simple —but tricky— magnetotransport experiments.
Both SANS and LTEM have straightforward
interpretation but complicated set-ups, while SMR
has the ease in experimentation but complicated
interpretations. (2) SMR does not require current
to pass through the FM layer, thus it could prevent
heating and degradation due to currents. Indeed,
even in the simple collinear case, the technique has te
potential to reduce power consumption due to cooling
[34]. (3) SMR is a surface sensitive technique, but it
does not explore the full topological properties of
skyrmions and thus is not the ultimate candidate for
skyrmionic devices. Nevertheless, we believe that a
secondary role is still possible.

Adding to this last point, the authors of this work, do
27Here, it is worth remembering that the detection of the SHE and ISHE also started with a significant experimental mismatch [60,

61]
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not believe that —in its current state— SMR can be
successfully incorporated in skyrmionic applications.
Too many open questions still remain. This, however,
can have positive consequences, as research in SMR
may shed light in fundamental aspects for spintronics.
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Bihlmayer, G. & Blügel, S. Spontaneous
atomic-scale magnetic skyrmion lattice in two
dimensions. nature physics 7, 713–718 (2011).

111. Bauer, A. & Pfleiderer, C. in Topological
Structures in Ferroic Materials 1–28
(Springer, 2016).

112. Karube, K., White, J., Reynolds, N., Gavilano,
J., Oike, H., Kikkawa, A., Kagawa, F.,
Tokunaga, Y., Rønnow, H. M., Tokura,
Y. andothers. Robust metastable skyrmions
and their triangular–square lattice structural
transition in a high-temperature chiral magnet.
Nature materials 15, 1237–1242 (2016).

113. Chacon, A., Heinen, L., Halder, M., Bauer, A.,
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