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Abstract— Software-driven image segmentation is an important task in astronomical measurements, since it is intractable for a
human being to perform the required segmentation manually. MTObjects is a successful tool for detecting objects in astronomical
observations, but experiences some problems in dealing with noise present in the measurements. These problems are likely caused
by the uniform Gaussian smoothing operation not being discerning enough for different levels of noise within the same image.
This research develops an adaptive filtering technique based on the local signal-to-noise ratio in order to alleviate this issue and
produce better segmentation results. The experiments performed in this research show that the signal-to-noise ratio-based adaptive
filtering technique produces a better segmentation result, both in terms of segmentation quality metrics and in terms of similarity to
noiseless equivalents of the test images used. The research also compares against another signal-to-noise ratio-based adaptive fil-
tering technique called Adaptsmooth. The comparison shows that the adaptive filtering technique developed in this research performs
on par with or better than Adaptsmooth, while the runtime is vastly superior due to its compatibility with GPU execution. The runtime is
also competitive with uniform Gaussian smoothing if a GPU can be used, meaning that it does not significantly deteriorate the overall
runtime of the MTObjects framework. Future research could improve the dependence of the filter kernel on the signal-to-noise ratio,
for example by introducing an anisotropic filter kernel that changes the shape of the kernel in more sophisticated ways.
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1 INTRODUCTION

Segmentation is a much-researched area of computer vision. The goal
is to recognise objects in images by determining properties that might
point to a portion of an image corresponding to an object. A number
of prominent segmentation frameworks for astronomical images have
been developed. It has become clear from the comparison done by
Haigh et al. (2020) that the MTObjects framework produces superior
results compared to other popular frameworks: it has the best quality
metric results - which are also the most consistent across different test
images - and has a competitive runtime. MTObjects is therefore a
sensible choice for segmentation tasks in astronomical applications,
and it makes sense to perform further research to improve this effective
segmentation framework further.

MTObjects has some qualitative problems with its segmentation.
The framework easily picks up noisy structures, and can erroneously
identify them as actual objects. This results in crinkly extensions to
recognised regions (caused by noisy pixels), and also results in gaps in
regions where noise caused the framework to find holes in the detected
objects. A possible reason for this is that the framework applies a
uniform Gaussian smoothing operation on the image, which might si-
multaneously oversmooth certain parts of the image and undersmooth
other parts of the image.

In this research, I will attempt to improve the abovementioned is-
sues with the MTObjects framework by replacing the uniform Gaus-
sian smoothing operation with an adaptive smoothing operation that
aims to drive each pixel in the image towards a minimum local signal-
to-noise ratio (SNR). By using such a smoothing operation, I believe
that I will not oversmooth regions that already are clear enough and
do not need extra smoothing, and at the same time not undersmooth
regions where a lot of smoothing is appropriate. Consequently, this
smoothing behaviour would likely mean that the image is more suit-
able for segmentation, and because of that an improvement in qual-
ity metrics could result. This research will implement this smoothing
operations and compare the results with the results for the uniform
Gaussian smoothing operation. In addition, I will compare the above-
mentioned adaptive filtering operation with another adaptive smooth-
ing technique called Adaptsmooth developed by Zibetti (2011), so that
I can judge the performance of the SNR-based adaptive filtering tech-
nique with the simple uniform Gaussian smoothing operation as well
as another adaptive filtering approach that aims to do the same thing
as SNR-based adaptive filtering.

In section 2, I will discuss the theoretical underpinnings of MTOb-

jects, of Adaptsmooth, and of the SNR-based adaptive filtering algo-
rithm. In section 3, I will discuss the images used in this research, ex-
plain the quality metrics that I will use to judge the performance of the
smoothing techniques, and describe the optimisation framework for
finding the best parameters for the MTObjects framework when using
the new adaptive smoothing operation. In section 4, I will discuss the
results of performing the optimisation and evaluating the MTObjects
framework on the images used for this research. This section will also
discuss the runtime of the different smoothing techniques, and discuss
another quality comparison based on the sum squared difference. Sec-
tion 5 summarises the findings and conclusions in this research, and
suggests further research that could improve the SNR-based adaptive
filtering technique developed in this research.

The code for this repository can be found in a Github repository for
testing purposes. Please use the following link to access the repository:
github.com/Bruin96/MTObjects SNR based adaptive filtering.git

2 THEORY

In this section, I will first briefly discuss the MTObjects framework
for segmentation that was first introduced by Teeninga et al. (2015a),
and discuss the previously established behaviour of this framework.
Then, I will discuss signal-to-noise ratio (SNR) based adaptive filter-
ing. After that, I will discuss a multigrid implementation of the adap-
tive filtering that produces similar results with a signficantly reduced
computational cost. Lastly, I will discuss how the multigrid version
of the adaptive filter can be accelerated on the GPU, leading to vastly
improved performance.

2.1 MTObjects

The MTObjects framework is an attribute-based segmentation frame-
work that uses a maxtree. The maxtree, as used in MTObjects, is
described by Teeninga et al. (2016). A maxtree is a tree structure that
starts with a lowest image intensity level that forms the base of the
maxtree. Then, the maxtree goes through all intensity levels. We add
a node to the tree where the intensity is equal to or higher than the cur-
rent intensity level under consideration. A node contains a connected
region, which consists of multiple neighbouring pixels that have an in-
tensity equal to or higher than the current intensity level. We do this
for all intensity levels. In order to model nested connected regions at
different intensity levels, we use a parent pointer at each node, such
that the region associated with the current node is a subset of the par-
ent node and the minimum intensity of the child node is strictly larger
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than the minimum intensity of the parent node. At each node, we can
store or compute a number of attributes which we can then use for fil-
tering the tree based on one or more attributes. The filtering process is
straightforward: at each node, we evaluate a criterion Λ on an attribute
associated with that node, and remove the node from the maxtree if it
fails to meet the criterion.

Before MTObjects constructs a maxtree, it first computes the back-
ground of the image, which denotes the intensity level in regions where
no astronomical objects are present. The background estimation is de-
scribed by Teeninga et al. (2015b). The framework estimates the back-
ground by finding flat tiles in the image. In order to find out whether
a region is flat, it uses two statistical tests. The first test determines
the closeness of the intensity distribution to a normal distribution us-
ing the Pearson-d’Agostino K2-statistic. The second test uses a t-test
that determines whether the four quadrants of the tile have the same
mean value. If the tile passes both tests, we call it flat. In order to
estimate the background, we determine the largest flat tile in the im-
age, and compute its mean and variance, which together represent the
background estimate. We then subtract the background mean from the
image. In astronomical images, the noise is determined by the mea-
surement of photons, which has the inherent characteristics of Pois-
sonian noise. In the resulting image, the variance of the noise is a
function of the original, noiseless image O (typically with a gain fac-
tor g applied to it) and the estimated background variance σ2

bg, as given
in:

σ
2
image ∝ g−1(O)+σ

2
bg (1)

After subtracting the background, MTObjects constructs a maxtree
and applies attribute filtering as described above. MTObjects defines
four different significance tests on a node in the maxtree for deter-
mining whether it should be kept as a significant node or not. The
application of such a significance test to each node results in a filtered
maxtree. This filtered maxtree represents the regions in the image that
represent actual objects. The result of the MTObjects framework, eval-
uated on a simulated Fornax-like galaxy cluster, is shown in figure 1.

Fig. 1: The result of applying the MTObjects framework with a uni-
form Gaussian blur filter to a simulated Fornax Deep Survey-like im-
age.

The latest version of MTObjects uses two versions of the input data:
the first one is the original, background-subtracted input image, while

the second one is a Gaussian-smoothed image. The original input im-
age is used for computing statistics, while the smoothed image is used
for finding regions. The use of the original image for statistics means
that there are no extra correlations introduced by the smoothing opera-
tion, resulting in more informative statistical information. The second
image is used for detecting areas of interest in the image, which leads
to smoother regions that might be detected as nodes, creating segmen-
tations that are as robust to noise as possible. Specifically, the smooth-
ing operation tries to manipulate the image such that the MTObjects
framework can more easily detect regions of approximately constant
intensity called flat zones. Due to noise in the image, it is hard to de-
tect flat zones in the unsmoothed image. Smoothing helps to produce
these flat zones by smoothing out the variability caused by the noise.

2.2 SNR-Based Adaptive Filtering
For this research, I will consider the latest version of the MTObjects
framework that Haigh et al. (2020) uses. This version is similar to
the MTObjects framework described in section 2.1, but first applies a
Gaussian blur filter to the image. This filter is applied after subtracting
the background but before constructing the maxtree. The uniformity
of the Gaussian blur filter has a significant potential drawback. This
drawback has to do with the fact that in astronomical observations,
the measured image will contain inherent Poissonian noise due to the
measurement of photons. As a result of this, the measured intensity
level has a noise variance that depends on the intensity of the signal.
The uniform Gaussian blur filter does not take this into account. This
means that the blur operation may be too strong in certain regions of
the image, such that it could blur out faint structures, while in other
regions, the blur operation may be too weak, such that the noise is not
smoothed out. The latter case has as a consequence that a connected
region might contain gaps due to noise values that cause the signif-
icance tests to incorrectly detect a small, noisy region as a separate
object. This same phenomenon can also lead to the detection of tor-
tuous, curve-like extensions to regions due to the detection of noisy
values as part of a given region. The result of this effect is illustrated
in figure 2.

Adaptive filtering could potentially improve on this situation. The
idea behind adaptive filtering is to apply a different degree of smooth-
ing at each point in the image depending on the properties of the image
in that location. The formula for computing the Gaussian blur filter is
given in:

G(x,y) =
1

2πσ2 · e
− x2+y2

2σ2 (2)

We need to apply padding to the borders of the image in order to
allow the algorithm to be evaluated on all of the pixels in the image.
For this, we use reflection padding, where the padded region mirrors
the values of the original image.

The degree of smoothing depends on the Gaussian parameter σ . In
adaptive filtering, we compute the value of σ for each position in the
image. This allows us to vary the amount of smoothing depending on
how far the image is from the target condition in that location in the
image. For this research, I am interested in improving the signal-to-
noise (SNR) ratio. We compute the SNR ratio as given in:

SNR =
µwin

σpoisson
(3)

In order to safeguard against instabilities that might arise in the
measurements, we use a window around the image location to de-
termine the mean value µwin at that location. The standard deviation
σpoisson is subsequently computed as the square root of the mean value
µwin: σpoisson =

√
µwin.

In order to improve the SNR ratio, I first choose a target SNR value
SNRtarget . I define two situations: firstly, the SNR value SNRcurr at
some point in the image might be larger than SNRtarget . In this case,
I do not apply any smoothing. Secondly, SNRcurr might be smaller
than SNRtarget . In this case, σ = f (SNRtarget − SNRcurr), where f is
a polynomial function.
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Fig. 2: A zoomed-in section of the MTObjects framework output im-
age shown in figure 1. Notice the black pixels inside of the large green
areas of the image, indicating pixels that are - likely erroneously - ex-
cluded from a region. We can also see tortuous lines moving outwards
from the green region in the top left of the image, which likely coin-
cide with trajectories of noisy pixel values that have been erroneously
attributed to the region adjacent to them.

The properties of the images in astronomical applications need to be
considered when designing the adaptive filter. In particular, the differ-
ence in magnitude is quite large, with typical photon counts ranging
from on the order of 100 to 1013. These large differences can lead
to an overly strong blurring effect if I simply use the linear relation
σ ∝ SNRtarget−SNRcurr. In particular, very large differences in inten-
sity lead to a very large value for SNRtarget − SNRcurr, which in turn
leads to oversmoothing in the sense that the resulting SNR value ends
up well above SNRtarget . Instead of using the linear equation, I use the
formula in equation 4 in order to compute the smoothing parameter σ :

σ = 0.1 ·
(
SNRtarget −SNRcurr

)0.5
+0.01 (4)

Raising SNRtarget − SNRcurr to the power of 0.5 somewhat atten-
uates the large differences, in order to make the formula more robust
for large differences in SNR values. The strength of the smoothing is
further softened by the 0.1 term, in order to make the smoothing ap-
proach the target SNR value in a more controlled manner. The additive
0.01 term is there for ensuring numerical stability when implementing
the adaptive smoothing operation. Applying the adaptive filter for a
single iteration does not guarantee that the image has converged on a
final SNR value in that position. Convergence is typically rather slow,
so multiple iterations are needed. As a consequence, I need to apply
the adaptive filter to the image multiple times in order to achieve a
result that is close to a convergent state. In general, the problem of
convergence is ill-posed: I do not know beforehand which SNR value
the image will converge towards. The reason for this is that the noise
variance of the image depends on the mean value of the window, and
as such I cannot accurately predict how the SNR value evolves. The
solution, therefore, is to apply the adaptive filter for a large number of
iterations in order to come as close as possible to convergence.

2.3 Multigrid Adaptive Filter
The number of iterations needed to ensure a result that is close to con-
vergence might lead to a large runtime. In order to reduce this runtime,
I use a multigrid approach that is based on the multigrid approach for
adaptive smoothing that Saint-Marc et al. (1991) present. The algo-
rithm starts by smoothing the original image for n1 iterations. Then,
the image is decimated to 1

4 of the size of the original image. At this
level, we apply n2 iterations of smoothing. This process can continue
for m levels. Once we hit the lowest level, we traverse back up the
recursion in the following way: first, we subtract the decimated image
from the smoothed, decimated image at the current level. The result is
then interpolated to the size of the level above the current level. Then,
we subtract the original, smoothed image from the interpolated image.
Lastly, we smooth the result for ni iterations again. This procedure
continues all the way up the multigrid recursion until we return to the
original image size. The procedure is shown for three levels in figure
3.

The multigrid algorithm consists of four operations:

• Adaptive Smooth: The adaptive filtering operation described in
section 2.2.

• Decimate: This operation reduces the size of the image by a fac-
tor 2 on both axes. The operation is equivalent to simple down-
sampling where we pick the top-left pixel to represent the four
pixels.

• Interpolate: This operation increases the size of the image by
a factor 2 on both axes. The operation is equivalent to simple
upsampling where we duplicate the value in the original position
to all of the four pixels in the resulting image.

• Subtract: This operation subtracts elements of two images
element-wise, and returns the difference image.

Fig. 3: The multigrid adaptive smoothing algorithm for a 3-level grid.
I indicate the order of the operations by the numbers prepended to
them. Note that I introduce an extra image (Rint

3 ) so that I can hold the
intermediate result as well as the decimated result from the previous
level. In an implementation, I can combine these steps into a single
operation in order to reduce the memory footprint.

According to Saint-Marc et al. (1991), the multigrid approach to
adaptive filtering reaches convergence in on the order of 22 times

3



fewer iterations at the original image size than the plain adaptive fil-
tering algorithm. Because the size of the grids decreases by a factor 4
for each lower level, the total runtime mostly depends on the number
of iterations at the highest level. Indeed, if I assume that I perform n
iterations of adaptive filtering at each step with a computational cost of
c per iteration, then the computational cost is asymptotically bounded
by the identity given in:

lim
N→∞

c ·n ·
N

∑
n=0

2 ·4n = 2
2
3
· c ·n (5)

Equation 5 tells us that the total computational cost depends mostly
on the 2 ·n iterations of adaptive filtering performed at the original im-
age size: adding levels in the grid does not have a large impact on the
computational cost. A consequence of this result is that the computa-
tional cost needed to reach a similar level of convergence as with the
plain adaptive filtering algorithm is approximately a factor 22

2 2
3
= 8.25

times smaller. However, this does not take the overhead from the sub-
tract, decimate, and interpolate operations into account. The result that
Saint-Marc et al. (1991) found is that they could reduce the execution
time from 750 seconds using the plain adaptive filtering approach to
104 seconds using the multigrid adaptive filtering approach.

2.4 GPU Implementation of Multigrid Adaptive Filter
Adaptive filtering changes only one element of the input image at a
time, and performs this operation for each element before moving on
to the next iteration. Therefore, the adaptive filtering operation is suit-
able for GPU acceleration. Because the kernel depends on local image
properties, the kernel value needs to be recomputed for each image lo-
cation, which limits the possible acceleration somewhat. I will discuss
the speedup in more detail in section 4.3.

In this research, I have accelerated the multigrid implementation
using the GPU and the OpenCL GPU programming language. In or-
der to save on GPU global memory, I combine several steps shown
in figure 3 into a single operation. For example, the subtraction and
interpolation at steps 6 and 7 can be combined into a single operation,
and furthermore can be stored in L2, so that Rint

3 is no longer neces-
sary. A similar consideration allows for the removal of buffer R1. The
complete GPU implementation workflow for three levels is given in
figure 4.

In a GPU implementation, it is important to limit the transfer of data
in and out of the GPU memory. For the adaptive filter steps, the buffers
remain on the GPU for each iteration: I only need to launch a new ker-
nel with the same buffer arguments. Because I do not want to have
the random order of operation influencing the result of the adaptive
filtering step, I introduce a second buffer into which the GPU writes
its result. At the end of each iteration, I swap the buffers so that the
result of the current iteration is available in the loading operation. This
operation slightly decreases the speed of the algorithm, but it is neces-
sary in order to maintain the deterministic nature of the algorithm. In
the experiments that I have performed for this research, this extra step
did not result in a noticeable increase in runtime.

The original image data only needs to be uploaded to the GPU once:
memory for the other buffers in the algorithm is allocated directly on
the GPU. This is possible because these intermediate results do not
need to be returned from the GPU, and therefore they can be allocated
and freed completely on the GPU. This is an important observation,
because there should be as little memory movement between the GPU
and the CPU as possible. The only data that needs to be retrieved from
the GPU is the final result at the very end of the algorithm.

2.5 Adaptsmooth
Rather than only comparing with the primitive uniform Gaussian
smoothing operation, it makes sense to compare the SNR-based adap-
tive filtering approach to a comparable adaptive filtering method. I
will consider Adaptsmooth as a comparison for SNR-based adaptive
filtering. Adaptsmooth was first introduced by Zibetti (2011). It is
an adaptive filtering technique that considers windows of increasing
radius. At each radius, Adaptsmooth computes the mean filter result

Fig. 4: The multigrid adaptive smoothing algorithm on the GPU for
a 3-level grid. Note that I combine one interpolation and subtraction
operation without using an intermediate buffer. This saves space on
the GPU memory at the cost of a slightly more complicated OpenCL
kernel.

of the current window and subsequently computes the SNR value of
this window. If the SNR value is above the target SNR value, then
the mean filtered result will be assigned to the pixel. Otherwise, the
radius is increased, and the same operation is carried out once again.
This repeats until the SNR value surpasses the target SNR value, or un-
til the algorithm reaches the (preset) maximum radius. This operation
is performed for all pixels in the image.

The main difference between SNR-based adaptive filtering and
Adaptsmooth is that SNR-based adaptive filtering tries (and applies)
only a single filter which is computed based on the current SNR value,
whereas Adaptsmooth tries to fit multiple filters until the current SNR
value matches the target SNR value. SNR-based adaptive filtering tries
to reach convergence towards the target SNR value by repeated appli-
cation of the same kernel, while Adaptsmooth tries to do this by a
single application of multiple different kernels until one matches the
target goal. When taking this difference into account, it would stand to
reason that Adaptsmooth has more control over whether the final result
actually reaches the target SNR value. However, the repeated verifi-
cation (and associated branching operations) needed in Adaptsmooth
means that it is rather difficult to accelerate the algorithm using the
GPU. This means that Adaptsmooth is very unlikely to perform com-
petitively in terms of runtime with SNR-based adaptive filtering when
the latter can run on a GPU.

3 METHODOLOGY

The aim of this research is to determine whether the MTObjects frame-
work obtains a better segmentation result when it applies an SNR-
based adaptive filter instead of a uniform Gaussian blur filter. In order
to test this, I replicate the testing framework that Haigh et al. (2020)
uses, and I use simulated Fornax Galaxy images as test data. In this
section, I will first discuss these images in more detail. After that,
I will discuss the quality metrics that Haigh et al. (2020) introduces
and that I will use in order to assess the accuracy of the results for
the MTObjects framework with SNR-based adaptive filtering. Lastly,
I will discuss the Bayesian optimisation framework that Haigh et al.
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(2020) uses and that I will use as well in order to find the target SNR
value that gives the best results.

3.1 Simulated Fornax Galaxy Images
The images that I use in this research have been provided by Caroline
Haigh. The images emulate images of the galaxies present in the For-
nax Deep Survey, which is a survey of the Fornax cluster at a distance
of 20 Mpc. Each image consists of approximately 1500 simulated
stars, 4000 simulated cluster galaxies, and 50 simulated background
galaxies. I have been provided with a total of ten such simulated im-
ages for this research. The benefit of using a simulated version of the
Fornax Deep Survey is that the number of galaxies and other objects
is known in advance. This way, I can perform accurate analysis of the
results produced by the MTObjects framework.

Each image is accompanied by metadata about the location and size
of the objects that are present in that image. However, because of
the nature of astronomical observation, there is a certain degree of
Poissonian noise present in each image (the noise has been simulated
as well). In order to account for this, a ground truth image should take
this noise into account. This is done by taking the background level bg
plus a fraction of the standard deviation of the noise σ , and computing
a threshold t as given in:

t = bg+η ·σ (6)

Any part of an object that exceeds this threshold intensity will be-
come part of the ground truth image. I will use different values of η

in order to test different levels of resolution for the MTObjects frame-
work. A smaller value of η requires that MTObjects detect fainter
objects in the image, whereas a larger value of η means that it should
detect brighter objects and leave fainter objects undetected.

3.2 Quality Metrics
For measuring the quality of the segmentation produced by a segmen-
tation tool, Haigh et al. (2020) uses four different quality metrics. The
first quality metric is the F-score, which is a harmonic mean of the
precision and recall of the segmentation. The precision of the segmen-
tation denotes the proportion of objects detected by the segmentation
tool that can be matched with an actual object in the ground truth.
The recall of the segmentation denotes the proportion of objects in the
ground truth that can be matched to objects in the segmentation. For
both measures, we find the brightest point in a region as the point that
we try to match for the precision and recall calculations. The F-score
combines these two measures into a single quality measure as given
in:

F-score = 2× precision × recall
precision + recall

(7)

The second quality measure is the area score. This quality measure
consists of two components: firstly, the overmerging (OM) error is a
measure of how much the segmentation merges regions that should be
separate. Secondly, the undermerging (UM) error is a measure of how
much the segmentation denotes regions as separate that are indicated
as single, merged regions in the ground truth. The undermerging error
is computed using:

UM =
M

∑
j=1

(Ak− (Tj ∩Rk))(Tj ∩Rk)

Ak
(8)

In equation 8, the ground truth segmentation contains N segments
R1, ...,RN with areas A1, ...,AN , and the segmentation tool output con-
tains M segments T1, ...,TM with areas a1, ...,aM . The undermerging
error computes the segment Rk in the ground truth segmentation such
that for each segment Tj, the intersection Tj∩Rk is maximised. By do-
ing this for all segments Tj, the undermerging error can be computed.
Maximising the intersection Tj ∩Rk corresponds to finding the region
in the ground truth segmentation that corresponds closest to the seg-
ment Tj currently under consideration. The division by Ak results in a

normalisation, such that the sum of the terms (Ak−(Tj∩Rk))(Tj∩Rk)
Ak

adds
up to a number between 0 and 1.

The overmerging error is defined similarly to the undermerging er-
ror, as given in:

OM =
N

∑
k=1

(a j− (Tj ∩Rk))(Tj ∩Rk)

a j
(9)

For the overmerging error, I find the segmentation tool segment Tj
for each Rk such that the intersection Tj ∩Rk is maximised. The over-
merging and undermerging error are used to compute the area score,
which is given in:

Area score = 1−
√

OM2 +UM2 (10)

In addition to the F-score and area score, Haigh et al. (2020) defines
two combined scores A and B, which are given in:

A =
√

Area score2 +F-score2 (11)

B = 3
√
(1−OM)× (1−UM)×F-score (12)

Both combined scores require the segmentation tool to find a bal-
ance between a good area score and a good detection score (F-score).
In this research, I will use combined score B as the quality mea-
sure with which to judge the performance of the MTObjects frame-
work with SNR-based adaptive filtering compared with the MTObjects
framework with a uniform Gaussian blur filter.

3.3 Bayesian Optimisation Framework
In order to find the best combination of parameters for the set of 10 im-
ages, I will use a Bayesian Optimisation framework. This framework
has been provided by Caroline Haigh, and uses the GPyOpt framework
as the backbone of the optimisation process.authors (2016) The frame-
work has two primary modes of operation: parameter optimisation on
a single image, or cross-validation parameter optimisation on an entire
set of images. The former mode finds the best parameter combination
for an individual image, but that combination of parameters might not
be a good choice for the other images in the set. The latter mode tries
to find the best set of parameter for all images, but might not have the
best result for each individual image.

I have performed the optimisation both on a per-image basis and
cross-validated on the set of images, in order to compare the perfor-
mance and the stability of the choice of parameters. An important
question to answer in this regard is whether the performance depends
significantly on the precise choice of the SNR value, or whether we can
accept some margin around the optimal value without significantly im-
pacting the quality measure outcomes. This can be assessed by looking
at the performance of the cross-validated results and the per-image re-
sults: if both results are comparable, then this indicates a certain level
of stability with regards to the choice of parameters. This would be
an encouraging result, since it means that setting parameters in future
applications will have fewer tuning issues associated with it.

The optimisation framework optimises for the combined B score
discussed in section 3.2 for both modes of parameter optimisation.
This means that the optimisation will search for parameters that max-
imise the combined B score either for an individual image or over a set
of images. I believe the combined B score represents a well-weighted
compromise between good area recognition performance (due to the
inclusion of the over- and undermerging errors) and the object detec-
tion performance (due to the inclusion of the F-score), and is therefore
a good metric for optimisation.

4 RESULTS & DISCUSSION

In this section, I set out a number of points of comparison between the
different smoothing methods. I look at uniform Gaussian smoothing,
SNR-based adaptive filtering, and Adaptsmooth. In section 4.1, I look
at the segmentation produced by MTObjects for each of the smooth-
ing approaches, and visually analyse the properties of the different
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smoothing approaches. In section 4.2, I use the summed squared dif-
ference measure in order to find out how faithful the smoothed results
are to the original image. In section 4.3, I look at the execution time
for the SNR-based adaptive filtering algorithm, and contextualise it by
comparing it to uniform Gaussian smoothing and Adaptsmooth. Fi-
nally, in section 4.4, I look at the results of the parameter optimisation
with respect to the quality metrics laid out in section 3.2.

4.1 Segmentation Area Results
In order to understand the visual output of the different segmentations,
I first discuss the segmentation map of image 2 in the simulated image
set that MTObjects produces for different smoothing approaches. For
SNR-based adaptive filtering, I will use the best parameter settings for
image 2, while for Adaptsmooth, I will use SNR = 30.0, which has
turned out to be a strong result for Adaptsmooth. I will do this for
different ground truths, and compare with those in order to judge the
correspondence between the ground truths and the smoothed segmen-
tation results. The results are shown in figure 5.

Firstly, I look at the results for η = 1.0. For this ground truth,
all methods manage to reproduce the major structures of the ground
truths. However, the SNR-based adaptive filtering approach is very
clearly the best result: it interprets much less empty space as part of
one structure or another, and the shapes closely resemble the shapes in
the ground truths than for the other methods. It will become clear in
section 4.4 that the abovementioned conclusions about the quality of
SNR-based adaptive filtering translates over into better results for the
quality metrics defined in section 3.2.

For the ground truth with η = 0.5, the results for SNR-based fil-
tering and Adaptsmooth are quite close. Adaptsmooth appears to in-
corporate more of the empty space into some structure, but it also
has fewer single-pixel gaps compared to SNR-based adaptive filter-
ing. Both methods mostly manage to reconstruct the structures of the
ground truth, but we see some clear deviation even for the larger struc-
tures. The Gaussian smoothing approach assigns the most empty space
to some structure, has the largest single-pixel gaps in regions, and has
the longest erroneous noise structures at the edges of the recognised
segments. The results in section 4.4 will show that SNR-based adap-
tive filtering and Adaptsmooth are very close for this ground truth im-
age.

The ground truth with η = 0.1 is the most difficult one to approx-
imate for a segmentation framework, because structures need to be
recognised deep into the noise present in the image. As a result, all im-
ages deviate significantly from the ground truth image. However, I can
recognise that several structures from the ground truth are present in
the segmentations. For this ground truth, the Gaussian smoothing ap-
proach appears to be more competitive with the other approaches than
for the other ground truths discussed previously. This time, it appears
that it is Adaptsmooth that has a hard time approximating the ground
truth. Its biggest issue seems to be that it marks too many pixels as
empty space whereas the ground truth shows them as being part of an
actual structure. The result of SNR-based adaptive filtering visually
appears very close to the result from Gaussian smooth. It has small
differences in that it appears to manage to detect faint stars a little bit
better. As a result, I would expect that the SNR-based adaptive filter-
ing result is capable of detection more slightly more objects, which in
turn would also possibly decrease the overmerging error since fewer
objects are erroneously assigned to the more expansive region lying
underneath the object. We will see in section 4.4 that something like
this is indeed reflected in the quality metrics.

4.2 Adaptive Filtering Sum Squared Difference
An important goal for filtering is to be as similar to the original image
as possible. This property is not in general preserved by a blur filter:
the uniform Gaussian filter, for example, has the property of smoothing
away noise, but it also impacts the non-noisy parts of the image, and
might decrease the accuracy of those parts. This might be a situation
where an adaptive filter could perform well: it blurs more in noisy
regions, and blurs less in noiseless regions. This should result in a
blurred image that is closer to the original image than I would get if I

applied a uniform Gaussian filter. However, this does not necessarily
mean that the blurred image is closer to the original image than the
noisy image, either: the blurring operation could still distort the image
and produce a less accurate result.

I still need to define accuracy. Because I want to have the image to
be as close to the original, I use the sum squared difference over all
pixels, which I define in:

SSD(I1, I2) = ∑
x,y∈I1

(
I1(x,y)− I2(x,y)

)2 (13)

Using equation 13, I define the closest match between two images
as the image I1 for which SSD(I1, I2) is the smallest for some reference
image I2. In this case, I use the noiseless image as I2, and the different
blurred images are represented by I1.

I apply the sum squared difference to several Gaussian blurred im-
ages and adaptive filter blurred images for different values of SNRtarget
to the simulated images described in section 3.1. I have two input im-
ages: one image is the noiseless version of the image, the other is the
same image with Poissonian noise added. The results of computing
the sum squared difference for the different resulting images are given
in table 1, and the same information is shown graphically in figure 6.

Method Image 1 Image 2 Image 3
No smoothing 2.588 ·10−16 2.220 ·10−16 2.214 ·10−16

GF 1.272 ·10−12 1.461 ·10−12 7.556 ·10−13

AF SNR = 2.0 2.494 ·10−16 2.023 ·10−16 1.956 ·10−16

AF SNR = 3.0 2.494 ·10−16 2.023 ·10−16 1.956 ·10−16

AF SNR = 4.0 2.494 ·10−16 2.022 ·10−16 1.955 ·10−16

AF SNR = 5.0 2.492 ·10−16 2.020 ·10−16 1.952 ·10−16

AF SNR = 8.0 2.458 ·10−16 1.978 ·10−16 1.901 ·10−16

AF SNR = 10.0 2.353 ·10−16 1.868 ·10−16 1.775 ·10−16

AF SNR = 15.0 1.891 ·10−16 1.414 ·10−16 1.332 ·10−16

AF SNR = 17.0 1.780 ·10−16 1.313 ·10−16 1.248 ·10−16

AF SNR = 18.0 1.751 ·10−16 1.290 ·10−16 1.234 ·10−16

AF SNR = 19.0 1.742 ·10−16 1.286 ·10−16 1.241 ·10−16

AF SNR = 20.0 1.757 ·10−16 1.305 ·10−16 1.273 ·10−16

AF SNR = 30.0 5.745 ·10−16 4.850 ·10−16 5.255 ·10−16

AS SNR = 5.0 1.886 ·10−16 1.439 ·10−16 1.359 ·10−16

AS SNR = 10.0 1.800 ·10−16 1.319 ·10−16 1.251 ·10−16

AS SNR = 15.0 1.742 ·10−16 1.271 ·10−16 1.207 ·10−16

AS SNR = 20.0 1.709 ·10−16 1.247 ·10−16 1.187 ·10−16

AS SNR = 25.0 1.694 ·10−16 1.239 ·10−16 1.180 ·10−16

AS SNR = 26.0 1.693 ·10−16 1.239 ·10−16 1.181 ·10−16

AS SNR = 27.0 1.693 ·10−16 1.239 ·10−16 1.181 ·10−16

AS SNR = 28.0 1.692 ·10−16 1.240 ·10−16 1.183 ·10−16

AS SNR = 29.0 1.693 ·10−16 1.241 ·10−16 1.184 ·10−16

AS SNR = 30.0 1.693 ·10−16 1.243 ·10−16 1.186 ·10−16

AS SNR = 35.0 1.703 ·10−16 1.256 ·10−16 1.202 ·10−16

AS SNR = 40.0 1.722 ·10−16 1.277 ·10−16 1.226 ·10−16

AS SNR = 45.0 1.753 ·10−16 1.307 ·10−16 1.259 ·10−16

AS SNR = 50.0 1.794 ·10−16 1.344 ·10−16 1.299 ·10−16

Table 1: The sum squared difference (SSD) of different smoothing
methods. GF means Gaussian Filtering, AF means Adaptive Filter-
ing, and AS means Adaptsmooth. Remarkably, the adaptive filtering
and Adaptsmooth approaches produce an image that is closer to the
noiseless image than the noisy image is. The Gaussian filter does not
produce a similar result, since it has a significantly larger SSD. For
adaptive filtering, the minimum happens for SNR ∈ [18.0,19.0], while
for Adaptsmooth, the minimum happens for SNR ∈ [25.0,28.0].

Table 1 and figure 6 show several very interesting results. It ap-
pears that the noisy image has a larger SSD value than the adaptively
filtered image for an SNR value between 2.0 and 20.0. This result
is consistent for all three images that I have tested. This indicates
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(a) Ground truth comparison for n = 1.0

(b) Ground truth comparison for n = 0.5

(c) Ground truth comparison for n = 0.1

Fig. 5: Segmentation maps for the ground truths and three smoothing approaches. Each row represents a comparison with a ground truth with
a value of η ∈ {0.1,0.5,1.0}. Each row contains four segmentation maps, which are, in order: ground truth, Gaussian smoothing, SNR-based
adaptive filtering (using optimised parameters for this specific image), Adaptsmooth with SNR = 30.0.

that the adaptive filter approach can remove noise while preserving
the original image, in such a way that the correspondence between
the adaptively filtered image and the noiseless image is closer than the
correspondence between the noisy image and the noiseless image. The
best result is achieved for SNR ∈ [18.0,19.0], and after that the SNR
value increases rapidly. If the target SNR value becomes too large, the
SSD value increases, suggesting that we are smoothing too strongly,
such that we lose too much of the original image’s information. The
Gaussian filter has a clearly lower SSD value, which confirms with
our intuition that the Gaussian filter smoothes a lot of accurate infor-
mation away because it is applied uniformly. Adaptsmooth performs
slightly better than SNR-based adaptive filtering: it reaches a better
SSD value for lower and higher SNR values, and its minimum SSD
value is lower than the minimum SSD value for SNR-based adaptive
filtering. One possible reason for this could be that Adaptsmooth per-
forms more checks to see if the final result actually achieved the target
SNR value, and tries a different filter if it has not. SNR-based adap-
tive filter, in contrast, only applies a single kernel, the parameters of
which are computed based on the statistics of the area around the pixel

in question. It is possible that this difference in approach leads to
Adaptsmooth producing a lower SSD value.

Another interesting observation is that the quality of the SNR-based
adaptive filtering result quickly degrades for SNR values above 20.
This implies that it would make sense to build in a limitation on the
SNR value in order to avoid erroneous choices that lead to poor results,
for example because of a choice of too high an SNR value. However,
it is not obvious how this choice of a limit would vary for different
images. Further research could look into implementing the limitation
on the SNR value I laid out above in such a way that it produces strong
results for different images.

The above results have implications for SNR-based adaptive filter-
ing as a general smoothing tool. Its ability to decrease the loss of in-
formation from the noise makes it a very useful smoothing approach,
even outside the scope of the MTObjects framework. Its drawback
is an increased computation time, but as discussed in section 4.3, the
overhead from adaptive filtering might be mitigated by the use of the
GPU so that the resulting runtime is tractable for the problem at hand.
This depends on the problem for which it will be used, of course. For
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(a) Image 1

(b) Image 2

(c) Image 3

Fig. 6: The sum squared difference values plotted against the SNR
value for three images in the simulated image set. Around SNR =
18.0, SNR-based adaptive filtering performs close to Adaptsmooth,
but Adaptsmooth is mostly better in terms of SSD value. Both methods
improve the image quality compared to the unsmoothed image.

Adaptsmooth, the same considerations apply, but the impact on the
runtime remains large, unfortunately. As such, Adaptsmooth is more
useful when the runtime is not at all important and the faithfulness
of the output to the noiseless equivalent of the input image is the only
thing that matters. Otherwise, SNR-based adaptive filtering likely pro-
vides a better compromise between runtime and quality.

4.3 Execution Time

Because of the uncertain convergence properties of adaptive filtering
that have been set out in section 2.2, we need to execute the adaptive
filtering algorithm for multiple iterations. A consequence of this is that
applying the adaptive filtering algorithm to an image takes more time
than applying a uniform Gaussian blur filter. Therefore, it is impor-
tant to determine the execution time of the adaptive filtering algorithm

for a number of different settings. For this research, I use the Zeus
compute server available at the Rijksuniversiteit Groningen. The Zeus
compute server has 64 CPU cores, which allows me to analyse the
parallelisability of the adaptive filtering algorithm. Both the plain and
multigrid adaptive filtering algorithm have been accelerated with mul-
tiple CPU cores using the OpenMP library. The GPU implementation
of the multigrid algorithm uses the OpenCL library.

In this section, I first look at the plain adaptive filtering algorithm,
and discuss how the algorithm scales on multiple CPU cores. Af-
ter that, I look at the multigrid adaptive filtering algorithm, compare
its runtime with the plain algorithm, and discuss how the multigrid
algorithm scales on multiple CPU cores. Then, I look at the GPU
implementation of the multigrid algorithm. I use an RTX 2070 mo-
bile GPU for the GPU execution. Finally, I look at the runtime for
Adaptsmooth. Gaussian smoothing takes on the order of 2 seconds
on a 10,000× 10,000 image, and other smoothing approaches must
compare with this runtime.

4.3.1 Plain Adaptive Filtering
I run the plain adaptive filtering algorithm for 50 iterations on the Zeus
compute server. Table 2 shows the runtime for a number of CPU core
counts.

Number of Cores Runtime (seconds) Speedup
1 60771.75 1.0
2 30254.95 2.01
4 15129.96 4.02
8 7563.47 8.03

16 3806.59 15.96
24 2532.21 24.00
32 2061.11 29.48
48 1468.12 41.39
64 1244.01 48.85

Table 2: Runtime for the plain adaptive filtering algorithm for a num-
ber of different CPU cores. As the number of CPU cores grows, the
acceleration deviates noticeably from a linear speedup, which is in line
with the behaviour expected by Amdahl’s Law.

Fig. 7: The speedup for the plain adaptive filtering algorithm for mul-
tiple cores plotted against a purely linear speedup. As predicted by
Amdahl’s Law, the speedup deviates from a linear speedup for a larger
number of cores.

From table 2, it becomes clear that the algorithm scales well with
an increasing number of cores, with a speedup of 48.85 for 64 cores.
In general, Amdahl’s Law predicts that the speedup will deviate from
a linear speedup for large numbers of cores, and the results in table 2
align with this law. I can use Amdahl’s Law to compute the fraction
of code that I have to compute sequentially, as given in:

f =
p− s

s · (p−1)
(14)
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Here, p is the number of cores, s is the speedup, and f is the fraction
of sequential code. Filling in for p = 64, f = 64−48.85

48.85·63 = 4.92 ·10−3.
This value of f has some error, and more detailed statistical experi-
mentation is needed to establish a more confident range of values for
f . For the current research, I will use this value, but I maintain the
caveat that it does not represent a definitive statement for the speedup.

With knowledge of the fraction of sequential code, I can compute
the theoretical limit for the speedup of the adaptive filtering algorithm
using:

lim
p→∞

s(p) = lim
p→∞

1

f + 1− f
p

→ 1
f

(15)

Equation 15 is completely intuitive: if I have an infinite number
of cores, then the part 1− f that can be perfectly parallelised will be
executed in negligible time, meaning that only the sequential part de-
termines the total time, and the speedup is therefore inversely pro-
portional to the size of the sequential part of the code. Using this
result, the theoretical speedup limit for the adaptive filtering algorithm
becomes s(p)→ 1

4.92·10−3 ≈ 203. I will see in section 4.3.3 that the
speedup on the GPU is actually greater than what I have found here.
There are three explanations for this: firstly, the OpenMP library might
influence the theoretical maximum speedup because it produces over-
head on the construction of each parallel region, as well as in man-
aging the shared and private memory. Secondly, the Zeus compute
server has 64 cores, and its use was not limited to just this experiment.
Therefore, other (background) tasks might have interfered with the ex-
periment, leading to suboptimal results for this experiment. Thirdly,
the CPU cores in the Zeus compute server are older hardware than
the GPU, so it is possible that the per-unit performance of the GPU
CUDA cores is actually larger than the performance of the CPU cores
in the Zeus compute server. On the GPU, those factors do not occur
to the same extent, so the fraction f of sequentially executed code is
likely a lot smaller. In future research, it will be interesting to look at
the speedup in more detail, using a more isolated environment for the
CPU, possibly with more than 64 cores to decrease system overhead,
and using a lower-level library like POSIX threads to have more di-
rect control over the parallelisation. These factors might allow us to
establish a more accurate value for the fraction of sequential code.

4.3.2 Multigrid Adaptive Filtering
Because the multigrid adaptive filtering algorithm produces compara-
ble results in a significantly smaller number of iterations, I use 5 iter-
ations per adaptive filtering step in the multigrid algorithm. Table 3
shows the execution times and speedups for the CPU implementation
of the multigrid adaptive filtering algorithm.

Number of Cores Runtime (seconds) Speedup
1 14836.19 1.0
2 7597.49 1.98
4 3767.70 3.94
8 1891.40 7.84

16 952.30 15.58
24 639.03 23.22
32 512.33 28.96
48 369.95 40.10
64 323.99 45.79

Table 3: Runtime for the multigrid adaptive filtering algorithm for a
number of different CPU cores. Similar to the plain algorithm, the
speedup deviates from linearity as the number of cores grows, as ex-
pected by Amdahl’s Law.

The number of image pixels in the multigrid algorithm compared
to the plain algorithm is a factor 50

5·(2+2·0.25+0.0625 = 3.90 smaller. We
see this mirrored in the results when I compare tables 2 and 3: the
execution time for 64 cores, for example, is 1244.01

323.99 = 3.84 faster when
using the multgrid algorithm. This represents some substantial savings

Fig. 8: The speedup of the multigrid adaptive filtering algorithm plot-
ted against a purely linear speedup. The multigrid adaptive filtering
algorithm has a similar speedup compared with the plain adaptive fil-
tering algorithm.

in terms of time, which is important because the overall CPU execution
time is quite large in absolute terms.

4.3.3 Multigrid GPU Implementation
The GPU implementation of the multigrid algorithm has been evalu-
ated on the NVIDIA RTX 2070 mobile GPU. The evaluation of the
multigrid algorithm with 5 iterations per adaptive filtering step took
3.89 seconds. This represents a speedup of a factor 3814 compared to
the single-core CPU implementation of the multigrid algorithm when
run on the Zeus compute server. As mentioned in section 4.3.1, there
are a number of reasons why this speedup is larger than the computed
maximal speedup, including potentially more powerful per-core per-
formance and less sequential code overhead in the GPU implementa-
tion.

The short execution time on the GPU is important in keeping the
computation time of the MTObjects framework low. The execution
time of the rest of the MTObjects framework is larger than the adap-
tive filtering execution time on the GPU, meaning that the adaptive
filtering procedure does not represent a significant computational bot-
tleneck at the moment. There is currently no GPU implementation of
MTObjects available, so the speed advantage that the GPU brings to
the adaptive filtering algorithm compared to the rest of the algorithm
can be expected to endure for the foreseeable future.

4.3.4 Adaptsmooth
The Adaptsmooth library does not support multiple CPU cores, or
GPU execution. As a result, I can only make use of a single core im-
plementation, and must judge its runtime based on that. The runtime of
Adaptsmooth varies a lot based on the specific image, as mentioned by
Zibetti (2011). For the set of images used in this research, the runtime
has been found to be between approximately 6,400 and 8,000 seconds
for the mean filter and SNR = 30.0 on the Zeus compute server’s CPU
cores. This runtime is faster than the single CPU core implementation
of SNR-based adaptive filtering, but a lot slower than the GPU imple-
mentation. Because of the lack of GPU support, SNR-based adaptive
filtering can be significantly faster if the relevant hardware is present.
This means that the use of SNR-based adaptive filtering is more fea-
sible in a suitable setup with a GPU, especially considering that the
runtime of the MTObjects framework is on the order of a few min-
utes. Adaptsmooth, on the other hand, would dominate the runtime of
the MTObjects framework, leading to significantly degraded runtime
performance for the entire framework.

It must be noted that the algorithm underlying the Adaptsmooth
framework does not appear to throw up significant hurdles that would
make a multi-core implementation impossible. As such, it stands to
reason that the Adaptsmooth framework could be accelerated by us-
ing multiple CPU cores. This could reduce the execution time sig-
nificantly, depending on how well the algorithm can be parallelised.
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Because each CPU core could work on a distinct set of pixels of the
image, the parallelisation could potentially be strong, with comparable
speed-ups as SNR-based adaptive filtering achieved. That said, GPU
implementation would likely suffer from the many conditional branch-
ing operations implicit in the definition of the Adaptsmooth algorithm.
This means that SNR-based adaptive filtering will likely maintain a
significant advantage when GPU acceleration is available.

4.4 Quality Metric Results
The quality metrics laid out in section 3.2 provide a quantitative ap-
proach to comparing the different methods. In order to perform this
optimisation, I have optimised the parameters on the combined B score
quality metric, both on a per-image basis and using cross-validation on
the entire set. Before I present those results, I give the quality metric
results for Gaussian smoothing and Adaptsmooth.

4.4.1 Gaussian smoothing results
The Gaussian smoothing results form a baseline against which I can
compare the performance of Adaptsmooth and SNR-based adaptive
filtering. The results are presented in tables 4-6.

Image UM OM Area F A B
1 0.307 0.339 0.542 0.953 0.460 0.758
2 0.369 0.259 0.549 0.959 0.453 0.765
3 0.378 0.263 0.539 0.962 0.463 0.761
4 0.443 0.220 0.506 0.958 0.496 0.747
5 0.351 0.251 0.568 0.960 0.434 0.775
6 0.318 0.301 0.563 0.956 0.440 0.770
7 0.420 0.311 0.478 0.956 0.524 0.726
8 0.347 0.249 0.573 0.957 0.429 0.777
9 0.348 0.236 0.580 0.956 0.423 0.781

10 0.379 0.246 0.548 0.957 0.454 0.765

Table 4: Gaussian smoothing results for η = 1.0

Image UM OM Area F A B
1 0.236 0.438 0.503 0.953 0.500 0.742
2 0.259 0.363 0.554 0.959 0.448 0.768
3 0.282 0.364 0.540 0.962 0.462 0.760
4 0.322 0.270 0.580 0.958 0.422 0.780
5 0.276 0.372 0.535 0.959 0.465 0.759
6 0.248 0.407 0.524 0.955 0.478 0.753
7 0.310 0.401 0.494 0.956 0.508 0.734
8 0.271 0.363 0.547 0.956 0.455 0.763
9 0.262 0.357 0.557 0.955 0.445 0.768

10 0.274 0.292 0.600 0.957 0.403 0.789

Table 5: Gaussian smoothing results for η = 0.5

Image UM OM Area F A B
1 0.152 0.490 0.487 0.952 0.515 0.744
2 0.149 0.452 0.524 0.958 0.478 0.764
3 0.154 0.462 0.513 0.961 0.488 0.759
4 0.145 0.445 0.532 0.957 0.470 0.769
5 0.158 0.462 0.511 0.959 0.490 0.757
6 0.151 0.486 0.491 0.955 0.511 0.747
7 0.153 0.468 0.508 0.955 0.494 0.755
8 0.159 0.457 0.516 0.956 0.486 0.759
9 0.160 0.465 0.508 0.955 0.494 0.754

10 0.159 0.458 0.515 0.957 0.487 0.758

Table 6: Gaussian smoothing results for η = 0.1

The results for Gaussian smoothing appear to be rather consistent
across the three ground truth levels. This suggests that the results for
Gaussian smoothing can maintain a consistent performance regardless

of the depth to which we have to dig into the noisy regions to extract
segments - although this statement needs an added qualification that
we cannot simply assume this will continue to hold for ground truth
levels below η = 0.1.

While the combine B score stays relatively stable across the differ-
ent ground truth levels, it becomes clear when studying the over- and
undermerging error that the details of the segmentation performance
have changed significantly. For η = 1.0, the undermerging error is
rather high, while the overmerging error is rather low. This suggests
that on the one hand, the framework has a tendency to identify small
regions at this ground truth level which the ground truth marks as
larger regions, while on the other hand, it has relatively fewer problems
with creating too large regions that should have been broken up into
smaller regions. As the value of n goes down, we see the undermerg-
ing error decrease, while the overmerging error increases. This tells
us that the framework is having more issues with erroneously com-
bining multiple smaller regions in the ground truth into large regions,
while it has fewer issues with indicating multiple small regions where
a single large region should have been found. This result highlights a
property of uniform smoothing: it has a tendency to overmerge small
structures, whereas it might undermerge larger structures. This is of
course a consequence of applying the same filter everywhere, regard-
less of how noisy a part of an image may be. I would expect that this
type of behaviour does not occur for the adaptive filters, since those do
not have to trade off between oversmoothing sharp parts of the image
and undersmoothing noisy parts, at least not to the same degree.

4.4.2 Adaptsmooth results
For Adaptsmooth, I use the mean filter with SNR = 30.0. The results
are given in tables 7-9.

Image UM OM Area F A B
1 0.308 0.253 0.601 0.948 0.402 0.788
2 0.333 0.225 0.599 0.955 0.404 0.790
3 0.336 0.207 0.606 0.956 0.397 0.795
4 0.325 0.198 0.619 0.951 0.384 0.802
5 0.321 0.209 0.617 0.955 0.386 0.800
6 0.313 0.247 0.601 0.951 0.402 0.789
7 0.361 0.233 0.570 0.951 0.432 0.775
8 0.355 0.218 0.583 0.951 0.420 0.783
9 0.366 0.215 0.576 0.952 0.427 0.780

10 0.285 0.211 0.645 0.952 0.358 0.813

Table 7: Adaptsmooth results for η = 1.0

Image UM OM Area F A B
1 0.157 0.365 0.603 0.948 0.401 0.798
2 0.178 0.319 0.635 0.954 0.368 0.811
3 0.192 0.290 0.652 0.955 0.351 0.818
4 0.163 0.276 0.679 0.951 0.324 0.832
5 0.199 0.295 0.644 0.955 0.358 0.814
6 0.192 0.343 0.607 0.951 0.396 0.796
7 0.210 0.331 0.608 0.951 0.395 0.795
8 0.205 0.302 0.634 0.951 0.369 0.808
9 0.225 0.296 0.628 0.951 0.375 0.804

10 0.167 0.316 0.643 0.952 0.360 0.816

Table 8: Adaptsmooth results for η = 0.5

Adaptsmooth performs noticeably better than Gaussian smoothing
for η = 1.0 and η = 0.5. Surprisingly, it seems to perform worse than
Gaussian smoothing for η = 0.1. One possible reason for this is that
the choice of SNR = 30.0 was made based on studying the results for
Adaptsmooth using a manual search on the η = 0.5 ground truth level
comparison. It is conceivable that there is a different set of parameters
for Adaptsmooth that might give the best results for different ground
truth levels. It would be useful to perform a parameter optimisation
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Image UM OM Area F A B
1 0.151 0.484 0.493 0.948 0.510 0.746
2 0.151 0.487 0.490 0.954 0.512 0.746
3 0.153 0.470 0.506 0.961 0.496 0.756
4 0.145 0.522 0.458 0.950 0.544 0.730
5 0.157 0.470 0.505 0.959 0.497 0.754
6 0.151 0.503 0.475 0.950 0.527 0.738
7 0.152 0.510 0.468 0.950 0.535 0.733
8 0.158 0.472 0.502 0.951 0.501 0.750
9 0.159 0.463 0.510 0.951 0.492 0.754

10 0.158 0.473 0.501 0.957 0.501 0.752

Table 9: Adaptsmooth results for η = 0.1

on the Adaptsmooth framework for this set of images, which could
include the SNR value as well as the level cut parameter. Such an
optimisation process will likely take weeks of optimisation, however,
and is outside the scope of the current research.

Adaptsmooth somewhat shows the result of moving from uniform
to adaptive smoothing that I identified in section 4.4.1. While the un-
dermerging error does decrease from η = 1.0 to η = 0.1, the drop is
less pronounced - mostly because the η = 1.0 ground truths results in a
lower undermerging error than Gaussian smoothing to begin with - and
the change mostly happens between η = 1.0 and η = 0.5. The over-
merging error increases significantly from η = 1.0 to η = 0.1, which
runs counter to the prediction I made in section 4.4.1. This could be
because the choice of parameters happens to not be conducive to good
results for η = 0.1, which has a higher overmerging error than Gaus-
sian smoothing. We will see in section 4.4.3 that the best choice of
parameters for η = 0.1 is quite different from η = 0.5 and η = 1.0 for
SNR-based adaptive filtering as well.

The F-score results appear to decrease somewhat for Adaptsmooth
compared with Gaussian smoothing. The change is not very large,
however, and the overall result is still very high. The F-score results
are consistent across the different ground truth levels, but it seems to
perform slightly better at η = 0.1. This happens because the recall
is slightly better for lower ground truths, indicating that the adaptive
smoothing has some benefits for low-level ground truths. Note that we
did not see this increase for Gaussian smoothing.

4.4.3 Per-image optimisation results
The parameters that I have found for each individual image are shown
in tables 10-12, for each of the three ground truth levels.

Image move factor min distance snr
1 0.92568767 0.28261579 1.38643
2 0.65950762 0.0 3.65660402
3 0.81889062 0.38562925 4.98629275
4 0.96431417 1.0 6.13671007
5 1.0 0.57567605 5.23107303
6 0.95714614 0.4504884 3.54010363
7 1.0 1.0 5.32495799
8 0.8650103 0.89752605 3.52065815
9 0.99761604 0.89295837 3.01267856

10 0.74205335 0.30191291 1.37794358

Table 10: Per-image optimised parameters for η = 1.0

From the results in tables 10-12, I get the following parameter re-
sults:

• For η = 1.0, mean SNR value µ1.0 = 3.817 and standard devia-
tion σ1.0 = 0.487

• For η = 0.5, mean SNR value µ0.5 = 3.277 and standard devia-
tion σ0.5 = 0.464

• For η = 0.1, mean SNR value µ0.1 = 9.392 and standard devia-
tion σ0.1 = 0.416

Image move factor min distance snr
1 0.34692768 0.82828137 3.97802471
2 0.41209269 0.59014492 4.61129784
3 0.52351734 0.26098801 4.96949735
4 0.39360359 0.20038126 2.92393168
5 0.39433985 0.50332742 1.1097218
6 0.39762053 0.19246389 4.53909965
7 0.52429865 1.0 2.40003547
8 0.5 0.0 5.0
9 0.5763393 0.57847771 2.23622315

10 0.29215489 0.0 1.0

Table 11: Per-image optimised parameters for η = 0.5

Image move factor min distance snr
1 0.0 1.0 6.6528306
2 0.0 1.0 10.283411
3 0.0 0.72322604 8.47069779
4 0.0 0.70734705 11.03602553
5 0.0 0.50344385 9.04118522
6 0.0 0.63323575 9.60683135
7 0.0 0.46569087 10.86473639
8 0.0 1.0 8.94459809
9 0.0 0.0 8.3024839
10 0.0 0.57474463 10.72188578

Table 12: Per-image optimised parameters for η = 0.1

The difference between the mean values for η = 1.0 and η = 0.5
falls within 2 ·σ for both results, and therefore the statement that the
two mean values are different is not statistically significant. Perform-
ing a pairwise t-test corroborates this: I get p = 0.4617 for the pair-
wise difference between elements, which is not statistically signifi-
cant. This means that based on the current image samples, SNR-based
adaptive filtering does not appear to take on significantly different val-
ues for the optimised parameters between η = 1.0 and η = 0.5. The
mean SNR value for η = 0.1 is significantly different from the other
two other optimised parameter sets, and clearly requires a higher SNR
value for a good result. This makes sense, since our aim is to produce
the best segmentation for a very low ground truth level for η = 0.1,
and therefore we need to clean up a lot of the noise in order to recog-
nise structures within that noise. Therefore, a higher SNR value makes
intuitive sense, because more smoothing takes place in low-SNR parts
of the image.

The quality metric results for the per-image optimised parameters
are presented in tables 13-15. Figure 9 shows a direct comparison
between Gaussian smoothing, Adaptsmooth, and SNR-based adaptive
filtering for the combined B scores.

Image UM OM Area F A B
1 0.136 0.293 0.677 0.957 0.326 0.836
2 0.157 0.242 0.711 0.960 0.291 0.850
3 0.113 0.229 0.745 0.965 0.258 0.871
4 0.119 0.208 0.761 0.960 0.243 0.875
5 0.166 0.240 0.708 0.962 0.294 0.848
6 0.147 0.296 0.670 0.958 0.333 0.832
7 0.122 0.268 0.705 0.956 0.298 0.850
8 0.137 0.245 0.719 0.960 0.284 0.855
9 0.129 0.265 0.705 0.959 0.298 0.850

10 0.138 0.235 0.728 0.961 0.275 0.859

Table 13: Per-image optimisation SNR-based adaptive filtering results
for η = 1.0

The results of SNR-based adaptive filtering for η = 1.0 are strong:
the combined B score is roughly 0.05 higher than for Adaptsmooth,
and 0.09 higher than for Gaussian smoothing. This represents a signif-
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Image UM OM Area F A B
1 0.154 0.385 0.415 0.956 0.417 0.793
2 0.179 0.327 0.373 0.960 0.375 0.809
3 0.138 0.329 0.357 0.964 0.358 0.823
4 0.147 0.305 0.339 0.960 0.341 0.829
5 0.179 0.336 0.380 0.962 0.382 0.807
6 0.181 0.361 0.404 0.957 0.406 0.794
7 0.139 0.365 0.391 0.955 0.393 0.805
8 0.183 0.333 0.380 0.959 0.382 0.805
9 0.177 0.335 0.379 0.959 0.381 0.807

10 0.172 0.326 0.369 0.960 0.371 0.812

Table 14: Per-image optimisation SNR-based adaptive filtering results
for η = 0.5

Image UM OM Area F A B
1 0.152 0.459 0.484 0.956 0.486 0.760
2 0.150 0.432 0.457 0.960 0.459 0.774
3 0.153 0.437 0.463 0.963 0.465 0.771
4 0.145 0.438 0.462 0.959 0.463 0.772
5 0.158 0.438 0.466 0.961 0.468 0.769
6 0.150 0.458 0.482 0.957 0.484 0.761
7 0.153 0.459 0.484 0.956 0.486 0.760
8 0.159 0.420 0.449 0.959 0.451 0.776
9 0.159 0.426 0.454 0.959 0.456 0.774

10 0.158 0.454 0.480 0.959 0.482 0.761

Table 15: Per-image optimisation SNR-based adaptive filtering results
for η = 0.1

icant improvement, and shows that SNR-based adaptive filtering pro-
duces large improvements for situations in which we are interested
in finding brighter structures and do not care as much about recog-
nising faint structures. The F-score is higher for SNR-based adap-
tive filtering compared to both Adaptsmooth and Gaussian smoothing.
This suggests that SNR-based adaptive filtering is slightly more ca-
pable of detecting objects in the image that are present in the ground
truth segmentation. The difference in F-score has a rather small abso-
lute change, however, and the most significant change comes from
the area measures. In particular, we see that the overmerging er-
ror is quite close to the results produced by Gaussian smoothing and
Adaptsmooth, but the undermerging error is vastly lower. This makes
sense: I mentioned that at high level ground truths, Gaussian smooth-
ing is likely to not blur together the individual signals in the noisy parts
of the image, recognising objects that may be due to noise rather than
corresponding to the objects in the ground truths. SNR-based adaptive
smoothing alleviates this problem by smoothing more strongly in ar-
eas of large noise (and therefore low SNR value). It appears that this
approach significantly helps in reducing the undermerging of regions
(likely due to undersmoothing of the noise in those regions), which
leads to areas that correspond more closely to the shapes in the ground
truth.

The results at η = 0.5 are quite interesting. SNR-based produces
clearly better results than Gaussian smoothing, which again is mostly
due to a better undermerging error. But the results between SNR-based
adaptive filtering and Adaptsmooth are quite close. The mean com-
bined B score for SNR-based adaptive filtering is µAF = 0.8084 and
the standard deviation is σAF = 0.0106 and for Adaptsmooth, we have
µAS = 0.8092 and σAS = 0.0110. These results do not suggest that
the two are significantly different, since the two combined B score re-
sults are within two standard deviations of one another. A pairwise
t-test gives p = 0.6384, meaning that the pairwise differences are not
statistically significant. This is an interesting result because it sug-
gests that Adaptsmooth can perform comparably to SNR-based adap-
tive filtering in terms of quality, and it suggests that optimising pa-
rameters for Adaptsmooth might be a worthwhile undertaking to see
if Adaptsmooth can outperform SNR-based adaptive filtering for an
optimised parameter set. This does not solve the performance prob-

(a) Combined B scores for η = 1.0

(b) Combined B scores for η = 0.5

(c) Combined B scores for η = 0.1

Fig. 9: Combined B score results for η ∈ {0.1,0.5,1.0}

lem, however, so the practical applicability of Adaptsmooth remains a
challenge.

For the low ground truth level of η = 0.1, the lead over Gaussian
smoothing has decreased significantly, but the results for SNR-based
adaptive filtering are still better than those for Gaussian smoothing and
Adaptsmooth. The decreasing lead can mostly be ascribed to the in-
crease in overmerging error: the undermerging error remains low even
at this lower. However, Gaussian smoothing saw the undermerging
error drop to a similar level for this ground truth level. A possible
explanation for this is that at this low ground truth level, the effect
of undersmoothing from uniform Gaussian smoothing have become
negligible. The larger amount of oversmoothing could explain why
Gaussian smoothing has a larger overmerging error for this ground
truth level than SNR-based adaptive filtering.

The results for η = 0.1 raise some interesting questions about
the performance towards the limits of visibility in the simulated im-
ages. The current research is limited to looking at ground truths with
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η ∈ {0.1,0.5,1.0}, but it is presently unclear how the performance dif-
ferential between SNR-based adaptive filtering and Gaussian smooth-
ing will develop for η < 0.1. From the observations that I made about
the η = 0.1 result, I would expect that the overmerging error remains
worse for Gaussian smoothing compared with SNR-based adaptive fil-
tering, while the undermerging error probably remains comparable,
since undersmoothing does not occur anymore for either smoothing
method.

In summary, it appears that SNR-based adaptive filtering can pro-
duce very strong results compared with Gaussian smoothing at all
tested ground truth levels, and also seems to outperform or match
Adaptsmooth. This is a great result, considering it can be competitive
in terms of execution time with Gaussian smoothing when using the
GPU, while performing significantly better in terms of quality met-
rics. Also, it is significantly more useful in terms of execution time
than Adaptsmooth while producing equal or better results - although
parameter optimisation needs to be done in order to determine whether
this holds for systematically optimised parameters for Adaptsmooth.

4.4.4 Cross-validated optimisation results
In order to check the stability of the parameters found in section 4.4,
I now look at the cross-validation parameters and compare the quality
metrics for each ground truth level and each image with the per-image
parameter optimisation results. The per-image optimisation should
produce results that are better for each image (or at least equally good),
but those values are specific to one image, and are not in general appli-
cable to all the other images. Good generalisability of the parameters
requires that a single choice of parameters can produce good results
for all image in the set (for a specific ground truth level). The cross-
validated optimisation for each ground truth level has produced the
results presented in table 16.

Parameter η = 1.0 η = 0.5 η = 0.1
move factor 0.90962876 0.49350124 0.0
min distance 0.40943044 0.70785947 0.27691628

snr 2.96249242 4.80072810 9.49636014

Table 16: Cross-validation optimised parameters per ground truth level

The optimal parameters found in cross-validation are not too sur-
prising. Specifically the SNR value is in line with the kinds of val-
ues that the per-image optimisation found. The true test, however, is
whether the combined B scores are close. The quality metric results
are given in tables 17-19.

Image UM OM Area F A B
1 0.137 0.292 0.678 0.957 0.325 0.836
2 0.136 0.264 0.703 0.960 0.300 0.848
3 0.107 0.236 0.741 0.964 0.261 0.870
4 0.128 0.202 0.761 0.960 0.242 0.874
5 0.175 0.235 0.706 0.962 0.296 0.847
6 0.152 0.291 0.671 0.958 0.331 0.832
7 0.130 0.262 0.708 0.955 0.296 0.850
8 0.133 0.249 0.717 0.959 0.286 0.855
9 0.139 0.259 0.706 0.959 0.297 0.849

10 0.122 0.250 0.722 0.961 0.280 0.859

Table 17: Cross-validated optimisation SNR-based adaptive filtering
results for η = 1.0

For the most part, the cross-validated results are in line with the
idea that the parameters are stable: most of the combined B scores
stick very close to their corresponding per-image optimisation result,
with difference mostly staying within 0.003 of the per-image result.
Two results stand out negatively: for η = 0.5, image 3 sees a 0.008
deterioration in the combined B score, and image 10 sees a 0.011 de-
terioration. It would appear that the η = 0.5 ground truth has a few
more issues with finding a stable set of parameters for the entire image

Image UM OM Area F A B
1 0.144 0.397 0.577 0.956 0.425 0.790
2 0.164 0.337 0.625 0.960 0.377 0.810
3 0.167 0.326 0.634 0.964 0.368 0.815
4 0.134 0.321 0.652 0.960 0.350 0.826
5 0.166 0.347 0.615 0.962 0.386 0.806
6 0.173 0.370 0.591 0.957 0.411 0.793
7 0.143 0.363 0.610 0.955 0.392 0.805
8 0.182 0.335 0.619 0.959 0.383 0.805
9 0.177 0.325 0.620 0.959 0.382 0.804

10 0.146 0.374 0.598 0.960 0.404 0.801

Table 18: Cross-validated optimisation SNR-based adaptive filtering
results for η = 0.5

Image UM OM Area F A B
1 0.152 0.464 0.512 0.956 0.490 0.757
2 0.150 0.432 0.543 0.960 0.459 0.774
3 0.153 0.439 0.535 0.963 0.467 0.770
4 0.146 0.447 0.530 0.960 0.472 0.768
5 0.158 0.441 0.532 0.961 0.470 0.768
6 0.150 0.458 0.518 0.957 0.484 0.761
7 0.153 0.461 0.515 0.957 0.487 0.759
8 0.157 0.423 0.548 0.959 0.454 0.775
9 0.159 0.431 0.541 0.958 0.461 0.771

10 0.158 0.457 0.517 0.959 0.485 0.760

Table 19: Cross-validated optimisation SNR-based adaptive filtering
results for η = 0.1

set than the results for the other ground truths. It is not clear to me
why this might be the case. It is possible that this is simply a result
of the optimisation process, which might need some hyperparameter
tuning in order to prevent accidental non-optimal results. However,
the difference is not very large, and the results are still adhere to the
qualitative description given in section 4.4. Therefore, I will not pur-
sue this line of inquiry further, instead leaving it as a point of attention
that might be of interest for further research.

5 CONCLUSION

In this research I have looked at a form of adaptive filtering that
uses the local window signal-to-noise ratio to determine the degree of
smoothing applied to a specific position. This approach to smoothing
contrasts with uniform Gaussian smoothing in that it takes the local
properties of a point in an image into account when smoothing, rather
than applying the same filter strength everywhere. By using this SNR-
based adaptive filtering approach, I try to prevent both undersmooth-
ing in places where strong smoothing is needed, and oversmoothing
in places where little to no smoothing should be applied. I have com-
pared SNR-based adaptive filtering with uniform Gaussian smooth-
ing and with another adaptive filtering approach called Adaptsmooth,
which grows the radius of a mean filter kernel until it reaches the tar-
get SNR value. I have applied each of these smoothing techniques
in the context of the MTObjects segmentation framework, and have
compared the results. I have also compared the different smoothing
techniques in terms of their ability to decrease the sum squared dif-
ference between the noiseless image and the smoothed image (from a
noisy variant of the image). Lastly, I have studied the execution time
for each smoothing approach.

I have compared the results using a number of different quality met-
rics. The quality metrics have shown that SNR-based adaptive fil-
tering always holds an advantage over uniform Gaussian smoothing,
and often has the advantage over Adaptsmooth as well. My analysis
also suggests that, while the lead that SNR-based adaptive filtering has
against Gaussian smoothing decreases for lower-level ground truths, it
seems likely that the advantage of SNR-based adaptive filtering holds
for even lower-level ground truths than the ones I have tested in this
research. However, experiments need to be done (which includes gen-
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erating those ground truths) in order to verify this prediction. These
results show that SNR-based adaptive filtering is a useful addition to
the MTObjects framework.

The execution time of SNR-based adaptive filtering is very large
for a CPU-only device, but with a GPU, the execution time becomes
very small, on the order of several seconds for a 10,000× 10,000
pixel image. This is quite close to the 2-second runtime of Gaussian
smoothing, and means that SNR-based adaptive filtering does not in-
cur a significant penalty on the total runtime of the MTObjects frame-
work. Adaptsmooth, on the other hand, does not support GPU execu-
tion, and as a result requires on the order of 1 hour to evaluate on a
10,000× 10,000 pixel image. This would mean that it increases the
total execution time of a framework like MTObjects by a large factor,
and is therefore not a good option for the MTObjects framework - at
least if we want to preserve the competitive runtime that MTObjects
has.

Our experiments show that the sum squared difference of SNR-
based adaptive filtering of a noisy image compared with the noiseless
image is significantly lower than that of uniform Gaussian smooth-
ing, and furthermore is lower than the sum squared difference of the
unsmoothed, noisy image. This has practical implications for SNR-
based adaptive filtering as a general-purpose smoothing tool. Since it
decreases the sum squared difference, it improves the image quality,
and therefore could prove useful for many applications where increas-
ing the image quality is desired. Adaptsmooth can produce even lower
sum squared difference values, but for a suitable choice of SNR value,
SNR-based adaptive filtering can get quite close to the optimal result
that Adaptsmooth achieves. This competitive accuracy combined with
the superior execution time (on a GPU) likely puts SNR-based adap-
tive filtering ahead as the most practical, accurate method in this com-
parison.

As I have mentioned a number of times in this paper, I have not per-
formed parameter optimisation on Adaptsmooth due to the extremely
long execution time required for such a parameter optimisation. Future
research could perform this parameter optimisation in order to check
the accuracy of the findings in this research for optimal parameter set-
tings for Adaptsmooth.

SNR-based adaptive filtering uses a simple Gaussian filter, and only
varies the standard filter parameter as a response to the local SNR
value. Future research could look into more suitable kernels, for ex-
ample by using an anisotropic filter kernel. Such a kernel would make
it possible to fit an even more appropriately-shaped kernel for the local
noise characteristics, and it would not harm the GPU-compatibility of
the algorithm as long as the shape of the kernel can still be determined
without iterated evaluations on the image for each smoothing step.

As mentioned in section 4.2, it might be sensible to implement a
limitation on the SNR values depending on the specific image, so that
a user does not inadvertently choose too high an SNR value that would
degrade the performance of SNR-based adaptive filtering. Future re-
search could look into a way to implement this limitation, and study
how this limitation can be applied effectively across a range of differ-
ent images.
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