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Abstract

General relativity and gauge theory provide the theoretical foundations of our
current understanding of the universe, even though their field-theoretic formulations
seem to share no common features. Recently, intriguing new insights from Bern,
Carrasco and Johansson (BCJ) have shown that the group-theoretic and kinematic
building-blocks of their scattering amplitudes share systematic relations. These
relations have been proven to hold at tree-level and are conjectured to hold at
loop-level, allowing gravitational amplitudes to be written as the “square”, or as
it is famously called, the double copy, of two gauge theories. Manifestations of the
double copy have also been found for specific classes of exact classical solutions, and
for a large web of theories involving different types of kinematic and group-theoretic
information.

In this thesis, we first review the basics of the double copy and go through
some relevant applications. Afterwards, we present a new double copy covariant
formulation for the field equations and non-linear symmetries of a triplet of scalar
effective field theories describing the physics of Goldstone modes. These involve
the non-linear sigma-model (possibly coupled to gravity), (multi-field) Dirac-Born-
Infeld theory and the special Galileon. Specifically, we show that their non-linear
symmetries can be tuned to have the same type of terms, facilitating a mapping
between the symmetries and field equations by systematically interchanging group-
theoretic and kinematic information. In addition to this, we point out intriguing
relations between their classical non-linear solutions, which all take the form of a
(generalized) hypergeometric series. Finally, we investigate the double copy struc-
ture of their tree-level amplitudes and we outline mapping relations between their
building-blocks. The results highlight that these theories share the same underlying
structure, expressed in different flavour and kinematic spaces.
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1 Introduction and Research Questions
During the last decade, two of the most successful physical theories have been tested by
the largest experiments that have ever been performed. The first of these two events took
place in 2015, when the ATLAS and CM collaborations discovered the Higgs particle in the
Large Hadron Collider at CERN, located in Geneva [1, 2]. This discovery, among many
others, has enforced the credence in the standard model, which describes three of the four
fundamental forces (the weak, strong, and electromagnetic force), as a well-tested theory.
Five years later, the Laser Interferometer Gravitational Observatory (LIGO) collaboration
[3] verified Einstein’s theory of general relativity with the first detection of gravitational
waves originating from merging black holes. These great successes could have never found
place without the huge effort of theoretical physicists who devote their careers developing
theories that describe nature at every possible scale.

Although both theories are very successful, certain aspects are not fully understood
yet. For example, astrophysicists have found experimental evidence for dark matter and
dark energy, although both of these have no place in the current formulation of the SM.
On the other hand, GR breaks down when quantum effects become important, such as at
the centre of a black hole, where the curvature becomes singular, making no sense from a
physical point of view. One of the biggest open questions in theoretical physics is to find
a unified theory which seamlessly connects the SM and GR, resolving these issues. By
now it is clear that the conventional methods will probably not lead us there, and that
we will have to come up with radically new ideas such as new principles and symmetries.

The standard model is a non-abelian gauge theory, which is successfully formulated in
the formalism of quantum field theory (QFT). In the conventional QFT approach, a
theory is defined by thy the action which characterizes every possible state of the theory.
The connection between theory and experiment is made by scattering amplitudes, which
are the probability amplitudes associated with a particular particle scattering process.
Since scattering amplitudes are physical observables, they have the property that they
are independent of the (often) large redundancies of the theory, such as the gauge (or
diffeomorphism) choice and field basis.

Following the textbook approach, one usually calculates scattering amplitudes from
Feynman diagrams which serve as a diagrammatic representation of the process. Feynman
diagrams schematically work as follows: given a Lagrangian, one constructs a set of so-
called Feynman rules, depending on the specific interactions of the theory. Subsequently,
one draws diagrams for every possible way that the scattering process can take place,
and then one assigns, according to the Feynman rules, a certain value to each diagram.
By summing up all individual contributions, one finally obtains the scattering amplitude.
However, the problem with this method is that it is only manageable for the simplest
theories and processes. For higher order processes (i.e., with more external particles), or
more computationally intensive theories such as GR, the number of Feynman diagrams
and the number of terms per diagram rapidly increase. As an example, we consider the n-
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particle amplitude for maximal helicity violating (MHV) gluons1. Conservation of helicity
refers to the conservation of total helicity, i.e., ∑n

i=1hi = 0, where hi is the helicity of
external particle i. In fact, for scattering processes, total helicity is not necessarily a
conserved quantity. MHV refers to the helicity configurations for which the sum takes
the maximum value, while the amplitudes are non-vanishing. For gauge theory, MHV
configurations are configurations for which all but two gluons have the same helicity [4].
The rapid increase in the number of Feynman diagrams for MHV gluons can be seen in
the table below.

n 4 5 6 7 8 9 10 . . .
Number of diagrams 4 25 220 2485 34300 559405 10525900 . . .

Table 1: The total number of Feynman diagrams that needed to compute the n-point (i.e., in-
volving n external particles) scattering amplitude of MHV gluons [5].

In the early sixties, the S-Matrix program was initiated to calculate scattering am-
plitudes without relying on non-observable quantities; instead of this, people constructed
scattering amplitudes by requiring simple fundamental assumptions such as unitarity,
Lorentz invariance, analyticity and causality. The main goal of this program was to avoid
the divergences that typically arise in perturbative QFT calculations. However, this pro-
gram quickly came to an end when quantum chromodynamics (QCD) was able to solve
the problems that plagued the field-theoretic description of the strong interaction. A ma-
jor role in this breakthrough was played by Dutch physicist G. ‘t Hooft, who has shown
that non-abelian gauge theory is renormalizable. For his contributions to the field, he
received the 1999 Nobel prize, shared with his PhD supervisor M.J.G. Veltman.

However, a modern reincarnation of the S-matrix program was recently initiated with
the arrival of new methods that were developed with the aim to remove redundancies
of the QFT approach. The powerful computational methods that were developed have
shown that certain scattering amplitudes take a much simpler form than the Feynman-
diagrammatic approach would suggest. A very important insight came from Parke and
Taylor, who found that the n-point MHV gluon tree-level amplitude can be expressed in
a particularly compact form.2 Taking all external legs except legs 1 and 2 to have positive
helicity (as indicated by the superscripts), the n-point MHV tree-level amplitude can be
written as [4]

A
(
1−2−3+ . . .n+

)
= ign−2 〈12〉4

〈12〉〈23〉 . . .〈n−1n〉〈n1〉 . (1)

In the above expression, we used the notation 〈ij〉= λiαλjβε
αβ, where λiαλjβ is the outer

1Recall that helicity is the projection of spin along the direction of the particle momentum, that is,
hi ≡ si·pi

|si·pi|
, where si and pi respectively denote the spin and momentum of particle i.

2Tree-level refers to Feynman diagrams without loops: this means that quantum effects (i.e., the
creation and annihilation of virtual particles) are not taken into account.
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product of two spinors and εαβ is a polarization tensor (see [4] for details on this notation).
The resulting amplitude is much simpler than one would anticipate from the Feynman
diagrammatic approach, as can be seen in table 1. This difference shows that there are
many cancellations among the individual terms of the Feynman diagrams; it therefore
implies that the Feynman diagrammatic approach is ineffective for certain calculations.
The main reason for this difference is related to the fact that individual Feynman diagrams
are gauge dependent and contain off-shell propagators.

When one passes from Feynman diagrams to scattering amplitudes, all this nonphys-
ical information is lost. This does, however, not explain why such a compact final result
is obtained. Motivated by the above, and the increasing demand for precise calculations
to verify experimental results, the research in so-called on-shell analytical techniques3 has
developed enormously. These techniques have revealed many hidden properties of scatter-
ing amplitudes that are not manifest in the field-theoretic formulation. One of the major
discoveries in this field took place in the year 2004, when Britto, Cachazo, Feng and Wit-
ten (BCFW) discovered recursion relations [6, 7]. These relations state that higher-point
tree-level amplitudes of certain theories, including GR and YM, can be written in terms
of sums over products of lower-point tree-level amplitudes. These relations imply that
the higher order (that is, higher than the leading three-point) interaction vertices of these
theories only serve the purpose of making the gauge invariance manifest, and that they
are in principle unnecessary to build the physical observables.

In the conventional QFT formulation, GR and YM theory seem to be two completely or-
thogonal theories, due to their different types of symmetries, fields and (non)-renormalization
properties. However, their scattering amplitudes turn out to exhibit unexpected relations.
This idea was first discovered in string theory, when Kawai, Lewellen, and Tye (KLT)
found out that the tree-level amplitudes of gravity can be written as a product of two
(possibly distinct) Yang-Mills (YM) tree-level amplitudes [8]. Years later, Bern, Carrasco,
and Johannson (BCJ) came up with a more general and direct generalization of the KLT
relations, when they realised that these follow from a duality between the colour and
kinematic structures of these amplitudes [9, 10, 11]. BCJ found that all YM and gravity
tree-level amplitudes can be organised in such a way that the numerators consist of two
building blocks, or as it is often referred to, BCJ numerators. For YM theory there are
two distinct building blocks, consisting of a so-called colour factor, containing (products
of) structure constants, and a so-called kinematic numerator, depending on momenta and
polarization. On the other hand, they found the remarkable result that the corresponding
gravity amplitude can be built out of two of these kinematic numerators. Hence, given
the YM n-point amplitude, the replacement of the (n-point) YM colour factor by a copy
of the (n-point) kinematic numerator results in the gravity n-point amplitude and BCJ
therefore referred to it as the “double copy”.

For this double copy procedure to work, it is crucial that the amplitudes can be ex-
pressed in terms of purely cubic diagrams (i.e., diagrams with only three-point vertices),
with a colour factor and kinematic numerator associated with each diagram. This implies

3On-shell analytical techniques refer to analytical methods that are used to compute physical observ-
ables (see e.g. [4] for a comprehensive review)
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that this diagrammatic description is different from the Feynman diagrammatic descrip-
tion where higher-point vertices are allowed. To be more specific, the n-point tree-level
amplitude of YM can then be written as the following sum over cubic graphs i:

Atree
n =

∑
i∈ cubic

cini∏
αi p

2
αi

, (2)

where ci and ni are the colour and kinematic factors respectively. Furthermore, the
denominator is the product of all propagators of the corresponding diagram. The colour
and kinematic numerators must both be made to satisfy similar Jacobi identities and
anti-symmetry properties; this is often referred to as colour-kinematics (CK) duality.
Whenever this duality is manifest at e.g. the gauge theory side, then the double copy can
be used to obtain the corresponding gravity amplitude. Naturally, this construction also
works in the opposite direction.

By application of the BCFW recursion relations, the double copy is proven to hold
at tree-level [10], and for certain nontrivial examples it has also been shown to hold
at loop level [11, 12, 13]. The double copy does not only allow us to write gravity as
“Yang-Mills squared”, but it in fact relates a whole web of theories that are seemingly
unrelated in the conventional field-theoretic formulation [4, 14]. The scattering amplitudes
of these different theories are built out of different combinations of BCJ-numerators, all
containing different forms and combinations of kinematic and group-theoretic information.
An overview of the theories with a double copy formulation can be found in e.g. [14, 15].

The incredible effectiveness of the double copy can be understood by realising the fact that
YM only contains three- and four-point interaction vertices, whereas GR has infinitely
many higher-point interaction vertices (see figure 1). The latter, in combination with the
complicated non-linear tensor structure of GR, have as a consequence that conventional
calculations of GR amplitudes are much more computationally involved. These long cal-
culations on the gravity side can, fortunately, be omitted by calculating the corresponding
(much simpler) YM counterpart and using the double copy.

Naturally, the question arises whether an analogue of this double copy prescription also
exists at the off-shell level, involving e.g. (classical) equations of motion and solutions.
Recent studies (see for example [16]) have shown that double copy relations exist for
certain perturbative classical solutions of GR and YM, where the polarizations of the
external particles are identical. Perhaps this is not so surprising, since it turns out that
tree-level scattering amplitudes can be extracted from the individual terms of a pertur-
bative expansion of the classical solution. Double copies between exact classical solutions
have also been found to exist for a highly restricted set of so-called Kerr-Schild solutions
[17, 18, 19, 20]. For these solutions, the gravitational space-time metric must admit a
specific form that linearizes the otherwise highly non-linear Einstein field equations. De-
spite of the success of finding exact solutions, these solutions are very special in the sense
that they do not easily describe the systems that we naturally consider for the ampli-
tudes double copy (which we will often refer to as the BCJ double copy). An example of
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Figure 1: Interaction vertices contributing to (a) YM Feynman diagrams and (b) gravity Feyn-
man diagrams. Note that each external gluon (indicated by the number) has one colour index
and one Lorentz index, whereas the gravitons have two Lorentz indices. This figure is taken from
[15].

this unnaturalness is that the non-linearities of Yang-Mills theory, which are related to
gluon-gluon interactions, are completely absent. The Kerr-Schild double copy therefore
only maps linear solutions from theory to theory.

The fact that there currently are limited examples of classical double copies, in combina-
tion with the fact that all of these examples omit the mapping non-linearities, brings us
to the first research question of this thesis:

“Does there exists a double copy formulation that maps complete equations of
motion and their non-linear solutions from theory to theory?”

Instead of immediately trying to double copy non-linear solutions between YM and GR, we
will investigate this in a simpler setting. Specifically, we investigate the (classical) double
copy relations for three so-called exceptional effective scalar field theories. Effective field
theories are simplifications of physical theories that describe their behaviour at certain
energy scales. For the theories discussed in this thesis, this only involves the infrared
regime, or in other words, the low energy regime.

The theories that will be central in this thesis are the (gravitationally-coupled) non-
linear sigma model (NLSM), (multi-field) Dirac-Born-Infeld theory (DBI), and the special
Galileon (SG); these theories all describe the physics of massless Goldstone modes asso-
ciated with the breaking of (different) internal symmetries. There are many motivations
to investigate these theories, and the (perhaps) most important motivations are the fol-
lowing: (1) scalar theories facilitate mathematical calculations, (2) it is well known that
their amplitudes obey double copy relations [4], and (3) these theories are invariant under
specific non-linear symmetry transformations that are associated with spontaneous sym-
metry breaking patterns. In chapter 6, we will show that these non-linear symmetries,
which are in fact global symmetries with consequences for the S-matrix [21, 22, 23, 24],
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can be cast in a very similar form, revealing off-shell double copy relations between their
equations of motion and non-linear symmetry transformations.

Previous research on the double copy formulation of the triplet of theories has shown that
their amplitudes can be constructed out of various types of BCJ numerators. Besides the
YM colour factors of equation (2), this involves a scalar version of kinematic numerators
(purely depending on momentum contractions), which we refer to as scalar-kinematic
numerators, and another type of numerator that depends on both scalar-kinematics and
group-theoretic information related to the fundamental representation of the e.g. special
orthogonal group. Although research has been devoted to the structure of these numer-
ators, little is known about their systematic structure and its generalization to higher
order. Analogous to the off-shell mapping, it would be interesting to see whether there
also exist systematic relations between the individual numerators; this leads to our second
and last research question,

“Can we relate the different types of BCJ numerators in a systematical way?”

Previous research has already partially answered these questions. For instance, it is
widely known that the YM colour factors can be written in terms of products of structure
constants, with one additional structure constant for each additional external particle (see
e.g. [15]). Furthermore, (rather complicated) mapping relations between the YM colour
and kinematic numerators were already pointed out in [25]. Nevertheless, for the other
types of numerators of the scalar EFTs, there is much left to discover.

The above questions will be addressed in chapter 7, where we impose algebraic con-
straints on BCJ numerators to explicitly construct the flavour factors and scalar-kinematic
numerators, up to and including six-point. Furthermore, we identify the scalar EFTs that
can be constructed using these numerators; interestingly, we find that the BCJ factor-
ization of two flavour factors leads to the inclusion of graviton exchange for the NLSM.
Analogous to the off-shell mapping as described before, we find that the flavour factors
can be mapped onto the scalar-kinematic numerators by simple substitutions.

The existence of these relations at the on- and off-shell level implies that the three
theories have the same underlying structure, expressed in different flavour and kinematic
spaces.

Before we go into detail, let’s concisely outline the content of this thesis. In chapter 2,
we will start with a review of the duality between colour and kinematics. This will be
done by studying the examples that originally led to the discovery of the double copy,
relating the amplitudes of YM and GR. Thereafter, we review the most important relations
between partial amplitudes (i.e., the part of an amplitude corresponding to a fixed colour
configuration) and illustrate the motivation behind the double copy by comparison of
the computationally intensive perturbative GR with its much simpler YM counterpart.
Finally, we state the formal formulation of the amplitude double copy at tree-level.

In chapter 3, we show how the double copy manifests itself for a specific set of Kerr-
Schild double copies and we review this construction for the Schwarzschild and Kerr black
holes.
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In chapter 4, we illustrate a perturbative method that allows classical solutions to be
expressed in terms of connected correlation functions (or correlators), and using the LSZ
method we show that tree-level amplitudes can easily be extracted from these correlators.
This method not only emphasizes the close connection between tree-level amplitudes,
classical solutions and the role of redundancy in field-theoretic formulations, but it also
serves as a powerful computational tool that will be often used in chapters five and six.

In chapter 5, we derive the triplet of scalar EFTs by considering a general Lagrangian
with a certain amount of derivatives and a so-called enhanced soft limit, serving as ad-
ditional physical input. Furthermore, using the perturbation theory formalism of section
4, we explicitly show the amplitude double-copy relations between these theories as they
are already known in the literature.

In chapter 6, we turn to our first research question: we construct the aforementioned
off-shell double copy formulation for the triplet of scalar EFTs. In addition to this, we
derive their classical non-linear solutions and point out intriguing relations between them.

Finally, in chapter 7, we turn to our second research question: we investigate the
structure of the relevant BCJ numerators and amplitudes, and we outline the mapping
relations between them.

The results of the latter two chapters follow from a collaborative effort between
Diederik Roest (the first supervisor of this research project), Dijs de Neeling (PhD student
at the University of Groningen) and the author of this thesis. Currently, a preprint of the
resulting article is available via [26].

2 Scattering Amplitudes and the BCJ Double Copy
In this chapter, we will review the amplitude double copy which explicitly manifests the
squaring relation between YM and gravity amplitudes.4 We will do this by reviewing the
main concepts that underlie the double copy of scattering amplitudes, loosely following
[15, 19, 20, 27]. We will mostly illustrate these ideas on the hand of the few examples that
initially lead to its discovery. This involves YM, governing the interactions between gluons,
and on the other hand, GR, governing the interactions of the (hypothetical) gravitons.

2.1 Yang-Mills theory and colour-kinematics duality
YM theory is a gauge theory with symmetry group SU(N), describing the interaction of
massless spin-one fields Aaµ (the gluons) that live in the adjoint representation of SU(N).
The importance of YM theory follows from the fact that the standard model is essentially
described by a gauge theory with product group U(1)⊗SU(2)⊗SU(3), respectively refer-
ring to the symmetry groups of the electromagnetic, weak, and strong interactions. The
YM Lagrangian is given by [4]

LYM =−1
4 Tr(FµνFµν) , (3)

4With “amplitude” we always refer to tree-level amplitude, unless stated otherwise.
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where the field strength tensor Fµν is given by

Fµν(x) = ∂µAν−∂νAµ− ig [Aµ,Aν ] , (4)

with g being the coupling constant. The gauge field Aµ(x) transforms in the adjoint
representation of the Lie group, which implies that the Lagrangian (3) is invariant under
the gauge transformation

δAaµ = ∂µε
a+gfabcε

bAcµ , (5)
where the colour indices of the gauge field can be contracted with the generators via

Aµ(x) = Aaµ(x)T a . (6)

The Lie-algebra of the gauge group SU(N) has a total of N2− 1 generators, implying
e.g. that the SU(3) YM theory involves eight different “coloured” gluons. The generators
obey the commutation relation [

T a,T b
]

= ifabcT c , (7)

where fabc are the structure constants of the Lie algebra. Naturally, these structure
constants are anti-symmetric under the exchange of any two indices; additionally, they
satisfy the Jacobi identity [15]

fabefecd+f bcefead+f caefebd = 0 . (8)

The above relations allow us to rewrite the field strength (4) as

F aµν = ∂µA
a
ν−∂νAaµ+gfabcAbµA

c
ν , (9)

which implies that the Lagrangian (3) can be rewritten as

LYM = 1
2A

a
µ�A

aµ+ 1
2∂

µAνa∂νA
a
µ−gfabc (∂µAaν)AbµAcν− 1

4g
2fabef cdeAaµA

b
νA

cµAdν .

(10)
The attentive reader might have realized that the field strength (4) without the commu-
tator term is equivalent to the field strength of Maxwell’s equations of electrodynamics.
In fact, if one considers YM with the abelian gauge group U(1), then the generators of the
Lie algebra commute and the last term of (4) vanishes, leading to Maxwell’s equations of
electrodynamics.5 An important difference between abelian and non-abelian gauge theo-
ries is that the excitations of the former do not self-interact, whereas the excitations of the
latter do. This can be seen as follows: due to the absence of cubic or higher order terms
(i.e., terms containing three or more fields) in the electrodynamics Lagrangian, it follows
that the equations of motion are linear in the field, which implies that superpositions of
field configurations are also solutions of the equations of motion, and we therefore have
that photons can pass through each other without interacting (see figure 2a). On the other

5The unitary group of one-dimensional matrices, denoted U(1), is referred to as the abelian Lie group
due to the fact that it is the only commutative Lie group.
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hand, the equations of motion for gluons are non-linear, owing to the cubic and quartic
terms in the Lagrangian (10). Therefore, gluons (of different colour) can interact with
each other; this is visualized in figure 2b and 2c for contact and exchange interactions,
respectively.

Figure 2: Maxwell’s electrodynamics is quadratic in the gauge field, meaning that photons prop-
agate without interacting, as visualized for a 2→ 2 scattering process in (a). On the other hand,
non-abelian gauge theories involve up to quartic terms in the gauge field, giving rise to four-
point Feynman diagrams of the following types: contact diagrams with one quartic vertex (b)
and exchange diagrams with two cubic vertices (c).

In order to compute physically observable quantities, one should first remove the redun-
dancy of the theory by performing so-called gauge fixing. Gauge fixing amounts to the
addition of a term of the form Lgf = −1

2ξ
−1GaGa to the Lagrangian. One of the most

popular choices is the Lorentz gauge, corresponding to ξ = 1 and Ga = ∂µAaµ. Using this
gauge choice, the Lagrangian (10) takes the particularly simple form

L= 1
2A

a
µ�A

aµ−gfabc (∂µAaν)AbµAcν− 1
4g

2fabef cdeAaµA
b
νA

cµAdν , (11)

leading to the field equation

�Aaν +gfabcAbµ
(
2∂µAcν−∂νAcµ

)
+g2fabcf cdeAbµAdµA

e
ν = 0 . (12)

In this form, we can easily derive the Feynman rules, e.g., the gluon propagator is given
by the compact expression

∆ab
µν(p) =−iδ

abηµν
p2 , (13)

where pµ is the gluon four-momentum. We consider all external particles to be incoming;
this implies that momentum conservation for a n-particle scattering event reads

n∑
i=1

pµi = 0 . (14)

Upon using this convention, we find that the three-point vertex function is given by

V µ1µ2µ3
3,a1a2a3 = gfa1a2a3

{
ηµ1µ2 (p1−p2)µ3 +ηµ2µ3 (p2−p3)µ1 +ηµ3µ1 (p3−p1)µ2

}
, (15)
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where g is the coupling constant. Furthermore, the four-point vertex factor is given by

V µ1µ2µ3µ4
4,a1a2a3a4 =−ig2 {fa1a2efa3a4e (ηµ1µ3ηµ2µ4−ηµ1µ4ηµ2µ3)

+fa1a4efa2a3e (ηµ1µ2ηµ3µ4−ηµ1µ3ηµ2µ4)
+fa1a3efa4a2e (ηµ1µ4ηµ2µ3−ηµ1µ2ηµ3µ4)} .

(16)

Note that the higher-point (≥ 5) vertices vanish, which can be easily seen from the fact
that the Lagrangian contains at most four powers in the gauge field.

Since we are working with massless spin-one particles in four space-time dimensions,
the polarizations are states living in the fundamental representation of the Lie group
SO(2), which means that we have two polarization states (one with positive and one with
negative helicity) that can be embedded into the four-dimensional polarization vectors
εµ(p). To calculate physical observables, the external particles must satisfy so-called on-
shell conditions, meaning that the physical system obeys the classical equations of motion.
For massless particles the momenta are required to satisfy

pi·pi = 0 ,
n∑

i,j=1
pi·pj = 0 , (17)

where the latter follows from momentum conservation p1 +p2 + . . .+pn = 0. Furthermore,
the polarization vectors satisfy the constraints ε±i ·pi = 0 and ε±i ·ε±j = 0. Using the three-
point vertex function and these on-shell conditions, we find that the three-point tree-level
YM amplitude is given by

A3 = igfa1a2a3 {(ε1·ε2) [ε3 · (p1−p2)] + (ε2·ε3) [ε1 · (p2−p3)] + (ε3·ε1) [ε2 · (p3−p1)]}
=−2igfa1a2a3εµ1εµ2εµ3

(
ηµ1µ2pµ3

2 +ηµ2µ3pµ1
3 +ηµ3µ1pµ2

1
)
.

(18)
The four-point tree-level amplitude follows from two types of Feynman diagrams, namely,
contact diagrams and exchange diagrams. These two types are visualized in figure 3.

Figure 3: Two types of Feynman diagrams contributing to the YM four-point amplitude. On
the left we have diagrams with intermediate gluon exchange, and on the right we have contact
diagrams.

Upon cyclically permuting three external legs of the exchange diagram, while keeping one
external leg fixed, we obtain a total of three (inequivalent) diagrams. These diagrams
are referred to as the s, t and u-channel contributions respectively. The names of these
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channels are related to the momenta squared of the intermediate particle, in this case
corresponding to the Mandelstam variables s, t and u, which are defined as

s= (p1 +p2)2 , t= (p1 +p3)2 , u= (p1 +p3)2 . (19)

To be a bit more specific, replacing 1→ 2→ 3→ 1, while leg 4 is left untouched, corre-
sponds to the replacement s→ t→ u→ s of the Mandelstam variables. Using Mandelstam
variables, we can summarize the four-point kinematics for massless on-shell particles as
follows,

s+ t+u= 0 , s12 = s34 , s13 = s24 , s14 = s23 , (20)
where sij = (pi + pj)2 with i, j = 1, . . . ,4.6 The tree-level amplitude contribution of the
exchange diagrams can then be written as

−ig
2

s
fa1a2efa3a4e

(
(ε1ε2)(p1−p2)α+ 2εα2 (ε1p2)−2εα1 (ε2p1)

)
×((ε3ε4)(p3−p4)α+ 2ε4α (ε3p4)−2ε3α (ε4p3)) + . . . ,

(21)

where the dots denote the t and u-channel contributions. In addition, we have the contact
diagram (see figure 3), whose contribution to the amplitude reads

ig2
{
s

s
cs [(ε1·ε4)(ε2·ε3)− (ε1·ε3)(ε2·ε4)]

}
+ . . . , (22)

where we manually inserted a factor s/s. The latter amounts to the so-called splitting
procedure of the contact terms. This procedure allows us to write the total amplitude as a
sum over three terms of the form nc

D , where D are the propagators (here corresponding to
the Mandelstam variables). Furthermore, n and c are numerators containing purely colour
and kinematic information respectively. The polarization stripped four-point amplitude
can finally be written as a sum over purely cubic diagrams,

A4 = g2
{
nscs
s

+ ntct
t

+ nucu
u

}
, (23)

where a colour factor and a kinematic numerator is assigned to each Mandelstam variable,
i.e., for the colour numerators we have7

cs = fa1a2efa3a4e, ct = fa1a4efa2a3e, cu = fa1a3efa4a2e , (24)

and the polarization-stripped s-channel kinematic numerator finally reads

ns =
[(
−1

2η
αβηγλp1 ·p3−ηγλp2

αp3
β−ηαβp1

λp4
γ−2ηβλp2

αp4
γ
)

− (1↔ 2)− (3↔ 4) + (1↔ 2,3↔ 4) +
(
ηαληβγ−ηαγηβλ

)
p1 ·p2

]
.

(25)

6Note that sii ∝ p2
i vanishes on-shell, and that sij ≡ sji, so we really have 3! = 6 dependent kinematic

invariants.
7Note that the correct notation for the colour factors and kinematic numerators, (cs)a1a2a3a4 and

(ns)αβγλ respectively, is suppressed for notational simplicity.
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Like before, the t and u-channel kinematic numerators can be obtained by cyclic permu-
tation of three of the four external legs. The key point of this splitting procedure is that
we have rearranged the amplitude in terms of a set of purely cubic diagrams, see figure 4.

Figure 4: Cubic s, t and u-channel diagrams (from left to right), contributing to the YM four-
point amplitude. The curly lines represent gluons. As explained in the text, it is important to
note that these “BCJ diagrams” are different from Feynman diagrams. This figure was taken
from [15].

It turns out that many field theories allow their higher-point (n≥ 4) tree-level ampli-
tudes to be expressed in terms of purely cubic diagrams [15]. As will soon become clear,
this is property is satisfied by all theories that have a double copy formulation.

The above discussion naturally extends to higher order. For instance, at five-point,
where we have a total number of 15 distinct BCJ diagrams, following from 5! = 25 distinct
Feynman diagrams of two different types. Firstly, we have 15 cubic diagrams (see figure
5a, and secondly we have 10 diagrams with one cubic and one quartic vertex (see figure
5b. The latter number of diagrams can be understood as follows: given a diagram with
four external legs and two three-point vertices, we have two possible vertices to attach
the fifth leg, resulting in the diagram of figure 5b, or its mirrored counterpart. Either of
these choices gives rise to five inequivalent permutations, adding up to a total number of
10 distinct diagrams.

Figure 5: Two types of Feynman diagrams that contribute to the YM five-point amplitude:
(a) cubic diagrams and (b) diagrams with one cubic and one quartic vertex [27]. Inequivalent
permutations must be taken into account when considering the full amplitude.

In this case, the splitting procedure works analogously to the four-point case. For instance,
we have one contribution for each of the three colour structures that one can write down
for the diagram in figure 5b. Including its mirrored counterpart, this adds up to six. Going
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through all five inequivalent permutations, we eventually find a total number of 30 contri-
butions, which implies that each of the 15 colour factors (one per cubic diagram) obtain
two contributions from the diagrams with a quartic vertex. At five-point, the kinematic
factors are more complicated higher-point generalizations of four-point kinematic factors
(25), while the 15 colour factors naturally take the simple form

ci = fa1a2bf ba3cf ca4a5 , cj = fa1a2bf ba4cf ca5a3 , ck = fa1a2bf ba5cf ca3a4 , (26)
where each of the above factors contributes five inequivalent permutations.
By now, it should be obvious that this new BCJ diagrammatic description is different
from the Feynman diagrammatic description since we write the complete amplitudes as
a sum over solely cubic graphs. For general, say n-point scattering events, the amplitude
sums over a total number of (2n−5)!! cubic graphs.8 This number can be understood as
follows: cubic diagrams with n= j+1 external legs can be built from a j-point diagram by
attaching an external leg to any of the 2j−3 edges of the j-point diagram. By induction,
we find the result

#diagrams = 1·3·5·7 · · · ·(2j−3) = (2n−5)!! . (27)
Hence, for n= 5, we indeed find a total number of 5!! = 15.

Returning to the previously discussed four-point example, it is easy to see that the
colour factors (24) satisfy the Jacobi identity

cs+ ct+ cu = 0 . (28)
In addition to this, it was first realised by [9] that the kinematic numerators (25) satisfy
a similar algebraic relation, which is often referred to as the “kinematic Jacobi identity”,

ns+nt+nu = 0 , (29)
where the on-shell conditions (17) were imposed. The Jacobi identity (28) and its kine-
matic analogue (29) are schematically visualized in figure 6. These algebraic conditions
naturally extend to higher order and a detailed discussion on this will follow in chapter 7.

Figure 6: Schematic visualization of the colour and kinematic Jacobi identities. The sum of
s, t and u-channel BCJ numerators, here denoted by ci and ni below the corresponding diagram,
vanishes on-shell.

8Note that the double factorial is different from the factorial iterated twice. The double factorial can
be written as n!! =

∏[ n
2 ]−1
k=0 (n− 2k) = n(n− 2)(n− 4) · · · , where the product is taken over all integers

ranging from 1 up to n, including only integers of the same parity as n.
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Similar relations hold for the higher-point factors, such as (26) and their kinematic
counterparts. The fact that both types of numerators satisfy similar relations indicates
some sort of algebraic similarity between colour and kinematics, despite their radically dif-
ferent group-theoretic and kinematic natures. This provides one of the simplest examples
of colour-kinematics duality. Furthermore, the kinematic numerators are not unique in the
sense that they mix via so-called (possibly non-local) generalized gauge transformations

n′s = ns+ sα (pi , εi) , n′t = nt+ tα (pi, εi) n′u = nu+uα (pi, εi) , (30)

which leaves the amplitude invariant as the additional part is always proportional to an
on-shell vanishing quantity. This invariance can be seen by substituting the above in (23).
We obtain

A′4 =A4 + (cs+ ct+ cu)α =A4 , (31)
where the latter equality follows from the Jacobi identity (138).

Both colour-kinematics duality and generalized gauge invariance are crucial aspects of
the double copy between the amplitudes of different theories. As mentioned before, CK-
duality was first proposed by Bern, Carrasco and Johansson [9] and it is therefore also
referred to as BCJ-duality. BCJ found out that this is a general property of YM ampli-
tudes at tree-level, in the sense that one can always find a form of the numerators such
that the n-point tree-level amplitude can be written as

Atree
n =

∑
i∈ cubic

cini∏
αi p

2
αi

, (32)

where the sum is taken over all (2n−5)!! cubic diagrams. The generalized gauge transfor-
mations (30) represents a gauge transformation, possibly combined with a field-redefinition
or the addition of higher derivative terms that leave the theory invariant by force of the
group-theoretic Jacobi identity (138). In addition to the colour and kinematic Jacobi
identities, BCJ later proposed that the colour and kinematic numerators share equivalent
anti-symmetry properties, that is,

ci =−cj =⇒ ni =−nj . (33)

This can be understood as follows: if we consider two diagrams α and β, where β is
related to α by the interchange of two external legs that are attached to the same vertex,
then the anti-symmetry of the structure constants fabc = −facb implies that the colour
factors are related by cα = −cβ. The anti-symmetry of the kinematic numerators then
naturally follows from the Feynman rules.

Although BCJ proposed that it is always possible to find CK-dual numerators, it often
is a nontrivial task to manifest the duality in the usual field-theoretic formalism. One way
to obtain manifest BCJ duality is to change field basis or to add (or subtract) terms that
vanish on-shell, or a combination of both. When done properly, the Feynman rules will
automatically generate BCJ dual diagrams, having the same effect as specific generalized
gauge transformations. However, the problem with this approach lies in the fact each sub-
sequent order requires additional on-shell vanishing terms and field redefinitions, making
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it hard, if not impossible, to find a closed form Lagrangian that manifests CK-duality at
any given order. An example of such a construction is given in [28], where infinitely many
non-local gauge fixing terms were added to the YM Lagrangian, yielding manifest BCJ
duality for all Feynman diagrams.

2.2 Relations between partial amplitudes
Before we move on to discuss the double copy, we will first briefly review the most relevant
properties of colour ordered (or partial) amplitudes as these will play an important role
throughout this thesis. For a YM theory with gauge group SU(N), we already saw that
the amplitude numerator consists of kinematic numerators multiplied by (products of)
structure constants. We can express the structure constants (and thus the colour factors)
in terms of traces of generators by using the relation

ifabc = Tr([T a,T b],T c) = Tr(T aT bT c)−Tr(T bT aT c) . (34)

Next, we can use the Fierz-identity, given by [15]

(T a)i
j (T a)k

l = δi
lδk

j− 1
N
δi
jδk

l , (35)

to write the higher-point colour factors in terms of traces of generators. For instance, the
four-point s-channel colour factor can be written as

fa1a2efea3a4 =tr(T a1T a2T a3T a4)− tr(T a1T a2T a4T a3)
− tr(T a2T a1T a3T a4) + tr(T a2T a1T a4T a3) ,

(36)

and similar considerations apply to higher orders. In the single-trace basis, the n-point
amplitude can be written as [27]

Atree
n = gn−2 ∑

σ∈Sn−1

An[1σ(2)σ(3) . . .σ(n)] tr
(
T a1T σ(a2)T σ(a3) . . .T σ(an)

)
, (37)

where the sum is taken over all (n− 1)! inequivalent permutations of single-traces and
the An[1σ(2)σ(3) . . .σ(n)] are so-called partial (or colour-ordered) amplitudes; these cor-
respond to the part of the amplitude given a fixed colour configuration of the external
legs. Partial amplitudes are naturally easier to compute than the full amplitude since we
only have to take one colour configuration into account. This basis of (n− 1)! traces is,
however, over-complete as a consequence of the following symmetry relations between the
partial amplitudes [20]:

1. Cyclicity: due to the cyclicity of the trace, meaning that only the relative ordering
is relevant, we have that the partial amplitudes obey the relation

An[1,2, . . . ,n] = An[2, . . . ,n,1] .
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2. Reflection-(anti) symmetry: by looking at the definition of colour-ordered am-
plitudes (37), we naturally observe that

An[1,2, . . . ,n] = (−1)nAn[n, . . . ,2,1] .

This property can be traced back to the (anti)-symmetry of the structure constants,
for instance, at three-point this can be easily seen to be the consequence of the
anti-symmetry relation fabc =−facb.

3. Photon decoupling: by taking all generators to be the unit matrix we obtain the
relation

An[1,2,3, . . . ,n] +An[2,1,3, . . . ,n] +An[2,3,1, . . . ,n] + · · ·+An[2,3, . . . ,1,n] = 0 .

If we then replace one gluon with a photon (which has unit matrix generators), the
photon does not interact with the gluons, yielding a vanishing amplitude and hence
leading to the above relation.

4. Kleiss-Kluijf (KK) relations: The KK relations were first conjectured in [11]
and eventually proven in [29]. The proof is quite complicated and beyond the
scope of this thesis, we therefore only state the result. First, we introduce ordered
permutations OP(α,β) of two sets, say α and β. The ordered permutations are all
permutations of the merging of {α} and {β} that maintain the original ordering of
their individual elements. For example, the ordered permutations of {α} and {β}
could be

{α1, . . . ,αn,β1, . . . ,βn} ,
{α1,β1,α2,β2, . . . ,αn,βn} ,
{β1, . . . ,βj ,α1, . . . ,αn,βj+1, . . . ,βn} ,
{β1, . . . ,βj ,α1, . . . ,αk,βj+1, . . . ,βn,αk+1 . . . ,αn} .

(38)

The KK relations then state that partial amplitudes are related via

An[1,{α},n,{β}] = (−1)|β|
∑

σ∈OP((α),(β)T |)
An[1,σ,n] , (39)

where the subsets {α} and {β} contain external particles, |β| denotes the number of
particles within {β}, and the superscript T denotes reverse ordering of the set. The
KK relations imply that partial amplitudes can be expressed as a linear combination
of the n−2! partial amplitudes that remain upon fixing two external legs. Hence,
so far we have further reduced the number of independent partial amplitudes to
(n−2)!.

5. BCJ relations: This number can be even further reduced to (n−3)!, by virtue of
the BCJ relations [9], which are closely related to CK duality. The BCJ relations
relate different partial amplitudes with three fixed external legs, and with kinematic
invariants as their coefficients. The BCJ relations explicitly read [9]

n∑
i=3

i∑
j=3

s2jAn[1,3, . . . , i,2, i+ 1, . . . ,n] = 0 , (40)
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where s2j are kinematic invariants given by p2·pj .

The KK and BCJ relations together give rise to the group-theoretic and kinematic Ja-
cobi Identities that form the basis of CK duality. Initially, the BCJ relations were only
conjectured in [9], however, later they have been proved many times in string-theoretic
context [30], as well as in field-theoretic settings [31].

2.3 Perturbative gravity and the KLT relations
In this section, we will briefly review the theory of gravity in its traditional setting, which
is the well known general GR. In the introduction, we have already mentioned that GR
plays a central role in this thesis since it was initially found to be the double copy of YM.
Here we will illustrate that the calculations of gravitational amplitudes are much more
computationally involved compared to YM, emphasizing the peculiarities of the double
copy.

In GR, the space-time metric tensor gµν plays the role of a spin-two field whose classical
equations of motion are the so-called Einstein field equations (EFE). Famous examples
of exact solutions to the EFE are the Schwarzschild and Kerr metric (for the original
papers see [32] and [33] respectively), which have the physical interpretation of stationary
and rotating black holes respectively. Although these exact solutions obey double copy
relations with their YM counterparts, we will here focus on amplitudes instead. GR is
field-theoretically described by the Einstein-Hilbert (EH) action

SEH = 1
2κ2

∫
d4x
√
−gR+Smatter , (41)

where g is the metric determinant, R the Ricci scalar, Smatter the contribution from the
matter fields (if present), and κ2 = 8πG the gravitational constant.9 Functional differen-
tiation of the Einstein Hilbert action (41) with respect to the space-time metric gµν yields
the EFE

Gµν ≡Rµν−
1
2Rgµν = κ2Tµν , (42)

where the stress-energy tensor Tµν follows from the matter term. In order to apply flat-
space field-theoretical methods, we will write the metric as

gµν = ηµν +κhµν , (43)

where ηµν is the flat background metric and hµν is the fluctuation over the background,
which is often referred to as the graviton field. Substituting this Ansatz into the Einstein-
Hilbert action allows us to expand in powers of coupling constant

SEH = S
(0)
EH +κS

(1)
EH +κ2S

(2)
EH + . . . , (44)

where the ellipses denote the infinitely many higher order contributions, giving rise to
interaction vertices of arbitrary order. The explicit expression can be derived by using

9Note that we work with the units c= 1.
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basic mathematical manipulations such as expanding √−g in terms of the graviton, how-
ever, for the sake of this thesis, we skip the derivation and immediately state the original
result from [27]. In this paper, the authors used the so-called de-Donder gauge, which is
defined by ∂µhµλ−∂λhµµ/2 = 0, where the Lorentz indices of the graviton can be raised and
lowered by the Minkowski metric ηµν . The advantage of the de-Donder gauge is that it
yields a particularly simple Ricci tensor. The three-point vertex is obtained by function-
ally differentiating the cubic part of the action with respect to the three gravitons. This
leads to the result

V µνστρλ
3 (p1,p2,p3) = δS

(1)
EH

δhµνδhστδhρλ

= sym
[
−1

4P
(
p · qηµνηστηρλ

)
− 1

4P
(
pσpτηµνηρλ

)
+ 1

4P
(
p · qηµσηντηρλ

)
+ 1

2P
(
p · qηµνησρητλ

)
+P

(
pσpληµνητρ

)
− 1

2P
(
pτqµηνσηρλ

)
− 1

2P
(
pρqληµσηντ

)
+1

2P
(
pρpληµσηντ

)
+P

(
pσqλητµηνρ

)
+P

(
pσqµητρηλν

)
−P

(
p · qηνσητρηλµ

)]
,

(45)
where sym implies symmetrization over the pairs of indices µν, στ and ρλ. The symbol
Pn indicates that summation should be performed over the n distinct permutations of the
momentum-index triplets (µ,ν,p1), (στp2) and (ρλp3). Hence, when fully expanding the
above, we already have more than 100 terms. Furthermore, the corresponding graviton
can easily be found to be given by

Gµνστρλ(p2) = (ηµσηντ +ηµτηνσ−ηµνηστ )
p2 . (46)

Given the above, one can easily calculate the three-graviton amplitude. Similar consider-
ations apply to higher order, where the number of terms drastically increases, making it
extremely tedious to calculate amplitudes.

By comparison of the three-point GR and YM vertices, it should be obvious that per-
turbative gravity is much more involved in the current approach, and that there seems
to be no obvious relation between their vertices. The reason for the complexity is that
the diffeomorphism invariance of GR causes the vertices to have immense gauge freedom.
Field redefinitions and gauge choice can drastically simplify the vertices, however, pertur-
bative gravity remains computationally intense, even for computers. To remove the gauge
redundancy we should instead require all external particles to be on-shell, requiring the
conditions

εµρ = ερµ, pµε
µρ = 0, pρε

µρ = 0, εµµ ≡ ηµνεµν = 0 , (47)
where εµν is the graviton polarization tensor. Imposing these on-shell conditions on the
three-graviton vertex (48) reduces it to the much simpler form

G3µρ,νλ,στ (p1,p2,p3) =−i [(p1−p2)σ ηµν + cyclic ] [(p1−p2)τ ηρλ+ cyclic ] , (48)
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and we therefore conclude that the canonical formulation of GR is not very efficient for
calculations in perturbation theory.

Intriguingly, we recognise the three-graviton vertex (48) to be equal to the product of
two YM three-point vertices (15). The existence of similar relations between YM and GR
amplitudes was also discovered in string theory, where Kawai, Lewellen and Tye (KLT)
showed that tree-level gravity amplitudes can be written as the product of two YM partial
amplitudes [8].

The KLT relations state that the n-point tree-level amplitudes of closed can be written
as the sum over products of open-string partial amplitudes, with coefficients depending
on kinematic invariants and so-called string tension. These relations are valid in all
dimensions. In the field-theory limit, which is the limit of infinite string tension (or
low energies), the tree-level amplitude of a massless open-string vector becomes the YM
colour-ordered partial amplitude, whereas the massless closed-string amplitude becomes
the graviton amplitude. At four and five-point, the KLT relations explicitly read

M tree
4 (1,2,3,4) =− is12A

tree
4 (1,2,3,4)Ãtree

4 (1,2,4,3) ,
M tree

5 (1,2,3,4,5) =− is12s34A
tree
5 (1,2,3,4,5)Ãtree

5 (2,1,4,3,5)
+ is13s24A

tree
5 (1,3,2,4,5)Ãtree

5 (3,1,4,2,5) ,
(49)

where Mn are n-point graviton amplitudes and An are colour ordered YM amplitudes.
At four-point, we have a manifest relation between gravity and YM since the gravity
amplitude consists of two YM amplitudes with different colour ordering. Nevertheless, for
higher-point amplitudes (n >)5, these relations quickly become much more complicated
in the sense that the YM partial amplitudes have increasingly complicated kinematic
coefficients, see e.g. [19].

2.4 The BCJ double copy
Although the KLT relations clearly manifest relations between tree-level amplitudes of
gravity and colour ordered tree-level gauge theory amplitudes, they fail to hold at loop-
level and the relations become increasingly unclear at higher-point. Here we will review
the BCJ double copy, which provides an explicit squaring relation (without kinematic
coefficients) that is proven to hold at tree-level, and has been verified to hold at loop
level [15]. The general statement of the BCJ double copy can be seen as a consequence
of CK-duality that we discussed in section 2.1.

To get started, we recall that the n-point YM amplitude can be written as a sum over
products of CK-duality satisfying colour and kinematic numerators, that is,

Atree
n =

∑
i∈ cubic

cini∏
αi p

2
αi

. (50)
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BCJ found out that replacing the n-point colour factors ci with n-point kinematic numer-
ators ni yields exactly the n-point graviton amplitude

Mtree
n =

∑
i∈ cubic

n2
i∏

αi p
2
αi

. (51)

The interchange of colour factors by kinematic numerators is what we refer to as the
(BCJ) double copy; similarly, we refer to the inverse as the single copy. This double copy
statement goes even further: for instance, we can have two distinct sets of kinematic
numerators, say ni and ñi, where only one set satisfies (say ni) CK-duality, while the
other set may be in an arbitrary form. The YM amplitudes are corresponding to these
distinct sets are given by

Atree
n =

∑
i∈ cubic

cini∏
αi p

2
αi

, Atree
n =

∑
i∈ cubic

ciñi∏
αi p

2
αi

. (52)

If we now take the Ck-duality satisfying kinematic numerators, say ni, and replace the
corresponding colour factor ci with the arbitrary form kinematic numerators ñi of the
other (possibly different) YM theory, we still obtain the n-point gravity amplitude

Mtree
n =

∑
i∈ cubic

niñi∏
αi p

2
αi

. (53)

To prove this, we consider the difference between the two distinct numerators,

∆i = ni− ñi , (54)

which by force of (52) must satisfy

∑
i∈ cubic

ci∆i∏
αi p

2
αi

= 0 . (55)

The only way the above can be satisfied is by force of the Jacobi identity on the colour
factors. Since the kinematic numerators ni satisfy the kinematic analogue of the Jacobi
identity, we can replace ci by ni. We obtain the expression

∑
i∈ cubic

ni∆i∏
αi p

2
αi

= 0 , (56)

which obviously establishes the equivalence relation
∑

i∈ cubic

nini∏
αi p

2
αi

=
∑

i∈ cubic

niñi∏
αi p

2
αi

. (57)

This relation allows for the mixing of symmetries in the gravitational amplitudes since
it is possible to use two sets of different kinematic numerators corresponding to two YM
theories with different (super) symmetry content.
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In addition to the above, we can also take the “zeroth copy” by replacing the kinematic
numerators of YM with colour factors, possibly from a different gauge theory. The tree-
level amplitude of the zeroth copy can then be written as

Atree
n =

∑
i∈ cubic

cic̃i∏
αi p

2
αi

, (58)

and coincides with the Bi-adjoint scalar theory (BAS) amplitude. The BAS is a massless
cubic scalar theory, with the fields φaā living in the bi-adjoint representation of to (possibly
different) Lie groups G and Ḡ. The corresponding field equations read [34]

�φaa
′
−yfabcf āb̄c̄φbb̄φcc̄ = 0 , (59)

where y is a coupling constant, and fabc and f āb̄c̄ are the structure constants of the
unbarred and barred Lie groups respectively. The BAS enjoys the special property that
its BCJ and Feynman-diagrammatic descriptions are equivalent because the theory solely
involves three-point interactions [25].

3 Classical Kerr-Schild Double Copies
At this point, it should be obvious that the double copy is intrinsically defined in a
perturbative sense, since the double copy provides a mapping of scattering amplitudes
between different theories. However, in the introduction, we already mentioned that
scattering amplitudes can be extracted from the individual terms of the perturbative
expansion of the classical field. This already hints at a close connection between the on-
shell amplitudes (observables), and on the other hand, the off-shell equations of motion.
A natural question that arises is whether this symmetry underlies the whole dynamics
of theory, or if it is some trick that merely connects the scattering amplitudes. Hints at
the former have recently been coming from the so-called Kerr-Schild double copies (for
examples, see [17, 18, 19, 37]), which prescribes a mapping between complete classical
solutions of BAS, YM and GR.

As we discussed before, gluons only interact if they carry different colour charges,
which can be seen as a consequence of the fact that the equation of motion for a single
colour charge becomes linear in the field. The key strength of the Kerr-Schild double copy
is that a specific Ansatz on the space-time metric causes the otherwise highly non-linear
Einstein Equations to become linear, with the consequence that it potentially satisfies a
relatively simple mapping relation with its YM counterpart, which can also be cast into
a linear form. Classical solutions, contrary to scattering amplitudes, do depend on gauge
fixing, field redefinitions and coordinate changes. For this classical double copy to be
manifest, it will therefore be essential to pick the right field basis and gauge choice.

Recently, the Kerr-Schild double copy successfully managed to map many different
solutions from YM to GR and vice-versa. A few of the most popular examples are the
Schwarzschild black hole [17], the Kerr black hole [17], Taub-NUT space-times [37] and
accelerated point-particles (18). In this chapter, we will review the basics of the Kerr-
Schild double copy on the hand of a few examples, loosely following [17, 19].
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3.1 General relativity in Kerr-Schild coordinates
To get started, we recall from chapter 2 that the Einstein-Hilbert Lagrangian is given by

LEH = 1
2κ2
√
−gR+Lmatter , (60)

with the corresponding field equations

Rµν−
1
2Rgµν = κ2Tµν . (61)

We wish to solve this equation for the metric tensor gµν , in the presence of a particular
(classical) source J , contributing the term Lm to the Lagrangian. The choice of coordi-
nates that will eventually facilitate the classical double copy are the so-called Kerr-Schild
(KS) coordinates; in KS coordinates, the metric takes the special form

gµν = ηµν +κhµν

≡ ηµν +kµkνφ,
(62)

where φ is a scalar function and kµ a four-vector with the additional property that it is
null with respect to the two metrics ηµν and gµν . We will follow our previously introduced
language and refer to hµν as the graviton field. Mathematically, the nullity properties of
kµ implies

kµη
µνkν = 0 = kµg

µνkν . (63)
As a consequence of the above, the inverse space-time metric takes the simple form

gµν = ηµν−κkµkνφ. (64)

Using the metric and its inverse, we can compute the Christoffel symbols,

Γρµν = κ

2
(
∂µk̂

ρk̂νφ+∂ν k̂
ρk̂µφ−∂ρk̂µk̂νφ+κ

(
k̂ρk̂σφ

)(
∂σk̂µk̂νφ

))
, (65)

and the Ricci and scalar curvature,

Rµν = 1
2
(
∂µ∂α (φkαkν) +∂ν∂

α (φkαkµ)−∂2 (φkµkν)
)
,

R = ∂µ∂ν (φkµkν) ,
(66)

where we used the convention ∂µηµν ≡ ∂µ. This convention is essential since the Ricci
tensor with mixed indices Rµν obtains the highly remarkable property that it is linear in
the graviton.

Let’s now consider the time-independent case, where all time derivatives vanish. With-
out loss of generality, we can set k0 = 1, such that the time-like component is completely
contained in the scalar function φ. Under these conditions, the Ricci and scalar curvature
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(66) respectively read

R0
0 = 1

2∂i∂
iφ,

Ri0 =−1
2∂j

[
∂i
(
φkj

)
−∂j

(
φki

)]
,

Rij = 1
2∂l

[
∂i
(
φklkj

)
−∂j

(
φklki

)
−∂l

(
φkikj

)]
,

R = ∂i∂j
(
φkikj

)
.

(67)

To make the connection with SDYM, we define the gauge field Aµ = φkµ, and refer to
it as the single copy of the graviton. This vector field has the associated (abelian) field
strength

Fµν = ∂µAν−∂νAµ . (68)
The EFE in vacuum Rµν = 0 now implies that the single copy satisfies the Maxwell’s
equations, that is,

∂µF
µν = ∂µ [∂µ (φkν)−∂ν (φkµ)] = 0 . (69)

We could make the above more general by assigning colour to the single copy, i.e., we can
write the gauge field as Aaµ = kµφ

a. As a consequence of this trivial colour dependence,
the non-linear part of the Yang-Mills equation vanishes, effectively recovering Maxwell’s
equation

�Aaν +fabcAbµ
(
2∂µAcν−∂νAcµ

)
= 0 . (70)

Hence, we see that the non-abelian gauge field Aaµ solves the Maxwell’s equations.
We can go even further and take the zeroth copy by removing another vector kv from

the graviton hµν . The remaining object is the scalar field φ, which satisfies the free field
equation

∂i∂iφ= 0 . (71)
This equation turns out to be equivalent to the equation of motion of the BAS (59) with
the fields living in the adjoint representation of abelian Lie group U(1).

3.2 Kerr-Schild approach to the self-dual sectors
In the previous section, we discussed general vacuum Kerr-Schild solutions in general
relativity. It turns out that the vacuum solutions to the self-dual equations of YM and
GR are exactly of this form. Before we discuss the double copy, we will review the
equations of motion of the self-dual sectors, following [17].

The SDYM equation of motion in four dimensions is given by

Fµν = i

2εµνρσF
ρσ , (72)

with all solutions Aµ being complex. Since the self-dual configurations physically represent
waves of positive polarization, it will be useful to transform to the (2 + 2)-dimensional
light-cone coordinates:

u= t− z , v = t+ z , w = x+ iy . (73)
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Using the above, the line-element takes the form

ds2 =−dudv+dwdw̄ . (74)

Furthermore, using the light cone gauge with Au = 0, the SDYM equations (72) imply

Aw = 0 , Av =−1
4∂wΦ , Aw̄ =−1

4∂uΦ , (75)

where the Lie-algebra valued scalar field, Φ≡ φaT a, satisfies the field equation

∂2Φ− ig [∂wΦ,∂uΦ] = 0 . (76)

The above turns out to be equivalent to the SDYM equations of motion (72). On the
other hand, SDG has the equation of motion

Rµνλδ = i

2εµνρσR
ρσ
λδ . (77)

Expanding the metric gµν as in (62), and using diffeomorphism freedom, we find that the
nontrivial components of the graviton hµν read

hvv =−1
4∂

2
wφ, hw̄w̄ =−1

4∂
2
uφ, hvw̄ = hw̄v =−1

4∂w∂uφ. (78)

Furthermore, the scalar field φ satisfies the equation of motion

∂2φ−κ
(
∂2
wφ∂

2
uφ− (∂w∂uφ)2)= 0 , (79)

which we identify to be equivalent to the SDG equation of motion (77).
In order to make the connection with scattering amplitudes, it would be natural to

work in momentum-space, where the Kerr-Schild Ansatz (62) becomes

gµν = ηµν +κk̂µk̂ν(φ) , (80)

where k̂µ is now a linear differential operator. Since the metric gµν must be symmetric,
the commutator of k̂ with itself is required to vanish, i.e., [k̂µ, k̂ν ] = 0. Furthermore, we
restrict to double copies without a dilaton field, which forces us to require the graviton
field hµν to be trace free, corresponding to ηµν k̂µk̂ν(φ) = 0. In light cone coordinates, the
linear momentum operators are given by

k̂u = 0 , k̂v = 1
4∂w , k̂w = 0 , k̂w̄ = 1

4∂u . (81)

Using the above, we straightforwardly find that the vacuum EFE becomes

Rµν = κ

2
[
−k̂µk̂ν∂2φ+κ

(
k̂µk̂ν∂ρ∂σφ

)(
k̂ρk̂σφ

)
−κ

(
k̂µk̂ρ∂

σφ
)(
k̂ν k̂σ∂

ρφ
)]

= 0 , (82)

which is different from the position space EFE, in the sense that the Ricci tensor is no
longer linear in the graviton field. However, we recover linearity when we force the linear
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operator k̂µ to be a vector. Using (86), we find that the Einstein vacuum equation Rµν = 0
is equivalent to the scalar equation

∂2φ− κ2
(
k̂µk̂νφ

)
(∂µ∂νφ) = 0 , (83)

which coincides with the so-called Plebanski equation for SDG [16]. This equation is well
known to provide an example of a classical double copy with SDYM at the gauge-theory
side [16].

Next, we move on to the gauge-theory counterpart by assuming that the gauge field
takes the form

Aaµ = k̂µφ
a , (84)

which will, as we will soon see, turn out to be a solution to the SDYM equations of motion.
The Yang-Mills equations (12) for this gauge field reads

k̂ν∂
2φa+ 2gfabc

(
k̂µφb

)(
k̂ν∂µφ

c
)

= 0 . (85)

By multiplication with the generator T a of the Lie group, and using equations (81), we
find that the above reduces to the Lie algebra valued scalar equation

k̂ν
(
∂2Φ− ig [∂wΦ,∂uΦ]

)
= 0, (86)

which is equivalent to the SDYM equation (76).
The above clearly illustrates that the momentum space description of SDYM and SDG

in Kerr-Schild coordinates is an example of a classical double copy. That is, given the
fact that (62) with a specific scalar field φ is a solution to the EFE, then upon taking the
single copy, or in other words, by removing one vector kµ from the graviton field hµν and
interchanging the charges and coupling constants, we obtain the non-abelian gauge field
Aaµ = φakµ, which satisfies the SDYM equations of motion (76).

In the upcoming sections, we will illustrate specific examples of Kerr-Schild double
copies by taking well known GR vacuum solutions as a starting point. Thereafter, we
take the (Kerr-Schild) single copy in order to construct and interpret their Yang-Mills
counterparts.

3.3 The Schwarzschild black hole
The simplest spherically symmetric and time-independent solution of the vacuum EFE is
the Schwarzschild black hole. The line element of this solution in Schwarzschild coordi-
nates is given by [38]

ds2 =−
(

1− 2GM
r

)
dt2 +

(
1− 2GM

r

)−1
dr2 + r2dΩ2 , (87)

where G is the gravitational constant and M the mass of the black hole. To utilize the
double copy, we must exploit the gauge freedom to transform the above to Kerr-Schild
coordinates. It turns out that the metric takes the KS form after the basis transformation

t′ = t−2GM log
(

r

2GM −1
)
, (88)
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which brings the line-element (87) to the form

ds2 =−(1− 2GM
r

)dt2 + 4GMdtdr+ (1 + 2GM
r

)dr2 + r2dΩ2 , (89)

from which we identify that the metric is given by

gµν = ηµν + 2GM
r

kµkν , (90)

where kµ = (1, r̂). Comparing this solution to the general Kerr-Schild solution (62), we
easily identify

hµν = κ

2φkµkν , φ= M

4πr . (91)

Following the Kerr-Schild double copy prescription, we obtain the single copy (i.e., the
gauge field) by replacing the coupling constant, removing one momentum vector kµ, and
replacing the massM by colour chargeQ≡ caT a. This can be summarized by the following
mappings

κ

2 → g, M → caT
a, kµkν → kµ . (92)

The resulting single copy reads

Aµ = gcaT
a

4πr

(
1, x

i

r

)
≡ gcaT

a

4πr kµ , (93)

which turns out to be a solution to the (abelian) Yang-Mills equation [17]. In its current
form, it is not clear how we should physically interpret this single copy. To make it easier
to physically interpret this solution, we exploit the gauge freedom, meaning that we can
add the derivative of any scalar function, say χ, to the gauge field. Mathematically, this
transformation can be written as

Aaµ→ Aaµ+∂µχ
a(x) . (94)

Our task is to carefully choose χa, such that the spatial parts of Aaµ vanish. This can be
achieved by the choice

χa =−gca4π log
(
r

r0

)
, (95)

where the length scale r0 does not affect the result and is only introduced to make the
argument of the logarithm dimensionless. Using the above, the single copy takes the form

Aµ =
(
gcaT

a

4πr ,0,0,0
)
, (96)

which we immediately recognise to be the Coulomb solution of a static (colour) charge
located at the origin. This result is not surprising, since this Coulomb solution is the most
general static spherically symmetric solution of gauge theory [17]. Hence, by fixing the
gauge in a specific way, we have established the classical double copy between a point-like
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solution in general relativity and its gauge theory counterpart. It turns out that this
result generalizes straightforwardly to higher dimensions [17].

In addition to the classical solutions, we will also investigate the double copy structure
of the classical sources. To understand how this works, we will begin by analyzing the
(relatively simple) sources of the above example. From literature it is well known that
the Schwarzschild solution is sourced via the energy-momentum tensor [17],

Tµν =Mvµvνδ(3)(~x) , vµ = (1,0,0,0) , (97)

which has the interpretation of a point mass M , located at the origin ~x= 0. Returning to
gauge theory, we substitute the single copy (96) into the (abelian) Yang-Mills equations;
we obtain the equation

∂µF
µν = jν , (98)

where the current jv is given by

jν =−g (caT a)uνδ3(~x) . (99)

This current represents a static colour charge at the origin. Hence. a point charge caT a
at the origin double copies to a point mass M , also located at the origin. In this example,
we already anticipated that the Schwarzschild metric and its single copy correspond to
point-like charges, so the above learns us nothing new.

In the next, slightly more complicated example, we will see that the double copy
structure of the sources is less intuitive. Specifically, we will see that the different natures
of the charges (i.e., mass and colour charge), and the way the corresponding forces act on
them, leads to classical sources with a different physical interpretation.

3.4 The Kerr black hole
Next, we consider the Kerr black hole, which is another vacuum solution of the EFE with
the physical interpretation of an uncharged rotating black hole (see [33] for the original
paper). In Kerr-Schild coordinates, the graviton and scalar field respectively take the
form

hµν = κ

2φ(r)kµkν , φ(r) = M

4π
r3

r4 +a2z2 , (100)

where a is a constant, and kµ is given by

kµ =
(

1, rx+ay

r2 +a2 ,
ry−ax
r2 +a2 ,

z

r

)
. (101)

The radial distance r, which was previously given by r =
√
x2 +y2 + z2, is now implicitly

defined via the equation
x2 +y2

r2 +a2 + z2

r2 = 1 , (102)

which is valid everywhere, except for the region in the xy-plane where the massive disc of
radius a is located. This disc can be parametrized as {x2 +y2 ≤ a2, z = 0}, and it contains
a ring-like singularity at its boundary x2 +y2 = a2.
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In the original paper from Kerr, the solution was given in Cartesian Kerr-Schild co-
ordinates, but the calculations can be significantly simplified by using the spheroidal
coordinate system, parametrized by

x=
√
r2 +a2 sinθ cosφ, y =

√
r2 +a2 sinθ sinφ, z = r cosθ , (103)

where r,θ and φ are the radial, polar, and azimuthal coordinates respectively (see figure
7).

Figure 7: Cross section (with constant ϕ) of the spheroidal coordinate system. The singularity is
located at the endpoints of the horizontal line, with coordinates (r= 0,θ= π/2). These endpoints
form a ring when considering all values of ϕ. This image was taken from [39].

In terms of these coordinates, the Minkowski line-element reads

ds2 =−dt2 + ρ2

a2 + r2dr
2 +ρ2dθ2 +

(
r2 +a2

)
sin2 θdϕ2 , (104)

where we defined ρ2 ≡ r2 + a2 cos2 θ. Furthermore, in this basis, the vector kµ and the
scalar function φ(r) read

kµdx
µ = dt+ ρ2

a2 + r2dr−asin2 θdϕ, φ(r) = M

4π
r

ρ2 . (105)

Analogous to the previous section, we now take the single copy of the graviton (100) by
the replacements (92). The resulting single copy reads

Aaµ = g

4πφ(r)cakµ , (106)

and solves the (abelian) Yang-Mills equations in the exterior of the ring-like singularity.
This single copy is equivalent to the Schwarzschild single copy (96), apart from the in-
terchange of the variables r and ρ. Hence, we see that sending the angular momentum
to zero, a→ 0, results in ρ→ r. In this limit, the Kerr black hole no longer rotates and
therefore becomes a Schwarzschild black hole.
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The classical source corresponding to the Kerr black hole and its single copy coun-
terpart turn out to have a different physical interpretation [17]. Let’s therefore proceed
in a similar fashion as before by taking the Kerr black hole solution as a starting point.
To obtain the classical source corresponding to the Kerr black hole, we use the fact that
the Ricci curvature tensor can be written as a divergence, as can be seen from equation
(66). Using this property, and the fact that the scalar curvature vanishes, we find that the
EFE (61) equates the energy-momentum tensor with a divergence. We can then calculate
the energy-momentum tensor by using the divergence theorem.10 The usefulness of this
approach lies in the fact that we can use the same method to identify the source on the
gauge theory side. In spheroidal coordinates, parametrized by (t,r,θ,ϕ), we find that the
energy-momentum tensor reads [41]

Tµν = σ (wµwν + ζµζν) , σ =− M

8π2acosθ , (107)

where wµ and ζµ are the space-like vectors

wµ = tanθ
[
]1,0,1/(asin2 θ),0

]
, ζµ = [0,1/(acosθ),0,0] . (108)

The energy-momentum tensor represents a negative proper surface density σ, rotating
around the z-axis with a superluminal velocity, see wµ. The centrifugal force that arises
due to this rotation is balanced by a radial pressure following from the term involving ζµ .

We now use the method of the previous section to interpret the single copy source.
Substitution of the single copy (106) into the abelian Yang-Mills equations yields the
source current

jµ =−δ(z)Θ(ρ−a)g (caT a)
4π

1
a2 cosθ

(
sec2 θ,0, sec2 θ

a
,0
)
. (109)

By introducing the vector
ξµ =

(
1,0,a−1,0

)
, (110)

we can rewrite the current (109) as

jµ = qξµ, q =−δ(z)Θ(a−ρ)gcaT
a

4πa2 sec3 θ , (111)

which can be interpreted as a colour charge distribution rotating about the z-axis, anal-
ogous to the rotating massive disc. At this point, it is not entirely clear that the energy-
momentum tensor (107) is a double copy of the source current (111), however, we can
make the double copy relation more obvious by writing the energy-momentum tensor
(107) in terms of the vector (110), which yields

Tµν = δ(z)Θ(ρ−a)
(
−M sec3 θ

8πa2

)[
ξµξν− cos2 θη̃µν

]
, η̃µν = diag(−1,1,1,0) , (112)

10The divergence theorem states that the volume integral of the divergence of a vector field is equal to
the surface integral of the vector field over the boundary of the volume. Mathematically, the divergence
theorem can be written as

∫
V (∇ ·F)dV =

∫
∂V F · da, where V , F, ∂V and da respectively denote the

volume, the vector field, the boundary of V and the infinitesimal surface element [40].
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where η̃µν is defined in Cartesian coordinates (t,x,y,z). We can now interpret the first
term of (152) as the double copy of the source current (111), where the colour charge
distribution is replaced by a mass distribution. The second term corresponds to a sta-
bilizing radial pressure, which is needed to prevent the massive disc from undergoing a
gravitational collapse.

The above examples leave some questions unanswered. The first question is: why are all
single copies in these examples (and the other examples in the references) abelian? Or in
other words, why do the non-abelian single copies Aµ satisfy the abelian YM equations?
This could logically be explained by the fact that the EFE for Kerr-Schild solutions are
linear in the graviton field [17], which implies that we automatically obtain a linear single
copy after extraction of a vector kµ. Previous research [42] involving stationary sources
has shown that it is always possible to gauge away the non-abelian part of the solutions.
It might therefore be the case that the necessary condition for the existence of a Kerr-
Schild double copy is that the YM part must be linear. Another explanation could be that
there exist non-abelian single copies that double copy to the same space-times as abelian
single copies. The latter could be related to the information loss during the process. For
example, in [43] it was shown that infrared singularities of YM theory and Maxwell’s
electrodynamics both double copy to the same infrared singularity in gravity.

Currently, the double copy construction of any complete non-linear classical solutions
of YM to its gravity counterpart remains elusive. However, the examples that we have
illustrated in this chapter, in combination with the well understood double copy of their
amplitudes, raise hope that a more general formulation of the classical double copy could
be possible.

In this chapter, we have only seen a restricted selection of the many possible KS double
copies. For extensive detail and many more examples such as KS double copy in curved
space-times and higher dimensions, or the double copy of multiple Kerr Black holes, the
interested reader is invited to have a look at the overview, provided by [19, ch. 3,4,5,6].
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4 A Perturbative Approach: Amplitudes from Clas-
sical Solutions

In chapter 2, we have seen the double copy in its original and most well known formulation:
that is, by simply interchanging BCJ-duality satisfying numerators, one can hop from the
amplitudes of one theory to the tree-level amplitudes of another theory. This way, the
double copy is naturally a perturbative statement.

On the other hand, in chapter 3 we have also seen that there exist double copy relations
between exact (but linear) classical solutions of the BAS and the self-dual sectors of GR
and YM. This exact double copy crucially relies on (1) the Kerr-Schild Ansatz, which
linearizes the otherwise highly non-linear EFE, and (2) the trivial colour dependence on
the gauge theory side, effectively transforming YM into Maxwell’s electrodynamics. The
above already indicates that the amplitude double copy is only one of the (perhaps) many
more manifestations of the double copy.

In this chapter, we will, to a certain extent, bridge the gap between these two seemingly
unrelated manifestations. As mentioned before, it is well known that perturbative clas-
sical solutions can be expressed in terms of connected correlation functions (which we
shall often refer to as correlators). The classical solution, which is a one-point correlator,
can be obtained by expanding the field in the coupling, followed by subsequently solv-
ing the perturbed equation of motion at each order in the coupling. The solution, say
at order n in the coupling, corresponds to (n+ 2)-point correlators (here also referred
to as perturbative corrections). In momentum space, these perturbative corrections take
the form of integrals that implicitly encode scattering amplitudes. In addition, these in-
tegrals also explicitly depend on the classical source. Finally, we can use the so-called
LSZ (Lehmann-Symanzik-Zimmermann) formalism [19] to extract n-point tree-level am-
plitudes from n-point perturbative corrections. The resulting amplitudes do, as they
should, not depend on the source, as a consequence of the fact that these will be differ-
entiated out by the LSZ formula. The methods illustrated here will also be used in the
next chapter to calculate amplitudes and to illustrate double copy relations for a triplet
of scalar effective field theories.

On the other hand, by substituting the explicit form of the source into the perturbative
corrections and evaluating the integrals, we can iteratively construct the (possibly non-
linear) classical solution. When considering amplitudes in the double copy context, the
off-shell form of the integrand, which can be thought of as the off-shell extension of
the amplitude (or off-shell amplitude), is only relevant for manifest BCJ-duality of the
numerators, since the final amplitude solely depends on the on-shell information. On the
other hand, for classical solutions, the off-shell terms (i.e., terms that vanish on-shell) do
change the outcome of the integral and consequently also the form of the classical solution.
This off-shell form of the integrand is a consequence of field basis and gauge choice, which
means that these should be chosen carefully to (possibly) manifest the double copy of
non-linear classical solutions and equations of motion.

Below, we will first introduce the perturbation theory formalism in momentum space
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and illustrate the LSZ formalism on the hand of a simple example, loosely following [16].
Thereafter, we illustrate the perturbative formalism for the BAS, SDYM and SDG. Specif-
ically, we show how the BCJ numerators arise in the momentum-space integrands, and
how the kinematic factors that arise in these integrands have similar algebraic properties
as the colour factors. As a consequence of leaving the classical sources J implicit, higher
order non-linear terms arise, contrary to the exact vacuum Kerr-Schild solutions of the
previous chapter. When we explicitly substitute the source, the classical solution can be
obtained by evaluating the momentum space integrands of the perturbative corrections.

4.1 The classical field as a generating functional
In the introduction, we already mentioned that most QFT textbooks study scattering
processes by using the path integral formulation. In this formulation, the scattering
amplitudes are calculated using Feynman diagrams and the corresponding Feynman rules.
These Feynman diagrams arise as a pictorial representation of the perturbative expansion
of the field equations in response to a particular source J . Following this approach, the
starting point is the generating functional Z[J ], which is given by [44]

Z[J ]≡
∫
Dφe

i
~
∫
d4x[L+Jφ] = e

i
~W [J ] , (113)

where L is the Lagrangian, W [J ] generates connected correlators, and
∫
Dφ denotes inte-

gration over all possible values of the field φ(xµ). One particularly useful feature of the
path integral formalism is the convenience in which the classical limit can be taken. That
is, one simply takes the limit ~→ 0, where after the equations of motion coincide with the
classical field equations that follow from the well known Euler-Lagrange equations [35]

δS[φ,J ]
δφ

≡ ∂µ

(
δL

δ (∂µφ)

)
− δL
δφ

= J , (114)

where J denotes the classical source. In the classical limit, or in other words, in the absence
of quantum effects, the virtual (off-shell) particles can no longer be created and annihi-
lated. At the level of Feynman diagrams, this corresponds to the absence of loop-level
diagrams. Then the diagrammatic representation of the perturbative classical solution
entirely consists of tree-level diagrams. In appendix A.1 we briefly review the difference
between perturbative classical and quantum field theory; we explicitly show that loop
diagrams result from an additional O(~) term contributing to the equation of motion.
However, in this research, we will purely restrict to the tree-level double copy.

Since the aim of this is to study classical solutions, we will take this limit, ~→ 0, upon
which the generating functional (113) is dominated by the classical solution φcl(J) of the
equations of motion (114). Using the saddle point approximation, we can approximate
the generating functional as (113)

Z[J ]' ei(S[φcl]+
∫
d4xJφcl) , (115)
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and by comparison with the path integral (113), we identify the relation

W [J,φcl]≡ S [φcl] +
∫
d4xJφcl . (116)

Functionally differentiating W [J,φcl] with respect to the source J , and application of the
equations of motion, we obtain

δW [J,φcl]
δJ

= δS [φcl]
δφcl

δφcl[J ]
δJ

+φcl[J ] +J
δφcl[J ]
δJ

,

=
(
δS [φcl]
δφcl

+J

)
δφcl[J ]
δJ

+φcl[J ] = φcl[J ] .
(117)

As previously mentioned, W [J ] is a generating functional of connected correlators, and
therefore the above relation implies that the classical solution φcl can also be regarded as
the generating functional of correlation functions. To make this statement more precise,
we note that we can obtain the n-point correlators by functionally differentiating the
classical solution n−1 times with respect to J . Thereafter, we can extract n-point tree-
level amplitudes from the n-point correlators by applying the so-called LSZ method, which
we now turn to.

4.2 Perturbative solutions and the LSZ reduction formula
To illustrate the extraction of tree-level amplitudes from classical solutions, we start by
considering the simplest self-interacting theory: a massless cubic scalar theory with the
Lagrangian [16]

L= 1
2(∂φ)2− 1

3!gφ
3 +Jφ. (118)

The equation of motion follows from the Euler-Lagrange equation (114) and explicitly
reads

∂2φ+ 1
2gφ

2 = J . (119)

In chapter 2, we have seen that kinematic numerators of the BCJ double copy are ex-
pressed in terms of momenta, and since the aim of this chapter is to establish the relation
between amplitudes and classical solutions, it will be convenient to Fourier transform the
equation of motion to momentum space. Upon Fourier transforming the above, we obtain

p2
1φ(p1)− 1

2g
∫
d̄p2d̄p3δ̄

(4) (p2 +p3−p1)φ(p2)φ(p3) =−J(p1) , (120)

where we introduced the short-hand notation

d̄p≡ d4p

(2π)4 , δ̄(p)≡ (2π)4δ4(p) . (121)

The goal is to solve this equation order by order in the coupling g, therefore we expand
the scalar field as

φ= φ(0) +gφ(1) +g2φ(2) + . . . , (122)
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Figure 8: Diagrammatic representation of the first order perturbative correction φ(1)(p1). Two
sources J(p2) and J(p3) propagate according to the equations of motion and terminate at the
field φ(1), which has the same argument as φcl.

where we assume that the φ(n) are independent of the coupling constant g. Substituting
this expansion into the equation of motion (120), and collecting all terms of the same
order in g, we obtain a differential equation for each n’th order perturbative correction
φ(n). For instance, at zeroth order we have

p2φ(0)(p1) =−J(p1) =⇒ φ(0)(p1) =−J(p1)
p2

1
. (123)

Furthermore, by collecting terms at order g we find that sub-leading correction φ(1) sat-
isfies the equation

p2
1φ

(1)(p1) = 1
2g
∫
d̄4p2d̄

4p3δ̄
(4) (p2 +p3−p1)φ(0) (p1)φ(0) (p2) . (124)

By using equation (123), the above can be rewritten in terms of the source J

φ(1)(p1) = 1
2

∫
d̄4p2d̄

4p3δ̄
(4) (p2 +p3−p1) 1

p2
1

J (p2)
p2

2

J (p3)
p2

3
. (125)

This first order correction can be diagrammatically visualized as is shown in figure 8.
Throughout this thesis, we will by convention choose the external leg at which the sources
terminate to have the momentum dependence p1, and we will refer to it as the “root leg”
(as in [25]) since this leg is special in the sense that the perturbative corrections φ(n) are
(generally) only permutation invariant in the other external legs; we shall refer to these
as the “leaf legs”.

At order g2, we find that the second order correction φ(2) satisfies the equation

p2
1φ

(2)(p1) =
∫
d̄4p2d̄

4p3δ̄
(4) (p2 +p3−p1)φ(0) (p2)φ(1) (p3) . (126)

Upon substituting the first-order correction (125), the above can be rewritten as

φ(2)(p1) =
∫
d̄4p2d̄

4p3d̄
4p4δ̄

4 (p2 +p3 +p4−p1)φ(0) (p2)φ(0) (p3)φ(0) (p4)
[

1
p2

1

1
(p3 +p4)2

]
,

(127)
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which is diagrammatically visualized in figure 9. The perturbative corrections, φ(n) in this
example, are the (n+ 2)-point correlators from which we can finally extract the (n+ 2)-
point scattering amplitudes.

Figure 9: Diagrammatic visualization of the second order correction φ(2)(p1), which consists of
two particles merging into an intermediate particle that eventually splits into two other particles.

Summing up all perturbative corrections and multiplying by the corresponding power
of the coupling, we obtain the perturbative classical solution (122) in terms of momentum
space integrals containing delta functions.

We now turn to the extraction of scattering amplitudes. For example, to extract the
3-point scattering amplitude from the three-point correlator φ(1), we functionally differ-
entiate φ(1) twice with respect to the sources J , multiply by the appropriate power of the
coupling constant, and amputate the external legs. Mathematically, this corresponds to

A3 (p1,p2,p3) = g lim
p2

1→0
lim
p2

2→0
lim
p2

3→0
p2

1p
2
2p

2
3

δ

δJ (p1)
δ

δJ (p2)φ
(1) (−p3) = g , (128)

where the delta function serves the purpose of imposing momentum conservation (p1 +
p2 +p3 = 0). It should by now be obvious that the scattering amplitudes, contrary to the
classical solutions, are independent of the form of the source J , owing to the fact that
the n− 1 sources are eventually removed by functional differentiation. Since amplitudes
are physical observables, on-shell conditions have been applied to the result of the above,
corresponding to p2

i = 0 for massless particles. However, from the three-point amplitude
(128) one can see that the root leg (corresponding to external momenta p1) can always be
taken to be off-shell without changing the result. In addition, appropriate contractions
with polarization tensors (as we have seen in section 2.1) should be made in case we are
dealing with theories involving spin.

The LSZ formula straightforwardly generalizes to higher order scattering processes,
i.e., the general LSZ formula for a n-point scattering amplitude can be written as

An (p1, . . . ,pn) = gn−2 lim
p2

1→0
. . . lim

p2
n→0

p2
1 . . .p

2
n

δn−1φ(n−2) (−pn)
δJ (p1)δJ (p2) . . . δJ (pn−1) . (129)

39



From the above, it is easy to see that we can rewrite this formula in terms of the leading-
order corrections φ(0), by noting that functional differentiation with respect to φ(0)(p)
is equivalent to multiplication by p2, in combination with functional differentiating with
respect to J(p). Hence we can also rewrite (129) as

An (p1, . . . ,pn) = gn+2 lim
p2
n→0

p2
n

δn−1φ(n−2) (−pn)
δj (p1)δφ(0) (p2) . . . δφ(0) (pn−1)

. (130)

Application of this formula to the four-point correlator (127) yields

g2 1
(p3 +p4)2 = g2

t
. (131)

As we discussed in section 2.2 for YM, we should here also include all inequivalent per-
mutations, since assigning the labels 2,3,4 to the momenta in (127) is arbitrary. Keeping
external leg 1 fixed, while replacing external legs 2→ 3→ 4→ 2, we can finally write the
amplitude as a sum over the s, t and u-channel contributions:

A4 = g2
(1
s

+ 1
t

+ 1
u

)
. (132)

In practice the LSZ formula is much less used than the Feynman diagrammatic approach.
However, these two different methods are closely related since the LSZ formalism is im-
plicitly encoded in the Feynman rules [19].

By now, it is hopefully clear that tree-level amplitudes and perturbative classical solutions
are very directly related. In the next section, we will, on the hand of the previously studied
SDYM and SDG, see how the integrands of the perturbative coefficients can be made to
satisfy CK duality and eventually be double copied.

4.3 A perturbative approach to the double copy of SDG and
SDYM

In the previous section, we have seen that scattering amplitudes can be easily extracted
once we have constructed a perturbative classical solution in momentum space. To see
how CK numerators arise, and to see how the double copy can be used to map perturbative
classical solutions between different theories, we will here establish the perturbative double
copy formulation between BAS and the self-dual sectors of YM and GR.

In the previous chapter, we already saw these theories can be related via the (exact)
Kerr-Schild double copy. It should, however, be stressed that the double copy is by no
means restricted to the self-dual sectors of GR and YM and applies to the full theories,
which is perhaps the biggest triumph of the whole story. The reason that we consider
the self-dual sectors is, as we already saw in the previous chapter, because of the striking
simplicity and similarity of the equations of motion. This way, the self-dual sectors can
be viewed as the dynamical analogue of the MHV sector at the amplitude level, since
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the MHV amplitudes and self-dual equations of motion both take strikingly simple forms.
Another motivation to study the self-dual sectors is to show how the exact classical double
copy that we discussed in the previous chapter extends to perturbative classical solutions
and scattering amplitudes.

To get started, it is useful to realise that the equations of motion of the BAS (59) and the
cubic scalar theory (118) have the same structure, apart from the colour structure and
a constant factor. Fourier transforming the BAS equation of motion (59) to momentum
space gives

φaā(−p1) =−y
∫
d̄4p2d̄

4p3δ̄
(4)(p1 +p2 +p3) 1

p2
1

[
fabcf āb̄c̄

]
φbb̄(p2)φcc̄(p3) . (133)

Next, we perform a perturbative expansion of φ in the coupling y,

φ= φ(0) +yφ(1) +y2φ(2) + . . . , (134)

and we repeat the perturbative method of the previous section. At }′, we obtain the
equation

�φ(0)aā = 0 , (135)
while the sub-leading correction is given by

φ(1)aā(−p1) =− 1
p2

1

∫
d̄p2d̄p3δ̄(p1 +p2 +p3)

[
fabcf āb̄c̄

]
φ(0)bb̄(p2)φ(0)cc̄(p3) , (136)

From this expression, we identify the integrand to be the product of the following structure
constants:

c= fabc , c̄= f āb̄c̄ . (137)
Like we have seen for YM theory in chapter 2, it can be easily checked that the three-
point colour factors are already anti-symmetric under the interchange of any of the colour
indices, and that both satisfy the Jacobi identity. For example, for the unbarred colour
factors (and similar for the barred), the Jacobi identity reads

fadef bcd+f bdef cad+f cdefabd = 0 . (138)

At second order in the coupling g, we find the equation

φ(2)aā(p1) = 2
p2

1

∫
d̄p2d̄p3d̄p4

fabcf āb̄c̄f bdef b̄d̄ē
(p3 +p4)2

φ(0)cc̄(p2)φ(0)dd̄(p3)φ(0)eē(p4) . (139)

Including all inequivalent permutations, we find that the integrand between square brack-
ets is proportional to

fabdf becf āb̄d̄f b̄ēc̄

s
+ fabcf bdef āb̄c̄f b̄d̄ē

t
+ fabef bcdf āb̄ēf b̄c̄d̄

u
, (140)
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from which we identify new BCJ colour factors, consisting of products of two three-point
colour factors (137). For instance, the four-point s-channel numerators are given by

Cs = fabdf bec , C̃s = f āb̄d̄f b̄ēc̄ . (141)

The four-point colour factors can also be easily checked to satisfy the kinematic Jacobi
identity,

Cs+Ct+Cu = 0 , C̃s+ C̃t+ C̃u = 0 . (142)
Hence, we now have the desired result that the three- and four-point numerators satisfy
BCJ-duality.

Before, we already mentioned that the BCJ and Feynman diagrammatic descriptions
are equivalent for the BAS. In addition to this, the BAS has manifest permutation invari-
ance in all external legs, as a consequence of Bose symmetry [25]. The other theories that
we will encounter in this thesis turn out to be only permutation invariant in the leaf-legs.

Next, we repeat the above for SDYM and SDG. Recall from the previous chapter that
the SDYM equation of motion in four-dimensional space-time can be phrased in terms of
light-cone coordinates, in which it reduces to the lie-algebra valued scalar equation

�Φ− ig [∂wΦ,∂uΦ] = 0 . (143)

In momentum space the above becomes

Φa(p1) =−1
2

∫
d̄4p2d̄

4p3

[
Fp2p3

p1(p2,p3)fabc
p2

1

]
Φb (p2)Φc (p3) , (144)

where we introduced the short-hand notation

Fp2p3
p1(p2,p3) = δ̄(4)(p2 +p3−p1)X(p2,p3) , X(p2,p3) = [p1wp2u−p1up2w] . (145)

Using the above, the indices of the kinematic factors F are contracted using an integral
analogue of the Einstein summation convention,

Fp1q
kFp2p3

q ≡
∫
dqδ (p1 + q−k)X (p1, q)δ (p2 +p3− q)X (p2,p3)

= δ (p1 +p2 +p3−k)X (p1,p2 +p3)X (p2,p3) .
(146)

In addition to this, we raise and lower indices using

δpq ≡ δ(p+ q) = δpq =⇒ δpqδ
qk = δkp = δ(p−k) . (147)

The above notation is used to emphasise the algebraic similarity between the kinematic
factors F p1,p2,p3 and the colour factors. It turns out that these kinematic numerators
are the structure constants of the Lie algebra of an infinite-dimensional area-preserving
diffeomorphism group, see [16] for details. The next step is to perturbatively expand the
field in the coupling,

Φa = Φ(0)a+gΦ(1)a+g2Φ(2)a+ . . . , (148)
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and substitute this expansion into the equation of motion (144). Repeating the previously
discussed method, we find that the momentum-space perturbative corrections (up to four-
point) are given by the following integrals

Φ(0)a(p1) =−J(p1)
p2

1
,

Φ(1)a(p1) = 1
2

∫
dp2dp3

Fp2p3
p1f b2b3a

p2
1

Φ(0)b2 (p2)Φ(0)b3 (p3) ,

Φ(2)a(p1) = 1
2

∫
dp2dp3dp4

Fp2q
p1Fp3p4

qf b2caf b3b4c

p2
1 (p3 +p4)2 Φ(0)b2 (p2)Φ(0)b3 (p3)Φ(0)b4 (p4) .

(149)

The integrand of the sub-leading correction is dressed with the colour factor f b2b3a and
the kinematic structure constant Fp2p3

p1 , which is anti-symmetric under the interchange
of any two external legs (all assigned to a momentum label and a corresponding flavour
index). For instance, the s-channel numerators of the second order correction Φ(2) are
given by

Gs = Fp2q
p1Fp3p4

q = δ (p1 +p2 +p3−k)X (p1,p2 +p3)X (p2,p3) , Cs = f b2caf b3b4c .
(150)

It is easy to see that, in addition to the colour factors C, the kinematic structure constants
F also satisfy the (kinematic) Jacobi Identity (29). This is a consequence of the identity

X (p2,p3)X (p4,p2 +p3) +X (p3,p4)X (p2,p3 +p4) +X (p4,p2)X (p3,p4 +p2) = 0 . (151)

Hence, we conclude that the four-point SDYM numerators are in BCJ-dual form.

Similar consideration apply to the SDG equation of motion (83), which can be written as

φ(p1) =−1
2κ
∫
d̄4p2d̄

4p3
F p1
p2p3X (p2,p3)

p2
1

φ(p2)φ(p3) . (152)

Once again, we expand the scalar field in the coupling constant κ and substitute it into
the equation of motion (152). Up to O(κ2), we find the implicit solutions

φ(0)(p1) =− J
p2

1
,

φ(1)(p1) =−1
2

∫
d̄p2d̄p3

F p1
p2p3X (p2 ,p3)

p2
1

φ(0) (p2)φ(0) (p3) ,

φ(2)(p1) =−1
2

∫
d̄p2d̄p3d̄p4

X (p2, q)Fp2q
p1X (p3,p4)F qp3p4

p2
1 (p3 +p4)2 φ(0) (p2)φ(0) (p3)φ(0) (p4) .

(153)
Each of the above integrands contains combinations of kinematic factors X and F , with
the same algebraic properties as we discussed earlier. At this point, we could make
the connection with the BCJ double copy, however, in this specific case, it turns out to
be slightly more subtle than naively interchanging the colour and kinematic structure
constants. The relation with the amplitude factorization in terms of BCJ numerators will
be the topic of the next section.
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4.4 Link with BCJ double copy
By observing the perturbative corrections that we found in the previous section, it should
be obvious that we can obtain SDG from SDYM by replacing the colour factors with
appropriate kinematic structures, and of course, the YM coupling constant by its gravi-
tational counterpart. We have also seen that the kinematic factors X are closely related
to the structure constants F of the kinematic algebra. However, in the current nota-
tion, taking the double copy is a bit more subtle than simply replacing colour factors by
kinematic structure constants, due to the fact that this replacement would involve taking
the square of a delta function (which is included in the kinematic structure constant).
One way to identify the true BCJ kinematic numerators, following [16], is to contract the
kinematic structure constants according to (146), followed by integrating out the auxiliary
momentum (previously denoted by q). From the resulting integral, we can then simply
extract the overall momentum conserving delta function δ(4)(p2 + . . .pn−p1) and read off
the true BCJ numerators.

To illustrate the above, we consider the second order perturbative correction of SDYM
(149), as in [16]. We perform the contraction of the kinematic structure constants accord-
ing to (146) and integrate over the auxiliary momentum q. We obtain the expression

Φ(2)a(p1) =−1
2

∫
d̄qd̄p2d̄p3dp4δ (p2 + q−p1)δ (p3 +p4− q)

X (p2, q)X (p3,p4)f b2caf b3b4c

p2
1 (p3 +p4)2

×φ(0)b2 (p2)φ(0)b3 (p3)φ(0)b4 (p4) + . . . ,
(154)

where the dots indicate the s and u-channel contributions. By functional differentiation
with respect to the φ(0)’s, amputation of the off-shell leg, and multiplication by g2, we
find that the (polarization-stripped) 4-point amplitude is given by

A(p1,p2,p3,−k) =−g
2

2
X (p1,p2 +p3)X (p2,p3)f b1caf b2b3c

(p2 +p3)2 + . . . , (155)

where the ellipses denote the u and s-channel contributions. From the above expression,
we identify the true BCJ kinematic numerators as

nt =X (p1,p2 +p3)X (p2,p3) . (156)

Now we can hop between BAS, SDYM and SDG perturbative solutions and amplitudes
by simply interchanging the appropriate BCJ numerators. For instance, starting from the
SDYM second order correction (154), one can obtain its BAS counterpart by simply
replacing ni (where i runs over all n-point numerators) with the corresponding colour
factors Ci respectively. Similarly, one can obtain the second order SDG correction (153)
by replacing the SDYM colour factors Ci by ni.

Fortunately, this subtlety involving the identification of the true BCJ numerators is
solely a consequence of introducing the kinematic structure constants F , which by defi-
nition include delta functions. This was done in [16], to show that colour and kinematic
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algebras have similar properties. This difficulty does not arise in the remaining of this the-
sis, where we can identify the BCJ numerators directly from the perturbative corrections.

In this chapter, we have seen how the Kerr-Schild and BCJ double copies are closer related
than one would naively expect. Furthermore, we have seen that the BCJ numerators in
the integrands of the perturbative corrections were manifestly in BCJ dual form, without
requiring field redefinitions or the addition of off-shell terms. This had the consequence
that the double copy prescription could immediately be used to hop between the different
theories. However, we will soon see that this is an ideal case as it might be challenging
to obtain manifest BCJ duality in some cases; with increasing difficulty at higher order.
For the latter, the main challenge lies in choosing a specific gauge and field basis. Ideally,
one picks the field basis and the gauge choice that yields the closest-to BCJ duality
of the off-shell integrands, meaning that little as possible additional off-shell terms and
symmetrizations are required to massage the numerators into BCJ dual form.

5 A Triplet of Scalar EFTs and the Double Copy
Most research on the double copy was initially devoted to the duality between gauge
theory and gravity. However, in the last decades, many more theories sharing double
copy relations have been found. Among the large web of double-copy related theories
that are currently known [4, 15, 45], there are three effective scalar theories involving so-
called Goldstone modes which are the massless scalar modes associated with spontaneous
symmetry breaking. The triplet of effective scalar theories involves

1. The non-linear sigma model .

2. The (multi-field) Dirac-Born-Infeld theory .

3. The special Galileon .

These theories are often referred to as being “exceptional” [24], not only because of their
double copy relations, but also in the sense that their amplitudes have so-called enhanced
soft limits. The notions of soft limits and enhanced soft-limits characterize the specific
behaviour of amplitudes when taking one of the external momenta to be negligible. As
will be discussed in chapter 5, the enhanced soft limit is related to nontrivial cancellations
among Feynman diagrams of different topology; this is closely related to the invariance
under non-linear symmetry transformations.

In addition to the double copy relations, the three theories theories have recently been
shown to admit a Cachazo-He-Yuan (CHY) representation [46]. The existence of a CHY-
representation implies that the tree-level amplitudes can be represented as integrals over
the moduli space of punctured Riemann spheres. These integrands carry all information
about the theory and the integrands of different theories are related by specific operations
on their constitutes. The details of the CHY-representation go beyond the scope of this
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thesis, however, we should stress that the results of this section are closely related to the
corresponding operations performed in [46].

In this chapter, we will first derive the aforementioned scalar EFTs by forcing a spe-
cific soft limit on the most general amplitudes of a scalar theory with a maximum of
either one or two derivatives per field. As will become clear soon, requiring an enhanced
soft limit forces nontrivial cancellations among Feynman diagrams of different topology;
consequently completely restricting the form of the Lagrangian and the corresponding
non-linear symmetry transformation. For a more formal (and less detailed) treatment
of the content in this chapter, the reader is invited to have a look at the corresponding
article [26].

5.1 Soft limits and soft theorems
The soft limit of a tree-level amplitude is defined by sending one of the external momentum
to zero. In this limit, the amplitude scales as

lim
p→0

A(p)∝O(pσ) , (157)

where σ ∈ Z is known as the soft degree. If this limit approaches zero or a known factor
multiplied by a lower-point tree-level amplitude, then the theory under consideration is
said to satisfy a so-called soft-theorem [4]. The notion of a soft theorem was initially
discovered by Steven Weinberg [47, 48], who found out that gauge theory and gravity
amplitudes are singular in the soft limit, with soft degree σ =−1. For gravity and gauge
theory amplitudes, the soft particle with negligible momentum interacts with another
external particle (let’s call it the hard particle) through a cubic vertex, implying that
the propagator of the hard particle becomes singular as a consequence of the negligible
momentum transferred by the soft particle. Specifically, Weinberg found that photon
amplitudes have the soft limit [4]

lim
p→0

An+1 = eµS
µAn , (158)

where eµ is the polarization vector. Furthermore, the Weinberg soft factor Sµ reads

Sµ =
n∑
i

qi
pµi
pip

, (159)

where n labels the hard particles and qi is the coupling constant associated with each
cubic vertex involving a hard particle. The Ward identity then [4] states that the n-point
amplitude An should be invariant under the transformation eµ→ eµ+pµ, leading to the
identity (

n∑
i

qi

)
An = 0 , (160)

where qi can be interpreted as the electrical charge of the hard particles. Since An is
non-vanishing, this identity implies conservation of charge ∑n

i qi = 0.
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Analogous considerations apply to the soft limit of graviton amplitudes. In this case, the
vector structure generalizes to the tensor structure [4]

lim
p→0

An+1 = eµνS
µνAn , (161)

where the Weinberg soft factor Sµν is similar to (159), but with an additional momentum
factor in the numerator:

Sµν =
n∑
i

κi
pµi p

ν
i

pip
. (162)

In this case, diffeomorphism invariance implies that An should be invariant under the
transformation eµν → eµν +αµpν +ανpµ, leading to the identity(

n∑
i

κip
µ
i

)
An = 0 , (163)

where κi is the coupling constant associated with each cubic vertex involving a hard
graviton. Naturally, the total momentum is conserved (∑n

i p
µ
i = 0); this implies that

(163) can only be satisfied when κi≡ κ. Hence, we have deduced the equivalence principle,
which states that the coupling strength of gravity is universal [4].

The scalar theories that we consider in this chapter turn out to have amplitudes that
vanish in the soft limit, or in other words, they have Adler zero [4, 15]. Contrary to
GR and YM, scalar EFTs are not constructible by solely considering physical input such
as Lorentz invariance, dimensional analysis and locality. The additional input that is
required is non-linearly realised symmetry, which is a global symmetry with consequences
for physical observables, contrary to the (local) gauge and diffeomorphism invariance of
YM and GR. The most general Lagrangian for a scalar theory satisfying the Adler zero
condition reads

L(ρ) = (∂φ)2F (∂mφn) (164)
where ρ=m/n specifies the number of derivatives per field, F is a general function, and
m is even to ensure Lorentz invariance.

To understand the enhanced soft limit, we consider the case of one derivative per
field, corresponding to ρ = 1. Naively, one would expect an amplitude with a linear
dependence in each of the momenta, corresponding to soft degree one. However, it could
be possible to have highly non-trivial cancellations among diagrams of different topologies
as a consequence of relations between the coefficients λm,n of the Lagrangian. For theories
with enhanced soft limits, for which the latter is the case, these relations among the
coefficients can be seen as a consequence of underlying (possibly non-linearly realised)
symmetries that leave the action invariant. The nontrivial cancellations between diagrams
of different topology make the part of the amplitude that scales with, for example, σ = 1,
completely vanish. This implies that the leading behaviour becomes O(p2), corresponding
to soft degree σ = 2. Hence, we can speak of an enhanced soft limit when the soft degree
is greater than one would naively expect based on the number of derivatives per field, or
equivalently, when σ > ρ.
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5.2 Scalar EFTs from soft limits
In the conventional field-theoretic approach, one considers symmetries and actions to be
primary, while soft theorems are seen as a consequence of the specific properties of the
theories such as non-linearly realised symmetries. This philosophy can be inverted by
building amplitudes purely based on physical assumptions. The idea of building theories
from scattering amplitudes has been a well known strategy. For example, Weinberg
derived GR and YM solely based on physical assumptions such as Lorentz invariance,
factorization on propagator poles11, and locality. A similar strategy can be applied to
derive scalar EFTs, albeit under the additional assumption of a specific (enhanced) soft
degree [21, 22, 23, 24]. The latter then serves as additional physical input.

In this section, we will consider a general scalar EFT Lagrangian of the form (164), where
specific choices of derivative counting ρ and (enhanced) soft degree σ completely restrict
the form of the Lagrangian L(ρ,σ). Throughout this section, we will be loosely following
[23, 24].

5.2.1 Amplitude Ansatze

First we have to constrain the space of all allowed EFTs by constructing an amplitude
Ansatz, which is fixed by the following physical requirements [24]: (1) Lorentz invariance,
(2) factorization on propagator poles, and (3) a given set of parameters (ρ,σ). If this
Ansatz can be satisfied, then the corresponding theory possibly exists.

As we have seen many times in this thesis, every n-point amplitude can be written in
terms of kinematic invariants

sij = (pi+pj)2 = 2(pi ·pj) , i, j ∈ {1, . . . ,n} . (165)

This space of kinematic invariants is redundant since the different sij are related. For
example, by conservation of total momentum, p1 + . . .+ pn = 0, we can already single
out one of the momenta. By taking the dot product between the latter and any of the
momenta, and by realizing that pi2 vanishes on-shell, we find the additional constraint∑
i,j 6=n sij = 0. Furthermore, five or more particles living in a four-dimensional space-time

must be necessarily linearly dependent, leading to even more relations (see [24] for details
on these relations). These relations make it difficult to determine a set of independent
kinematic invariants, especially at higher-order. Instead, it is more convenient to calculate
amplitudes using the complete set of kinematic invariants, and mod out the dependent
ones afterwards, reducing the amplitude to the simplest possible form.

For a general (n+2)-point amplitude with derivative counting ρ=m/n, the schematic
11Factorization can be stated as limP 2→0An,m =

∑ ALAR
P 2 , where P =

(
pi1 +pi2 + · · ·+pik

)
and the

sum is taken over all internal legs [24]. This implies that the numerators of amplitudes factorize into two
lower-point amplitudes (denoted by AL and AR) when the propagator P is taken to be on-shell.
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amplitude Ansatz is of the form [23]

An+2 =
∑
α
c(0)
α

(
sα1 . . . sαm/2+1

)
+
∑
α,β

c
(1)
α

(
sα1 . . . sαm/2+2

)
sβ

+
∑
α,β

c
(2)
α

(
sα1 . . . sαm/2+3

)
sβ1sβ2

+ . . . ,

(166)
where α labels external legs and β labels factorization channels with propagator poles
sβ. The first sum corresponds to contact diagrams, while the other sums correspond to
exchange diagrams of different topologies. In the case of single-scalar theories, this Ansatz
should respect invariance under the exchange of any external legs and the individual
diagrams of the same topology must be related by permutations of external legs.

For simplicity, we define the soft limit by sending p 7→ zp for one of the external
particles. Then the amplitude can be expanded as

An =
∞∑
s=0

An,sz
s . (167)

If we now choose to enforce a soft degree of, say σ = s, then we require An,s to vanish for
all s < σ. The latter leads to a set of equations that must be solved for the coefficients ckα.
Plugging these coefficients back into the Ansatz (166) results in the n-point amplitude of
a specific theory with soft degree s and derivative counting ρ.

At three-point scattering, all scattering amplitudes of scalar field theories involving
only a single field vanish since the required permutation invariance always causes the
amplitude to be proportional to s+ t+u (which vanishes on-shell). However, this does
generally not hold in the presence of a flavour (or colour) structure. In this case, the sum
s+ t+ u possibly becomes tangled with group-theoretic structures such as traces over
products of generators. So far we can state that, in the case of single-scalar theories, the
first nontrivial amplitudes can be found at four-point.

For arbitrary ρ, the amplitude Ansatz is fixed by the 2ρ+2 = 2m+2 derivatives of the
theory. In combination with the fact that the amplitude is required to respect permutation
invariance, this leads to a four-point amplitude Ansatz of the form

A4 =
∑

a1a2a3

ca1a2a3 (s12)a1 (s23)a2 (s31)a3 , (168)

where we deduce a1 + a2 + a2 = ρ+ 1, since every kinematic invariant results from two
derivatives. Each kinematic invariant is of soft degree σ= 1, meaning that we can conclude
that each four-point amplitude A4 is of soft degree σ = ρ+ 1.

5.2.2 ρ= 0: Non-linear sigma model

We proceed by considering the simplest case, that is, a theory with no derivatives, corre-
sponding to ρ= 0. In this case, the theory is of the schematic form

L(0) = (∂φ)2F (φ) , (169)

and up to a simple field redefinition, the above corresponds to a free theory with trivial
amplitudes.
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A more interesting situation arises when we allow the scalars to carry colour charge.
One of these theories is the non-linear sigma model with Goldstone bosons arising from
internal symmetry breaking. The Lagrangian of the NLSM associated with the sym-
metry breaking pattern U(N)×U(N) 7→ U(N), in the commonly studied exponential
parametrization, is given by [20]

L(0,1) = F 2

4 Tr
(
∂µU∂

µU †
)
, U = e

iφ
F , (170)

where the Goldstone bosons φ ≡ φaT a live in the adjoint representation of U(N) and F
is the NLSM coupling constant. This theory is invariant under the non-linear symmetry
transformation

φ→ φ+ ε+O(φ2) , (171)
where ε is a constant and O(φ2) accounts for terms that are of higher order in φ; this
term implies the breaking of axial symmetry. The four-point colour-ordered amplitude,
or more specifically, the part of the amplitude that is proportional to Tr[T aT bT cT d], is
given by

A4[1,2,3,4] =−F
2

2 (t+ s) . (172)

Alternatively, one could rewrite the amplitude in terms of U(N) structure constants fabc
by using relations of the form (36). The full four-point amplitude in terms of structure
constants will be derived in section 5.3, where we make the connection with the double
copy.

5.2.3 0< ρ < 1: A non-vanishing soft limit

In the case 0 < ρ < 1, not every field is equipped with a derivative. This corresponds to
so-called non derivatively coupled theories and it turns out that these theories do not have
a vanishing soft limit [23]. This can easily be shown by contradiction. For instance, a
vanishing soft limit requires that An→ 0 when p→ 0, for each external leg. The latter,
together with permutation invariance, leads to the (schematic) amplitude Ansatz

An = pµ1
1 pµ2

2 . . .pµnn Lµ1µ2...µn , (173)

where Lµ1µ2...µn is a symmetric tensor which contains momenta and Minkowski metrics.
The n momenta in the above follow from n derivatives, while the tensor Lµ1µ2...µn possibly
contains even more momenta, implying that the total number of derivatives is equal to
or greater than the number of fields, or ρ ≥ 1. This obviously contradicts our initial
assumption 0 < ρ < 1 and hence we conclude that derivative coupling is a necessary
requirement to have a vanishing soft limit.

5.2.4 ρ= 1: Dirac-Born-Infeld theory

The next case that we consider is one derivative per field, corresponding to ρ = 1, such
that the theory is derivatively coupled and has a vanishing soft limit with σ = 1. In this
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case, the Lagrangian is schematically given by

L(1),(1) = 1
2(∂φ)2 + λ4

4! (∂φ)4 + λ6
6! (∂φ)6 + . . . , (174)

and corresponds to the well known Nambu-Goldstone Boson [4]. Since every field carries
a derivative, all particle labels must appear in the amplitude; this respectively leads to
the four- and six-point amplitude Ansatzes

A4 = c4 (s12s34 + s13s24 + s14s23) ,

A6 = 2c24
[
s̃123s̃456
s123

+ . . .

]
+ c6 (s12s34s56 + . . .) ,

(175)

where s123 = s12 + s23 + s31, s̃123 = s12s23 + s23s31 + s31s12, and the ellipses denote per-
mutations. In addition to this, we enforce an enhanced soft limit σ = 2, meaning that we
force the linear part An,1 to vanish. For A4, this is obviously satisfied for any c4, since
each kinematic invariant has soft degree one and the product of two invariants vanishes
as O(z2), corresponding to soft degree σ = 2.

At six-point, this forces cancellations between the contributions ofO(z) of the different
topologies, leading to the constraint c6 = 2c24 on the coefficients. This straightforwardly
extends to arbitrary higher order, eventually fixing all higher order coefficients in terms
of c4. It turns out that the corresponding theory is given by a Lagrangian of the form [23]

L(1,2) =−1
g

√
1 +g(∂φ)2 =−1

2(∂φ)2 + g

8(∂φ)4− g
2

16(∂φ)6 + . . . , (176)

where we defined the coupling constant g= 2c4. This theory corresponds to the well known
Dirac-Born-Infeld theory, describing massless Goldstone modes (here in four dimensions)
corresponding to the symmetry breaking pattern ISO(1,4)/ISO(1,3). The theory is
invariant under the non-linear symmetry transformation δφ= c+bµx

µ+bµφ∂
µφ, where bµ

is an arbitrary four-vector. This non-linear symmetry manifests invariance under higher
dimensional Lorentz boosts and rotations from the higher dimensional Lorentz group.
Physically, the DBI can be interpreted as a four-dimension Dirichlet-brane (i.e., a brane
with fixed boundary conditions) fluctuating in an additional fifth dimension. The scalar
field φ then describes the deviation into the fifth dimension, whereas its derivative ∂φ has
the interpretation of velocity.

5.2.5 ρ= 2 : The special Galileon

We now increase the amount of derivatives by allowing more than one derivative per field.
Specifically, we distribute 2n− 2 derivatives over n fields, with each field equipped with
at least one derivative. The schematic Lagrangian then reads

L(2,1) = (∂φ)2
∞∑
n=2

Fn
(
∂2n−2φn

)
. (177)
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Additionally, we assume a soft degree σ = 2, which means that we force An,1 to vanish.
At four-point, we have two structures that are compatible with the Ansatz,

A4 = c1
(
s3

12 + s3
23 + s3

31
)

+ c2 (s12s23s31) . (178)

Both terms are of order three in kinematic invariants, implying that the four-point ampli-
tude naturally has soft degree σ = 3, which is one more than we initially required. Up to
seven-point, the requirement A2,n = 0 uniquely fixes the coefficients, with soft behaviour
A5 =O

(
z2
)
, A6 =O

(
z3
)
, and A7 =O(z2), respectively [23]. At eight-point, σ = 2 yields

two solutions, whereas σ= 3 yields one unique solution. The solution with only even-point
interactions therefore has an enhanced soft limit σ = 3. This theory can be obtained by
setting c1 = 0, such that each subsequent term with an even number of fields is uniquely
fixed in terms of c2; this works analogously to what we have seen for DBI. The theory
corresponds to the special Galileon. The Lagrangian in the quartic formulation (and four
space-time dimensions) contains only two terms and explicitly reads [4]

LSG =−1
2 (∂φ)2

[
1− 1

6L6

(
(�φ)2− (∂µ∂νφ)(∂µ∂νφ)

)]
, (179)

where we will later use the redefined coupling constant Λ =L−6/6 for notational simplicity.
The Goldstone mode has the non-linear symmetry

δφ= c+ cµx
µ+ cµνL

−6 (xµxν +∂µφ∂νφ) , (180)

where sµν is a symmetric tensor. The non-linear part of this symmetry corresponds to
the coset ISU(4)/SO(4). The special Galileon is sometimes referred to as the scalar
analogue of GR, owing to the fact that its non-linear symmetry has a correspondence
with the diffeomorphism invariance of GR [49].

The soft-behaviour of the triplet of scalar EFTs that we discussed in this section is visu-
alized in the “periodic table” of figure 10; it is graphically indicated that these theories
cannot be constrained any further. Note that this figure contains two theories that have
not yet been discussed. The first of these is the P (X) theory (as it is referred to in the
context of inflationary cosmology), which is a general class of theories of the form

L= gdP

(
∂φ ·∂φ
gd

)
, (181)

where d is the number of space-time dimensions. It is easy to see that the DBI theory as
discussed above is a special case of the P (x) theory. The P (X) theory is invariant under
the shift symmetry φ→ φ+ c, and has a trivial soft limit since the number of derivatives
per field is equal to the soft degree (ρ= σ = 1).

The second theory (denoted by WZW) is given by the Lagrangian

L= 1
4 Tr(∂µφ∂µφ) +λεµναβTr

(
φ∂µφ∂νφ∂αφ∂βφ

)
, (182)
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and it follows from the φ→ 0 limit of the so-called Wess-Zumino-Witten (WZW) term

LWZW = iλεµνραβTr
(
U †∂µUU

†∂νUU
†∂ρUU

†∂αUU
†∂βU

)
(183)

where U is defined as in (170), εµνραβ is the totally anti-symmetric Levi-Civita tensor,
and λ is a constant. This theory is shift symmetric; in the four-dimensional formulation
as it is given here, this theory has derivative counting ρ= 3/2 and soft degree σ = 1, and
hence an enhanced soft limit.

Figure 10: Visualization of the allowed EFTs for given derivative counting ρ and soft degree
σ. The blue region contains EFTs with trivial soft-behaviour which can be anticipated by naive
derivative counting. The white region contains EFTs with enhanced soft limits and the red region
is forbidden by consistency constraints. The triplet of exceptional scalar EFTs (NLSM, DBI and
SG) lie on the boundary of the white and red region, indicating that they cannot be constrained
any further. This figure was taken from [24].

5.3 The canonical double copy of the NLSM, DBI and SG
Before we discuss our main results, we first review the well known double copy relations
between the three theories, since it served as the initial motivation to study possible
off-shell aspects. To explicitly show the amplitude double copy relations, we will use
the perturbative formalism of the previous chapter. We show how (new types) of BCJ
numerators arise and that these can be made to satisfy colour-kinematics duality upon
addition of off-shell terms. Together with the earlier encountered YM colour factors
and tensor-kinematic numerators, the new types of numerators discussed in this thesis
constitute the full set of BCJ numerators that are currently known. Here we restrict to
the already well known amplitude double copy relations between the triplet of theories,
and in chapter 7 we will turn to an in-depth investigation of the relevant BCJ numerators
and amplitude structures.
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5.3.1 NLSM and the BCJ formulation

Let’s first turn to the U(N) non-linear sigma model (as discussed in the previous section
(170)), which is one of the most studied non-linear sigma models together with the very
similar SU(N) NLSM. Expanding the Lagrangian (170) in terms of the Goldstone bosons
yields [20]

LNLSM =−1
2∂µφa∂

µφa+ λ2

6 fabef
cdeφa∂µφ

bφc∂µφd+ · · · , (184)

which gives rise to the field equation

�φa− λ
2

3 f
abefecd

(
∂µφbφc∂µφ

d+φbφc�φd
)

+ . . .= Ja , (185)

where Ja is a classical source. By expanding the field in the coupling λ and subsequent
substitution into the equation of motion (up to quartic interactions), we obtain the dif-
ferential equations

�φ(0)a = Ja ,

�φ(1)a = 1
3f

abefecd
(
∂µφ(0)bφ(0)c∂µφ

(0)d+φ(0)bφ(0)c�φ(0)d
)
.

(186)

Fourier transforming to momentum space leads to

φ(0)a(p1) =−J
a

p2
1
, (187)

φ(1)a(−p1) = 1
3p2

1

∫
d̄4p2d̄

4p3d̄
4p4δ̄

(4)(
4∑
i=1

pi)fabefecd
[
(p2·p4) +p2

4
]
φb(p2)φc(p3)φd(p4) ,

(188)

where all φ’s on the right-hand side are actually φ(0)’s. Interchanging external legs 3↔ 4
(corresponding to the replacements c↔ d and p3↔ p4) on the latter yields

φ(1)a(−p1) =− 1
3p2

1

∫
d̄4p2d̄

4p3d̄
4p4δ̄

(4)(
4∑
i=1

pi)fabefecd
[
(p2·p3) +p2

3
]
φb(p2)φc(p3)φd(p4) ,

(189)
where we used the anti-symmetry property of the structure constants fedc =−fecd. Next,
we add (187) and (189) such that we obtain

φ(1)a(−p1) =− 1
6p2

1

∫
d̄4p2d̄

4p3d̄
4p4δ̄

(4)(p1 +p2 +p3 +p4)fabefecd

×
[
(p2·p4) +p2

4− (p2·p3)−p2
3
]
φb(p2)φc(p3)φd(p4) ,

(190)

where the second and last term of the integrand in square brackets vanish on-shell. Ap-
plication of the LSZ formula (129) and including all inequivalent permutations yields the
NLSM four-point amplitude

ANLSM
4 = λ2

12
[
fabefecd(t−u) +f bcefead(u− s) +f caefebd(s− t)

]
. (191)
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Upon performing the splitting procedure that we discussed in 2 (i.e., multiplying each
term by the appropriate sij/sij), we can finally write the NLSM four-point amplitude as
the BCJ factorization12

ANLSM
4 ∼

(
csRs
s

+ ctRt
t

+ cuRu
u

)
, (192)

where the cs = fabefecd are the previously encountered colour factors and the Rs = s(t−u)
will be referred to as scalar-kinematic numerators, owing to their dependence on (solely)
kinematic invariants. The scalar-kinematic numerators can be easily checked to satisfy
CK duality, that is,

Rs+Rt+Ru ∼ s(t−u) + t(u− s) +u(s− t) = 0 . (193)

These numerators are well known in the literature (see e.g. [36]) and we will soon see that
these, along with other types of numerators, constitute the amplitude building blocks of
the three theories.

When discussing double copy relations (like above), we only consider the structure of
the amplitudes, indicated by the symbol ∼, while we neglect the constant prefactors that
should additionally be mapped onto each other; this can always be achieved by allowing
numerical coefficients in the ratios of their coupling constants.

Although the BCJ formulation of the amplitude (192) contains a pole structure, the
poles are absent in the final amplitude (191); this reflects the fact that the NLSM does
not possess three-point vertices, and therefore that the corresponding Feynman diagrams
are contact diagrams.

5.3.2 DBI and the BCJ formulation

Next, we turn to the DBI. The DBI Lagrangian (176) gives rise to the equation of motion

�φ− 1
2 l

2
(
�φ(∂φ)2 +∂µφ∂νφ∂

ν∂µφ+∂µφ∂νφ∂µ∂νφ
)

+ . . .= J . (194)

Like before, we expand the field in the coupling constant l and upon substituting this
expansion into the equation of motion, we obtain one equation for each perturbative
correction. For the leading and sub-leading perturbative corrections, these equations
respectively read

�φ(0) = J ,

�φ(1) = 1
2 l

2
(
�φ(0)(∂φ(0))2 +∂µφ(0)∂νφ

(0)∂ν∂µφ
(0) +∂µφ(0)∂νφ(0)∂µ∂νφ

(0)
)
.

(195)

By Fourier transforming to momentum space, the latter can be expressed as

φ(1)(−p1) =− 1
2p2

1

∫
d̄4p2d̄

4p3d̄
4p4δ̄(p1 +p2 +p3 +p4)

[
p2

2 + (p3·p4)(p2·p3) + (p2·p4)(p3·p4)
]
.

(196)
12The BCJ factorization of the NLSM was first discovered in [50]
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Finally, we include all inequivalent permutations and use the LSZ method to extract the
four-point amplitude. We obtain

ADBI
4 = l2

4 (us+ st+ tu) . (197)

Addition of an off-shell term proportional to (s+ t+ u)2 finally allows us to write the
four-point amplitude as the BCJ factorization

ADBI
4 ∼ ( f̃sRs

s
+ f̃tRt

t
+ f̃uRu

u
) , (198)

where f̃s = t−u are a new type of BCJ numerators, which we will refer to as flavour factors.
The “flavour” part of the name refers to the fact that the above form actually represents
the single-flavour version (as indicated by the tilde) of the flavour factors fs = δabδcd(t−
u)− s(δcaδbd− δcbδad).13 These flavour factors without the tilde are BCJ numerators
belonging to the multi-field extension of DBI (or multi-DBI), with the Lagrangian in
arbitrary space-time dimensions given by [51]

LmDBI =−1
2∂µφ ·∂

µφ+ 1
4 (∂µφ ·∂νφ)(∂µφ ·∂νφ)− 1

8 (∂µφ ·∂µφ)2 + . . . , (199)

where the scalar fields live in the fundamental representation of SO(N). Furthermore,
we used dot-products to denote flavour contractions, i.e., φaφa ≡ φ·φ. The corresponding
non-linear symmetry, associated with the coset ISO(4+D)/SO(D)×SO(N), is given by

δφa = ca+ caµx
µ+ cbµφ

b∂µφa . (200)

From this multi-field extension, the single-DBI flavour factors, non-linear symmetry and
Lagrangian can easily be recovered by (1) setting Kronecker deltas equal to unity δij = 1,
and (2) removing the flavour indices from the fields φi = φj ≡ φ.

5.3.3 SG and the BCJ formulation

Finally, we turn to the special Galileon (179), with the equation of motion

�φ+ Λ6
[
(�φ)3−3(�φ)(∂µ∂νφ)(∂µ∂νφ) + 2(∂µ∂αφ)

(
∂α∂βφ

)(
∂β∂µφ

)]
= J . (201)

Expanding the field in the coupling Λ, and substitution into the equation of motion yields
the following equations,

�φ(0) = J ,

�φ(2) = Λ6
[
−(�φ(0))3 + 3�φ(0)∂µ∂νφ(0)∂µ∂νφ

(0)−2∂µ∂αφ(0)∂α∂βφ
(0)∂β∂µφ

(0)
]
.
(202)

13Similar to the scalar-kinematic numerators, these can easily be checked to satisfy BCJ duality.
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In momentum space, the latter can be written as

φ(2) (−p1) = 1
p2

1

∫
d̄4p2d̄

4p3d̄
4p4δ̄

4 (p1 +p2 +p3 +p4)

×
[
−p2

2p
2
3p

2
4 + 3p2

2 (p3 ·p4)2−2(p2 ·p3)(p3 ·p4)(p4 ·p2)
]
φ(0) (p2)φ(0) (p3)φ(0) (p4) ,

(203)
where the first two terms inside the integrand vanish on-shell. The remaining term is
already symmetric under the exchange of any leaf legs. By application of the LSZ formula
(as given in (129)), and by including all inequivalent permutations, we obtain the four-
point amplitude

ASG
4 =− 1

24L6 stu, (204)

where we recovered the original cut-off scale L. The above coincides (only on-shell) with
the BCJ factorization

ASG
4 ∼

(
nsns
s

+ ntnt
t

+ nunu
u

)
. (205)

By comparison of each four-point amplitude (see equations (192, 198, 205)) in terms
of BCJ factorization, we note that they all contain a scalar-kinematic numerator and
therefore obey a double copy relation.

Interestingly, in chapter 7, we will point out a different type of NLSM, coupled to
gravity, which follows from the BCJ factorization of two flavour factors. This excludes
flavour factors and hence establishes a double copy involving only two types of numerators.

6 Off-Shell Flavour-Kinematics Duality for Goldstone
Modes

In the previous chapter, we have seen that the amplitudes of the NLSM, DBI and SG
share double copy relations. However, in the canonical formulation (which was used in
the previous section) there seems to be no obvious relation between their equations of
motion. Looking back to chapter 3, we have seen that it was essential to work in the
right field basis and gauge choice for the Kerr-Schild double copies to be manifest. In this
case, similar considerations apply but instead of gauge and diffeomorphism freedom we
are now dealing with non-linear symmetries; these directly depend on field basis.

In this section, we first present new considerations on the non-linear symmetries that
result in manifest flavour-kinematics duality at the level of (off-shell) equations of motion
and non-linear symmetries. To achieve this, we will see that we only have to adapt a
specific field basis for the NLSM, whereas the (multi-field) DBI and the SG remain in
their canonical (but D-dimensional) formulation.14 Thereafter, we calculate the classical
non-linear solutions in response to a point-like charge and investigate possible mapping
relations between them.

14As will become clear soon, the D-dimensional DBI and NLSM are equivalent to the 4-dimensional
formulation, whereas the SG contains higher order terms.
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6.1 Non-linear symmetry transformations of the same type
Perhaps the intuitive strategy to proceed would be to adapt field bases in such a way that
each Lagrangian generates Feynman rules that manifest BCJ duality, or in other words,
such that the integrands of the perturbative corrections (or off-shell amplitudes) exactly
match the off-shell BCJ factorization.

As an example, we consider DBI theory. In section 5.3, we found that the off-shell
amplitude of single-DBI (in the canonical field basis) is given by15

− 1
4(us+ut+ ts) , (206)

whereas the BCJ factorization reads

Rsfs
s

+ Rtft
t

+ Rufu
u

= 8(s2 + t2 +u2−ut− ts−us) . (207)

Hence, we should perform a field redefinition that transforms the off-shell amplitude such
that the result is proportional to the BCJ factorization. In this particular case, this can
be achieved by performing a field redefinition of the form φ 7−→ αφ+βφ(∂φ)2, where α
and β are constants. This Ansatz gives rise to additional terms of the form Mandelstam
squared, which allows the new integrand to potentially match (207). Demanding that
the resulting off-shell amplitude after the field redefinition is proportional to the BCJ
sum yields a system of two equations in α and β, with the unique solution given by
(α,β) = (1,1/6). Similar considerations apply to higher orders, where the field redefinition
must be extended by the addition of higher order terms, implying that it eventually
becomes an arbitrarily long series. As one could imagine, it would be a tedious job to do
the above for each theory and order by order. Furthermore, the non-linear symmetries
also become arbitrary long expressions due to the field dependence.

In this section, we will show that the field basis for which an off-shell double copy relations
manifest itself is one where all non-linear symmetries contain the same type of terms, or
as we will sometimes refer to it, a “comparable field basis”.

By comparison of the non-linear symmetries of DBI and SG, we note that each non-
linear symmetry consists of two parts. The first part is a generalized shift term, consisting
of parameters (possibly with space-time contractions) with no field dependence, while the
second term is quadratic in the field and consists of parameters and one or two space-
time derivatives (i.e., one for DBI and two for SG). On the other hand, the non-linear
symmetry of the NLSM consists of a generalized shift term and field dependent terms
of at least quadratic order, without any derivatives. Based on these observations, the
most natural way to have non-linear symmetries with the same type of terms would be
to perform a field redefinition such that the NLSM also obtains a non-linear symmetry of
the schematic form δφ=O(φ0) +O(φ2).

15Note that we have included the appropriate prefactors, while we have set the DBI coupling constant
equal to unity.

58



In order to make the connection with the multi-DBI involving flavour structure, we will
here work with a NLSM corresponding to the following coset structure:

SO(M +N)
SO(M)×SO(N) . (208)

Note that, in case of a relative minus sign between the two terms of the non-linear sym-
metry, the above would have isometry group SO(M,N) instead. The scalars (denoted
by φaā) live in the bi-fundamental representation of SO(N) and SO(M). These flavour
structures (as indicated by the indices a and ā) are independent and could have different
dimensions (i.e., when N 6=M). The non-linear symmetry that realises this coset is given
by

δφ= c+φcTφ, (209)

where we adopted the matrix notation φaā≡ φ, such that the above corresponds to δφab̄ =
cab̄ + φac̄cdc̄φdb̄, in terms of flavour indices. Note that we have suppressed the NLSM
coupling constant in the field dependent term. The motivation to study this specific
NLSM with two flavour structures, instead of the NLSM containing colour, will be further
motivated when we turn to the on-shell amplitude in section 7. There we will see that the
amplitude of this NLSM coupled to gravity follows from the BCJ factorization involving
two flavour factors (instead of the colour factor and scalar-kinematic numerator of the
SU(N) NLSM).

The above NLSM obviously differs from the SU(N) model discussed earlier. However,
it is not totally unrelated: when identifying the barred and unbarred indices a= ā (which
requires M = N), we can specialize to a symmetric or anti-symmetric field φ ≡ ±φT ;
the symmetric case corresponds to the coset structure SL(N)/SO(N), whereas the anti-
symmetric case corresponds to coset (SO(N)×SO(N))/SO(N)diag. Since it is possible
to embed SU(N/2) in SO(N), one could recover the SU(N) NLSM.

Returning to the above SO(M +N) NLSM (on which we will focus here), the lowest
order invariant Lagrangian contains two derivatives, and it can be phrased in terms of the
group element g as follows:

L= F 2

4
[
∂g∂g−1

]
, (210)

where [...] denotes a trace over flavour indices and F is the NLSM cut-off scale, which we
set to unity for readability. A possible representation of the SO(M +N) group element
is given by

g =
 A B

−BT C

 , (211)

where the matrices {A,B,C,D} can be written terms of the M ×N Goldstone modes φ
as follows:

A= 1−φφT
1 +φφT

, B = 2
1 +φφT

φ, C = 1−φTφ
1 +φTφ

. (212)
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These indeed lead to the correct dimensions and properties for the SO(M +N) group
element. Using the above, the Lagrangian (210) can be written as

L=−1
2

[
1

1 +φφT
∂φ

1
1 +φTφ

∂φT
]
, (213)

where we used [. . .] to denote the trace over flavour indices. Upon isolating the d’Alembertian,
the corresponding equations of motion can be written as

�φ=
∞∑
n=1

(−1)n−12(∂µφ)φT
(
φφT

)n−1
(∂µφ) , (214)

where we used the M ×N matrix notation.

Next, we turn to multi-DBI theory, defined by the Lagrangian (199) and non-linear sym-
metry (200). Since this the non-linear symmetry is already of the form δφ = O(φ0) +
O(φ2), it is already in the desired form. In D-dimensions, the symmetry breaking pattern
reads

ISO(D+N)
SO(D)×SO(N) , (215)

where one of the dimensions D is time-like. In the case of a relative minus sign between
the terms of the non-linear symmetry, the isometry group is given by ISO(D,N) instead.
The corresponding equation of motion (after simple manipulations) can be written as

�φa =
∞∑
n=1

(−1)n−1 [(∂∂φa)(∂φ ·∂φ)n] , (216)

where the trace involves space-time indices.

Finally, we have the SG with non-linear symmetry (180); it is also already in the desired
form with δφ=O(φ0)+O(φ2). However, in D dimensions the symmetry breaking pattern
generalizes to

ISU(D)
SO(D) , (217)

or with ISL(D) instead of ISU(D), when there is a relative sign difference in the non-
linear symmetry (180). The D-dimensional Lagrangian can be written as an infinite series
over all Galileon terms with an even number of fields [52], and it explicitly reads

LSG =−1
2

bD+1
2 c∑

n=1

(−1)n−1

(2n−1)!(∂φ)2LTD2n−2 , (218)

where the total-derivative terms (denoted by LTD) are given by

LTD
n =

∑
p

(−1)pηµ1p(ν1)ηµ2p(ν2) · · ·ηµnp(νn) (Φµ1ν1Φµ2ν2 · · ·Φµnνn) , (219)
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with the sum running over all permutations p of the indices ν. Furthermore, (−1)p is
the sign of the permutation. In the above, we adopted the matrix notation Φµ

ν ≡ ∂µ∂νφ,
such that [Φ]2 = (�φ)2, [Φ2] = ∂µ∂νφµ∂νφ and so forth. Adopting this notation, the three
leading terms are given by

LTD
0 = 1, LTD

2 = [Φ]2−
[
Φ2
]
, LTD

4 = [Φ]4−6
[
Φ2
]
[Φ]2 + 8

[
Φ3
]
[Φ] + 3

[
Φ2
]2
−6

[
Φ4
]
,

(220)
and the resulting field equation can be written in the compact form

�φ=
∞∑
n=1

(−1)n−1

2n+ 1
[
Φ2n+1

]
. (221)

Finally, it is important to note that the NLSM is special in the sense that it allows
for a specific type of freedom in its construction. This can be seen from the following two
different perspectives. First, we note that the NLSM non-linear symmetry (209) is the
only one with constant (that is, space-time independent) parameters; this implies that
this NLSM is unaffected after coupling it to gravity, and it is left unaffected by the choice
of gravitational background. The coupling to gravity introduces an additional coupling
constant, which in this case corresponds to the (reduced) Planck mass (or equivalently,
Newtons gravitational constant).

Secondly, this can be seen from the NLSM coset construction (208). Since the param-
eters of the DBI and SG non-linear symmetries are space-time dependent, they necessar-
ily respect Lorentz symmetry. On the other hand, the space-time independence of the
NLSM non-linear symmetry implies that the gravitationally coupled NLSM corresponds
to a product of two cosets, with one corresponding to the NLSM scalar sector, and the
other one forming the gravitational background. Restricting to a flat gravitational back-
ground, the latter takes the form of the Poincaré group over the Lorentz group, and the
coset product reads

ISO(D)
SO(D) ×

SO(M +N)
SO(M)×SO(N) , (222)

where the space-time coordinates xµ and the NLSM scalars φab̄ are the broken generators.
The existence of this coset product leads to the possibility to introduce a coupling constant
(or cut-off scale) for each coset.

With the triplet of theories in the above formulation, the non-linear symmetries have
the same type of terms consisting of a generalized shift-term and a non-linear term that
is quadratic in the field, possibly including space-time derivatives. Furthermore, after
isolating the d’Alembertian, each equation of motion can be written as a simple infinite
series, with the different theories being distinguished by (1) their constant coefficients, (2)
the number of space-time derivatives per field in the O(φ2) term of the symmetry, and
(3) the number of flavour structures. The non-linear symmetries and equations of motion
are summarized in table 2, which emphasizes their similarities.
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Non-linear symmetry Equation of motion

NLSM δφ= c+φcTφ �φ=
∞∑
n=1

(−1)n−12(∂µφ)φT
(
φφT

)n−1
(∂µφ)

DBI δφa = ca+ caµx
µ+ cbµφ

b∂µφa �φa =
∞∑
n=1

(−1)n−1 [(∂∂φa)(∂φ ·∂φ)n]

SG δφ= c+ cµx
µ+ cµν (xµxν +∂µφ∂νφ) �φ=

∞∑
n=1

(−1)n−1

2n+ 1
[
Φ2n+1

]

Table 2: The three scalar EFTs with their non-linear symmetries and field equations. The off-
shell mapping, as will be discussed in section 6, relates the non-linear symmetries and equations
of motion.

6.2 Off-shell flavour-kinematics duality
As mentioned before, it turns out that the above formulation facilitates mapping relations
between the three theories. In this section, we will illustrate how a systematic interchange
of flavour and kinematic information maps the non-linear symmetries and equations of
motion onto each other.

We will start with the SG non-linear symmetry and map this subsequently onto the DBI
and NLSM non-linear symmetries. First, we note that the SG non-linear symmetry can
be written as

δφ= p+ 1
2∂

µφ∂µνp∂
νφ, (223)

where p is a quadratic polynomial in space-time coordinates, which can be written as
p= c+cµxµ+cµνxµxν . In order to transform kinematic to flavour information and thereby
unify the three theories, we expand p linearly in the auxiliary flavour coordinate θa, i.e.,
we write p = θapa, where pa is at most linear in space-time coordinates. By substituting
this expansion into the SG non-linear symmetry (223), and summing over both types of
indices, we obtain16

δφ= p+∂µφ∂µap∂
aφ= p+∂µφ∂µpaφ

a , (224)
where we also expanded the field via φ = φaθa in the latter expression. Note that φa
only depends on space-time coordinates. The latter expression exactly coincides with the
multi-DBI non-linear symmetry (200) after expanding along the flavour coordinates.17

It is easy to check that this mapping is invertible by interchanging flavour coordinates
by derivatives via φa = ∂aφ where the index on the derivative is finally identified with
a space-time index.18 Substituting this into the multi-DBI non-linear symmetry, one
recovers the SG non-linear symmetry (180).

16To be more specific: we let the indices on the derivatives run over both types of indices (µ,a).
17A similar mapping from kinematic to flavour information at the level of currents was outlined in [25].
18Note that, if we let an index on a derivative, say α, run over both flavour and space-time indices

(µ,a), one obtains ∂αφ = ∂µφ+∂aφ = ∂µφ, where the latter follows from the fact that φ only depends
on space-time coordinates.
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We can go further by expanding the field and parameter p bi-linearly instead. We do
this by introducing another independent auxiliary flavour coordinate θ̄ā; this means that
the original Ansatz takes now the form p = paāθ

aθā (or pa = paāθ
ā in order to go from

the multi-DBI non-linear symmetry to its NLSM counterpart). Plugging this new Ansatz
into the SG non-linear symmetry yields

δφ= p+∂aφ∂aāp∂
āφ= p+ θ̄āφaāpab̄φ

bb̄θb , (225)

which we identify to be the NLSM non-linear symmetry (209) after expansion along the
flavour coordinates.

In a similar fashion, we can map the complete equations of motion onto each other.
However, as will soon become clear, here we have to impose an additional constraint on
the auxiliary flavour dimensions.

To illustrate this, we start with the mapping from the SG equation of motion (221) onto
its multi-DBI counterpart (216), and for simplicity, we restrict to the cubic interactions
of the right-hand sides. Plugging in our field Ansatz φ = θaφ

a into the left-hand side of
(221) yields

θa�φ
a . (226)

Summing over both space-time and flavour indices and using the fact that ∂µ∂bφ →
θa∂

µ∂bφa+∂µφb and ∂µ∂νφ→ θa∂
µ∂νφa, we find that we could write down three possible

terms for the right-hand-side. The first type follows from three space-time contractions
and no flavour contractions; it explicitly reads

[∂µ∂ν(φaθa)∂µ∂ρ(φbθb)∂ν∂ρ(φcθc)] = θaθbθc [ΠaΠbΠc] , (227)

where we used the notation Πa ≡ ∂∂φa, and the trace is over the space-time indices. Note
that the higher order contributions of the field equation will also generate terms that are
cubic in θ. Secondly, we could write down a term involving three flavour contractions.
However, this term vanishes as a consequence of the initially assumed linearity of φ in
flavour coordinates.19 Finally, we have a term that involves a single flavour contraction:

1
3[∂d∂ν(φaθa)∂µ∂ρ(φbθb)∂d∂ρ(φcθc)] = θa [Πa(∂φ ·∂φ)] , (228)

where, once again, the trace is over space-time indices and the dot denotes flavour con-
traction. Note that the original coefficient 1/3 of the SG equation of motion has become
unity due to the three-fold choice to distribute the free flavour index within the trace.

Stripping the auxiliary coordinate from both the left-hand side (226) and the latter
right-hand side term (228) exactly results in the cubic part of the multi-field DBI equation
of motion (216).

Based on the above, we conclude that our Ansatz maps the SG equation of motion onto
its multi-DBI counterpart if we constrain the auxiliary dimension in such a way that

19It is easy to see that two flavour derivatives acting on φa(x)θa results in zero.
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the higher order (in the flavour coordinate) terms of the form (227) vanish. There are
two possibilities to achieve this. The simplest way is to simply truncate the expression
at linear order in θ, while another possibility is to take the auxiliary dimensions to be
Grassmannian. As a consequence of the latter, the flavour coordinates satisfy the anti-
symmetry property θaθb =−θbθa, which leads to the vanishing of (227) after contraction
with the trace.

To illustrate that this mapping is invertible, we now take the cubic part of the DBI
equation of motion (216) to be the starting point:

∂µ∂νφa∂µφ
b∂νφ

b . (229)

Replacing the colour indices with derivatives and interpreting them as space-time indices
yields

∂µ∂ν∂aφ∂µ∂
bφ∂ν∂bφ, (230)

which is equivalent to
1
3∂

a[Φ3] . (231)

We identify the above to be the derivative of the cubic part of the SG field equation.
Turning to the complete equation of motion, the above strategy would eventually give

�∂aφ=
∞∑
n=1

(−1)n−1

2n+ 1 ∂a
[
Φ2n+1

]
, (232)

which coincides with the SG equation of motion (221) after extraction of the derivative
on both sides.

In a similar fashion, we can go from DBI to the NLSM. In this case, we expand in a
second (independent) auxiliary flavour dimension, i.e,

φa = φaāθ̄ā , (233)

where we introduced an additional (barred) flavour structure. Note that it is (like for the
non-linear symmetries) also possible to map the NLSM directly to the SG by expanding
φ bi-linearly in the two auxiliary dimensions:

φ= φaāθaθ̄ā . (234)

Substituting the Ansatz (233) into the left-hand side of the DBI equations of motion
(216) results in θā�φaā. Turning to the right-hand side, we will again focus on the
cubic contribution, which is in this case given by [∂∂φ(∂φ·∂φ)]. The terms containing
two flavour contractions once again vanish due to the linearity in flavour coordinates.
Therefore, we remain with two possible types of terms. Firstly, we have a term with zero
flavour contractions, which reads

∂µ∂ν(φaāθ̄ā)∂µ(φbb̄θ̄b̄)∂ν(φbc̄θ̄c̄) = θ̄āθ̄b̄θ̄c̄∂
µ∂νφaā∂µφ

bb̄∂νφ
bc̄ . (235)
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Like before, this term vanishes under the assumption that the auxiliary dimension is
Grassmannian. Secondly, we have a term involving a single (barred) flavour contraction,

∂d̄∂ν
(
φac̄θ̄c̄

)
∂d̄

(
φbb̄θ̄b̄

)
∂ν
(
φbāθ̄ā

)
= 2θ̄ā∂νφab̄φbb̄∂νφbā , (236)

where the factor 2 results from the two-fold possibility to distribute the flavour indices on
the left-hand side. After stripping the auxiliary coordinate θ̄ā from both sides, we recover
the cubic part of the NLSM equation of motion (214). Once again, similar considerations
apply to the higher order terms.

Finally, we can go from NLSM to DBI (and vice-versa) by interpreting flavour indices
as derivatives acting on the field. We will not go into detail here, since the considerations
are fully analogous to going from DBI to SG (and vice-versa).

The systematic replacement of colour and kinematic information as outlined here results in
invertible mappings between the three Goldstone modes with identical coupling constants
(which are set equal to unity here). By additionally allowing for numerical coefficients
in these mappings, such as e.g. φ = (MSG/MDBI)φaθa, it is always possible to introduce
arbitrary numerical ratios; restricting to the same sign will always map compact onto
compact cosets. Note that these mapping relations do not enforce any relations or identi-
fications on the coupling constants of the NLSM. In section 7, we will see that this works
differently at the level of amplitudes.

6.3 Classical non-linear solutions
In this section, we turn to relations between the classical solutions of the triplet of scalar
theories. Specifically, we will solve the field equations in the presence of a point-like
(classical) source at the origin, and we restrict to four space-time dimensions. Motivated
by the off-shell flavour-kinematics duality as outlined in the previous section, it would
be natural to expect some sort of double copy relation between their classical solutions.
Finally, we will discuss the implications of flavour-kinematics duality, and we outline
the similarities that initially inspired us to further investigate their off-shell double copy
formulation.

6.3.1 Classical solutions in response to a point-like charge

Since we consider stationary spherically symmetric solutions in position space, the deriva-
tives on the fields can be written purely in terms of the radial coordinate r=

√
xixi, where

i= 1,2,3 runs over the space-like indices. Assuming spherical symmetry and time indepen-
dence (√xµxµ ≡ r), the following replacements can be made in the DBI and SG equations
of motion (as written in (194) and (201) respectively):

∂µφ→ xi

r
φ′(r), (∂φ)2→

(
φ′(r)

)2
, ∂µ∂νφ→ xixj

r2 φ′′(r)− x
ixj

r3 φ′(r), �φ→ 2φ′(r)
r

+φ′′(r),
(237)
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where we denote φ′(r) ≡ dφ(r)/dr. After substituting the above into the (quartic) SG
field equation (201), we obtain the closed-form ordinary differential equation (ODE)[

Λ6(φ′)2 + r2
]
φ′′+ 2rφ′ = 0 , (238)

which is of order one in the first order derivative φ′. The only real solution in terms of φ′
reads [55]

φ′(r) = 1√
6L3


√27

2 L
3µ+

√
r6 + 27

2 L
6µ2


1
3

− r2

√27
2 L

3µ+
√
r6 + 27

2 L
6µ2

−
1
3
 ,
(239)

where µ is a constant with the interpretation of SG scalar charge. This equation is finally
solved by the generalized hypergeometric series

φSG =− µ
r

4F3

(
1
6 ,

2
6 ,

4
6 ,

8
6; 9

6 ,
8
6 ,

7
6;−σ

2µ2

r6

)

=− µ
r

+ 4σ2µ3

189r7 −
16σ4µ5

3159r13 + 256σ6µ7

124659r19 + . . . ,

(240)

where we redefined the coupling constant as σ2 = (27/2)Λ−6.20 A (generalized) hyperge-
ometric series, which we will encounter many times in this section, can be written as

pFq (a1, . . . ,ap;b1, . . . , bq;z) =
∞∑
n=0

(a1)n · · ·(ap)n
(b1)n · · ·(bq)n

zn

n! , (241)

where the so-called rising factorials are given by

(a)0 = 1 ,
(a)n = a(a+ 1)(a+ 2) · · ·(a+n−1) , n≥ 1 .

(242)

Next, we turn to the equation of motion of the DBI (194). This equation cannot be solved
in the elegant way of the SG since it contains an infinite number of terms; in this case we
use perturbation theory to solve order by order. The spherical-symmetry Ansatz φ≡ φ(r)
leads to the ODE

0 = φ′′r+ 2φ′− 1
2 l

2
(
φ′
)2 [

2
(
φ′
)

+ 3φ′′r
]
+ 3

8 l
4
(
φ′
)4 [

2
(
φ′
)

+ 5φ′′r
]
+ . . . (243)

Expanding the field in the coupling,

φ= φ(0) + lφ(1) + l2φ(2) + . . . , (244)
20Note that this solution can be simplified, but in order to show the similarities between all solutions,

we will refrain from doing so.
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and substituting the expansion into the equation of motion (243), leads to a set of differ-
ential equations for each perturbative correction φ(i). By solving for the first few φ(i) (see
Appendix for details), we eventually find the unique closed-form solution

φDBI =− ρ
r

3F2

(
1
4 ,

2
4 ,

4
4; 5

4 ,
4
4;− ρ2

F 2r4

)

=− ρ
r

+ ρ3

10F 2r5 −
ρ5

24F 4r9 + 5ρ7

208F 6r13 + . . . ,

(245)

where ρ is the DBI scalar charge.

Finally, we consider the SO(M,N) NLSM minimally coupled to GR, which is stated
in equation (281). There are two reasons to consider the classical to gravity. In the
first place, one should note that contrary to the uncoupled NLSM, the NLSMg possesses
non-linear interactions via graviton exchange, even when restricting to a single flavour.
Instead of the 1/r fall-off of the normal NLSM, we therefore already anticipate that the
result will be a non-linear classical solution. And secondly, as will outlined in the next
chapter, it turns out that the amplitude corresponding to the BCJ factorization of two
flavour factors gives rise to exactly this theory. The presence of two coupling constants
will allows us to explore the possible solutions in special cases, such as e.g. in the absence
of NLSM contact-interactions.

21

The derivation of the classical solution of NLSMg is somewhat more complicated than
the previous solutions. However, in previous research [56, 57], similar calculations were
performed for the case of a free scalar field coupled to gravity. Given our knowledge that
the NLSM (170) reduces to a free theory for a single scalar, in combination with the fact
that our single-field NLSM is related to the free theory by the field redefinition of the
form φNLSM = tanφfree, allows us to take the results of the free theory coupled to gravity
and simply take its tangent.22

Following [56], we briefly review the derivation of the scalar solution for a free scalar
field minimally coupled to gravity. The Lagrangian of a free scalar field coupled to GR
reads

LEH+φ = 1
2(R−gµν∇µφ∇νφ) , (246)

where R is the Ricci scalar curvature for the space-time metric gµν . Furthermore, we
work with units in which 8πG= c= ~ = 1. Variation of (246) with respect to the metric
and scalar field respectively leads to the following two field equations:

Gµν = Tµν , gµν∇µ∇νφ= 0 . (247)
21Note that the single-colour (or flavour) NLSM reduces to a free theory.
22This field redefinition can be derived by comparison of the single-field non-linear symmetries of our

NLSM (209) and the canonical NLSM (171). Division of these gives δφ
δφc

= 1
1+φ2 . Hence, we deduce

φ= tanφc, where the subscript c refers to the canonical NLSM (which is equivalent to a free theory for
a single scalar).
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Since we wish to solve these equation in the presence of a point-like scalar charge, the
only contribution to Tµν is generated by the energy of the scalar field. Furthermore, we
assume that the stationary spherically-symmetric space-time metric takes the form

ds2 =−f(r)dt2 + dr2

f(r) +R(r)2 dΩ2 , (248)

where dΩ2 = dθ2 +sinθ2 dφ2. With this metric choice, the non-vanishing elements of the
Einstein tensor are given by

Grr = f
(
R,r
R

)2
+ R,r

R
f,r−

1
R2 ,

Gtt =Grr + 2f R,rr
R

,

Gθθ =Gφφ = f,rr
2 + R,r

R
f,r + R,rr

R
f ,

(249)

and the Ricci curvature reads

R =−f,rr−
4
R

(fR,r),r−2f
(
R,r
R

)2
+ 2
R2 . (250)

The spherically symmetric scalar field φ(r) with respect to this metric Ansatz generates
the energy-momentum tensor

φTµν =
fφ2

,r

2 diag{−1,1,−1,−1} , (251)

and the scalar field equation of motion (247) with respect to our metric leads to

fφ,rR
2 = C1 , (252)

where we set the constant C1 equal to zero without losing generality. Next, we integrate
the above and obtain

φ(r) = C2

∫ dr
f(r)R(r)2 +C3 , (253)

where C2 and C3 are integration constants. Without losing generality we set C3 = 0,
corresponding to vanishing φ at spatial infinity. The EFE and scalar field equation (247)
together fix f(r) and R(r); it turns out that the simplest solution reads [57]

f(r) = 1 , R(r) =
√
r2−χ2 , (254)

where χ is the NLSM scalar charge. Finally, we substitute the above into (253) and
integrate: we find that the solution of the scalar field reads

φ(r) =−
√

2arctanh
(
χ

r

)
. (255)

68



Finally, we take the tangent of the above and obtain the classical solution of the NLSM
minimally coupled to gravity. The result is given by

φNLSMg =MNLSM tan
(
−
√

2Mpl
MNLSM

arctanh
(

χ

Mplr

))
, (256)

where we included the right dimensionality.
Contrary to the classical solutions of DBI (245) and SG (240), in this case we have

two coupling constants (due to the reasons discussed in 6.1). Since this solution is in
response to a single scalar charge, the scalar interactions only take place via graviton
exchange. One choice would therefore be to take the limit of MNLSM →∞, such that
all information that can be traced back to the interactions of differently coloured NLSM
scalars is removed. By taking this limit, the solution reduces to the form

lim
MNLSM→∞

φNLSMg =−Mpl arctanh
(

χ

Mplr

)

=−µ
r

2F1

(
1
2 ,

2
2; 3

2; χ2

M2
plr

2

)

=−χ
r

+ χ3

3M2
plr

3 −
χ5

5M5
plr

5 + χ7

7M7
plr

7 + . . . ,

(257)

which is a hypergeometric series that no longer depends on MNLSM. Taking this limit
is, however, slightly debatable. An alternative option to get rid of one cut-off scale
is to compare the amplitudes of the NLSM and NLSMg. As will be discussed later,
a comparison of the amplitude resulting from BCJ factorization (involving two flavour
factors, it turns out) and the amplitude resulting from the Lagrangian (i.e., the NLSM,
as given in (213), minimally coupled to GR), leads to the identification of Mpl =MNLSM.
Using this identification, one can single out one of the coupling constants. However, it
turns out that this strategy leads to a non-closed solution that does not fit in line with
the DBI and SG classical solutions.

6.3.2 Relations between classical solutions

The three classical solutions that we have found clearly show striking similarities since
each solution takes the form of a hypergeometric series pFq({a1, . . . ,ap};{b1, . . . , bq};z),
with the (as we shall refer to it) expansion parameter z being proportional to r−2, r−4

or r−6, for the NLSMg, DBI and SG respectively. These similarities are visible from the
summary of solutions in table 3.
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Theory Classical solution

NLSMg −χr 2F1

(
1
2 ,

2
2 ; 3

2 ; χ2

M2
plr

2

)
DBI −ρr 3F2

(
1
4 ,

2
4 ,

4
4 ; 5

4 ,
4
4 ;− ρ2

F 2r4

)
SG −µr 4F3

(
1
6 ,

2
6 ,

4
6 ,

8
6 ; 9

6 ,
8
6 ,

7
6 ;−σ

2µ2

r6

)
Table 3: The classical solutions of the NLSMg, DBI and SG in response to a point-like charge
located at the origin.

When writing the arguments {a1, . . . ,ap;b1, . . . bn} of the hypergeometric series as frac-
tions with denominators 2,4 and 6 (for NLSMg, DBI, and SG respectively), we found that
the numerators belonging to the elements of the set p respectively read {1,2}, {1,2,4}
and {1,2,4,8}. The numerators of the set q can then be systematically derived from the
numerators of p. This works as follows: one of the numerators is given by the greatest
numerator of p plus unity, while the remaining q−1 numerators follow from subtracting
unity from the latter.

In section 6.1, we already saw that NLSMg, DBI and SG have the schematic BCJ nu-
merator content f × f , f ×R and R×R, where f and R respectively refer to flavour
factors and scalar-kinematic numerators. Starting from the classical solution of NLSMg,
we note that the replacement of a flavour factor by a scalar-kinematic numerator at the
amplitude level corresponds to the mapping 2F1 7→3 F2 at the level of classical solutions.
Furthermore, the “central number”, in this case corresponding to 2, is mapped to the DBI
central number 4; by this we mean that the r−2 dependence of the expansion parameter
is mapped to a r−4 dependence, and the denominators of p and q are also mapped to
4. As mentioned above, the numerator of the additional element of p is two times the
greatest element of the set p of NLSMg, that is, 2× 2 = 4, while the two numerators of
q are 4 + 1 = 5 and 5−1 = 4. Finally, the NLSMg scalar charges and coupling constants
(or cut-off scales) are trivially mapped onto its DBI counterpart. Remarkably, there is a
sign flip in the expansion parameter of the hypergeometric series.

Mapping DBI to SG works fully analogous to going from NLSMg to DBI, with the
DBI central number 4 being mapped to 6, and with the DBI scalar charge and coupling
constant being mapped to their SG counterparts. In this case, however, there is no sign
flip.

It is clearly visible that the classical solutions have a very similar structure, and that there
is (up to a certain extent) a systematic pattern between the different solutions when taking
the limit MNLSM→∞. These similarities initially inspired us to further investigate the
off-shell double copy relations, eventually leading to the results of this chapter. Despite
the remarkable similarities, it is not entirely clear how one should interpret these results
in the context of the double copy. Especially the limitMNLSM→∞ (which forbids NLSM
contact interactions) seems to be out of line with the previous results, since the off-shell
mapping of chapter 6, on the other hand, involves the NLSM without graviton exchange.
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In combination with the different sign of the expansion parameter of the φNLSMg , this
means that all we can conclude so far is that the similar forms of the classical solutions
are (at least) highly remarkable.

7 Amplitudes and On-Shell Flavour-Kinematics Du-
ality

Motivated by the already established double copy relations (as discussed in section 5.3),
and the off-shell double copy formulation of the previous chapter, we now turn to an
in-depth investigation of the relevant amplitudes and BCJ numerators. To get started,
we will discuss general numerator and amplitude structures; we show that amplitudes
involving two flavour factors naturally lead to the inclusion of graviton exchange for the
SO(M +N) NLSM. Finally, we point out mapping relations between the numerators,
including the tensor-kinematic YM numerators.

7.1 The BCJ formulation and algebraic properties of numera-
tors

To refresh our memory on the algebraic properties of BCJ numerators, we recall from sec-
tion 2.4 that the four-point tree-level amplitude of theories admitting a BCJ formulation
can be written as

A4 =
∑

exchange

NijklÑijkl
sij

, (258)

where the sum is taken over cubic diagrams (see figure 11). At four-point, this corresponds
to the permutations (ijkl) = (1234,2314,3124), or as we previously referred to these:
the s, t and u exchange diagrams. In total, one could write down 4! permutations; the
reduction down to three inequivalent permutations follows from the following three Z2
symmetries. Firstly, we have anti-symmetry in the first and last pairs of legs23, and
secondly, we have reflection-(anti) symmetry, as we saw in equation (2).

As discussed in section 2.1, we have a total of (2n−5)!! inequivalent cubic diagrams,
which means that we find 5!! = 5!/23 = 15 inequivalent half-ladders at five-point (see figure
11). At six-point, two inequivalent topologies add up to a total of 7!! = 115 diagrams;
these topologies consist of half-ladders (similar to four- and five-point) and snow-flake
diagrams (see figure 11). In total, there are 6!/23 = 90 inequivalent half-ladders and
6!/

(
23 ·3!

)
snow-flake diagrams. The reduction by 3! follows from the equivalence of the

three centre (internal) legs, while the 23 reduction follows from the anti-symmetry in each
pair of external legs. The kinematic numerators of the snow-flake diagrams are related

23This anti-symmetry property can be easily seen by considering the s-channel four-point scalar-
kinematic numerator N1234 = (s14− s13)/s12. Upon interchange of the first pair of legs, the numerator
becomes N2134 = (s24−s23)/s12; upon using four-point kinematic identities, the latter can be written as
−(s14−s13)/s12 =−N1234.
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via kinematic Jacobi identities and take the form Nijklmn−Nijlkmn. Hence, by including
both topologies, the six-point amplitude takes the schematic form

A6 =
∑

half − ladder

NijklmnÑijklmn
sijsijksmn

+
∑

snow-flake

(
Nijklmn−Nijlkmn

)(
Ñijklmn− Ñijlkmn

)
sijsklsmn

.

(259)

Figure 11: The trivalent diagrams relevant at lower-point scattering; all have half-ladder topology
at three-, four- and five-point, while at six-point there are half-ladder and snow-flake topologies.

Next, we turn to the algebraic properties of BCJ numerators. As discussed before, the
four-point kinematic BCJ numerators are required to satisfy the following symmetry con-
ditions:

Nijkl =−Njikl, Nijkl =Nlkji, Nijkl+Njkil+Nkijl = 0 . (260)
The first two identities respectively correspond to anti-symmetry and reflection symmetry,
whereas the latter is the kinematic analogue of the Jacobi identity for structure constants.
These conditions naturally generalize to higher order, say n-point, where the kinematic
Jacobi identities can be written as

−Nijkl... =Njikl... =Nk[ij]l... =Nl[[ij]k]... = . . . , (261)

with multiple commutators on the first n− 1 indices. These conditions lead to n− 2
conditions on the indices. In addition to the above, we have the reflection (anti) symmetry

Nijklm... = (−)nN...mlkji , (262)

with the sign depending on the parity (i.e., the number of particles).
Imposing these algebraic relations constrain the representations that the BCJ numer-

ators can take. The Young-Tableaux corresponding to these representations are shown in
figure 12, and at each order, these are given by the following:
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• At three-point, we can only have the anti-symmetric tensor. Its dimension (as
element of the symmetric group) is 1.

• At four-point, the unique representation is the window tensor with dimension 2.

• At five-point, the unique representation is the equal-arms hook tensor with dimen-
sion 6.

• At six-point, we find three irreps with different Young tableaux, with dimensions 5,
9 and 10, respectively, adding up to a total dimension of 24.

(a) (b) (c) (d) (e) (f)

Figure 12: Young tableaux for the BCJ numerators at: (a), three-, (b) four-, (c) five- and (d,e,f)
six-point.

Let us now consider specific representations that satisfy these constraints. Starting with
colour, we can represent the colour factors in terms of structure constants, and at arbitrary
order, the colour factors are given by24

N1234... = fAB
P fPC

QfQD
R . . . , (263)

where the capitals refer to the adjoint representation. For example, at three- and four-
point, the colour factors read

N123 = fABC , N1234 = fPABfPCD . (264)

These indeed correspond to the earlier discussed YM colour factors, and can easily be
checked to satisfy the algebraic constraints. Note that we have assumed the existence of
a metric to raise and lower the last index.

7.2 Flavour and kinematic BCJ numerators
In this section, we will investigate numerators structures that are different from the origi-
nal colour factors and YM (or tensor-kinematic) numerators involved in YM and GR. As
we have discussed before, these could, for instance, solely depend on kinematic invariants
(without polarisation) and hence describe the scattering of massless scalars without any
additional structure. First, we will restrict to purely scalar-kinematics, and thereafter we
generalize with the inclusion of flavour.

24Note that the left-hand side should be read as (N123...)ABC..., where adjoint index A is assigned to
the adjoint representation of particle 1 and so forth. For notational simplicity, we will leave this implicit.

73



In the purely scalar-kinematic case, the absence of colour structure implies that no anti-
symmetric three-point numerators can possibly exist, since all momentum contractions
vanish as a consequence of momentum conservation. Hence, at three-point, there does
not exist a scalar-kinematic numerator.

To find the four-point numerator, we impose the identities (260), and we will restrict
to numerators that are quadratic in the Mandelstam variables25, in order to obtain the
same order in momenta as the SG. The most general solution is given by26

Nijkl = λ4sij(sjk− sik) , (265)

where λ4 is a constant. The four-point amplitude then follows from the BCJ factorization
(258) and explicitly reads

A4 =−9λ4
2s12s23s13 . (266)

This amplitude exactly coincides with the SG four-point amplitude (204) after fixing the
coefficient λ4 in terms of the coupling constant.

Next, we consider five-point amplitudes. As we discussed earlier, the triplet of scalar
EFTs all have vanishing odd-point amplitudes. However, here we will provide an in depth
explanation. In the five-point case, there are four constraints on the numerators. In
addition to the anti-symmetry and reflection (anti) symmetry constraints, we have two
Jacobi-like identities involving commutators. Upon imposing these constraints, we find
that the first nontrivial solution is found at cubic order, involving a single parameter.
However, the BCJ factorization of these numerators indeed leads to a vanishing total
amplitude; this parameter therefore corresponds to a generalized gauge transformation,
as discussed in section 2.1. This can be seen as follows: suppose that the five-point
numerator is of the form

Nijklm ∼ sijGijklm− slmGmlkji , (267)

where G is the gauge parameter. When the BCJ factorization is taken with another
numerator Ñ , the amplitude will receive contributions of the form

∑ ÑijklmGijklm
slm

−
ÑijklmGmlkji

sij
. (268)

Let us now recall from section 2.1 that there are 15 distinct cubic diagrams at five-
point, and hence the above structure will contribute a total of 30 terms to the amplitude.
Provided that the gauge parameters Gijklm are fully anti-symmetric in the first three

25Note that there also exist solutions of the form Nijkl ∼
(
sjk−sik

)
. These will, however, have a more

natural interpretation as a special case of flavour factors, as we will discuss later.
26Note that we work with the notation sij = (pi+pj)2 (already at four-point), instead of Mandelstam

variables, since we will work with higher-point amplitudes, and it gives explicit insight into the algebraic
structure of the numerators.
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indices (ijk), the 30 terms will combine in a triplet of 10 terms that share a common
denominator. For example, this involves terms of the form

(Ñijklm+ Ñjkilm+ Ñkijlm)Gijklm
sij

, (269)

and all of these terms combined will vanish by force of the Jacobi identity. Note that
this only requires the Ñijklm to satisfy the Jacobi identities, while it does not require any
specific form. The most general numerator turns out to be of the form of equation (267),
with the gauge parameter given by

Gijklm = (silsjm− (l↔m)) + (cyclic) , (270)

where (cyclic) refers to the two terms resulting from cyclic permutations in the first three
indices (ijk).

Next, we turn to six-point, and we will be interested in numerators that are of quartic
order in Mandelstam, in order to coincide with the SG six-point interaction.27 Imposing
the algebraic constraints (261) and (262) results in an expression involving 23 free param-
eters. Furthermore, we require factorization into even-point amplitudes; this means that
we have to impose the vanishing of terms involving single-Mandelstam poles, since these
correspond to a splitting into a three- and five-point vertex (which is prohibited by the
BCJ approach). The latter reduces the number of free parameters to a total of six; we
checked that the final amplitude (which follows from the BCJ factorization) only contains
a single linear combination of these. Therefore, we conclude that these parameters consist
of one physical parameter and five gauge parameters.

Inspired by the kinematic dependence of the four- and five-point amplitudes, we nat-
urally extend the amplitude Ansatz to six-point:

Nijklmn = sijPijklmn+ order reversed . (271)

This Ansatz is checked to have one physical parameter and one gauge parameter; the
former explicitly reads

Pijklmn =− smn
(
sjk
(
−4sin+ 4

(
sjl+ skl+ skm

)
+ 5slm

)
+

+ sik
(
−4sin+ 4

(
sjl+ skl

)
+ sjk + 9slm

)
+ 5sijsik + 4s2

ij + s2
ik

)
+

+ 4
(
sij + sik + sjk

)((
sik + sjk

)(
− sin+ sjk + sjl+ skl

)
+ sjkskm

)
−4slm

(
sik
(
sjl+ skl

)
+ sjksjl

)
+ s2

mn

(
4sij + 5sik

)
, (272)

which is, of course, not unique due to the possibility of generalized gauge transformations.
Again, it has been checked that the resulting six-point amplitude coincides with the SG
six-point interaction.28

27Note that there also exist quadratic and cubic solutions. However, again it will be more natural to
interpret these as special cases of the flavour factors.

28Six-point scalar-kinematic numerators were also constructed in [36]. However, in this paper a different
basis was used; in which the reflection symmetry was not imposed on the numerators.
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The expectation is that this structure extends to higher order, with the first non-trivial
solution to the algebraic constraints coming in at order n−2 in kinematic invariants. As
mentioned earlier, the odd-point numerators all consist of pure gauge parameters, leading
to vanishing odd-point amplitudes.

As we have seen above, the first non-trivial solution involving purely scalar-kinematics
occurs at order n−2 in the kinematic invariants. Below this order, there are no solutions
to the algebraic conditions. However, solutions below order n−2 in kinematic invariants
do exist when the scalar fields carry additional structure. One possibility is to consider
scalar fields in the adjoint representation, leading to the inclusion of colour factors (i.e.,
structure constants). Another option, which we will consider here, is the scalar fields
living in the fundamental representation of e.g. SO(N), which we have seen in section
5.3, yielding amplitudes that can be factorized in terms of flavour factors. Since these
factors will involve the invariant metric δab, the odd-point flavour factors (and hence
amplitudes) naturally vanish.

Turning to explicit flavour factors, the first solution at four-point is found at linear
order in kinematic invariants:

F1234 = f1(δabδcd(s23− s13)− (δacδbd− δbcδad)s12) +f2(δabδcd+ δacδdb+ δadδbc)(s13− s23) ,
(273)

where we (like before) assign momentum p1 and flavour index a to external particle 1 etc.
Due to the mixing of flavour and kinematic, the Jacobi identities can be solved in multiple
ways. For example, the above expression is anti-symmetric under the exchange of particles
1 and 2 as a consequence of anti-symmetry in flavour and symmetry in kinematics, or vice-
versa. As a consequence of this freedom, we already find that the four-point flavour factor
already contains a free parameter. When restricting to a single flavour (by setting δab = 1
etc.), both parameters collapse onto the same factor, and we recover the numerators as
given in footnote 25. The latter therefore has a natural interpretation as a special case of
the above flavour factor.

The amplitude resulting from the BCJ factorization involving one scalar-kinematic
numerator and flavour factor can schematically be written as

A4 =
∑

exchange

NijklFijkl
sij

, (274)

and we have checked that both parameters (f1 and f2) are physical instead of generalized
gauge. The resulting amplitude consists of two types of contributions with different
flavour structures. The partial amplitude (which is e.g. the part proportional to δabδcd),
for instance, is given by

Aab,cd4 =−6f1λ4(s23s13)−6f2λ4(s23s13− s2
12) . (275)

By comparison with the multi-DBI field equation (216), we conclude that the part propor-
tional to f1 coincides with the multi-DBI amplitude; this follows from a specific relation
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between the terms Tr
[
(∂φa∂φn)2] and Tr[(∂φa∂φn)]2 of the field equation. The second

term, on the other hand, solely results from the latter, and for arbitrary f2 the correspond-
ing theory has no clear Goldstone interpretation associated with spontaneous symmetry
breaking. Therefore, we set f2 = 0 so that the above amplitude corresponds to the BCJ
formulation of the multi-DBI theory.

Next, we consider the BCJ factorization involving two flavour factors. For notational
convenience, and an improved understanding of these amplitudes, it will be useful to
define the following notation for the flavour structures:

[AB]≡ δabδāb̄ , [ABCD]≡ δabδcdδb̄c̄δād̄ , (276)

where again δ and δ̄ belong to the distinct numerators F and F̄ , respectively.29 The BCJ
factorization,

A4 =
∑

exchange

FijklF̄ijkl
sij

, (277)

now contains two different structures, which we will outline below.

• Firstly, we have contributions involving a single trace; one example of this part is
explicitly given by

∼ f2
2

(s2
12− s23s13)2

s12s23s13
([ABCD] + [ADCB]) + (cyclic) , (278)

where (cyclic), like before, denotes cyclic permutation of three external legs while
keeping one leg fixed. Note that single-trace contributions could correspond to the
four-point amplitudes of the NLSM. However, in the above we find (single) poles
and these contributions can therefore not originate from the NLSM (which only has
contact interactions and hence no poles). Like for the multi-DBI, we have to set
f2 = 0 in order to connect the amplitude to a known theory.
The second type of single-trace contribution reads

Acontact
4 =−4f2

1 s13([ABCD] + [ADCB]) + (cyclic) , (279)

and these indeed have the same structure as the SO(M +N) NLSM amplitudes,
which can be trivially seen from the field equation (214). These contact interactions
are visualized in the left part of figure 13.

• Secondly, we have double-trace structures of the form

Aexchange
4 =−4f2

1
s23s13
s12

[AB][CD] + (cyclic) . (280)

As a consequence of the poles, these structures represent exchange diagrams; it turns
out that these correspond to graviton exchange between the four NLSM scalars.

29Note that this trace is not invariant under cyclic permutations.
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Since the gravitons do not carry any flavour, the flavours of the scalars connected
to the vertices should coincide, leading to the double-traces (see the right part of
figure 13).30

The sum of the above amplitude structures follows from the non-compact SO(M,N)
NLSM minimally coupled to gravity, with the Lagrangian given by

LGR+NLSM =
√
−g

(
1
2M

2
PlR−

1
2

[
1

1−φφT /F 2∇
µφ

1
1−φTφ/F 2∇µφ

T

])
, (281)

where MPl is the reduced Planck mass and F is the NLSM cut-off scale. A derivation
of the amplitudes (including F and MPl and the appropriate coefficients) is reviewed
Appendix A.3. By comparison of the relative strength of this amplitude (see (319)) and
the two contributions resulting from the BCJ factorization (see equations (279) and (280)),
we conclude that the latter corresponds to the gravitationally coupled NLSM with the
identification F =MPl.

Figure 13: The two types of Feynman diagrams contributing to the NLSMg four-point amplitude.
These consist of contact-interactions (left) and graviton exchange (right). The straight lines are
scalars, whereas the curly line represents an intermediate graviton. For the full amplitude,
permutations should be taken into account.

Moving on to six-point, we have 15 inequivalent BCJ diagrams, with inequivalent flavour
structures consisting of products of three delta functions. These are multiplied by quadratic
expressions in one of the nine independent kinematic invariants, leading to 45 different
terms per single-trace contribution; hence adding up to a total of 15·45 = 675 terms. The
algebraic conditions constrain 642 of the parameters, leaving a total of 33 free parameters.
These are contained in the three irreps of figure 12 as follows: (d) contains 9 parameters,
(e) contains 15 parameters and (f) contains 9 parameters. Like before, we additionally
impose the factorisation constraint; this leaves us with a total of 6 unfixed parameters
(similar to the scalar-kinematic numerators), with components in all three irreps. The
complete six-point flavour factor is given by a complicated expression. However, restrict-
ing to a specific parameter (not equal to pure gauge), the part that is proportional to s2

12
explicitly reads

28δafδbeδcd−28δaeδbfδcd+ 11δabδcdδef + 13δafδbdδce−13δadδbfδce+
−34δaeδbdδcf −5δadδbeδcf + 25δafδbcδde−26δacδbfδde+ 8δabδcfδde+
−7δaeδbcδdf + 26δacδbeδdf + 13δabδceδdf −9δadδbcδef + 7δacδbdδef

(282)

30For future research, it would be interesting to see if the pole structures proportional to f2 have a
similar form, corresponding to e.g. gluon exchange.

78



The other parts of the six-point factor that are proportional to the other (eight) inde-
pendent kinematic invariants squared then follow from the algebraic and factorization
constraints.

For the six-point amplitude, we find similar results as in the purely scalar-kinematic
case, since this six-point flavour amplitude also depends on a linear combination of the
six parameters. Hence, we again conclude that five of these are gauge parameters and
one is a physical parameter. As a consequence of the long expressions for the six-point
flavour factors, the resulting amplitude is also a long expression, and therefore we refrain
from explicitly stating it.

7.3 On-shell flavour-kinematics duality
In this section, we naturally extend the off-shell flavour-kinematics duality of section 6
to the on-shell level: we propose (non-invertible) mapping relations between the different
BCJ numerators, extending the off-shell mapping to the on-shell level.

To illustrate these relations, we take our starting point to be the four-point flavour factor

F1234 = δabδcd (s23− s13)− (δacδbd− δbcδad)s12 , (283)

where we map flavour information to kinematic information via

δab 7−→ 1 +λs12 , (284)

where λ is a constant. Next, we isolate the part of the resulting expression at order O(λ);
upon using momentum conservation (s12 +s13 +s14 = 0), the coefficient of λ turns out to
be exactly the scalar-kinematic numerator

N1234 = s12 (s23− s13) . (285)

Note that this is a non-invertible mapping, since we throw away quadratic terms in λ.
This on-shell mapping mimics its off-shell counterpart: here we map a four-derivative
interaction to a six-derivatives interaction, analogous to the off-shell mapping where the
interaction also increased by a total number of two derivatives.

In addition to the above, we have pointed out a similar mapping from tensor-kinematic
numerators to flavour factors. To illustrate this, we recall that the four-point s-channel
tensor-kinematic numerator is given by

ns =−
{[

(ε1 · ε2)pµ1 + 2(ε1 ·p2)εµ2 − (1↔ 2)
]
[(ε3 · ε4)p3µ+ 2(ε3 ·p4)ε4µ− (3↔ 4)]

+2s1,2 [(ε1 · ε3)(ε2 · ε4)− (ε1 · ε4)(ε2 · ε3)]} .
(286)

In order to transform tensor-kinematic information into flavour information, we map

εi ·pj 7−→ 0, εi · εj 7−→ δij , (287)
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and the result exactly coincides with the flavour factor (283). Naturally, all odd-point
numerators vanish due to the odd numbers of polarizations and momenta.

Alternatively, one could take the starting point to be the polarization-stripped version
of (286), which is given by

ns =
[(
−1

2η
αβηγλp1 ·p3−ηγλp2

αpβ3 −ηαβp1
λpγ4 −2ηβλp2

αpγ4

)
−(1↔ 2)− (3↔ 4) + (1↔ 2,3↔ 4) +

(
ηαληβγ−ηαγηβλ

)
p1 ·p2

]
.

(288)

In this case, the mapping is given by

ηαβ 7→ δab , (289)

whereas all other terms (i.e., terms with uncontracted momenta) vanish. Note that the
space-time indices of the Minkowski metric are mapped to flavour indices on the right-
hand side.

Having studied the off-shell field equation, non-linear symmetries and the on-shell am-
plitude structure, one might wonder which picture emerges from these findings. It turns
out that the double copy relations can be graphically represented as the tetrahedron vi-
sualized in figure 14: at the nodes of the tetrahedron, we find theories involving two BCJ
numerators of the same type, while theories with mixed numerators can be found along
the edges. The vertical levels of the tetrahedron are related to the spin of the theory
and therefore to the numerator content. At the top of the tetrahedron, we find gen-
eral relativity with purely tensor-kinematic BCJ numerators. Moving one level down, we
find spin-one theories involving one tensor-kinematic numerator, combined with another
type. These involve Born-Infeld (BI) non-linear electrodynamics [53], with the comple-
ment numerator being scalar-kinematic, YM theory with a complement colour factor,
and the third theory describes photons interacting via graviton exchange (indicated by
the subscript g), with a complement flavour numerator.31 At the bottom level we find
scalar theories; at the front edge we find the theories that we discussed in this chapter,
involving the SO(M,N) NLSM (possibly) coupled to gravity (and with the identification
F = Mpl), (multi-) DBI theory, and the SG. One of the bottom-level theories that we
have not encountered so far is the scalar sector of the so-called Yang-Mills scalar theory,
which corresponds to YM minimally coupled to a quartic scalar theory (see e.g. [54] for
details).

All theories that lie on the self-interaction face possess self-interactions that are re-
flected by their non-linear equations of motion, even when restricted to a single species.
Note that this tetrahedron does not contain all theories that have a double copy formu-
lation.

31This theory is often referred to as Einstein-Maxwell theory since it corresponds to Maxwell’s electro-
dynamics coupled to GR.
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Figure 14: The “double copy tetrahedron”, indicating the BCJ numerator content of a set of well
known theories (as explained in the text). Moving vertically from top to bottom reduces the spin
from two to one, and to zero, respectively.

The off-shell mapping that we discussed earlier systematically relates the non-linear sym-
metries and field equations of the three theories at the bottom level of the self-interaction
face and it works in both directions. On the other hand, the on-shell mapping between
flavour and scalar-kinematic numerators only works in the direction flavour → scalar-
kinematic. Including the mapping involving tensor-kinematic numerators allows us to
construct the tree-level amplitudes of all theories that lie on the self-interaction face by
simply using the mapping operations on the tensor-kinematic numerator.

8 Conclusions and Outlook
In the first part of this thesis, we reviewed the well known amplitude double copy in its
original setting, which systematically relates the tree-level amplitudes of GR and YM.
We discussed the implications of colour-kinematics duality, emphasizing the algebraic
similarity between colour and kinematic BCJ numerators. By comparison of the three-
and four-point amplitudes of GR and YM in perturbation theory, we have seen that the
double copy serves as an incredibly powerful computational tool, as it allows one to omit
the intensive gravity calculations by instead calculating the YM counterpart and using
the double copy.

In chapter 3, we have seen examples of manifest double copy relations at the level
of classical solutions. Although we have seen that classical double copy relations can be
made manifest for a specific set of vacuum solutions of GR and YM, a general procedure
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that takes into account non-linear solutions remains elusive. This difficulty lies in the
fact that classical solutions depend on off-shell information, such as gauge choice and
field basis, while the amplitudes are physical observables and therefore unaffected by the
off-shell formulation. The immense freedom in the field-theoretic formulation makes it
highly non-trivial to manifest the classical double copy, and it is unclear whether there
exist systematic considerations on the gauge (or diffeomorphism) choice and field basis.

In chapter 4, we have shown how classical solutions can be perturbatively expanded
in terms of momentum-space correlators, and we have seen how these encode for tree-
level amplitudes. In addition to this, the perturbative formalism revealed that it is often
possible to choose a combination of field basis and gauge (or diffeomorphism) choice for
which the off-shell amplitudes (i.e., the integrands of the perturbative corrections) exactly
match the off-shell amplitude that results from BCJ factorization. In case the latter two
match, it is obvious that the perturbative classical solutions double copy under the inter-
change of the appropriate structures. This double copy of perturbative classical solutions
was performed in e.g. [61], where perturbative space-times such as the Schwarzschild
metric were constructed by “squaring” the perturbative YM counterpart. However, these
results did not yet lead to a well understood double copy structure for explicit equations
of motion and classical solutions.

In chapter 6, we addressed our first (main) research question, which we formulated as
follows:

“Does there exists a double copy formulation that maps complete equations of
motion and their non-linear solutions from theory to theory?”

We investigated this for a triplet of effective scalar theories, involving the SO(M,N)
NLSM (possibly) coupled to GR, (multi-field) DBI and the SG; we saw that each of
these theories is invariant under a specific non-linear symmetry transformation associated
with the breaking of internal symmetry.

The canonical formulations of these theories (including the SU(N) or U(N) NLSM)
give rise to amplitudes that can be made to double copy onto one another under the
interchange of colour factors, flavour factors, or scalar-kinematic numerators.

In order to naturally make the connection with the multi-DBI theory, it was natural
to include the SO(M +N) NLSM, involving two flavour structures instead of a colour
structure.

As we pointed out in section 6.1, the equations of motion of the three theories take a
similar form (see table 2) when adopting a field basis in which their non-linear symmetries
are of the schematic form δφ=O(φ0)+O(φ2). The resulting similarity of the equation of
motion facilitates a systematic and invertible mapping between the theories by expanding
the field linearly (to go from SG to DBI or from DBI to NLSM) or bi-linearly (to go
directly from SG to NLSM) in auxiliary flavour coordinates. Remarkably, for this to
work, we had to assume that the auxiliary flavour coordinates are Grassmannian.

Motivated by this off-shell formulation, we investigated potential double copy mani-
festations at the level of classical non-linear solutions in section 6.3. It was shown that
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each spherically symmetric classical solution can be written in terms of a distinct (gen-
eralized) hypergeometric series, with intriguing relations between the coefficients within
each series, as well as between the coefficients of the different theories (see table 3).

Although these relations initially appeared to be very promising, it was necessary to
get rid of the NLSM coupling by taking the limit MNLSM→∞, which essentially means
that the NLSM scalars can only interact via graviton exchange. The latter, in combination
with a sign flip in the NLSM expansion parameter, leads us to conclude that we, currently,
can not convincingly speak of a true manifestation of the double copy.

At the level of on-shell amplitudes, as discussed in section 7, we have seen that tree-
level amplitudes different theories can be constructed using different combinations of
BCJ numerators, and we provided explicit expressions for these numerators up to and
including six-point. In addition to the well known colour and kinematic numerators, we
have included the flavour factors that are subject to the same algebraic relations, ensuring
that they give rise to the appropriate amplitude factorisation. Furthermore, we pointed
out that the amplitude corresponding to the BCJ factorization of two (possibly different)
flavour factors corresponds to the SO(M,N) NLSM minimally coupled to gravity.

Finally, we turned to our second (main) research question, which we formulated as

“Can we relate the different types of BCJ numerators in a systematical way?”

Analogous to the off-shell mapping of chapter 6, the tensor-kinematic, flavour, and scalar-
kinematic numerators were shown to be related by the mappings of equations (284) and
(287) respectively. However, in contrast to the off-shell mappings, the numerators can only
be mapped along the fixed direction NLSM 7→DBI 7→ SG, as a consequence of throwing
away specific terms.

The results of this research provide deeper insight into the duality between the group-
theoretic and kinematic structures of different field theories; it shows that it is indeed
possible (at least for scalar EFTs) to double copy off-shell information, when appropriately
dealing with the field-theoretic redundancy. The mapping relations between the non-linear
symmetries and equations of motion, in combination with the on-shell mapping relations,
emphasize that the three theories are different manifestations of the same underlying
structure.

For future research, it would be interesting (and challenging) to investigate whether similar
off-shell constructions are feasible for higher-spin theories such as YM and GR, involving
local symmetries which do not affect the S-matrix. However, due to the different spin and
the different nature of the symmetries involved, the procedure of identifying appropriate
field bases and symmetry considerations is expected to be much more challenging, or even
impossible.

In addition to this, it would also be interesting to further investigate the mapping re-
lations between the BCJ numerators. Recently, the authors of [25] managed to establish
a mapping between tensor-kinematic numerators and colour factors. However, the map-
ping proposed in this article skips the flavour factors, and they also worked in a so-called
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Duca-Dixon-Maltoni (DDM) basis (originally proposed in [62]), instead of the half-ladder
that was used here. The identification of simple expressions for the BCJ numerators at
arbitrary order, accompanied by simple mapping relations, would not only improve the
understanding of their duality, but also serve as a powerful computational for amplitude
calculations.

Related to the original results of chapters 6 and 7, it would also be interesting to in-
vestigate if (and how) this duality extends to other off-shell aspects such as wavefunctions
and correlators. Recent progress on the latter has been made in [63], where it was found
that the double copy relations in their original (or simplest) form do not hold. Given
the off-shell mappings for the (gravitationally coupled) NLSM, multi-DBI and the SG as
proposed in this thesis, it would be interesting to see if the correlators of these theories
can be mapped onto each other.

Furthermore, the flavour factors that we discussed in chapter 3 are already known in
the form of higher-derivative corrections to an SO(M+1)/SO(M) coset. The addition of
colour and flavour factors results in the tree-level amplitudes of the so-called extended DBI
theory [59, 60]. This particular combination of numerators is possible due to the special
coset structure in the N = 1 case, and with both flavour and colour in the fundamental
representation of SO(M). It would also be interesting to further restrict to the single-
flavour case, i.e., (M = 1), where the flavour and scalar-kinematic factors both live in
the trivial representation (and hence only depend on kinematic invariants). At four-point
these factors are given by a linear combination of the expression in footnote (25) and
equation (265). The expectation is that the resulting theory corresponds to a free scalar
field minimally coupled to gravity, with DBI and SG as higher-derivative corrections.
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A Appendix

A.1 Invitation: classical versus quantum field theory
Before we move on to study the classical and amplitude double copies of effective scalar
field theories, we will first briefly illustrate the difference between and classical field the-
ory and QFT, motivated by the fact that the double copy has also been verified for some
highly nontrivial loop-level examples, see for example [11, 12, 13]. We previously men-
tioned that at the classical level there are no loop-level Feynman diagrams, corresponding
to the absence of the creation and annihilation of virtual particles. In this appendix, we
will first specify the non-perturbative relation between the classical and quantum equa-
tions of motion that are obeyed by the connected correlation functions of non-linear field
theories. Thereafter, we will provide insight in how the loop-level contributions arise as a
consequence of a subtle difference between the classical and quantum equations satisfied
by the correlators. Throughout this discussion, we will be loosely following [35]. We start

by considering the free scalar theory

L= 1
2φ�φ, (290)

where the scalar field φ satisfies the equations of motion

�φ= 0 , (291)

simultaneously with the well known commutation relations of quantum mechanics[
φ(~x,t),φ

(
~x′, t

)]
= 0 ,[

φ(~x,t),∂tφ
(
~x′, t

)]
= i~δ3

(
~x−~x′

)
.

(292)

The first commutation relation is a condition for causality, i.e., at the same instant of
time, all operators should be observable and commute, which means that two points in
space cannot exchange information faster than the speed of light. The latter commuta-
tion relation is equivalent to the Heisenberg uncertainty principle ([x̂, p̂] = i~ in quantum
mechanics). Let’s first recall from our introductory quantum field theory course that the
time-ordered correlation function for the free theory (or Feynman propagator) is given
by32

DF (x1,x2) = 〈0 |T {φ0 (x1)φ0 (x2)}|0〉= lim
ε→0

∫ d4k

(2π)4
i

k2 + iε
eik(x1−x2), (293)

where the pole at k2 = 0 will eventually be removed by the LSZ reduction formula. Our
goal is to calculate the time-ordered n-point correlation function for the interacting the-
ory, that is, when (290) contains an additional interaction term denoted by Lint. It is
instructive to first state the intermediate result,

�
〈
Ω
∣∣∣T {φ(x)φ

(
x′
)}∣∣∣Ω〉=

〈
Ω
∣∣∣T {�φ(x)φ

(
x′
)}∣∣∣Ω〉− i~δ4

(
x−x′

)
, (294)

32See [35] for the derivation and detailed explanation.
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where |Ω〉 denotes the vacuum of the interacting theory. The latter term of this equation
encodes the difference between a quantum and a classical theory, in a way that will become
clear soon. To derive the above equation, we first calculate

∂t
〈
Ω
∣∣∣T {φ(x)φ

(
x′
)}∣∣∣Ω〉= ∂t

[〈
Ω
∣∣∣φ(x)φ

(
x′
)∣∣∣Ω〉θ(t− t′)+

〈
Ω
∣∣∣φ(x′)φ(x)

∣∣∣Ω〉θ(t′− t)]
=
〈
Ω
∣∣∣T {∂tφ(x)φ

(
x′
)}∣∣∣Ω〉+

〈
Ω
∣∣∣φ(x)φ

(
x′
)∣∣∣Ω〉∂tθ(t− t′)+

〈
Ω
∣∣∣φ(x′)φ(x)

∣∣∣Ω〉∂tθ(t′− t)
=
〈
Ω
∣∣∣T {∂tφ(x)φ

(
x′
)}∣∣∣Ω〉+ δ

(
t− t′

)〈
Ω
∣∣∣[φ(x),φ

(
x′
)]∣∣∣Ω〉 ,

(295)
where the last line follows from ∂tθ(t) = δ(t). We note that the second term of the last
line vanishes by force of the commutation relations (292), i.e., the delta function δ(t− t′)
forces the commutator [φ(x),φ(x′)] to be evaluated at t= t′, which means that the second
term of the last line reduces to 〈Ω |[φ(x,t),φ(x′, t)]|Ω〉 = 0. The second derivative of the
above is given by

∂2
t 〈Ω|T{φ(x)φ(y)}|Ω〉=

〈
Ω
∣∣∣T {∂2

t φ(x)φ
(
x′
)}∣∣∣Ω〉+ δ

(
t− t′

)〈
Ω
∣∣∣[∂tφ(x),φ

(
x′
)]∣∣∣Ω〉

=
〈
Ω
∣∣∣T {∂2

t φ(x)φ
(
x′
)}∣∣∣Ω〉− i~δ4

(
x−x′

)
(296)

where the last line follows from the commutation relation (292). It is then easy to see
that the above generalizes to the result (294). We now introduce the short-hand notation
for the time-ordered correlation function, 〈· · · 〉 = 〈Ω|T{· · ·}|Ω〉, which we use to rewrite
equation (294) as(

�+m2
)〈
φ(x)φ

(
x′
)〉

=
〈(

�+m2
)
φ(x)φ

(
x′
)〉
− i~δ4

(
x−x′

)
. (297)

We can easily generalize the above for time-ordered correlation functions involving more
fields, by noting that the time derivative acting on the time-ordering operator T{. . .}
yields additional terms of the form [∂tφ(x),φ(xj)]. The general result for n fields is given
by

�x 〈φ(x)φ(x1) · · · φ(xn)〉= 〈�xφ(x)φ(x1) · · ·φ(xn)〉
−i~

∑
j

δ4 (x−xj)〈φ(x1) · · ·φ(xj−1)φ(xj+1) · · ·φ(xn)〉 . (298)

Let’s now compare this result with an interacting theory with Lagrangian L=−1
2φ�φ+

Lint. In this case, the equation of motion of the (quantum) field read

�φ+L′int(φ) = 0, (299)

where the prime denotes functional differentiation. Using the above and denoting φx =
φ(x), we can rewrite (298) for the interacting theory as

�x 〈φxφ1 · · ·φn〉=
〈
L′int (φx)φ1 · · ·φn

〉
− i~

∑
j

δ4 (x−xj)〈φ1 · · ·φj−1φj+1 · · ·φn〉 , (300)

which are the well known Dyson-Schwinger equations. It is important to note that we
derived this equation without specifying the interaction term of the Lagrangian, and only
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by using the quantum mechanical commutation relations (292). The Dyson-Schwinger
equations illustrate the difference between quantum and classical theories, which can be
seen from the fact that classical fields satisfy [φ(~x,t),∂tφ(~x′, t)] = 0, leading to the absence
of the second term of the Dyson-Schwinger equations. Another (equivalent) way to obtain
the classical equations from the quantum equations is by simply taking the classical limit
~→ 0. These observations imply that for classical theories the fields within the correlation
functions satisfy the same equations as the correlation functions themselves. For quantum
theories, this only holds modulo so-called contact terms, which are the terms proportional
to the delta functions. These contact terms allow virtual particles to be created and
destroyed, giving rise to Feynman diagrams with closed loops.

In the above, we have seen that the Dyson-Schwinger equations give a non-perturbative
relationship between classical and quantum theories. Here we will illustrate how loop-
diagrams arise by solving the Dyson-Schwinger equations in perturbation theory. In order
to keep the equations compact, we introduce the notations δxi = δ(4) (x−xi), Dij =Dji =
DF (xi,xj), and we will work in natural units (~ = 1). Using this notation, the free
equation of the Feynman propagator reads

�xDx1 =−iδx1, (301)

which implies that the Dij are Green’s functions for the free equation. Using this relation,
we can write the two-point correlation function as

〈φ1φ2〉=
∫
d4xδx1 〈φxφ2〉= i

∫
d4x(�xDx1)〈φxφ2〉= i

∫
d4xDx1�x 〈φxφ2〉 , (302)

where the last step is obtained by partial integration. Suppose that we consider the free
theory, then we can use the Dyson-Schwinger equation �x 〈φxφy〉=−iδxy to rewrite the
above as

〈φ1φ2〉=
∫
d4xDx1δx2 =D12. (303)

In a similar fashion, we find that the four-point correlation function is given by

〈φ1φ2φ3φ4〉=i
∫
d4xDx1�x 〈φxφ2φ3φ4〉=

∫
d4xDx1 {δx2 〈φ3φ4〉+ δx3 〈φ2φ4〉+ δx4 〈φ2φ3〉}

=D12D34 +D13D24 +D14D23,
(304)

which can be diagrammatically visualized as

,
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where the lines represent propagators and the xj denote the points of evaluation.
Next we “turn on” the interactions by considering the cubic scalar theory (118) that we
previously discussed. The equations of motion read

∂2φ+ 1
2gφ

2 = 0, (305)

from which we identify the interaction term Lint = g
3!φ

3. Application of the Dyson-
Schwinger equation now yields the two-point correlation function

〈φ1φ2〉= i
∫
d4xD1x

(
g

2
〈
φ2
xφ2

〉
− iδx2

)
. (306)

This two-point correlation function can be simplified by using δ2y = i�yDy2. We obtain

〈φ1φ2〉=D12−
g

2

∫
d4xd4yDx1Dy2�y

〈
φ2
xφy

〉
=D12−

g2

4

∫
d4xd4yDx1D2y

〈
φ2
xφ

2
y

〉
+ ig

∫
d4xD1xD2x 〈φx〉 ,

(307)

where the last line follows from partial integration. To keep the discussion clear and
concise, we are only interested in the one loop-level diagrams, which arise from the ∼ g2

term of the last line. Therefore, we must expand the second and third term up to O(g0)
and O(g), respectively. The second term of the last line can be simplified by recognising
the similarity with the four-point correlation function of the free equation, (304). We
obtain 〈

φ2
xφ

2
y

〉
= 2D2

xy +DxxDyy +O(g). (308)
Furthermore, we can expand 〈φx〉 using the Dyson-Schwinger equation (300),

〈φx〉= i
∫
d4yDxy�y 〈φy〉= i

g

2

∫
d4yDxy

〈
φ2
y

〉
= i

g

2

∫
d4yDxyDyy +O

(
g2
)
, (309)

which leads to the final result

〈φ1φ2〉=D12−g2
∫
d4xd4y

(1
2D1xD

2
xyDy2 + 1

4D1xDxxDyyDy2 + 1
2D1xD2xDxyDyy

)
+O(g3).
(310)

The second term of this result corresponds to the (one-loop) diagrams

where the loops represent the creation and annihilation of virtual particles. We should
remark that this corresponds to the lowest loop-level and that the higher order terms of
(310) give rise to diagrams containing more loops. In contrast, the classical counterpart
of this two-point correlation function only contains the term D12, which represents a
particle propagating from x1 to x2, and therefore leads to a vanishing tree-level scattering
amplitude.
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A.2 DBI classical solution
The Mathematica code that was used to derive the classical solution to DBI (245) is
shown below. Finally, we used WolframAlpha to identify the closed form hypergeometric
series, given the calculated coefficients. Note that a similar approach works for the SG
classical solution.

A.3 GR minimally coupled to the NLSM
Here we derive the four-point amplitudes of the compact SO(M+N)/(SO(M)×SO(N))
NLSM coupled to gravity.33 First, we will use the perturbation theory method as outlined
in e.g. [61, 16], after which we apply the Lehmann, Symanzik and Zimmermann (LSZ)
formula to extract amplitudes.

Recall from section 7 that the Lagrangian of the SO(M+N) NLSM minimally coupled
to gravity, now including coupling constants, reads

LGR+NLSM =
√
−g

 2
κ2R−

1
2[ 1

1 + φφT

F 2

∇µφ 1
1 + φTφ

F 2

∇µφT ]
 , (311)

33This appendix is taken from the preprint version of our article [26].
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where κ2 = 4/M2
Pl in terms of the (reduced) Planck mass, and F is the NLSM cut-off

scale. Following e.g. [61], we work with the so-called gothic graviton hµν , such that
√
−ggµν = ηµν−κhµν . (312)

Furthermore, we adopt the De Donder gauge, with ∂µhµν = 0. These choices lead to the
particularly useful properties that the Einstein tensor is given by Gµν =−κ2�hµν , and the
curved space-time d’Alembertian, denoted by �c ≡ gµν∇µ∇ν , reduces to �c = gµν∂µ∂ν
[64]. The field equation for the graviton and scalar field respectively read

Gµν =κ
2

4 (gρµgσν− 1
2gµνgρσ)[ 1

1 + φφT

F 2

∂ρφ
1

1 + φTφ
F 2

∂σφT ] ,

�cφ=2
∞∑
n=1

(−1)n−1∂µφ
φT

F 2

(
φφT

F 2

)n−1
∂µφ.

(313)

By expanding hµν and φ in their coupling constants,

hµν = h(0)µν +κh(1)µν +κ2h(2)µν + . . . , φ= φ(0) + φ(1)

F 2 + φ(2)

F 4 + . . . , (314)

and substituting these expansions into the field equations (313), we obtain a differential
equation for each perturbative correction h(k)µν and φ(k). The relevant equations for
four-scalar scattering are given by

�h(0)µν =−κ2

(
∂µφ(0)∂νφ(0)T − κ2η

µν∂ρφ(0)∂ρφ
(0)T

)
,

�φ(1) = κ∂µ∂νφ
(0)h(0)µν + 2

F 2∂
µφ(0)φ(0)T∂µφ

(0) .
(315)

Fourier transforming the above to momentum space leads to

h(0)µν(−p1) =− 1
p2

1

∫
d̄4p2d̄

4p3
κ

2

{
(pµ2pν3)− 1

2η
µν(p2·p3)

}
[CD][φ(0)cc̄(p2)φ(0)dd̄(p3)] ,

(316)

φ(1)aā(−p1) =− 1
p2

1

∫
d̄4p2d̄

4p3d̄
4p4

{
κ2

4

(
s23s24
2s12

− 1
2(p2)2

)
[AB][CD]φ(0)bb̄(p2)[φ(0)cc̄(p3)φ(0)dd̄(p4)]

− s13
2F 2 ([ABCD] + [ADCB])φ(0)bb̄(p2)[φ(0)cc̄(p3)φ(0)dd̄(p4)]

}
,

(317)
where we have explicitly included the flavour indices and suppressed the momentum-
conserving delta functions δ̄(4)(p1 + . . .+pn). Additionally, the common short-hand nota-
tion

d̄4p≡ d4p

(2π)4 , δ̄(4)(p)≡ (2π)4δ(4)(p) , (318)

was employed for legibility.
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Next, we note that the term proportional to p22 in (317) vanishes on-shell and use
the LSZ formula (see e.g. [16] for similar calculations) in order to extract the four-scalar
partial amplitude from φ(1). The result in terms of MPl reads

A4 = lim
p2

1→0
p2

1
δ3φ(1)(−p1)

δφ(0)(p2)δφ(0)(p3)δφ(0)(p4)

=− 1
2M2

Pl

s14s13
s12

[AB][CD] + s13
2F 2 ([ABCD] + [DCBA]) + (cyclic) ,

(319)

where the first term corresponds to graviton exchange diagrams and the second to contact
interactions (see figure 13). The structures of these amplitudes coincide with the graviton
exchange amplitude in equation (11) of [65] and the NLSM amplitude in equation (1.4)
of [66]. Note that we have opposite signs in the above amplitude, in contrast to what
we found in section 7; the latter therefore corresponds to a non-compact scalar manifold
with non-linear SO(M,N) symmetry.
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