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Summary 
In today’s society 22% of the population seem to suffer from metabolic syndrome (MetS), especially 
office workers have a high prevalence between 7-58% (Strauss et al., 2020) (Chini et al., 2014). So far 
research has proven its effectiveness in diagnosing and determining risk factors, the correlation 
establishing causalities, however, remains unknown. In order to help office workers and society to 
bring down this vastly increasing number of one out of five incidences in office workers, this thesis aim 
was to investigate why certain biomarkers (namely triglyceride, high density lipoprotein cholesterol 
(HDL-c) and blood sugar) are important and how these levels could potentially help detection before 
the syndrome progresses. This thesis also investigated which non-invasive detection devices and 
mechanisms are present outside of the body. The research concluded, stating that all levels, and 
especially blood sugar levels, play a central role in the development of MetS. However, the non-
invasive technology that is available to directly measure these levels needs to be further developed to 
allow for early detection. Meaning that the key in early detection in the nearby future lies in non-
invasive monitoring of food intake.   
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Introduction 
Metabolic syndrome (MetS) is an increasing public health concern that describes a cluster of several 
medical conditions that often concern office workers (Alavi et al., 2015). The incidence of MetS, has 
been increasing in well developed countries of the past fifty years mainly due to the rise of office jobs 
(Kelishadi, 2007). Nowadays the prevalence of MetS in office workers ranges between 7.4% and 48.6% 
(Strauss et al., 2020) (Chini et al., 2014), these figures account for 30% of the total 71% of deaths from 
non-communicable diseases (World Health Organization, 2022). Since MetS contributes to a large 
number of worldwide deaths, research has (with no success) focused on identifying the cause of the 
syndrome. However, research has identified the risk factors of MetS and the symptoms.  
 
In order to classify as patients with MetS, patients should have at least three of the following conditions 
(these can be also found in table 1): abdominal obesity, hypertension, hypertriglyceridemia, low HDL-
cholesterol level, high fasting blood sugar (Reaven, 2005). Since abdominal obesity is common under 
MetS patients, it is used a main pillar for identification. According to research abdominal obesity is 
defined as having a waist circumference larger or equal to 90th percentile, which is gender dependant 
(Park et al., 2005). As for hypertension, clinicians often use the guidelines from 2018 from the ESH/ESC 
to measure arterial hypertension, these levels can be seen in the table below (“2018 Practice 
Guidelines for the Management of Arterial Hypertension of the European Society of Hypertension and 
the European Society of Cardiology,” 2019). High fasting blood sugar is measured from the blood and 
detected with levels above 110mg/dl (Ludwig & Ebbeling, 2005), which are most easily caused by food 
containing simple carbohydrate levels (Goldberg & Mather, 2012). Low HDL-cholesterol levels are 
measured from the blood plasma, levels below 40 mg/dl in man and 50 mg/dl in women are considered 
for MetS (Ryu & Chin, 2016). Examples of food containing high HDL levels are eggs, walnuts, and 
spinach (Pagano & Strait, 2009). The last parameter that is measured is the hypertriglyceridemia level 
from blood serum. Normal levels of triglyceride are less 150 mg/dL (Yilmaz et al., 2006). Triglycerides 
are mainly found in food and drinks that contain alcohol, sugars, saturated and trans fats, high calorie 
foods and refined grains or starchy good. On the other hand, avocado’s, fatty fish, and whole grains 
are known to lower hypertriglyceridemia (Wilson et al., 2022).  
 
Table 1: Conditions of people suffering from MetS, compared to normal levels.  

Condition  MetS Level Normal Level 
Abdominal obesity >90th percentile < 90th percentile 
Hypertension Systolic blood pressure: 

Grade I: ≥140mmHg  
Grade II: ≥160mmHg 
Grade III: ≥180mmHg 

Systolic blood pressure: 
120-130mmHg 

High fasting blood sugar >110 mg/dl  70-100 mg/dl 
Low HDL-cholesterol  <40 mg/dl 45 mg/dl 
Hypertriglyceridemia  >150 mg/dl  <150 mg/dl  
Lipodystrophy Has no firm diagnostic criteria, 

often a combination of several 
factors such as skinfold and 
imaging 

- 
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Several risk factors for MetS have been determined which are categorized into unmodifiable and 
modifiable, the category depends on whether or not they can be changed through lifestyle 
modifications (see table 2). One example of a modifiable risk factor is stress. According to research, 
chronic distress compromises the homeostasis of the brain and nervous system, leading to several 
psychopathologic conditions that contribute to the development of obesity and other comorbid states 
(Pervanidou & Chrousos, 2011). Another example of a modifiable risk factor is a sedentary lifestyle. 
Research in this topic suggests that physical inactivity and poor eating habits in office workers increases 
the odds of MetS three times compared to that of active office workers (Ryu & Chin, 2016). An example 
of an unmodifiable risk of MetS is age. According to research, age influences physical activity, 
cholesterol levels, increased glucose levels, etc. (Lévesque et al., 2009). The last example of an 
unmodifiable risk factor is a genetic mutation causing lipodystrophy. In lipodystrophies the body 
continuously severely loses adipocytes by apoptosis, which leads to an insufficient metabolism of free 
fatty acids, thereby accumulation which leads to MetS (Mansilla et al., 2011).  
 
Table 2: Examples of modifiable and unmodifiable risks.  

Modifiable Risk factors Unmodifiable risk factors 
Stress due to imbalanced brain and nervous 
system 

Age 

Sedentary lifestyle due to poor eating habits and 
physical activity.  

Lipodystrophy 

 
 
Beside modifiable and unmodifiable risk factors, there are also diseases that are associated with MetS. 
One of these correlations of MetS is obesity. Obesity correlates in a way that it results into insulin 
resistance, increased blood pressure, high cholesterol, and triglyceride levels. These levels are used as 
indicators to diagnose MetS (Ross, 2017). Another correlation of MetS is Diabetes mellitus type 2, 
which is also seen as a complication. If patients have an impaired fasting glucose or impaired glucose 
tolerance the risk of developing DM-2 doubles if MetS is diagnosed (Goldberg & Mather, 2012). 
Rheumatic diseases are also associated with MetS, especially psoriatic rheumatism (Luime et al., 2016). 
The third indication or associative factor is Chronic obstructive pulmonary disease (COPD). Metabolic 
syndrome is found to be twice more common in COPD patients, compared to the general population. 
According to research almost 50% of the patients with COPD has at least one MetS condition, this 
might have partly to do with physical inactivity (Chan et al., 2019). The last factor is coronary artery 
disease, research has shown that apolipoprotein C-III is marker of increases triglyceride levels which is 
increased in both Mets and coronary artery disease (Yilmaz et al., 2006).  
 
Research has proven effectiveness in terms of diagnosing patients suffering from Mets and in 
pinpointing the risk factors that are involved. This research focuses not necessary on diagnosing 
patients, but more on discovering what and why certain levels are important and how these levels can 
help early detection before the syndrome progresses. The factors this study research are triglyceride-
, HDL-c and blood sugar levels. From a scientific point of view, this literature research will contribute 
in a way that it helps to steer further research in detecting potential poor eating habits before office 
workers actually suffer from the disease. For society, screening as a precaution could help reducing 
the amount of people getting the disease, thereby preventing disabilities and deaths. From a clinical 
point of view preventing the disease from happening reduces the healthcare costs and the amount of 
money/time clinicians spend on the patients suffering from the disease.  
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The main research problem of the research comes from the fact that diagnosing and determining the 
main factors behind MetS are well investigated. However, the amount of material present to detect 
the consequences of the risk factors is not overabundantly present and has not been verified with 
traditional diagnostics. With the main question “Which parameters that can be measured with sensors 
allow to identify people at risk of developing MetS?” This report will start with investigating the three 
measurable biomarkers, namely HDL-c, blood sugar and triglycerides, since according to research these 
biomarkers are correlated with MetS. These variables often require invasive measures, they might not 
be convenient for long term monitoring in the context of prevention. Therefore, the report will end 
with a review of indirect detection methods for monitoring food intake which is intricately linked to 
changes in these biomarkers.  
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Literature review   
 
Triglyceride: a biomarker for metabolic syndrome 
Causes of hypertriglyceridemia  
Causes of hypertriglyceridemia can be divided into primary and secondary. Primary causes 
hypertriglyceridemia arises from a group of familial disorder with genetic variants that impair 
lipoprotein lipase deficiency (LPL) metabolism that lead to mild to moderate hypertriglyceridemia with 
levels of about 200-500mg/dl (Schaefer, 2008). Higher levels of hypertriglyceridemia may be caused 
by loss of function mutations (Dron et al., 2019).  

Secondary hypertriglyceridemia is caused by factors that exclude genetics. The most common factors 
are metabolic disorders, certain medications, and sedentary lifestyle. Other less common factors 
include alcohol intake, nephrotic syndrome, hyperthyroidism, and certain drugs (Bazarbashi & Miller, 
2022).  

Structure and metabolism 
Triglycerides are ester molecules that are derived from a glycerol with three fatty acids. Triglycerides 
are a self-contained macromolecule in the body but are mainly found in so-called triglyceride rich 
lipoproteins (TRL). TRL are macromolecules structures composed of triglycerides and cholesteryl esters 
that are enclosed by a single layer of phospholipids, free cholesterol and apolipoproteins (Ginsberg, 
2002). TRLs consist mainly of chylomicrons, very-low-density lipoprotein (VLDL), their remnants and 
intermediate-density lipoproteins. VLDLs are produced by hepatocytes and secreted in the circulation. 
In the circulation lipoprotein lipase-mediates hydrolysis results in the release of three fatty acids which 
are taken up by peripheral muscle or stored in adipose tissue for the use of energy (Dallinga-Thie et 
al., 2010).  

Mechanisms for metabolic syndrome with hypertriglyceridemia  
Research regarding the mechanisms of how high levels of triglycerides result into MetS are still under 
investigation. What is known is that triglycerides play a crucial role in energy usage and storage via 
beta oxidation, cholesterol production and insulin resistance (Li et al., 2013).  

Beta oxidation 
During beta-oxidation, which occurs in the Krebs-cycle, fatty acyl-CoA is oxidised into CoA and acetyl 
CoA. This process is responsible for ATP production. Hypertriglyceridemia ensures that more energy is 
produced, using beta oxidation, than needed. This excess of energy is then stored for later use, leading 
to obesity (Li et al., 2013).  

Cholesterol production 
According to research, hypertriglyceridemia may cause hypocholesterolaemia (Li et al., 2013). 
Although the actual mechanisms leading to this condition are still unclear, research hypothesized that 
hypertriglyceridemia impairs the conversion from VLDL to LDL with unknown consequences (Schaefer, 
2008). 
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HTG and insulin resistance 
Much research indicates that hypertriglyceridemia is closely related to insulin resistance. Research has 
found that primary hypertriglyceridemia causes an elevated turnover rate of non-esterified fatty acids. 
This elevation suggests that patients with primary hypertriglyceridemia to have an insulin resistance 
at the level of adipose tissue. In hypertriglyceridemia from secondary causes, there is an increase in 
the secretion of non-esterified fatty acids by adipose tissue, which creates an extra supply of excess 
fatty acids to the liver for the synthesis of triglycerides. These elevated levels of non-esterified fatty 
acids in the plasma are due to excess adipose tissue, primary insulin resistance in adipose tissue or due 
to abnormal fat distribution, flood the liver with lipids. The liver may then engender both 
prothrombotic and atherogenic dyslipidaemia. If the skeletal muscles are exposed to an excess of non-
esterified fatty acids, they automatically increase their insulin resistance. Eventually, these processes 
predispose people to MetS (Grundy, 1999).  

Mechanisms for cardiovascular disease with hypertriglyceridemia  
In addition to MetS, triglycerides in the long term are also related to additional cardiovascular diseases, 
which regresses the state of disease in people already suffering from MetS. Four mechanisms caused 
by hypertriglyceridemia are known to affect cardiovascular disease. The first one is unregulated TRL-
remnants, which cause atherosclerosis through plaque formation ((Varbo et al., 2013) (Bazarbashi & 
Miller, 2022). The second is through an increased levels of apolipoproteins that promote plaque 
formation vascular inflammation and worsen cardiac outcomes (Ooi et al., 2008). In the third 
mechanism, elevated levels of TRL lead to triglyceride hydrolysis, leaving dense TRL particles behind 
that are susceptible to a proatherogenic milieu, oxidative modification, and the incorporation of 
cholesterol into the vascular wall. These factors all lead to increased atherosclerosis (Chait et al., 1993). 
During the fourth mechanism increased triglyceride levels magnify the discordancy between LDL-p and 
LDL-c thereby increasing the atherosclerotic risk (Otvos et al., 2002). An overview of all factors 
concerning HTG can be found in figure 1.   

 

Figure 1: An overview of all causes, mechanisms, and outcomes of hypertriglyceridemia. 
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Detecting hypertriglyceridemia 
As described above, triglycerides are tightly related to MetS and cardiovascular diseases. Research has 
shown that moderately overweight, non-diabetic man with an insulin resistance have  higher plasma 
insulin and triglyceride levels, with low HDL concentrations. From these studies one can derive that 
the triglyceride to HDL ratios are the best markers to insulin resistance. Also, increased plasma 
triglyceride and reduced HDL ratios are crucial markers to determine MetS (Li et al., 2013). Nowadays, 
only blood samples are used to determine the triglyceride levels, meaning that no other detection 
methods are present (Medical Nutritional Institute, 2021). 
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Blood glucose: a correlating biomarker  
In metabolic syndrome all conditions are related to one another. As described above for example, 
hypertriglyceridemia is related to insulin resistance, which on its own contributes to hyperglycaemia 
(Grundy, 1999). Elevated levels of blood glucose are not only related to insulin resistance but several 
factors. These will be discussed in this sub-chapter.  
 

Metabolism of blood glucose 
The metabolism of blood glucose is shown in the figure 2 below. The Figure shows that pancreatic cells 
are responsible for either producing blood sugar lowering insulin or blood sugar elevating glucagon.  
Metabolism of blood glucose is mainly regulated by the pancreatic islets and done by the liver (Marieb 
& Hoehn, 2018).   
 

 
Figure 2: The metabolism of blood glucoseA 

 
Causes and mechanisms of hyperglycaemia  
Hyperglycaemia knows three causes, namely, endocrine pathophysiology, stress, and medications. An 
overview of all processes can be found in figure 3. According to research drugs like corticosteroids, 
beta blockers and others all have the ability to permanently raise the level of blood glucose (Luna & 
Feinglos, 2001).  
Research related to stress induced hyperglycaemia concludes several pathophysiological causes. It 
often is a combination of several of these causes that induce hyperglycaemia. One of the causes lies in 
the physiology that stress leads to hypercortisolaemia, which promotes hepatic gluconeogenesis and 
glycogenolysis. The elevated levels of cortisol also enhance transcription of the genes that are involved 
in gluconeogenesis from non-carbohydrate sources. Hypercortisolaemia also leads to increased levels 
of amino acids (the result from increased protein catabolism), these amino acids serve as precursors 
for gluconeogenesis. Another effect of stress is that it leads to increased secretion of pro-inflammatory 
cytokines, which increase insulin resistance by interfering with the insulin signalling pathway. These 
inflammatory cytokines also cause elevated levels of growth hormone secretion which lead to 
increased lipolysis, generating free fatty acids and glycerol, and increased insulin resistance. The last 
effect of stress on hyperglycaemia is that stress causes noradrenaline and adrenaline release form the 
pancreas, leading to increased insulin resistance. If the pancreas does not compensate by 
overproducing insulin, the net effect of stress is hyperglycaemia (Mifsud et al., 2018).  
The third cause of hyperglycaemia is endocrine pathophysiology. Endocrine dysfunctions can be 
categorized into diabetes and insulin resistance. Insulin resistance and the mechanisms behind it 
comprises different topics such as hypertriglyceridemia and others that are described in the text 
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above. Diabetes is known as chronic hyperglycaemia resulting from malfunctions in insulin action, 
insulin secretion or both. The process leading to the development of diabetes are beta-cell failure, 
insulin resistance, inappropriate hormone release and decreased incretin effect. During beta-cell 
failure, the beta cells of the pancreas are no longer able to produce enough insulin to meet the body’s 
needs, leading to greater amounts of glucose and thus hyperglycaemia. Insulin resistance leads to 
lessened glucose uptake and thus higher blood glucose. In inappropriate hormone release the 
feedback systems for hepatic glucose production and glucagon secretion are malfunctioning. This leads 
to unbalanced glucagon release from the alpha cells of the pancreas and inappropriate glucose release 
from the liver. Decreased incretin levels ensures that the body does not feel satiated and poor 
carbohydrate absorption (Kreider et al., 2018).  
 

 
Figure 3: An overview of the mechanisms causing hyperglycaemia 

 

Detection of blood glucose  
Detection of blood glucose has shifted in the past few years from invasive to non-invasive because of 
the increase in number of patients suffering from infections and pain of invasive methods. Non-
invasive blood glucose detection can be divided into three categories: electrochemistry, microwave 
and optical (Tang et al., 2020). An overview of these methods and their advantages and disadvantages 
can be found in table 3  
 
Optical monitoring 
Optical methods often include but are not limited to polarized optical rotation, near-infrared 
spectroscopy, Raman spectroscopy, optical coherence fluoroscopy, fluorescence (Tang et al., 2020).  
 
In spectroscopy of the human body, light is absorbed that is closely related to the wavelength of the 
tissue. In near infrared (680-2500nm) spectroscopy (NIR) light has a strong ability to penetrate soft 
tissues and biofluids, making it possible to sense and measure through reflection and transmission 
(Sakudo, 2016). The wavelength windows for NIR are 700-1100nm, 1500-1850nm, and 2000-2400nm, 
can be used to measure glucose (Tang et al., 2020). Even though the windows of glucose are known, a 
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complex algorithm is necessary in order to differentiate glucose from other biofluid substances and 
internal structure of human tissues (Zanon et al., 2011).  
 
In optical polarimetry, the stable optical rotation of glucose is used to measure a deflection angle, 
which is proportional to the amount of glucose, when a polarized beam is send through a sample. 
Although this method is not complicated, thus easy to obtain results and directly detectable with 
visible light, this method is not yet accurate enough for home and personal use (Purvinis et al., 2011).  
 
Raman scattering occurs when a laser of a specific frequency hits a samples’ surface, causing the 
molecules inside the materials to absorb the energy and to vibrate in different ways and degrees, 
causing scattering of light in different frequencies. The variation in frequency depends on the material, 
making it possible to identify a substance by Raman spectroscopy (Tang et al., 2018). Advantages are 
little interference, accurate, less overlap. The main disadvantage of this method is masking by 
environmental noise (Tang et al., 2020).  
 
In fluorescence optical monitoring, the decay of a molecule an excited state back to the ground state 
can be used to measure several substances in the blood. To measure glucose levels, fluorescent 
materials such as quantum dots and carbon dots are used as probes for detection. The enzymatic 
reaction between glucose and certain fluorescence substances causes the dots to quench, the degree 
of quenching is used to measure the amount of glucose on a macro level. The advantages of 
fluorescence are its high sensitivity, selectivity, and stability. The main disadvantage of this method is 
the large set-up of equipment.  (Cho & Park, 2019). 
 
Optical coherence tomography (OCT) provides depth-oriented capabilities based on low coherence 
interference. In OCT, the contrast results from spatial variations in optical reflection properties within 
the biological tissue or material. In OCT, the distinction of glucose concentrations leads to different 
dermal tissue coefficients. These coefficients result in the OCT slope change, which declines with the 
increase of blood glucose concentration. Advantages of OCT are reduced interference factors, high 
signal to noise ratio, high resolution, and penetration depth. Disadvantages are temperature and 
movement sensitivity and the need for continuous calibration (Tang et al., 2020).  
 
Microwave monitoring  
In microwave monitoring, the interaction between biological tissues and electromagnetic waves is 
used to measure properties such as reflection, transmission and absorption that are closely related to 
the dielectric properties of the tissues which vary with glucose fluctuations (Villena Gonzales et al., 
2019). Many researchers favour microwave monitoring due to its non-ionization, high penetration 
depth, portability, and low cost. However, the sensitivity of this method is influenced by many factors 
such as dielectric loss, transmission loss and parasitic loss of the measured substance (Tang et al., 
2020).  
 
Electrochemical methods  
In electrochemical methods, the electrical charge of particles is used to separate substances in the 
blood to make it easier to measure them. An example of an electrochemical method is reverse 
iontophoresis technology (RI). There are two mechanisms behind RI: electromigration, in which there 
is a direct interaction between the charged ions and an applied electric field, and electroosmosis in 
which a connective solvent flows from the anode to the cathode. The electrochemical gradient that is 
created by electromigration promotes osmotic flow of water with neutral molecules to the cathode. 
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These then can be measured (Giri et al., 2017). Taking account for skin thickness, current intensity, 
constant/pulsed current, current duration, and electrode material, one could measure the glucose in 
the interstitial fluid, sweat, tears and saliva (Tang et al., 2020).  

Table 3: Overview of the non-invasive detection methods used for blood glucose 
Optical method Mechanism Advantages Disadvantages 
Spectroscopy Infrared Has the same 

precision as standard 
clinical procedures 
(Han et al., 2021) 

Complex algorithm 
needed; the set-up is 
too complex to use in 
the office setting  

Optical polarimetry Polarized beam  Method can be used 
in the office setting 

The accuracy to 
measure blood 
glucose in an office 
setting is low 

Raman Scattering Laser In small cohorts it has 
proven to be adequate 
enough in measuring 
blood glucose (Pandey 
et al., 2017) 

Sensitive to 
environmental noise, 
no hand-held format 
for in the office of this 
device is available, 
requires more 
validation to prove 
effectiveness (Tang et 
al., 2020 

Fluorescence optical 
monitoring  

Excitation and de-
excitation 

Accurate enough 
compared to standard 
clinical procedures 
(Cho & Park, 2019) 

Requires a large set-
up with advanced 
knowledge to operate 

OCT Energy waves Approaches standard 
clinical procedures in 
terms of accuracy 
(Kuranov et al., 2007) 

Affected by several 
factors such as 
temperature and 
movement, also 
difficult to operate in 
the office setting 
(Tang et al., 2020) 

Microwave method Mechanism Advantages Disadvantages  
General method Electromagnetic 

waves 
Portable.  Affected by selectivity 

and poor sensitivity 
Electrochemical 
method 

Mechanism Advantages Disadvantages  

RI Cathode and anodes Detect levels 
accurately 

Not easy to operate in 
office setting due to 
continuously 
maintenance  
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HDL levels 
Research related to biomarkers of MetS indicated that at least 25% of the people suffering from the 
syndrome have low HDL-cholesterol levels (Vorgucin et al., 2011). HDL is a high density lipoprotein and 
is part of one of the five major groups of lipoproteins. Functions of HDL include antimicrobial, 
antiglycation, antioxidant, antithrombotic, anti-inflammatory, antiplatelet, cell membrane protective, 
antiatherogenic and immune modulatory functions (Soran et al., 2012). 

 
Metabolism of HDL 
The synthesis of HDL is complex and still not completely known. What is known is that the precursors 
of mature and circulating HDL molecules are likely to be disc-shaped bilayers, largely composed of 
proteins (apoA-I and apoA-II) and phospholipids that are secreted by the gut and liver. Matured HDL is 
formed by the acquisition of extracellular apolipoproteins, lipids and phospholipids and always 
contains apoA-I, whereas apolipoproteins are only present on subset of HDL particles (Soran et al., 
2012). 

Causes and mechanisms of low HDL cholesterol (HDL-c) in metabolic syndrome 
Studies show that several factors correlate to low HDL-c, these include elevated triglyceride levels, 
obesity, cigarette smoking, sedentary lifestyle, type 2 diabetes, high carbohydrate diet, medications, 
and genetic factors (Barter, 2011). The overview of the factors and mechanisms can be found in figure 
4. 
 
From the factors given above, medication, genetic factors and cigarette smoking are only of indirect 
significance for office workers, these mechanisms are therefore not further explained. On the other 
hand, triglyceride levels, obesity, sedentary lifestyle, diabetes and carbohydrate diets are explained 
below. The mechanisms of triglycerides on HDL-c have already been explained in the triglyceride part 
above. Research has suggested that the effect of increased carbohydrates affect the body in the same 
way and mechanisms as those for triglycerides (Siri & Krauss, 2005). For obesity, the underlying 
mechanism between body weight and HDL-c concentration is still unclear. In sedentary lifestyle 
research mainly found that an increase in physical activity causes increased levels of HDL-c which is 
secondary to an increased activity of the lipoprotein lipase and the reduction of plasma triglyceride. In 
terms of diabetes the main effects of HDL-c are that it affects glucose homeostasis by regulating 
pancreatic beta cell function and plasma glucose disposal. In pancreatic cells, HDL levels have shown 
beneficial effect since they inhibit apoptosis. Also, research has shown that the major HDL proteins 
(apoA-1 and apoA-II) increase insulin synthesis and secretion up to five fold. Meaning that low HDL-c 
levels decrease the amount of insulin being secreted by these cells, elevating the blood glucose levels 
and their consequences, MetS included. In terms of glucose disposal, research has proven that HDL is 
responsible for an increase in cellular glucose uptake by skeletal muscle, thereby improving diabetic 
control (Barter, 2011).  
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Figure 4 overview of factors and mechanisms involved in low HDL levels. 

 

Mechanisms for detecting HDL levels 
Since HDL and especially HDL-c levels are associated with cardiovascular diseases, as well as MetS, 
research has several ways to measure these levels. In clinical practice, the standard procedure to 
measure the amount of cholesterol in HDL is after precipitation of apoB-containing lipoproteins. Other 
more refined techniques include electrophoresis, ultracentrifugation (UTC), precipitation methods, 
high performance lipoprotein chromatography (HPLC) and nuclear magnetic resonance (NMR) 
(Hafiane & Genest, 2015). The overview of these methods can be found in table 4.  
 
Electrophoresis 
In electrophoresis the charge and mass ratio of the different substances (such as proteins, lipids, sugar 
etc.) in the blood plasma is used to separate and measure the quantity of HDL-c (Hafiane & Genest, 
2015). 
 
Ultracentrifugation  
The main mechanisms measured in ultracentrifugation are vertical auto profile (VAP) and density 
gradient fractionation (DGF). In VAP in a single spin in an inverted rate zonal density sequentially 
measures the cholesterol content of all five lipoprotein classes (Chung et al., 1980). In density gradient 
fractionation, sequential flotation is used to separate lipoproteins into five major groups, based on the 
initial hydrated density range of each of the five groups (Movva & Rader, 2008).   
 
Precipitation methods 
During this process HDL-c is separated by precipitating apoB that contains lipoproteins from a serum 
using polyanions combinations. Then HDL is quantified as cholesterol in the supernatant. This method 
is easily reproduced, convenient and a fast. However, according to literature there are many factors 
such as experimental conditions etc. that drastically affect the results (Hafiane & Genest, 2015). 
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High performance lipoprotein chromatography (HPLC) 
In this method, lipoproteins are separated by permeation columns, the lipid components, constituting 
of triglycerides and cholesterol, are detected with enzymes. Then various columns containing 
nonporous polymer-based gels are used to separate the major classes of lipoproteins in humans 
(Hirowatari et al., 2003). 
 
Nuclear magnetic resonance (NMR) 
All HDL subclasses have different characteristic lipid methyl groups, these groups broadcast a specific 
signal-amplitude which can be measured. This technique employs proton (hydrogen, carbon, and 
phosphor) spectroscopy to directly estimate the different sizes of lipoprotein subfractions and their 
quantity (Jeyarajah et al., 2006). 
 
Table 4: Overview of the systems used to measure HDL levels.  

Method Mechanism  Advantages  Disadvantages  
Electrophoresis Mass-ratio substances Simple, fast, effective, 

low cost 
Not accurate enough 
compared to clinical 
setting (Boldura & 
Baltă, 2018)  

Ultracentrifugation  VAP, DGF Easy to operate, clear 
results (Barton et al., 
2007) 

Takes up a lot of time 
(Barton et al., 2007) 

Precipitation  Precipitating apo-B 
using polyanions 

Easily reproduced, 
convenient, fast 

Results are strongly 
affected by measuring 
conditions, making it 
hard to measure in the 
office setting (Hafiane 
& Genest, 2015) 

HPLC Enzymes that detect 
lipid components 

Rapid, easily 
reproduced, efficient 

Expensive method to 
use as a monitoring 
tool (YOSHIDA et al., 
1984) 

NMR Signal amplitude of 
lipid methyl groups  

Precise and specific 
enough compared 
with the standard 
clinical procedure 

High costs when used 
as a monitoring tool in 
the office (Rao, 2014) 
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Detection and measuring methods for outside the body  
Up until here, this research has been focused on understanding the causes and consequences of the 
levels of triglyceride, HDL-c, and blood glucose. Also, detection methods and mechanisms to directly 
detect these levels inside the body have been explained. These detection methods often comprise of 
complex systems and detectors, which is difficult to implement for office workers. Therefore, it seems 
reasonable to further explore other options to detect poor eating habits, which is an indirect but non-
invasive way to measure these risk factors. This detection is done manually, using an app, and 
automatically, using sensors, whom will be discussed in this part.  
 

Manual monitoring of eating habits 
Development in e-health in the past few years has made it possible to provide remote health care by 
mobile devices such as personal digital systems, mobile phones, patient monitoring devices and others 
(Tosi et al., 2021). Especially fitness- and health related mobile apps are used in all age groups and 
seems to have a positive effect on weight management and daily behaviour, which are of significance 
in MetS (Azar et al., 2013). Nutrition apps can be used to track dietary consumption with diaries, 
receive health tips based on daily behaviour and managing weight. Advantages of these apps are 
related to their direct and daily involvement in the life of the users, meaning that users can set their 
goals, thereby enhancing their motivation, and can get personal real-time feedback to correct, e.g., 
poor eating habits. Disadvantages of these apps are the fact that they can improper use can cause 
health problems and the apps could potentially trigger or maintain eating disorder symptomatology 
(Simpson & Mazzeo, 2017). 

 
Automated monitoring of eating habits 
Automated monitoring of eating habits nowadays is done using specific sensors. Since this research 
focuses on office workers, only on-body sensors are discussed in this part. On-body sensors measure 
food intake from at least one of the following responses of which an overview of these responses and 
sensors can be found in table 5:  
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Table 5: overview of the body’s responses to food intake and their on-body sensors. 
Food intake response Dimensions of eating habits Modalities for everyday use 
Swallowing: measuring the 
swallowing reflex initiated during 
food intake  
 

 

Timing: ability to recognize four bolus 
types 
Food type: open 
Food amount: ability to recognize low 
vs. high volume 
Limit: individual modalities caused by 
head and neck movements, speaking 
and chewing 

Modalities: acoustic transducers, skin 
movement at the throat, throat 
impedance, capacitive sensing (Amft 
& Troster, 2006), textile capacitive 
collar sensors (Cheng et al., 2013), 
neck mounted EMG electrodes (Ono 
et al., 2009)   
 

Chewing: measuring the sound that is 
produced during chewing strokes  

Timing: ability to recognise two food 
categories 
Food type:  so far 19 types of food 
Food amount: open 
Limit: environmental noise interferes 
with the measurement (Lear et al., 
1965) 

Modalities: ear-pad microphones 
(Amft & Troster, 2006), in-ear or 
neck-worn microphones (Pasler & 
Fischer, 2014) 
 
 
 
 
 
 
 
 
 
 
 

Thermic effect: the body temperature 
increases after food intake at the liver 
region 

Timing: ability to measure 
temperature rises 60 minutes after 
intake 
Limit: environment, physical activity 
and regularity of food intake influence 
the readings (Farshchi et al., 2004) 

Modalities: skin-contacting 
temperature sensor (Amft & Troster, 
2006) 
 

Cardiac response; heart rate and 
blood pressure change related to food 
intake 

Timing: effective readings 30 minutes 
after food intake up to 3 hours 
Food type: only the effect of salt and 
sugar is known 
Limit: environmental temperature, 
physical activity, time of the day 
(Parker et al., 1995)  

Modalities: ECG, blood pressure 
monitors (Amft & Troster, 2006) 
 

Gastric activity: sensors measure 
stomach activity and bowel sounds 
related to food intake  

Timing: 15 minutes after food intake.  
Limit: has only been effective in 
laboratory settings (Amft & Troster, 
2006) 

Modalities: microphones, 
electrogastrography (EGG) (Abell & 
Malagelada, 1988) 

Intake gestures: sensors measure the 
intentional arm movement to bring 
food to the mouth (Amft et al., 2005) 

Timing: ability to distinguish four 
gestures  
Limit: long gestures and arbitrary arm 
movements (Junker et al., 2008) 

Modalities: sensor at lower arms and 
upper back (Amft & Troster, 2006) 

Body composition: changes related to 
food intake 

Timing: impedance alters after 30 
minutes  
Limit: body movements during 
measurement (Gualdi-Russo & Toselli, 
2002) 

Modalities: impedance meter with 
electrodes 
 

Body weight; which increases after 
food intake (Amft & Troster, 2009) 

Timing: directly after food intake 
(Amft & Troster, 2006) 
 

Modalities: scale 
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Discussion and conclusions  
 

This thesis focused on MetS by looking at three measurable biomarkers that are related to MetS to 
answer the research question “Which parameters that can be measured with sensors allow to identify 
people at risk of developing MetS?”. To answer the research question, this thesis investigated what 
the effects of hypertriglyceridemia, low HDL-c and high fasting blood are, by researching two topics. 
The first topic to investigate and check is whether theses levels or other factors could be used to detect 
the development of MetS. The second topic to investigate is what type of devices could potentially 
help foresee the development of MetS by focusing on detecting one modifiable risk factor: poor eating 
habits. The results describe these topics. 

The research regarding the first topic concluded that the levels of triglyceride, HDL-c and blood 
sugar are factors that could be used to identify people with MetS. The results in this thesis highlighted 
the correlation and influence that these biomarkers have in the further development of MetS, but they 
do not explain how they correlate with the onset of syndrome. Biomarkers are helpful to identify the 
disease and further development, but they do not help identify the risk of development since they look 
at the body’s response to a stimuli instead of looking at the onset of the stimuli. On the other hand, 
detection methods outside the body look at the onset of a stimuli that has the potential to increase 
the risk of developing MetS. It seems that sensors outside the body help identify whether risk factors 
are present and thus help to identify people at risk of developing the syndrome. Outside the body 
detection seems best-suited for measuring risk factors.  

The research about the second topic concluded that there are multiple devices present to 
measure poor eating habits. Of these devices it seems that devices that detect chewing and swallowing 
reflexes have modalities that have been researched the most. Moreover, these devices have the ability 
to collect the most data and are therefore have the highest potential to foresee the development of 
MetS.  

The results that are found and described give an overview of mechanisms and methods that 
may help steer research towards finding the solution for early detection of MetS. However, this thesis 
also contains limitations. One limitation of the thesis is that although it describes several devices and 
techniques to measure, they are only a small part of a larger population of devices. The devices that 
are described were selected based on how frequently they were cited in big publications, meaning that 
there are many more devices present and available for further research. Another limitation comes 
from the tables in the results, which try to compare the different types of devices. However, not all 
papers contain the information necessary to compare the different assessment techniques, also, due 
to time constraints, a selection of most frequently cited or most informative papers was made. For 
both reasons it implies that there is a gap in the data to fully compare the devices and to produce an 
objective consideration with regards to selecting the best parameter. The third limitation of this thesis 
has to do with current state of knowledge in the papers that were used. Some of the papers used in 
this thesis claim causality between pathophysiological mechanisms in MetS and detection devices. 
However, these papers used small groups of stereotype participants, e.g., participants with the same 
ethnicity from the same country. While this is the case, the papers claim causality while the method is 
not verifying this. Another limitation of this thesis is that is focused on detection of levels that are 
already present in the body, thereby neglecting the fact that it could take days, weeks, months or even 
longer for these levels to develop. This implies that the presented systems have a diagnostic function 
as well, meaning that it could be they could be too late in detecting and thus in early prevention of 
MetS.  The exact information about the timespan in which these levels develop was not present in the 
papers, in the future further research is needed before deciding which technique is best to use.  
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To conclude: the levels of triglyceride, HDL-c and blood sugar could all be used to give 
information and diagnose patients with MetS. However, further research is needed to support and 
further realise these methods to be used for detecting the risk of developing MetS. For now, the best 
parameters that allow identification are outside the body detection of chewing and swallowing 
reflexes. To select between these techniques and devices and how they can be implemented, there 
are two important factors that need to be considered to make the device available for monitoring the 
public. In order to make these devices effective, invasiveness and costs need to be considered, 
specifically, non-invasiveness and low costs are necessary. Future research should also take these 
factors in account.  
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