
Reinforcement Learning and Evolutionary

algorithms in the Stochastic Environment of

Blackjack

Bachelor’s Project Thesis

Thomas Vos, s3162443, t.j.vos@student.rug.nl,

Supervisor: Dr. M. Sabatelli

Abstract: The casino game blackjack requires player’s actions to play. These actions have an
optimal strategy which we learn with two different reinforcement learning (RL) algorithms (Q-
learning and QV-learning) and 2 different evolutionary algorithms (genetic algorithm (GA) and
particle swarm optimization (PSO)). The maximum win rate for blackjack is around 42,5%,
and our best performing algorithm (QV-learning) achieved a 42,47% win rate with the best
exploration policy. Q-learning and GA both achieved a 42,30% win rate with their best strategies.
Whereas PSO performed badly only achieving 21.2% which indicates it is not suited for the
problem.

1 Introduction

Blackjack is a casino card game with only a few
elementary actions, yet it has an unfathomable
amount of possibilities (Thorp, 1966). All the rules
for blackjack are explained by Garvie (2017). In
brief, the aim of the game is to achieve or get as
close to 21 points as possible. The player starts the
game with two cards, and decides whether to take
another card (hit) or not (stand). If the player goes
over 21, they lose. If the dealer has over 21, the
player wins. If the player has a higher total than the
dealer they also win. The other possible actions are
split, which is allowed only when there are two of
the same card in the hand of the player and double
down, which is only allowed when the cards total
9,10 or 11. By splitting, the game effectively splits
into 2 games at once and both games proceed as
normal. With double down only one more card is
added, but it doubles the bet for that game.
The game is dependant on luck and does not have

a strategy with which one could always win, how-
ever there are ways to play that increase the odds
of winning compared to a sub-optimal or random
play. Since blackjack is a casino game, it is designed
such that the house always has a slight advantage.
According to other research (Summerville, 2019),
(Thorp, 1966) the optimal strategy for blackjack

has around 42.5% win rate, the maximum win rate
achieved differs per source. This difference in results
stems from the fact that blackjack is stochastic.
This paper explores blackjack and attempts to find
this optimal strategy by using different reinforce-
ment learning (RL) and evolutionary algorithms.
The main aim of this paper is comparing different
RL and evolutionary algorithms to find which ap-
proach achieves a higher win-rate with their found
optimal policy. Using Q-learning (Watkins, 1989)
and QV-learning (Wiering, 2005) each with three
different exploration policies (greedy, ϵ-greedy and
softmax) (Sutton & Barto, 2018) as RL algorithms.
A genetic algorithm (GA) (Man et al., 2001) with
two different parent selection and crossover meth-
ods, and particle swarm optimization (PSO) (Wang
et al., 2018) are used to explore the evolutionary
algorithms. The main research question of this pa-
per is the following, which approach (RL or GA)
achieves a higher win rate/better optimal policy
for blackjack? However within this search, compar-
isons will also be made within the two approaches
to find the better algorithm within the approach.
On top of that within each algorithm the different
exploration policies will be compared for the RL
algorithms and crossover/parent selection for the
GA.

1



2 Related works

This paper is not the first to explore blackjack
with either type of algorithm. A lot of research has
been done to learn the optimal policy for blackjack,
mainly using reinforcement learning or some adap-
tion of it (Kakvi, 2009). Evolutionary algorithms
have been used to learn blackjack as well (Sum-
merville, 2019). The results obtained by them come
really close to the optimal policy, however the run
time is longer for the genetic algorithm than that
of reinforcement learning implementations. These
researches show that blackjack can be learned in
either way but it is very difficult to obtain the per-
fect solution with either method.
The comparison between RL and evolutionary

algorithms have been made countless of times be-
fore, which converges to the solution the fastest?
which is more reliable to give the optimal solution?
Tijjani & Ozkaya (2014) compared multiple dif-
ferent RL algorithms to two different evolutionary
algorithm, after which they concluded that most
RL algorithms converged faster to the solution
than the evolutionary algorithms. Yanes Luis et al.
(2021) concluded that evolutionary algorithms con-
verged slower to the solution than RL methods for
high dimensional problems. However both methods
converged to similar results. Another research by
Zhang & Zäıane (2017) compared multiple evolu-
tionary strategies to deep RL algorithms on mul-
tiple different tasks, and could not conclude which
type of algorithm was better overall. Both meth-
ods had their own tasks in which they performed
better.
Reinforcement learning and evolutionary meth-

ods have also been combined to attempt to obtain
better results than by using either method alone.
Pathak & Kapila (2018) is such an example. Al-
though it is good to realize that this option might
be appropriate for the blackjack environment, it is
not the focus of this paper.

3 Methods

In order to have algorithms learn blackjack, a
python program∗ was made to simulate blackjack
which agents can interact with. The game has been

∗The code of the custom program can be found here:
https://github.com/firevos/blackjack

implemented from scratch. The implementation of
blackjack follows the official rules played in casinos
Garvie (2017), this ensures that the dealer has no
choice in its actions and has to follow set rules for
their actions. In order for an algorithm to choose
an action, it needs a set of states with preferences
for actions. These states are split into two main ob-
jects. The first one represents every possible value
the hand of the player can have, which ranges from
three to 21 as well as the first card of the dealer,
since this is the only card of the dealer known to the
player while playing. Each state has a value for all
possible actions in that state. The second object is
similar but represents only the states in which the
player can split, which is every hand that has two
of the same card. These states are separate since
the other state object does not keep track of indi-
vidual cards but only of the total value of all cards
in the hand of the player. These states represent
the policy. Therefore each algorithm will adapt the
states according to their rules to improve the found
policy to optimize the win rate.

As mentioned before comparisons will be made
between four different algorithms. Two RL algo-
rithms and two evolutionary algorithms, the im-
plementations are explained in the following sec-
tions. The two different RL algorithms used are Q-
learning and QV-learning.

3.1 Reinforcement learning

The Q-learning algorithm makes use of Q-values
and the QV-learning algorithm makes use of both
Q- and V-values. These values represent the good-
ness. High values of a V-state corresponds to a good
fit for that state, this means that being in that state
likely results in a good reward. Whereas Q-values
represent not only the state but also the action
taken when in that state. A high Q-value suggests
that being in that state and taken the specified ac-
tion likely results in a good reward.

For both RL algorithms, exploration policies are
used to determine which action gets chosen at
each time point. Three exploration policies have
been implemented, greedy, ϵ-greedy and softmax.
Greedy is the simplest exploration policy and sim-
ply takes the action with the highest Q-value in the
state. ϵ-greedy is based on greedy but rather than
always taking the best action it has a small chance
to take a random action instead (see Formula 3.4).

2



This randomness ensures exploration of all actions
when enough iterations are used and can prevent
the algorithm getting stuck in sub-optimal actions.

πϵ =

{
maxa∈A(Q(st+1, at)) with prob. 1− ϵ

random a ∈ A with prob. ϵ
(3.1)

Here πϵ represents the policy (the action chosen)
found with the ϵ-greedy exploration policy. ϵ is the
exploration constant which is set to 0.05. Note that
with an ϵ of 0, ϵ-greedy effectively becomes the
same exploration policy as greedy. An alternative
version of ϵ-greedy is used which converges ϵ to 0
over time. This ensure that the agent will only be
encouraged to explore early on and choose the ac-
tions greedily later on. ϵ is updated each iteration
as follows:

ϵ = ϵ− E

epochs
(3.2)

Each iteration ϵ gets reduced by a small margin. E
denotes the starting value of ϵ and epochs are the
total amount of epochs the agent runs for.

The third exploration policy, softmax is governed
by the following formula:

πsoftmax =
eQ(st,at)∑N

k=0 e
Q(st,ak)

(3.3)

πsoftmax represents the policy found by the soft-
max exploration policy. N denotes the amount of
different possible actions in state st. The softmax
formula (see Formula 3.6) essentially turns all Q-
values of a state into probabilities, giving higher
probabilities to actions with higher Q-values and
low probabilities to lower values. This exploration
policy encourages exploration just as ϵ-greedy how-
ever not based on randomness but rather based on
the goodness of each action.

Greedy has been chosen to act as a baseline
compared to the other exploration policies, which
have encouraged exploration. The encouraged ex-
ploration is important in the stochastic environ-
ment of blackjack since it is easy for an agent to
get stuck in a sub-optimal action otherwise due to
a random streak of luck. Both RL algorithms make
use of the same exploration policies ensuring com-
parable results.

3.2 Q-learning

Q-learning (Watkins, 1989) is an off-policy (Suran,
2020) learning algorithm and works by keeping
track of Q-states, these states are represented by
the state objects explained in the previous section.
After an action has been made and the game has
advanced, the Q-states of the agent making the ac-
tion is updated with the following formula:

Q(st, at) = Q(st, at) + α[rt + γ ·max
a∈A

Q(st+1, a)

−Q(st, at)]
(3.4)

Q(st, at) denotes the state-action pair at time point
t. α denotes the learning rate, which represents how
much the current choice influences the Q-value. α
is set to 0.5. rt represents the reward received for
taking the action in state s at time t. γ denotes the
discount factor which is set to 0.9. A denotes the
set of all possible actions. Q(st+1, a) represents the
maximum expected future reward.

3.3 QV-learning

The other RL algorithm implemented is QV-
learning (Wiering, 2005), which is an on-policy
(Suran, 2020) algorithm. It works similar to Q-
learning, but rather than keeping track of only the
Q-values it also keeps track of the V-values and
updates the Q-values based on the V-values. The
V-values are updated as follows after every action:

V (st) = V (st) + α[rt + γV (st+1)− V (st)] (3.5)

Again, α denotes the learning rate and γ the dis-
count factor. The Q-values are then updated using
the same formula as for Q-learning (see Formula
3.4) with a slight altercation, using the V-values
rather than the expected future reward:

Q(st, at) = Q(st, at)+α[rt+γ ·V (st+1)−Q(st, at)]
(3.6)

3.4 Genetic algorithm

The Genetic Algorithm (GA) is the first evolution-
ary algorithm implemented (Man et al., 2001). It
works by initializing a set of agents with a ran-
dom policy each. The state objects mentioned ear-
lier are used by the GA to set the policy of an
agent. This is done by setting the state-action pair

3



to 1 if that action in that state belongs in the
assigned policy and to 0 if it does not belong in
the policy. Actions are then chosen greedily to en-
sure the agent always follows the set policy. The
GA learns by firstly evaluating the set of agents
based on the win rate returned by the agent after
100 000 epochs after which the next generation of
agents is determined/created. There are two dis-
tinct methods within the creation of the next gen-
eration. The first is the parent selection and the sec-
ond is the crossover ratio. There are two different
parent selections implemented, tournament selec-
tion and ranked selection (Hassanat et al., 2019).
There are also two implemented crossover ratios,
firstly single point crossover (Man et al., 2001) and
ranked based crossover. These different methods
have been implemented to investigate whether a
specific method would influence the results. The
parent selection methods determines which agents
generate offspring for the next generation and the
crossover ratio determines how these offspring are
created from the parents. Once the offspring has
been created there is a small chance in each state
for a mutation, this means that a random action
will be set as the policy in that state rather than
the inherited action. This chance is governed by the
mutateChance variable which is set to 0.05 and re-
duces with the same rate as ϵ does for the ϵ-greedy
exploration policy.

mutateChance = mutateChance− mutateStart

generations
(3.7)

Here mutateStart stands for the initial value of
mutateChance and generations denotes the total
amount of generations the GA will run for.

The stopping criteria for the GA is determined
by a predefined amount of generations, which is set
to 200. After the maximum generation has been
reached the GA will terminate. The results are be-
ing tracked for each agent in each generation.

3.5 Particle swarm optimization

The Particle Swarm Optimization (PSO) is the sec-
ond evolutionary algorithm implemented (Wang et
al., 2018). As the name suggests, this algorithm
works by exploring a search space with a swarm of
particles which can communicate with each other.
The dimensionality of the search space is deter-

mined by the amount of different states in the
problem. Which in this case is rather large (>400)
Since split states are counted separately from reg-
ular states and each combination of the player’s
hand and dealer’s hand is counted as a separate
state. The search space is in a continuous state, this
means that the discontinuous state-action pairs had
to be converted. This is done by creating bound-
aries between -0.5 and amount of possible actions
- 0.5. So in the case where the actions hit, stand
and split are viable, the boundaries are set to -
0.5 to 2.5. Each agent (also named particle) gets
a randomly initialized value within the boundaries
for each state. These values are used for the PSO
whereas they are converted back to a policy by
rounding the value to the nearest integer and set-
ting the value of that action to one in that state
in order for the agents to follow a policy. Actions
are chosen greedily again to ensure the set policy
is followed. Each particle is evaluated with 100 000
epochs and returns a win rate. Each particle re-
members its best position in the search space as
well as the global best position found thus far. All
particles get assigned a velocity vector. This veloc-
ity vector gets updated every iteration and is influ-
enced by both its own best position and the global
best position (see formula 3.8).

vx = vx + 2 · rand · (pbestx − x)+

2 · rand · (gbestx − x)

x = x+ vx

(3.8)

Formula 3.8 is applied to each dimension of the par-
ticle. The variable rand depicts a randomly gener-
ated value, generally between zero and one. pbestx
denotes the best known position in the x dimen-
sion of the particle it self, whereas gbestx denotes
thes best known global position in dimension x.
After the velocity has been updated the position of
the particle is updated by simply adding the cur-
rent velocity to its current position. If the particle
reached/passed the boundary in a certain dimen-
sion it is reflected in the opposite direction (re-
flecting wall) with 20% of the difference between
the boundary and the surpassed space (dampening
wall). This ensures no particle ever leaves the al-
lowed search space. The goal of this algorithm is to
find the optimal location in the search space which
returns the highest win rate.

4



4 Results

The results are presented in two different ways.
Each agent for each algorithm records its own
win rate which is plotted to demonstrate learning
curves as well as the optimal policy found by the al-
gorithm. This optimal policy is represented in the
form of a table showing which action is the best
to take in each state the agent can find itself in.
Both types of results are created for each type of
algorithm.

A baseline was created for comparing results by
running the Q-learning algorithm with ϵ-greedy ex-
ploration policy with an ϵ of one without decay.
With ϵ at 1, the agent will always choose a random
action and disregard any information presented to
it. This creates a baseline for random plays. This
simulation resulted in an average win rate of 31,1%
(see Appendix A for raw results)

On the contrary, for a comparison for the policy
tables the optimal policy table for regular hands is
shown in Figure 4.1 and the optimal policy table
for splittable hands is shown in Figure 4.2.

Figure 4.1: The optimal blackjack policy table.

Figure 4.2: The optimal blackjack policy table for
hands in which you are allowed to split.

The policy tables are read as follows: The x-axis
indicates the face up card of the dealer. The y-axis
for non split states represent the total value of all
cards in the hand of the dealer where as in the ta-
bles for the split states the value on the y-axis rep-
resents the value of one of the cards of the player.
Since these hands only occur with two cards in the
hand with both having the same value. The entries
in the table are either H; denoting the action hit, S;
representing the action stand, D; denoting double
down and P; representing split. Any following pol-
icy table can be read in the same way.

4.1 Reinforcement Learning

The results for the RL algorithms are created by
running 50 agents with the same parameters and
same exploration policy to return an average win
rate learning curve as well as an average optimal
policy found by all of the 50 agents. 50 agents are
used to eliminate as much randomness as possible.
Running one agent can result in either a very high
or very low win rate depending on chance, even
after training an agent for 1 000 000 epochs.

The parameters used to create the results from
the RL algorithms are displayed in Table 4.1. The
rewards for each action are defined in Table 4.2

Figure 4.3 shows the results returned by the Q-
learning algorithm for each different exploration
policy implemented (greedy, ϵ-greedy and softmax).
Each data point represents the average win rate of
all 50 agents over the last 100 000 games played by
those agents. This means that after an agent has
played more than 100 000 games the first games
are no longer counted towards its win rate. This
was chosen due to the fact that the agent is learn-
ing and should not be punished for not achieving
a low win rate early on. In the same way results
for the QV-learning algorithm was created and is

Table 4.1: Parameters used by RL algorithms.

random seed epochs E α γ
1 1 000 000 0,05 0,4 0,9

Table 4.2: Rewards used by RL algorithms.

loss win hit without bust
-0,5 4 2

5



displayed in Figure 4.4.

Figure 4.3: The average learning curve of 50 agents
using Q-learning and 3 different exploration policies.

The learning curves (Figure 4.3 and Figure 4.4)
show the ability of the algorithm to learn how to
play blackjack, however not only the pure win rate
is of interest. The policy with which the agent
reaches its highest win rate is also important.
Therefore this policy is also returned and visual-
ized in a table. Each algorithm returns 1 optimal
policy table which is the averaged table of all 50
agents at the end of the learning process. The av-
erage table is simply created by counting which ac-
tion in each state belongs to the policy of the most
agents. However every exploration policy of each
algorithm creates its own policy table, but only the
table of the best performing exploration policy is
shown here, the others can be found in Appendix
B. Figure 4.5 shows the optimal policy table for
Q-learning with ϵ-greedy and Figure 4.6 shows the
optimal policy table for QV-learning with ϵ-greedy.
The split tables of these results can be found in
appendix C.

4.2 Evolutionary Algorithms

The results for the evolutionary algorithms are cre-
ated by running each algorithm for 200 generation
(GA) or iterations (PSO) with 750 agents each. As
mentioned before in section 3.4 and 3.5, each agent
evaluates its policy by playing 100 000 games. To
illustrate the results the win rate of each agent in
each generation/iteration is being tracked in order

Figure 4.4: The average learning curve of 50 agents
using QV-learning and 3 different exploration policies.

Figure 4.5: The average policy of 50 agents using Q-
learning with ϵ-greedy exploration policy for regular
hands.

to graph the average win rate along with the min
and max for each generation/iteration. Again these
learning curves graphs (as seen in Figure 4.7 and
Figure 4.8) show the learning ability of the evolu-
tionary algorithms for the blackjack problem. The
same random seed is used for these algorithms as
well as a velocity constant for PSO of 0.5. The GA
uses 2 different parent selection methods as well as
two different crossover ratios as explained earlier,
the results are combined in Figure 4.7.

For the evolutionary algorithm the policies of the
agents are also being tracked. This is done by cre-
ating a policy table of the best agent in each gen-
eration for the GA and the best particle of each

6



Figure 4.6: The average policy of 50 agents using QV-
learning with ϵ-greedy exploration policy for regular
hands.

Figure 4.7: The learning curve of each combination
of GA. The legend first indicates the parent selection
method and secondly indicates the crossover ratio. The
middle lines indicate the average and the top and bot-
tom lines indicate the max and min respectively in that
generation.

iteration for the PSO. Figure 4.9 shows the poli-
cies of the best agent after generation 200 for the
GA (see appendix C for the split table). Only the
policy tables of the GA with the best performance
is shown here which is the GA with ranked parent
selection and single point crossover ratio. see Ap-
pendix D for the remaining policy tables for the
other combinations of the GA. Figure 4.10 shows
the policy tables for the PSO algorithm.

Figure 4.8: The learning curve of the PSO algorithm.

Figure 4.9: Policy table for regular states created by
a genetic algorithm with ranked parent selection and
single point crossover.

Figure 4.10: Policy table for regular states created by
a PSO algorithm.

7



Optimal RL Evolutionary

∼42,5%

Q-learning QV-learning GA PSO
Greedy 41,26% Greedy 39,06% Single Point Ranked

21,21%ϵ-greedy 42,30% ϵ-greedy 42,47% Ranked 42,30% 41,66%
Softmax 41,58% Softmax 41,94% Tourney 42,24% 41,69%

Table 4.3: The average maximum win rate achieved by each different algorithm, including exploration policies
for the RL algorithms. For the GA the horizontal entries represent the crossover ratio and the vertical entries
represent the parent selection method.

4.3 Statistical tests

Table 4.3 shows an overview of the performance of
all algorithms. The optimal known policy which is
around 42,5% is included. As mentioned before in
section 1, this optimal max win rate has no precise
percentage and differs per source. For the RL algo-
rithms each of the 50 agents has a win rate based
on the last 100 000 played games, the average of
these 50 win rates are displayed in the table. For
the evolutionary algorithms the average of all its
750 agents are taken from the last generation.
An one way analysis of variance showed that the

different exploration policies within the Q-learning
algorithm have a significant difference, F (2, 147) =
34, 94, p = 3, 86 · 10−13. Post hoc analysis using
the Nemenyi post hoc test showed that the av-
erage win rate of the ϵ-greedy exploration policy
(M=42,30, SD=0,18) is significantly higher than
the other exploration policies (greedy (M=41,26,
SD=1,00) and softmax(M=41,58, SD=0,44)). Per-
forming the same one way analysis of variance
on the different exploration policies within QV-
learning algorithm also showed significant differ-
ences, F (2, 147) = 162, 56, p = 5.69 · 10−38. Post
hoc analysis using the Nemeny post hoc test showed
that there is a significant difference between each
exploration policy. Reporting from best to worst;
ϵ-greedy (M=42,47, SD=0,19), softmax (M=41,94,
SD=0,59) and greedy (M=39,06, SD=1,65). These
statistical tests show that the ϵ-greedy exploration
policy is significantly better than the other explo-
ration policies.
An one way analysis of variance was also used

for the different GA methods to show statisti-
cal difference, F (3, 2996) = 1680, 7, p = 0, 0. The
statiscal test was done using the win rate of all
agents (750) in the last generation of each vari-
ation of the algorithm. Using the Nemenyi post
hoc test showed that each different GA setup was

significantly different from each other, and thus
the GA with ranked parent selection and single
point crossover has the highest average win rate
(M=42,30, SD=0,14). The PSO algorithm was ex-
cluded from any statistical test because it is clear to
see that it is worse than any other algorithm. An-
other one way analysis of variance was used to show
if there is a significant difference between the best
variation of each algorithm, using Q-learning with
ϵ-greedy, QV-learning with ϵ-greedy and GA with
ranked parent selection and single point crossover,
F (2, 847) = 34, 46, p = 4, 08 · 10−15. Using the
Tukey-Kramer post hoc test showed that QV-
learning (M=42,47, SD=0,19) is significantly better
than the other algorithms (Q-learning (M=42,30,
SD=0,18), GA (M=42,30, SD=0,14).

5 Discussion

As mentioned at the start of section 4, the aver-
age win rate from playing blackjack with random
actions is 31,1%. This is the baseline which every
algorithm will be judged by. As well as comparing
the policy table created by each algorithm to the
optimal policy table.

5.1 Reinforcement Learning

As can be seen in Table 4.3, both RL algorithms
performed well. With the greedy exploration pol-
icy performing the worst for both algorithms. This
was expected since it is known that greedy can get
stuck in sub optimal policies since it does not en-
courage exploration, as soon as an action seems to
do alright it will not try any of the others in that
state even if it might be better in the long run.
The softmax policy excels at learning quickly, as
can be seen in Figure 4.3 and Figure 4.4 the win
rate of the softmax policy achieves a high win rate

8



very quickly for both algorithms after which it sta-
bilizes and retains the high win rate until the end.
However the best resulting exploration policy is ϵ-
greedy, this policy takes longer to learn but in the
end achieves better results for both algorithms with
both going well over the 42%, supported by the sta-
tistical test in section 4.3. As can be concluded from
the statistical test done in section 4.3, QV-learning
is slightly better that Q-learning, with 42,47% and
42,30% respectively. The 42,47% win rate of QV-
learning comes very close to the maximum possi-
ble win rate of around 42,5%. Comparing it to the
baseline of playing blackjack with random actions,
which has a 31,1% win rate, each exploration policy
for both algorithms performed significantly better.
Comparing the results of the policy tables of the RL
algorithms (see Figure 4.5 and 4.6) to the optimal
policy table (see Figure 4.1 and Figure 4.2) there
are some significant differences. Most of the entries
that are supposed to be stand according to the op-
timal table are also stand for both RL algorithms.
Only a few entries differ for the ‘edge’ cases, which
are those were it is less obvious whether hitting
or standing is better and are located at the edge
between the hit and stand entries. However more
notably are the lack of double down and split (see
appendix C for the split tables), this is possibly due
to the fact that doubling down does not affect the
win rate directly since it can be seen as the same
actions as hitting and standing, in that order. It
is only monetary rewards that are doubled when a
game is won with doubling down. The lack of splits
are possibly due to the fact that splits do not di-
rectly influence the win rate, but only the games
resulting from the split do, which are treated sepa-
rately. However this shows that without the perfect
strategy a player can still achieve a near perfect win
rate.

5.2 Evolutionary Algorithms

For the evolutionary algorithms the results are
quite different from each other. The genetic algo-
rithm achieved good results with the best version
achieving a 42,30% win rate, supported by statis-
tical test done in section 4.3. This is only slightly
below the optimal win rate. Each version of the GA
performed significantly better than the baseline of
31,1%. The policy tables for the GA as shown in
Figure 4.9 are significantly different from the opti-

mal policy table. This once again shows that play-
ing a sub optimal strategy can still achieve a good
win rate. Notably the double down and split (see
appendix C for split table) actions are more com-
mon for the GA compared to the RL algorithms.
The particle swarm optimization algorithm how-
ever did not find good results. With only a max-
imum of 32,7% win rate it barely performed bet-
ter than the random baseline of 31,1%. This sug-
gests that PSO was not a proper algorithm choice
for this particular problem. The resulting 32,7% is
only that of the best particle from PSO, whereas
the average is much lower at 21,2% suggesting that
it actively attempts to perform worse than random
guessing. The learning curve of PSO is also very
stagnant, there seems to be no learning at all, just
randomly performing slightly better or worse than
the previous iteration.

5.3 Comparison

Comparing the RL algorithms to the evolutionary
algorithms (see table 4.3) as well as the statistical
tests done in section 4.3 it can be concluded that
that the RL algorithms in general are a better fit for
the specific problem of a stochastic environment of
blackjack. In particular the QV-learning algorithm
performed the best out of all the algorithms, while
only slightly better than Q-learning, it did achieve
higher win rates with both ϵ-greedy and softmax
policies. Another aspect which has not been men-
tioned thus far, is the run time of the algorithms.
Due to the high number of agents and generations
and the fact that each agent has to run for 100 000
games within each generation for the evolutionary
algorithms, the run time was rather long. One run
of a GA or PSO takes about two days on a medium
performance PC. This is with multiprocessing in-
cluded, without which it would take an additional
few days. Whereas the reinforcement learning al-
gorithms took only around one hour to finish all
50 agents with 1 000 000 games each. This is an-
other reason to conclude the RL algorithms as bet-
ter suited for learning blackjack.

6 Concluding remarks

The PSO algorithm performed rather badly. Con-
sidering the dimensionality of this problem is quite

9



significant (>400) the search space for the algo-
rithm becomes quite large. According to Piotrowski
et al. (2020) problems with high dimensionallity
might need a bigger particle swarm. This could
mean 2000-4000 particles or maybe even more, with
each running for 100 000 games per iteration this
would make it extremely slow. Consider it already
took two days to run with 750 particles, to run
it with 4000 particles would take 10 days or more.
One way to speed it up would be to play less games
per particle per iteration, but this would create too
much randomness in evaluation. Playing only a few
games (around 10 000) could skew the results by a
few percentages due to random luck or bad luck.
Another reason that PSO might have performed
badly is due to that it requires a continuous search
space, whereas the state-action pairs are not con-
tinuous and were adapted to be so. This adaptation
might have not resulted in better results. Continu-
ing on this problem, the range within each dimen-
sion is rather small, only between -0,5 and a either
1,5, 2,5 or 3,5. This might give the algorithm a hard
time to find the optimal location.
The policy tables for each algorithm had rather

significant differences from the optimal table. How-
ever without the optimal strategy most algorithms
still found very good results. Most notably the
GA which had a significant difference in the pol-
icy table but still managed to achieve a 42,30%
win rate. Considering the baseline of 31,1% there is
only around 11,4% difference between playing com-
pletely randomly and playing fully optimal. So by
even following a very simple strategy of hitting be-
low 16 and standing at and above 16 would already
increase the win rate significantly. In fact it will al-
ready increase the win rate to around 41,5%. Going
from this simple strategy to the perfect strategy,
only one percent more wins can be achieved. This
shows that changing only one state-action pair,
only reduces/increases the win rate by a very slight
margin.
The fact that the optimal policy is hard to learn

can be conceptualized by realizing that standing
with a very low player hand of five or a higher hand
of 16 results in the exact same win rate. This is due
to the fact that the dealer will never have less than
17 points, since it will always hit below 17. The
only way to win a hand of either five or 16 is if the
dealer busts. This chance is equal no matter what
the value of your hand is.

References

Garvie, D. (2017). Blackjack. Retrieved from
https://www.pagat.com/banking/blackjack.

html

Hassanat, A., Almohammadi, K., Alkafaween, E.,
Abunawas, E., Hammouri, A., & Prasath, S.
(2019, December). Choosing mutation and
crossover ratios for genetic algorithms-a review
with a new dynamic approach.

Kakvi, S. (2009, September). Reinforcement learn-
ing for blackjack. In (p. 300-301).

Man, K.-F., Tang, K.-S., & Kwong, S. (2001). Ge-
netic algorithms: Concepts and designs. Springer
London, Limited.

Pathak, K., & Kapila, J. (2018, October). Rein-
forcement evolutionary learning method for self-
learning..

Piotrowski, A., Napiórkowski, J., & Piotrowska, A.
(2020, May). Population size in particle swarm
optimization. Swarm and Evolutionary Compu-
tation, 58 .

Summerville, G. (2019, February). Winning black-
jack using machine learning. Towards Data Sci-
ence.

Suran, A. (2020, July). On-policy v/s
off-policy learning. Retrieved from
https://towardsdatascience.com/on-policy-

v-s-off-policy-learning-75089916bc2f

Sutton, R. S., & Barto, A. G. (2018). Reinforce-
ment learning: An introduction (2nd ed.). MIT
Press, Cambridge.

Thorp, E. O. (1966). Beat the dealer : a winning
strategy for the game of twenty-one. Random
House.

Tijjani, S., & Ozkaya, A. (2014, November). A com-
parison of reinforcement learning and evolution-
ary algorithms for container loading problem..

Wang, D., Tan, D., & Liu, L. (2018, January). Par-
ticle swarm optimization algorithm: an overview.
Soft Computing , 22 .

Watkins, C. (1989, January). Learning from de-
layed rewards.

10



Wiering, M. (2005, January). Qv(lambda)-
learning: A new on-policy reinforcement learning
algrithm.

Yanes Luis, S., Gutiérrez, D., & Toral, S. (2021,
April). A dimensional comparison between evolu-
tionary algorithm and deep reinforcement learn-
ing methodologies for autonomous surface vehi-
cles with water quality sensors. Sensors, 2021 .

Zhang, S., & Zäıane, O. (2017, 11). Compar-
ing deep reinforcement learning and evolutionary
methods in continuous control.

11



A Random chance baseline

To create a random play baseline the simulation
was run 20 times with 100 000 epochs each. The
results are generated with random seed 1 through
20 respectively. This gave the results shown in Ta-
ble A.1. The resulting average win rate is 31,1%.
Multiple simulations where done to minimize cre-
ate an accurate baseline with minimal randomness.

Table A.1: win rates returned by randomly pick-
ing actions.

31,07% 30,90% 30,89% 31,21% 30,64%
30,83% 31,26% 30,93% 31,34% 31,58%
30,68% 31,29% 31,43% 31,11% 30,96%
31,23% 31,34% 31,20% 31,36% 31,15%

B Policy tables for RL

Figure B.1: The average policy of 50 agents us-
ing Q-learning with greedy exploration policy
for regular hands.

Figure B.2: The average policy of 50 agents us-
ing Q-learning with greedy exploration policy
for split hands.

Figure B.3: The average policy of 50 agents us-
ing QV-learning with greedy exploration policy
for regular hands.

12



Figure B.4: The average policy of 50 agents us-
ing QV-learning with greedy exploration policy
for split hands.

Figure B.5: The average policy of 50 agents us-
ing Q-learning with softmax exploration policy
for regular hands.

Figure B.6: The average policy of 50 agents us-
ing Q-learning with softmax exploration policy
for split hands.

Figure B.7: The average policy of 50 agents us-
ing QV-learning with softmax exploration policy
for regular hands.

Figure B.8: The average policy of 50 agents us-
ing QV-learning with softmax exploration policy
for split hands.

13



C Policy split tables for Q-
and QV-learning with ϵ-
greedy and GA

Figure C.1: The average policy of 50 agents us-
ing Q-learning with ϵ-greedy exploration policy
for split hands.

Figure C.2: The average policy of 50 agents us-
ing QV-learning with ϵ-greedy exploration pol-
icy for split hands.

Figure C.3: Policy table for split states created
by a genetic algorithm with ranked parent se-
lection and single point crossover.

D Policy tables for GA

Figure D.1: The blackjack policy of the best
agent in the last generation created by a
GA with ranked parent selection and ranked
crossover.

Figure D.2: The blackjack policy for splitting of
the best agent in the last generation created by
a GA with ranked parent selection and ranked
crossover.

14



Figure D.3: The blackjack policy of the best
agent in the last generation created by a GA
with tourney parent selection and single point
crossover.

Figure D.4: The blackjack policy for splitting of
the best agent in the last generation created by
a GA with tourney parent selection and single
point crossover.

Figure D.5: The blackjack policy of the best
agent in the last generation created by a
GA with tourney parent selection and ranked
crossover.

Figure D.6: The blackjack policy for splitting of
the best agent in the last generation created by
a GA with tourney parent selection and ranked
crossover.

15


