Javascript must be enabled for the correct page display

Abnormality classification of simulated whole digital breast tomosynthesis im-ages using deep convolutional neural networks

Hoogeweg, Noa (2022) Abnormality classification of simulated whole digital breast tomosynthesis im-ages using deep convolutional neural networks. Master's Internship Report, Biomedical Engineering.

[img] Text
mBME_2022_HoogewegNM.pdf
Restricted to Registered users only

Download (1MB)

Abstract

De begeleider en/of auteur heeft geen toestemming gegeven tot het openbaar maken van de scriptie. The supervisor and/or the author did not authorize public publication of the thesis.

Item Type: Thesis (Master's Internship Report)
Supervisor name: Greuter, M.J.W. and Ooijen, P.M.A. van
Degree programme: Biomedical Engineering
Thesis type: Master's Internship Report
Language: English
Date Deposited: 01 Jul 2022 12:55
Last Modified: 01 Jul 2022 12:55
URI: https://fse.studenttheses.ub.rug.nl/id/eprint/27537

Actions (login required)

View Item View Item