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Report outline 
Guideline for the report 

This project report entails an ethics chapter pointing out important ethical issues and outweighing them with 

their benefits, an introduction chapter describing all necessary information to understand the following parts, 

an objective chapter that defines what the project’s aims are as well as the requirements, a methods chapter 

that introduces three concepts to achieve the objectives, a final design chapter that describes hardware and 

software of the chosen sensor system, a result chapter and a discussion chapter that puts the results into 

perspective involving limitations and literature fit.  

Codes can be found within each corresponding folder named like the headings within the report. + 

Referencing 

If a reference is located mid-sentence, it means that the leading statement is derived from the given source. 

If a reference is located in the end of a paragraph, it means that the leading paragraph is derived from the 

given source. 

Abbreviations 

Table 1 Abbreviations and their long form within the following report 

Abbreviation Long form 

IMU Inertial measuring unit (leading "s" or "t" is shank or thigh) 
RMSE Root mean square error 
CM Compensatory movement 
OA Offset angle 
TKA Total knee arthroplasty 
KNN K nearest neighbor 
SVC Support vector machine 
RFC Random forest classifier 
ROM Range of motion 
HP Hyperparameter 
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Ethics paragraph 
This paragraph summarizes the identification of key ethical issues within this project, its potential societal 

impact and then evaluates their balance. 

Identification of key ethical issues 
The project aimed to identify a healthy from a compensatory movement execution. For that, a sensor system 

as well as a data-collection and processing pipeline to take this decision were proposed. If it identifies squat 

as non-squat, it conditions the patient towards performing a wrong movement and therefore causes a 

decrease in rehabilitation quality. If it identifies non-squat as a squat, it again promotes compensatory 

movements. Alternatively, if the patient does not trust the algorithm’s judgement, he/she patient would be 

demotivated. Thus, this project had the issue of being able to differentiate the two given categories. 

Although not tackled within this thesis, the successive project team needs to consider the resolution of the 

visual interface to ensure full immersion of the patient. If that is not the case, it might cause the patient to 

experience nausea.  

The inertial measuring units, the casing and straps pose a risk of skin irritation. 

A very small number of participants was recruited for verification and validation. The involvement of 

participants again causes another ethical issue calling for a cost-benefit analysis to see if the costs of this 

project outweigh the benefits. 

Societal impact 
Guided home training increases the immersion of rehabilitation practice. This gives the patient more quality 

of life since he/she can incorporate the training more freely in the day and in a more comfortable setting than 

in a physiotherapeutic center alone. Moreover, the quality of rehabilitation will increase through this 

technology since the temporal monitoring frequency increases from 1-2 per week to whatever training 

interval is agreed upon between the patient and physiotherapist. Further, with self-training, the responsibility 

for rehabilitation outcome transfers to the patient. This causes the patient to feel a higher impact of his own 

contribution to his problems, giving him/her access to his/her own success. 

Since physiotherapist would potentially already receive feedback from the home-training, in-patient sessions 

with the therapist might be more efficient and problem-based. Altogether, the time for unpredictable 

outcomes during the rehabilitation status evaluation procedure will be less. I.e., if the home-based training 

gives an indication of wrong-doing in two out of ten tasks, the focus could be set onto these two tasks. This 

way, sessions become more predictable in their timing and waiting time for other patients could be reduced.  

Cost-benefit analysis 
Since the identified issues are mild side-effects (nausea, skin irritation) and the outcome could be an 

increased quality of rehabilitation, added feeling of autonomy and responsibility over the patient’s own 

rehabilitation success, it is thought that the project, is overall more beneficial. Also taking into account that 

all side-effects can be immediately stopped (by stop looking at the visual interface, taking the device off) 

and there potentially is an alternative method of rehabilitation (conservative in-patient physiotherapy), to test 

this project’s methodology outweighs its risks. Participants are planned to be asked to participate and 

introduced to why their data was collected. Only after oral consent, data is going to be anonymously 

collected and treated confidentially. 
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Introduction 
This project is about monitoring the knee motion to reduce compensatory movements for total knee 

arthroplasty (TKA) patients. TKA is a surgery to reduce pain, restore range of motion and thereby revive 

quality of life for the patient population. Briefly, anatomy and the indications for a TKA are described. 

  
A B 

Figure 1 Bony structures and cartilage in the knee joint (A) and individual parts of total knee prosthesis (B). A modified from (1), B from (2) 
 

The knee or tibiofemoral joint is located where the femur and tibia meet (Figure 1 - A). The patella is 

located anteriorly on top of the femur within the patellofemoral groove. The distal end of the femur is 

rounded off and rests on the tibial plateau with two bony processes called femoral condyles. Tibial condyles 

accompany the femoral ones on the opposite side. Articular cartilage is a white, hard, 2 to 4 mm thick 

connective tissue that is present whenever two bones meet to form a joint. These properties give rise to an 

interaction with minimal wear, optimal bone motion and shock absorption. In the knee, articular cartilage 

covers the distal end of the femur, the plateau of the tibia and the posterior side of the patella. (3) 

Many different diseases such as osteoarthritis, rheumatoid arthritis or gout degenerate joint cartilage in 

fingers, shoulders, knees and feet. Degenerated cartilage gives rise to higher friction between femur and tibia 

which can potentially destroy the joint. (3) This can cause pain, decreased range of motion and impaired 

knee functionality. Non-surgical rehabilitation procedures such as physiotherapeutic programs to strengthen 

the neuromuscular network are successful for more than 60% of patients (4). If these non-surgical measures 

do not improve functionality or pain relief, a possible surgery is TKA. This procedure replaces the tibial 

plateau, distal femoral articular cartilage, and the femur-facing side of the patella with a titanium or cobalt-

chromium prosthesis (Figure 1 - B). A polyethylene spacer is used to create a smooth surface between 

interfaces.  
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Figure 2 Prevalence of TKA-patients in total US population in percent versus age compared for different years. From (5) 

In the past, TKA on obese patients or patients younger than 55 years were avoided due to the likelihood of 

perioperative risks and revision surgery (Figure 3) (6). However, recent studies showed that pain relief as a 

result of TKA is similar across the body mass index spectrum, broadening its indications (7).  Moreover, no 

longer the surgeon but the patient ultimately decides whether to undertake surgery. Therefore, the total 

number of surgeries increases rapidly. In the US alone, about 600,000 patients annually undergo a TKA (5). 

In the Netherlands, 19,800 surgeries are done every year (8). 

It was shown by a systematic review, the surgery mostly satisfies patients (4). However, due to ongoing 

pain, up to 20% of patients remain unsatisfied (9). In a review by Pinedo-Villanueva et. al (2018) 

compromising more than 100,000 patients who underwent TKA in England between 2012 and 2015, the 

pain is characterized mostly by night pain and limping, hence reducing the overall quality of life (9). After 

surgery, other disadvantageous effects are loss of the ability to control muscular activity to perform a 

planned movement (sensorimotor control), loss of joint stability during activity execution (functional 

stability) (10)(11), reduced range of motion (ROM) (12) and loss of proprioception [P]. Out of all these 

reasons, we can infer the socio-economic benefit of improvement in peri-operative care of TKA.   

Compensatory movement (CM) patterns arise that compensate for these downsides and immediately restore 

function (13). CMs can also stem from habit in the late stages of any of the above-mentioned diseases (11). 

During gait, CMs can be increased hip external rotation (11) or decreased knee flexion (12) and are caused 

by decreased quadriceps force (14), decreased ham strings force (15), and decreased hip abductor force (11). 

It is thought that CMs have an unfavorable impact on the outcome of rehabilitation (13). Also, reducing CM 

aids recovery (16). It was found that these movement patterns are contributing to secondary orthopedic 

problems such as joint contractures and muscle reduction (13)(17). Moreover, asymmetric CMs introduce 

increased loading on the intact limb giving rise to a higher risk of contralateral impairment  (18).  

Although historically, implant design was targeted as a measure for reduction of CM, today research rather 

suggests improving perioperative care (5). In practice, physiotherapy is used to decrease the use of CM (19). 

However, entirely relying on this approach is time-consuming, expensive and has a low monitoring 

frequency [P]. Therefore, complementary to physiotherapy, a system that allows for guided and feedbacked 

home-training could potentially improve rehabilitation results.   

One of the criteria to determine the success of rehabilitation is the range of motion of knee extension and 

flexion [P]. In healthy individuals, the passive range of motion is 0° to 135° (20). After surgery, the 

threshold to release the patient from stationary hospital care is 90° [P]. After the entire rehabilitation 

process, range of motion should be from 0° extension to 110° flexion [P]. Moreover, the occurrence of CM 

can be used as an indicator of rehabilitation progress [P]. 



5 | P a g e  

 

Christiansen et al. (2015) conducted feedbacked home-training that complements post-TKA physiotherapy 

with a Wii Balance Board (Nintendo) and a series of games that entailed tasks such as bilateral-stance to 

lunging. Although, they found increased extension moments during gait and decreased 5-time sit-to-stand 

test duration, they did not focus on compensatory movement detection (21). Zeni et al. (2013) used a 

feedbacked home-training protocol that entailed a leg-press device that monitored the force under both feet. 

Moreover, they again used a Wii Balance Board to monitor between-limb weight distribution in tasks like 

wall-slide or squatting. By that, they tried to re-establish symmetrical movement for everyday activities. 

Although they focused on compensatory movement reduction by feedbacking towards symmetry, their setup 

required constrained foot position which excludes necessary daily activities such as walking stairs (22). 

Xiao et al. (2022) utilized a 3D camera system based on Microsoft Kinect to detect and provide visual 

guidance to correct compensatory upper-limb movement (19). Identification of CM was done by choosing a 

set of movement characteristics such as shoulder lift or lateral flexion of the trunk. By utilizing the 

BodyFrameSource datatype, they were able to derive these parameters from Kinect data (Xbox). They 

successfully proved that the system could improve rehabilitation effects. In a pilot study, Cai et. Al (2019) 

let seated patients perform upper-limb tasks while recording pressure data from a mat mounted onto the 

chair (23). Support-vector machine (a machine-learning algorithm) was successfully used on the dataset to 

categorize different compensatory movements. A study by Borges et. al, 2012 used inertial data from stroke 

patients to obtain quantitative insights for upper-limb compensatory movements in different tasks such as 

reaching (24). Placement repeatability was insured by choosing five bony processes. They implied that other 

sensor locations might also be used. 

  



6 | P a g e  

 

Problem definition 

 

Figure 3 Schematic of problem definition starting with a diseased knee and ending in a demand for a feedbacked home-training. Arrows 

between boxes indicate how one item leads to another while the dashed line indicates how some downsides might still prevail. Arrows inside the 

boxes indicate “increased” or “decreased” depending on their orientation. With A from (2), B from (25) and C from (26) 

When any cartilage degenerating disease causes pain, reduction in sensory motor control, joint stability, or 

range of motion, CMs develop (Figure 3). TKA is a possible surgery to re-establish full functionality and 

control. However, even after surgery, downsides might prevail including all the previously mentioned and 

scar tissue, skin irritations and cuts, again leading to CMs. To counteract, physiotherapy is added post-TKA. 

Since physiotherapy has its own disadvantages of being expensive, time-consuming, and having a low 

monitoring frequency, an additional system that adds guidance and feedback to home-therapy might 

improve rehabilitation results. 

To the best knowledge of the author, there is no feedbacked home-training system specifically designed to 

detect and monitor post-TKA patients for compensatory movements of the lower-limb. Therefore, this 

project will focus on the first stage of such a system: choosing a sensor that could monitor knee angle and 

creating an algorithm that can differentiate different movement patterns (for more detail see Objectives). In a 

future scope, these inputs could be used in a serious gaming environment that increases motivation and 

immersion.  

 
Figure 4 Illustration of squatting exercise. From (27) 

 

The task chosen for this project is the squat (Figure 4), a simple but effective high-demand movement 

frequently used in post-TKA physiotherapy. It is a closed-chain task which is defined by the fact that the 

foot is placed on the floor permanently, hence the knee angle changes majorly due to thigh movement.  
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Objectives 
This project intends to aid in the development of a system for compensatory movement detection in 

arthroplasty patients using sensors and has the following two objectives. 

1. Design a system that can acquire knee angle. 

2. Detect compensatory movements for the squat task (> 70% accuracy). 

This project will focus on the acquisition and conversion of data into knee angle and a parameter that 

indicates compensatory movement. It will focus on the squat task as a proof of concept of the selected 

system after which a second thesis might take it to other tasks.  

Requirements and justifications 
To determine which sensor is the best to use, I start by establishing requirements according to literature, 

educated guessing and talks with physiotherapists, lab technicians and my supervisor. The accumulated list 

of requirements is followed by a list of wishes (Table 2). If necessary, individual items are explained in 

further detail below. 

Table 2 Requirements and wishes for a device that can acquire knee angle and detect compensatory movements for TKA-patients 

Requirements 

The system shall be able to acquire knee angle with a spatial resolution of less than 10° and a temporal 

resolution of less than 50 ms (20 Hz sampling frequency). 

The detectable range of motion for knee extension and flexion shall be between -10° and 150°.  

The mass of the sensor shall be limited to 500g.  

The system shall be able to distinguish a squat from a CM-squat.  

Wishes 

The workspace within which knee motion needs to be measured shall be a 1x1x2.6m space. 

Setting up the device shall not demand for an extensive preparation (set-up > 3 min) or reclothing. 

The system shall be able to detect internal / external hip-rotation or shank rotation. 

The system shall save the data for retrospective inspection. 

The system shall be able to differentiate between thigh and shank movement (relativity of output). 

The system can quantify compensatory movements. 

 

Spatial resolution shall be less than a reading from a goniometer [P]. According to literature, goniometers 

can be as accurate as 10° in knee angle estimation (28). 

 

Figure 5 Proprioceptive and sensor-derived pathway from knee to brain. The sensor-derived pathway entails a sensing, processing and 

displaying unit. 

As mentioned earlier, since this project might be used within a bigger framework that entails a serious 

gaming environment (Figure 5), the overall aim is to be at least equally as fast as the proprioceptive pathway 

from knee to brain. A paper by Stauffert et al. (2020) focusing on latency that causes cyber-sickness, 

suggests 50 ms to be necessary to have a responsive feeling (29).  
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Since passive, healthy knee extension and flexion ranges from 0° to 135° (20), some additional buffer is 

applied to the flexion range to account for extreme values / anatomies. Moreover, a -10° extension range 

into an anatomically unrealistic state is added to allow for the detection of calibration or attachment errors. 

This could mean that any below-zero value indicates a faulty setup.  

If the device is heavy enough to change the gait pattern within training, it will not train the patient for a real-

life situation. The patient will over-actuate their knee in everyday life. To quantify this mass, a study showed 

that biomechanical changes due to wearable mass situated on lower limb are negligible for up to 1% of body 

mass (30). Considering most adult weights to be above 50kg, the mass of the device (if any) shall be limited 

to 500g. 

 

To be able to monitor all training exercises, a certain area shall be monitorable. Interviewing two 

physiotherapists, they both stressed the fact that therapy does not always require the same area and is highly 

dependent on the patient [P]. If the patient lives in a three-story building without elevator, a set of two stairs 

is enough. If the patient is a full-time athlete, this will not be enough. However, as a minimal requirement, 

1x1x2.6m was determined.  

The duration of onsite physiotherapeutic sessions varies depending on the type of rehabilitation schedule 

that was decided upon; they range between 20 and 60 minutes [P]. For the recommended bidaily home-

training session, session duration is rather 10 to 15 min. The setup time needs to be sufficiently short to not 

interfere with the procedure. Interviews with therapists suggested a time window of maximally 3 minutes 

[P].  

 

 
Figure 6 Quantifying compensatory movements. The green line determines the movement that should be performed, the blue line determines the 

patient’s path. The letters A and B indicate the thresholds upon which a correction prompt is triggered. 

If a patient is asked to perform a task, most likely he/she will not be able to perfectly replicate the task. If we 

were to correct every movement, it will be highly discouraging to continue training. Therefore, depending 

on the skill level, the threshold upon which a corrective message is prompted must be changed. As indicated 

in Figure 6 by the letters, while in skill level A, the patient’s execution is considered enough, skill level B 

would trigger a correction prompt.  
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System analysis 

 

Figure 7 System analysis showing different subparts and their inputs and outputs 

Knee movement will change the visual or mechanical inputs to the sensor. The sensor will create an 

electrical readout and transfers this to the processing unit. This will make the raw data into an interpretable 

output that can be understood as a knee angle as well as an indicator whether CM is present. Then, this 

processed data is transferred and displayed on a visual interface. 

Justification for simplification of knee model 
As described earlier, rotation around the transverse axis is the major function of the knee. However, two 

additional, passive movements contribute to the complexity of accurately modelling the knee joint. 

 
 

 

A B 
Figure 8 Rotation of convex femur on flat surface and resulting point of rotation (A), from (31). Inequality in femoral 

condyle sizes (B), from (32). 

 

According to the Kaltenborn rule, as the tibia’s condyles are concave and the femoral condyles are convex, 

flexion and extension also give rise to translation (Figure 8 A) (33). The following two cases describe 

translation movement on the sagittal axis driven by this anatomical property. If the convex femur is fixed 

e.g. in sitting on a chair, while the concave tibia rotates, flexion is accompanied by posterior translation of 

the tibia (open-chain). If the tibia is fixed e.g. in standing, while the femur rotates, flexion is accompanied 

by anterior translation of the femur (closed-chain).  

As the lateral condyle on the femur is a smaller structure, its end is reached earlier during extension (Figure 

8 B). Therefore, the only way to fully extend the leg, is for either the femur to perform a medial rotation 

(closed-chain) or for the tibia to perform an external rotation of 10° (32). This movement is called screw-

home mechanism. This secondary movement can be observed when the last 30 degrees of extension are 

about to be performed and is caused by the anatomical differences of the condyles.  

As described above, the knee does not rotate about a fixed axis. However, it might be that the translation in 

the sagittal axis has a negligible effect on the knee angle such that a simplification can be considered.  

A simplified model of the leg is proposed. It has two beams and a revolute joint (R-model) as resemblance 

of the knee joint and is compared against one with an additional prismatic joint to account for the translation 

on the sagittal axis (RP-model). The baseline for the comparison is defined by the minimum requirement for 

spatial resolution, namely a change of 10°. 
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𝑥 = 𝑙𝑠ℎ𝑎𝑛𝑘 ∙ (1 − cos(𝛼))  Equation 1 

y = 𝑙𝑠ℎ𝑎𝑛𝑘 ∙ sin⁡(𝛼)  Equation 2 

𝑑𝑒𝑢𝑐 = √(Δ𝑥2 + Δ𝑦2 From (34) Equation 3 

This angle can also be interpreted in the cartesian coordinate system as a change of x and y (Equation 1, 

Equation 2, Equation 3). By using a shank length (𝑙𝑠ℎ𝑎𝑛𝑘) of 36 cm, any set of x and y resembling a change 

of knee angle (𝛼) of 10° results in a Euclidean distance of 6.28 cm between end-effectors of the revolute-

only model.  

With this measure as the baseline, we can compare the two models and their RMSE values for a whole ROM 

trajectory. Therefore, the two models were designed using the Denavit-Hartenberg approach and the Matlab 

Robotics Toolbox by Peter Corke (35). Parameters for shank (36 cm), ROM (-10° to 110°) for both rotation 

and translation as well as an offset for translation (4 mm) were defined using anatomical literature (36)(37). 

Using forward kinematics, the x and y components of the end-effector for both models were tracked and 

then compared both graphically (Figure 9) and via the root mean square.  

 
Figure 9 Comparison of revolute-prismatic and revolute model showing the deviation of end-effector position in the end-range of motion. 

The RMSE between the models is 1.2 mm. Comparing the detected RMSE to the Euclidean distance of the 

needed resolution, the change in the model accounts for 2% (1.2 mm / 62.8 mm) of the detectable angle. 

Therefore, in the next chapter, it is considered appropriate to replace a correct biomechanical model with a 

simplified structure.  

Methods 
The section describes all methods used to achieve the two objectives. Thereby, a design process is initiated 

for the first objective entailing three different concepts derived from the morphological map. Each of the 

concepts entails subparts namely concept description, verification methods and their results as well as a brief 

discussion. A concept decision paragraph concludes to continue with one of these concepts. Afterwards, the 

final hardware design is introduced, finalizing the first objective. Then, focusing on the second objective, the 

pathway from recorded signal to a classification is described. 
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Concepts 
It was decided to use three concepts in further detail that evolved out of brainstorming using the morphological map below (Table 3). These were all based on 

different sensors, namely a flex-sensor, a camera-sensor and an inertial measuring units (IMUs). 

 
Table 3 Morphological map for brainstorming concept ideas. It is to be noted that each column does not indicate an optional design. Instead, in each row, one item can be picked to create a design. 

Sensor Strain gauge 

sensor 

 

fiber optic sensor 

 

Camera 

 

IMU 

 
 

 

Gear teeth 

 

EMG 

 
 

 

  

Kinect 

 

Design  Sock  

 

Two adhesive 

patches 

 

Two straps/brackets 

 

 

    

Processing 

unit 

Arduino Rasberry Pi Computer     

Visual 

Interface 

Computer Monitor Cell Phone LED indicator     

Data 

transmission 

Bluetooth Wifi Radio     

Programming 

language 

C++ Matlab Python OpenSim    

In the following chapters, these ideas are presented and tested against the requirements.  
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Idea 1a – Resistive flex sensor  
This idea consists of two different kinds of flex-sensors namely resistive and 

capacitive flex-sensors. 

Concept 
This preconcept is a fabric that is in the shape of a sleeve-sock, that is surrounding 

the knee entirely and tightly. A compartment on the anterior or lateral side of the 

fabric entails a flex-sensor (Figure 10 - A/B). When the sensor is bent, the 

resistance changes. In a voltage divider circuit, this change can be recorded and an 

analog to digital converter (Arduino Uno) can be used to map the change in 

resistance to the underlying angular displacement.  

Working principle 
The sensor used for this subproject is SF15-150 from Fafeicy.  

  
1 2 

Figure 11 Close-up of resistive flex sensor (1) with flexible plates (A and B), and conductive elastomer (C). Bent flex sensor with conductive 

dots (red arrow) and plates (2) 

The working principle relies on two metallic contacts which connect on either side to flexible plates (Figure 

11 - 1 – A/B) along the length of the sensor. A conductive elastomer (Figure 11 - 1 - C) is situated between 

the two plates and is constituted of many small conductive dots (Figure 11 - 2). If the sensor is bent, the 

distance between the dots increases by which the resistance increases proportionally to the bending. 

  

Figure 10 Preconcept 

with flex-sensor position 

either lateral or anterior 
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Voltage divider 

 

 
 

A B 
Figure 12 Voltage divider consisting of a known resistance 𝑅, known supply voltage 𝑉𝑐𝑐 , measured resistor voltage 𝑉𝑓𝑙𝑒𝑥 , and the unknown 

resistance 𝑅𝑓𝑙𝑒𝑥  (A), Theoretical characteristic line relating 𝑅𝑓𝑙𝑒𝑥  value and corresponding angular displacement (B) 

 

 

 𝑉𝑓𝑙𝑒𝑥

𝑉𝑐𝑐
=

𝑅

𝑅+𝑅𝑓𝑙𝑒𝑥
=> 𝑅𝑓𝑙𝑒𝑥 = 𝑅 ∙ (

𝑉𝑐𝑐

𝑉𝑓𝑙𝑒𝑥
− 1) From (38) 

Equation 4 

 

With the known parameters 𝑉𝑐𝑐 and 𝑅, and the measured 𝑉𝑓𝑙𝑒𝑥, Equation 4 yields 𝑅𝑓𝑙𝑒𝑥.  

Since the manufacturer determined a linear proportionality, two points of the sensor must be determined to 

draw the characteristic line via Equation 5. 

 °(𝑅𝑓𝑙𝑒𝑥) = 𝑚 ∙ 𝑅𝑓𝑙𝑒𝑥 + 𝑏 

 

with 𝑃1 = (0°⁡|⁡𝑅𝑓𝑙𝑒𝑥𝑓𝑙𝑎𝑡) and  𝑃2 = (90°⁡|⁡𝑅𝑓𝑙𝑒𝑥𝑏𝑒𝑛𝑡), 

𝑚 =
90°−0°

𝑅𝑓𝑙𝑒𝑥𝑏𝑒𝑛𝑡−𝑅𝑓𝑙𝑒𝑥𝑓𝑙𝑎𝑡
, 

𝑏 = 90° − 𝑚 ∙ 𝑅𝑓𝑙𝑒𝑥 

From (34) Equation 5 

The two values were measured using a multimeter and the corresponding characteristic line yields the 

following results (Figure 12 - B).  
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Setup and code 

 

Figure 13 Voltage divider circuit with flex-sensor, breadboard and Arduino 

This circuit in Figure 13 was simulated via TINKERCAD and later created. A C-code was written that 

indicates which analog pin receives data from the circuit and executes the conversion from 𝑅𝑓𝑙𝑒𝑥 to an angle.  

Initial testing 
The sensor was hot-soldered (350 °C) to a set of jump-cables to allow for easier implementation of the 

sensor within the breadboard circuit. During initial testing, a problem arouse that requires attention in future 

application of these sensors. Bending the sensor caused one contact to break. Possibly, the contacts became 

fragile through the soldering process. Also, the strain that acted on the contacts might have caused the same. 

To counteract this, possible measures could be to use a cold-soldering technique, clamp the contacts or to 

support the contacts (with e.g. rubber etc.) such that they do not directly take strain. 

As opposed to continuation with the abovementioned sensor with a different construction, it was decided to 

take an off-the-shelf sensor that already considers the above with an elastomer casing. 
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Idea 1b - Bendlabs capacitive flex-sensor 

Working principle 
 

 
A 

 
 

 

B C 
Figure 14 Bendlabs 2-axis flex sensor (A), Cross section view of the two-capacitor sensor with compressive strain 𝜖𝐶, the other tensile strain 

𝜖𝑇 (B). Schematic describing path independence, that means that both paths yield the same output (C). A, B, C from (39) 
 

The bendlabs flex sensor (Figure 14 - A) utilizes a differential capacitance measurement. Comparing the 

flexion to a center line (Figure 14 – B), one capacitor experiences compressive strain 𝜖𝐶, the other tensile 

strain 𝜖𝑇. Since the sensor measures a differential capacitance, the sensor’s technology decreases the impact 

of common tensile strain, the bending radius or the path that it takes (Figure 14 - C) on angle measurement. 

The latter property is due to the fact that the capacitors are stiutated along the entire length of the sensor. 

When calculating capacital difference, extra bends cancel each other out. Therefore, angular displacement is 

a variable only relying on the two vectors defined at the ends of the sensor. Another advantage of this sensor 

is the contact area which allows for a lateral measuring position - as opposed to the resistive sensor that 

could not be used in another direction. 

Verification 
A simple mechanical structure with a revolute joint and two shanks was built to verify the angular 

measurement. As the sensor experienced tensile and compressive stress which in turn causes unwanted 

angular displacement throughout a period of repetitive movements, braces were 3D-printed that encapsulate 

the ends of the sensor. Additionally, this aligns the sensor with the structure. The structure was centrally 

placed inside an angle-indicating semi-circle and attached on a wooden board. 

  

Figure 15 Flex sensor test setup with green mechanical structure consisting of two shanks and a revolute joint on a semi-circle indicating angles 
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A camera was positioned above the structure alligning the centerpoint with the rotation axis. In 10° steps, 

pictures where taken and lines were drawn to measure the angle (Figure 15).  An online tool was used for 

measuring angles from pictures (40). All tested angles measured by the tool where coinciding with the semi-

circle angles with 1° accuracy.  

All following tests were performed using the Bend Labs Connect app on a Xiaomi Red Mi Note Pro 8 Plus.  

Exhaustive stationary test 

To see how much a long-held static angular position is deviating, two tests at -10° over 2 minutes with a 

sampling frequency of 100 Hz were conducted. Later, RMSE values were calculated with the static true 

value of –10° . Since the accuracy of the setup was 1°, the result was rounded to full degrees. Results were 

1° RMSE for both datasets.  

Repetition plateau test 

To test the output consistency for repetitive motions (as posed by the squat task), pins were introduced into 

the wooden board that limit the ROM of the structure and make sure that the same position is taken each 

repitition. One limit was always defined by the current interval (true value), the other was set arbitrarily. 

Close attention was paid to gently execute each movement such that the pins do not deform.  

 

Figure 16 Recorded data for repetition plateau test tracked in blue over samples taken and the plateau period marked in red (left)  

After recording, each hill was separated (Figure 16), the plateau periods were fused and RMSE-values were 

calculated on the basis of the true value. The accuracy was tested in 10° intervals (Table 4). 

Table 4 RMSE-results for repetition plateau test for full ROM in 10° intervals  

 

 

 

 

 

 

 

 

Discussion 
The first test shows that even in the entirely stationary case, the output can have an RMSE of 1° (Table 4). 

This deviation could stem from drift, the oscillation of the output or digitisation within the process.  

true value in ° RMSE  in ° true value  in ° RMSE in ° 

-10 1 80 4 
0 1 90 0 

10 3 100 1 
20 6 110 2 
30 6 120 2 
40 2 130 2 
50 3 140 2 

60 2 150 3 
70 1 
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The second test shows that the error following a repetitive movement is not the same throughout the whole 

range. The greatest RMSE was seen at 30° (6°), the smallest at 90 degrees (0°). That means that if the output 

angles are later used for decision-making, we need to consider the value of it and maybe readjust thresholds 

to account for the different uncertainties.  

Idea 2 - Inertial measuring unit 
In the following section, the inertial measuring unit (IMU) concept is described in detail, after that a 

description about the working principle and verification is done. 

Concept 
 

   
A B C 

Figure 17 Schematic indicating how angles can be measured from the two IMUs (A), initial setup with straps (B), Knee schematic indicating 

in red the anatomical landmarks (distal end of femur for thigh-IMU and head of fibula for shank-IMU) by which the IMU positions shall be 

determined (C) 

For this concept, one inertial measuring unit is positioned on the upper and lower leg respectively (Figure 17 

- A/B). They should be positioned with straps. Since they individually record data about their rotation 

referring to the global reference frame, their difference on the Y-axis (pitch) defines the knee angle.  

Both IMUs shall be positioned by their relation to anatomical landmarks. The lower-leg IMU (shank-IMU) 

shall be positioned 1 cm below the head of the fibula, which can be located by palpating the lateral side 

(Figure 17 - C). The upper-leg IMU (thigh-IMU) shall be positioned 1 cm above the distal end of the femur. 

These positions were chosen to be on the lateral side and close to the knee for several reasons. 

Lateral side 

They should be rotatable about the Y-axis to account for calibration angle (does not work for anterior and 

posterior side). None of the medial surfaces is big enough to provide space for the IMU. Here it is to say, 

that the medial plane poses a specific problem since the gastrocnemius (calf muscle) and tibia intersect 

abruptly which might make the sensor slide from the medial to the anterior-medial plane defined by the 

tibia. In this case, the calibration pitch angle cannot be guaranteed. Additionally, all other sides (including 

medial) express more muscle tissue. After movement execution, they vacillate causing inaccuracy.  

Close to the knee 

According to the formular of centrifugal force (Equation 6) which entails centrifugal force 𝐹, mass 𝑚, 

angular velocity 𝜔  and distance⁡𝑟, 

𝐹 = 𝑚𝜔2𝑟, From (38) Equation 6 

the further the IMUs are positioned from the point of rotation (knee), the more force will be exerted onto 

them. In a seated kicking task, the shank-IMU will be more effected by it, in a squat-task, the thigh-IMU 

will be. It might be that the force causes transient (immediately after movement) or permanent dislocation of 



18 | P a g e  

 

the sensors. For that reason, the IMUs shall be placed as close as possible to the knee on both lower and 

upper leg. This is also in line with (41). 

Working principle 

 

Figure 18 Coordinate system showing the global North-west-up global frame and the local IMU-frame relative to it. From (42) 

The inertial measuring unit (IMU) system used for this project is the MTw Awinda MW111415/3.0.6 from 

Xsens (Figure 18). The system entails a station (Awinda station) that communicates with individual sensor 

units (each an IMU) via radio frequency of 2500 MHz. Each IMU has an accelerometer measuring 3D 

inertial data, a magnetometer measuring 3D magnetic field strength, and a gyroscope measuring orientation. 

A sensor-fusion algorithm called “Xsens Kalman Filter for 3 degrees-of-freedom orientation for Human 

Motion” uses these inputs to compute accurate 3D orientation and can output these as different descriptors 

(e.g. roll, pitch, yaw). (42) 

While the accelerometer detects gravity and can thereby define the orientation on a plane orthogonal to it 

(roll and pitch), the magnetometer provides information about true north and can thereby determine the 

offset (yaw). This procedure to fully determine orientation of the IMU is only suitable for the stationary 

case. In any other case, the accelerometer will pick up non-gravity information and still interpret it as such. 

Therefore, the gyroscope is additionally used to provide a full description of orientation. It is to be 

emphasized that due to this working principle, the outputs of the IMUs are always referring to an earth-

related north-west-up frame. (42) 

Gimble lock problem 

 

Figure 19 Rotation of IMU around y-axis with real rotation and IMU value 

When tracking each individual output namely roll, pitch, and yaw angles, it was seen that the pitch angle has 

a range of -90° to 90°, whereas roll and yaw range from -180° and 180°. That means that all values which 
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are part of the ranges -90° to 0° and 0° to 90° are displayed twice within the full rotation around the y-axis 

(pitch) (Figure 19). Therefore, the representation of the angle is not unique. This is due to a singularity 

phenomenon called gimble lock. 

 

 
A B 

Figure 20 Coordinate system designed to replicate wholesome rotations in 3D space (A). Gimble lock condition by two coinciding axes (B). 

From (43) 

There are many ways to define rotations in three-dimensional space. One of them is via Euler-angles which 

is the most intuitive representation. In essence, the Euler-angles define a sequence of rotations (e.g. X, Y, Z) 

about each of the orthogonal axes. This sequence is hierarchical namely every change of the first axis 

changes the other two accordingly. Due to this definition, if the mid-sequence axis coincides with the outer-

axis, one degree of freedom is lost. That means that angular displacement of either of the axes expresses the 

same rotation. When abstracting the rotation sequences into rotation-matrices, the occurrence of DOF-loss 

can be described in another way. 

Defining a 3D coordinate system with the axes x, y and z, a rotation 𝑅 could be described by three 

consecutive rotation matrices (𝑅𝑥, 𝑅𝑦, 𝑅𝑧) with a designated rotation each, namely 𝑟 = 𝑟𝑜𝑙𝑙, 𝑝 = ⁡𝑝𝑖𝑡𝑐ℎ 

and⁡𝑦 = 𝑦𝑎𝑤.  

 

 𝑅 = 𝑅𝑥(𝑟𝑜𝑙𝑙)𝑅𝑦(𝑝𝑖𝑡𝑐ℎ)𝑅𝑧(𝑦𝑎𝑤)⁡ Equation 7 

 

Since every rotation matrix is defined as a singular rotation around one axis only, with 𝑐(𝑥) = cos(𝑥) and 

s(x) = sin⁡(𝑥), we yield  

 

 

𝑅 = (

1 0 0
0 𝑐(𝑟) −s⁡(𝑟)
0 s⁡(𝑟) c⁡(𝑟)

)⁡⁡(
c⁡(𝑝) 0 s⁡(𝑝)
0 1 0

−s⁡(𝑝) 0 𝑐(𝑝)
)⁡(

𝑐(𝑦) −𝑠(𝑦) 0
𝑠(𝑦) 𝑐(𝑦) 0
0 0 1

). 

 Equation 8 

 

 

 

If the mid-axis is now turned by 𝑝 =
𝜋

2
, we yield 

 

𝑅 = (

1 0 0
0 𝑐(𝑟) −s⁡(𝑟)
0 s⁡(𝑟) c⁡(𝑟)

)⁡⁡(
0 0 1
0 1 0
−1 0 0

)⁡(
𝑐(𝑦) −𝑠(𝑦) 0
𝑠(𝑦) 𝑐(𝑦) 0
0 0 1

). 

Equation 9 

 

 

 

Executing matrix multiplication and using trigonometric identities 
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s(a ± b) = s(a)c(b) ± c(a)s(b) Equation 10 𝑐(𝑎 ± 𝑏) = 𝑐(𝑎)𝑐(𝑏) ± 𝑠(𝑎)𝑐(𝑏) Equation 11 

 

yields  

𝑅 = (

0 0 1
𝑠(𝑟 + 𝑦) 𝑐(𝑟 + 𝑦) 0
−𝑐(𝑟 + 𝑦) 𝑠(𝑟 + 𝑦) 0

) . 

 Equation 12 

 

The outcome is the fusion of the angular displacement about the x-axis. (44) 

 

This condition is by definition a problem of Euler-angles, not of the system itself. A few solutions can be 

proposed to solve this issue: 

1. Another representation for rotations can be used such as quaternions. These do not give rise to this 

problem.  

2. Calibration can be used to position the singularity in a state that is not reached by the task. 

Since the output of the system shall be an angle, solution 1 would be just a conversion into another 

language. When transforming back into angles, the same problem would maintain. To avoid this, another 

project transferred the rotation matrix information into a biomechanical model. The readout of the 

biomechanical model was without singularity-problems. The problem with this approach however is, that 

they needed to always setup and calibrate all 17 IMUs (45). Therefore, solution 2 was chosen. 
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Sitting calibration 

 

 

 
A 

  
B C 

Figure 21 Graphical explanation for calibration as a solution for not reaching singularity for the seated kicking task and squats (A). Setup 

for calibration testing. While the two red circles indicate the IMUs, yellow indicates the calibration angle (B). Plot of knee angle over 

samples, where the red circle indicates the moment of calibration which was set to 30 values (C). 
 

While the knee-ROM in case 1 exceeds the range of uniquely displayable values, calibration at a close-to-

90° value in case 2 allows for the ROM to be entirely shown (Figure 21 - A). 

A test-setup was created to verify that a post-calibration value of 0° is present (Figure 21 - B). Thereby, 

defining the position at calibration angle as the new 0°. To acquire, calculate and display calibrated knee-

angle, a Matlab-function was developed based on the function “mainMTwRTdataViewer” available from 

Xsens’ website (46). The mean of the first 30 knee angle values was used as the calibration value that was 

deducted from all following output values (Figure 21 - C). 

This calibration procedure demands the patient to perform a full-extension (0°) in a seated-position for a 

prolonged time to be sure that the only angle measured is the actual calibration offset-angle. However, 

patients are not expected to be able to reach this angle (0°) and if so, not for long. Therefore, another 

calibration procedure was tested. 
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Standing calibration 

  

 
B 

 
A A.2 C 

 
Figure 22 Schematic view of IMUs in standing position with uniquely displayable angular displacement interval in grey (A), calibration 

testing device in standing position (A.2), in seated position (B), in maximal flexion (C). Plot of sensor 1, sensor 2 and knee angle calculation 

data over time (bottom) with point of full extension in seated position (D) and locked-angle rotation from seated to standing position (E).  
In the standing calibration, the patient is asked to fully extend his/her leg to receive a 0° measurement 

(Figure 22 A and A.2). Figure 22 - bottom shows that standing (A), 90° flexion (B) and full flexion (C) are 
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reflected in the measurement. Moreover, the transition from sitting 0° (D) to standing 0° (E) cancels out in 

the knee angle which was also desired.  

Verification 
The tests performed are regarding sampling frequency, stationary position, accuracy for 1 Hz change and 

pitch swing. 

Sampling frequency 

A setup was created to check the accuracy. It entailed a camera and a goniometer with an accuracy of 1° for 

ground-truth measurements. The IMUs where attached via Velcro. Both IMUs and camera (smartphone 

Xiaomi RedMi Note Pro 8) recorded with a sampling frequency of 50 Hz. In the first test, three cycles from 

0 to 90° were tracked. After recording, every picture of the camera output was analyzed and whenever the 

indicator needle of the setup was on a full degree, the frame number and degree were noted.  

 

Figure 23 Video and IMU data for three movements from 0° to 90° plotted against samples 

When tracking the results over samples (Figure 23), the data of video and IMU were not temporally 

coinciding. That might be due to package loss and communication issues on the IMUs. Although NAN-

values were not present within this dataset and the Xsens claims to indicate data loss with such, jumps 

within the signal might suggest an inconsistent sampling frequency (e.g. in Figure 23, sample 780). Another 

possible source of error is the manual angle selection process for the camera which might have also caused 

inconsistencies.  

Timestamps were used instead of sample-numbers trying to solve this issue.  
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Figure 24 Between-sample intervals versus samples of IMU data 

The timestamps entailed deviating inter-sample durations (Figure 24). When plotting the between-sample 

interval duration over samples, the highest durations are multiples of 1000 packages – this corresponds to 

the sample at which a structure in MATLAB is read to plot the graphs. For that reason, RMSE-comparison 

of live-data in this setup is not feasible since the camera used was not synchronized with the IMU 

acquisition. Therefore, it was decided to only rely on verification techniques which are not dependent on 

timestamp-data. All following tests were made with a sampling frequency of 60 Hz. 

Stationary test 

 

Figure 25 Position of IMUs for the stationary test 

The sensors were kept in a steady position for more than 60 seconds (Figure 25). This duration was chosen 

since this equates the time necessary for one full cycle of task execution. The readings should be consistent 

throughout and in-between the recordings (Figure 26).  
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Figure 26 All five test runs for stationary test  

To quantify the deviation from the actual value, RMSE can be used. In this case, the estimator is the true 

value of 0° since calibration was used (Table 5).  

Table 5 Results for 5 tests to check the stability of the calibrated outcome in a stationary setting. Results are rounded to 1° accuracy. 

test #values RMSE in ° 
1 7000 0 

2 6844 0 

3 6897 0 

4 4946 0 
5 6539 0 

 

Pitch swing 

While the sensors were attached via Velcro to a rigid structure with a between-IMU angle of approximately 

0°, the entire structure was moved +-45°. Regardless of the absolute difference to 0°, the measured knee 

angle should maintain the same value (Figure 27).  
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Figure 27 Pitch swing test plotted data indicating that if both IMUs are swung in the same way, when calculating the knee angle their individual 

movement cancels out (KA = knee angle) 

Again, the root mean square error was used to quantify deviation. The estimator used was the mean of the 

initial post-calibration pre-movement period. The outcome was an RMSE of 1°. 

Metronome 

 

Figure 28 Setup for metronome test entailing two IMUS (orange) and a goniometer with 0° to 180° range 

One IMU was placed level on the table, while the other was attached to a goniometer (1° resolution) in 

calibration-position (Figure 28). With 1 Hz, the attached IMU was moved within the full ROM. 

Simultaneously, a video was recorded for ground truth measurement. Every second, a static value was 

executed and noted. A simple Matlab-code was written for analysis, finding the values indicated by the 

video-reading and calculating the deviation from the IMU value (Figure 28).  

Table 6 IMU metronome test results with 95 angles total 

test 1 2 3 4 5 total 

angles 21 20 16 22 16 95 

RMSE in °  1 2 2 1 2 1 

After five tests, treating all measurements as one, the total RMSE compared to the video ground truth is 1° 

(Table 6).  

Discussion 
In order to assess whether the sensor system in combination with the calibration cascade qualifies for this 

project, three tests were conducted namely a stationary accuracy test, a swing test, and a full-ROM test. The 

highest RMSE from the stationary test was 0° (rounded) over 60 seconds of recording time. This implies 
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that there are almost no drift or noise are present. The pitch swing test had a RMSE of 1° which suggests 

that the system is capable of detecting knee angles regardless of the orientation of the whole leg. The 

metronome-test covered the whole range of motion (-10 to 150°) and had an overall RMSE of 1 °. This 

implies that the system is capable of producing angle outputs within the requirement of this project 

(RMSE<10°) even in task execution conditions. A limitation of this setup is the reading error due to parallax 

error.  

Idea 3 - Camera 

Concept 

 

Figure 29 Hip-knee and knee-ankle vector span the knee-angle 𝛼  

A camera (nor-tech Model 39278 with a resolution of 640x480 px and a framerate of 30 fps) in combination 

with a convolutional neural network algorithm was tested to detect knee angle (Figure 29). A python code 

(v3.9.4) was developed that utilizes the MediaPipe Pose (v0.7) and OpenCV (v4.5.5) library for single-

person pose estimation. 

Working principle 

 

Figure 30 BlazePose body model as utilized by mediapipe. From (47) 

The mediapipe pose library uses the BlazePose body-topography entailing 33 body location landmark 

(Figure 30). The first part of the algorithm revolves around finding a region of interest (ROI), i.e. the part of 

the picture that entails a person. The algorithm bases the presence of a human body on the assumption, that 

in all use-cases a face is visible. Since it is a body part with high-contrast features, it is a strong signal within 

the neural network and hence a good indicator to determine the ROI (47). The second part of the algorithm 

accounts for a problem in recent models which suffered from loss of accuracy in cases of occlusion or rare 

body positions (48). The used algorithm intelligently employs heatmaps and regression to find the best 

keypoint locations. This is done via a convolutional neural network estimating each keypoint’s location with 

a certainty output (heatmap). Then, lower certain outputs are counteracted by using the other, more certain 

keypoints as predictors (regression). Differently put, low confidence of the heatmap output is compensated 

by a priori contextual information (human anatomy) (49). Each landmark has four outputs namely three 

positional (x, y, z) and one for visibility (occlusion yields a low score).  
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Joint metadata was extracted via the x and y output, and the knee-angle (/alpha) was calculated by the two 

vectors hip-knee (𝑣ℎ𝑘) and knee-ankle (𝑣𝑘𝑎) using this Equation 13. 

 𝛼 = arccos (
𝑣ℎ𝑘 ∙ 𝑣𝑘𝑎

|𝑣ℎ𝑘| ∙ |𝑣𝑘𝑎|
)⁡ 

 

Equation 13 

Since this approach demands both the pose detection (detection of human) and tracking (tracking of hip, 

knee and ankle) to achieve a knee angle output, it was optimized to always show an output of the features 

described. This was achieved by setting the parameters MIN_TRACKING_CONFIDENCE and 

MIN_DETECTION_CONFIDENCE to 0.5. 

Verification 
Three tasks were performed, namely 

- Kicking: seated extension-flexion movement with a frequency of 0.5 Hz 

- Seated: stationary position seated (close to 90°) 

- Standing: stationary position standing (close to 0°) 

to test on parameters such as the offset from a side-view, outfit and light-conditions.  

Setup, task and parameter descriptions 

    
A B C D 

Figure 31 Setup for camera verification task in top-view (A): Blue dashed lines indicate offset angle. Side-view (B): Participant sits on chair 

on top of movable box shelf (grey box). Markings indicating where to place feet and chair on moveable box shelf (C). Blue, directive lines 

used to ensure allignment (D). 
 

The participant was placed 3 m away from the camera (Figure 31 - A). For the kicking and seated task, the 

following setup was used. The participant sat on the chair which was on top of the moveable box shelf 

(Figure 31 - B). He sat with a straight back, about to touch the backrest (Figure 31 – B/D). One of the edges 

of the box was aligned with markings on the ground for the offset-angle test (Figure 31 - A). Feet and chair 

were placed according to markings on the box (Figure 31 - C). For the standing task, the markings of the 

previous tasks were used to indicate foot position. The camera’s position was levelled by placing lines on 

the output live feed and aligning these with the surroundings (Figure 31 - D). 

  
A B 

Figure 32 Participant with detected landmarks seated on chair with flexion (A) and extension (B)  
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In the kicking exercise, every second a metronome indicated change from up to down position or vice versa. 

Up-position was defined by fully extending the leg (Figure 32 - B), trying to maintain stationary until the 

metronome indicated the start of the consecutive movement. Down-position was defined by heel-touch with 

the box (Figure 32 - A). Defining full-extension as 0° and flexion as 90°, the peak-value should be close to 

90°, whereas the valley value should be close to 0°. The kicking movement was performed 15 times. In the 

seated task, the feet were positioned roughly at 90° according to a mark on the box (Figure 31 - C). The 

seated subject was placed on a moveable box shelf such that it was easier to maintain the same rotations 

when changing the offset angle. Markings on the floor indicated how far the furniture needed to be rotated. 

In the standing task, the knee was locked in full-extension (0°).  

Since the mathematical formula that is the basis of the knee angle calculation assumes a side-view, it was 

checked how the error increases when this assumption is violated. The kicking task was executed 15 times 

per offset angle (OA), standing and seated task were executed for one minute. In the kicking task, the 

maximum OA was tried to find beyond which no meaningful knee angles (RMSE<10°) were collected. A 

python code was written to extract peaks (flexion) and valleys (extension) of the signal per OA. Then, 

RMSE was calculated with estimators 90° and 0° for flexion and extension respectively. Another test was to 

wear different outfits to check if the algorithm works similarly good on all. Since the algorithm entirely 

relies on RGB-pictures, it is hypothesized that it works better in good lighting. Therefore, day, well-lit night 

and low-lit night conditions are compared for a one-minute recording each. 

Parameter 1 – Offset-angle 

Kicking  

Table 7 Root mean square error (RMSE) and number of detected valleys (0°), peaks (90°) per OA for kicking task.  

offset angle RMSE peaks num of peaks RMSE valleys num of valleys 

90 6 15 2 14 
80 8 15 2 14 
70 13 16 10 14 
60 13 15 11 14 
45 26 16 11 15 
30 38 16 13 14 
10 27 1 5 12 
0 66 15 2 14 

 

The results in Equation 7 show that flexion error (RMSE peaks) increases for higher OAs, while extension 

error (RMSE valleys) increases until 30° OA and drops afterwards again.  

The other tasks were performed from 70° to 90° offset angle since the ideal position is unlikely to be 

violated this much since human perception can distinguish non-right angular arrangements well enough (50). 

Seated and standing 

Table 8 RMSE results for seated and standing OA test.  

OA in 
° 

sitting RMSE in ° standing RMSE in ° 

90 1 1 

80 2 1 

70 5 1 
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In the seated position, increasing offset angle increases the error (1 ° to 5°) (Table 8). In the standing 

position, increasing offset angle did not have a consistent effect on the error.  

Parameter 2 – outfit 

  

 
bright 
socks  

dark 
socks 

bright 
pants 

dark 
pants 

Avg in 
° 

1 3 88 92 

Std in 
° 

0 0 2 7 

 

A B C 
Figure 33 False detections for ankle in black-pants (A) and toes in black socks (B), results for average and standard deviation for dark-bright 

pants and socks (C) 

Judging from the higher standard deviation over the plateau period while seated (Figure 33 - A), wearing 

dark pants decreased the accuracy (bright 2° and black 7°). 

 

Figure 34 Knee angle plot for camera sensor derived from RGB-video of seated participant wearing dark pants and bright pants 
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Figure 35 Knee angle plot for camera sensor derived from RGB-video of standing participant wearing dark socks and bright socks 

When plotting the data of this test over time, a higher noise is prominent (Figure 34). A similar effect can be 

seen with a sock-background color match (Figure 33 - B). In this case, no noise was added but the average 

value was higher (Figure 33 - C) (bright socks 1°, dark socks 3°). When plotting the data (Figure 35), and 

watching the verification video a stable (low standard deviation) offset can be observed (Figure 33 - B). 

Parameter 3 – Light conditions 
Table 9 Average and standard deviation for plateau-period in day, well-lit night and low-lit night for seated and standing task 

 
seated 

  

standing 
  

 

day night-high night-
low 

day night-high night-low 

avg in ° 89 87 88 1 2 3 

std in ° 1 0 1 0 1 1 
 

  
A B 

Figure 36 Boxplots of plateau-period values of seated (A) and standing (B) tasks during different light-conditions  

While the boxplots show a wider spread of the datasets for the lower-light conditions (Figure 36 – A/B), the 

standard deviations and average measures quantify it (Table 9). In the seated task, standard deviation for day 

and night-low condition are equal, however the boxplot shows more outliers beyond the 25% and 75% 

percentile for both night-conditions (Figure 36 – A). In the seated task, both night conditions have a higher 

standard deviation (1° versus 0°).   



32 | P a g e  

 

Discussion 
In the beforementioned paragraphs, three tests namely offset angle, outfits and light conditions, were 

executed to evaluate the feasibility of the mediapipe algorithm in combination with a simple vector-based 

formula to detect knee angle.  

In the OA-kicking test, it was seen that the smallest error for flexion was 6° at the predicted side-view (OA 

90°). The smallest error for extension was 2° at 80° OA. In the seated and standing OA-test, the smallest 

errors were 1° at 90° OA and 1° at 80° OA. This result confirms the hypothesis, that the suggested approach 

works best for a side-view (80° or 90°). Still, two flaws within the setup must be addressed to show its 

limitations. Firstly, the execution of the movement yields the disadvantage of not being able to replicate a 

perfect absolute value of 0° and 90°. Especially RMSE values for flexion (0°) in the kicking task might have 

been rather due to the variations in execution than due to the OA. Secondly, when facing the camera, a bent 

knee (Figure 37) would be correctly calculated as 0° (straight leg). This is not a flaw of the sensor, but a 

flaw of the mathematical foundation that derives the knee angle. 

 

Figure 37 Front-view and detection of body landmarks in seated-bent position 

Due to this fact, the ideal setup requires the patient to be placed with an OA of 80 to 90° in front of the 

camera. As a study tested with various angle reproduction tasks, the error of humans reproducing right 

angles of two connected lines was 0.4°+-2.6 (50). If this implies the same for our application, we could 

expect both patients and physiotherapists to reach a setup with this error. Therefore, it is thought to be very 

unlikely that the OA would cause the accuracy requirement (<10°) to be violated.  

The second test assessed the impact of different outfits. As suggested by the results, the noise increased for 

wearing black pants in a low-light condition. Similarly, the average over the plateau period increased for 

background-color matching socks. Both results can most likely be explained by a similar mechanism. As 

described in methods, the algorithm was optimized to always show results. For that reason, even if the 

confidence due to occlusion or misinterpretation is low, the hip, knee and ankle landmarks are deducted by 

the most confident surrounding landmarks (regression). As for the pants, it might be that the shadow creates 

a difficulty since it is misinterpreted as the leg. Another possibility could be the occlusion of the ankle by the 

pants (cuff on bottom). As for the socks, it might be that the toe landmark is fused with the background. 

Since the surrounding landmarks might also have a low confidence level, the toe-landmark’s position can 

probably not be regressed accurately. 

The third test evaluated the impact of light-conditions. With a higher standard deviation at low-night 

condition as opposed to day-lighting in both standing and seated task, the results support the hypothesis of 

noise introduction due to light-conditions.  

Since even isolated parameters create noise (light conditions) or unpredictable deviations (outfit), combining 

any of the parameters is hypothesized to decrease the accuracy even more. Other parameters that could 

introduce additional noise or instability were not tested.  
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- Another person (e.g. physiotherapist) steps into the frame e.g. as he/she adjusts the movement of the 

patient while execution and  

o is detected as the patient. 

o is fused with the patient. 

Since the algorithm was designed for single-person use-cases (47), this is hypothesized to be very 

likely.  

- Occlusions are not removable between camera and patient (e.g. table, chair, plants). Although the 

mediapipe algorithm was optimized for accurate and quick results even on partially occluded bodies, 

it was not tested how much of a body needs to be visible for the well-functioning of the technology. 

It could be that the algorithm performs better when the confidence-levels for detection and tracking 

described in the methods section are set differently. Although this comes at the cost of getting a less 

continuous output, these results might then be more accurate. 

Results summary and concept selection 
To decide for a sensor based on the tests and considerations given in the above report, the following table 

provides the crucial criteria which coincide with the requirements set in the introduction phase (Table 10).  

Table 10 Crucial requirements and wishes for concept decision involving camera, IMUs and flex-sensor. The stationary spatial resolution for 

the camera was equal for standing and seated task. For the repetitive spatial resolution of the camera concept, the value above indicates the 

peak RMSE. Not tested requirements were indicated with “Nt”. 

Requirements Camera IMUs Flex-sensor 

Temporal resolution 33 ms 6.7 ms 10 ms 

Mass of sensor < 500g 0 g 52 g 20 g 

Spatial resolution: Stationary, RMSE < 10° 1°  0° 1° 

Spatial resolution: Repetitive movement, RMSE < 10° 6°  1° 6° 

Save sensor output Yes Yes Yes 

Wishes 
   

Able to distinguish a squat from a CM-squat. Nt Nt Nt 

Workspace of knee motion: minimally 1x1x2.6m Nt Nt Nt 

No demand for extensive preparation (>3 min setup-time) or 

reclothing 

No No Nt 

relativity of system output Yes Yes No 

additional parameters possible (same position) Yes Yes No 

Quantification of CM  Nt Nt Nt 

 

Concluding from the table above, all requirements were met by each sensor individually and therefore all 

can be deemed suitable. Wishes regarding workspace and preparation were not specifically tested. However, 

passing of the workspace requirement is highly probable since the spaces used in all tests are assumed to be 

at least of 1x1x2.6m. The preparation requirement is likely to be passed in terms of timing. However, for 

one of the participants, sliding of the thigh-IMU occurred after 20-25 squats. Reclothing solved this problem 

and thereby might be considered extensive preparation. Quantification of CM was no tested. 
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Although the heaviest, the IMU-system satisfies the requirement of being less than 500g. As it scores best in 

temporal resolution, stationary and repetitive movement spatial resolution and satisfies two wishes, it was 

decided to continue with this concept.  

Final design 
The final design consists of hardware and software. The software part will focus on the requirement to 

differentiate squat and CM-squat movements. While every preconcept and the hardware part still focuses on 

objective 1 (knee angle acquisition), the software part focuses on objective 2 (detecting CM). 

Final Design – Hardware 

 
A 

 

 

 

B 

  

 

 

C 

 
D 

Figure 38 Schematic of casing for shank IMU with indications 1 as calibration angle, 2 as strap attachment holes and 3 as 

clipping mechanism (A), Close-up of area that allows for clipping mechanism (B), Printed casing with straps attached and 

upwards-indication (S) on left (C), Calibration angles for thigh (tIMU) and shank IMU (sIMU) (C) 

The casing for each individual IMU accommodates three major features namely pre-calibration, attachment, 

and clipping mechanism (Figure 38).  

To avoid the singularity, a calibration angle was set. Therefore, referring to the upwards-axis in a seated full-

extension state and considering counter-clockwise rotation as positive, the sensor-cases were angled to –10° 

for the shank and –80° for the thigh. These angles were chosen to allow for recording of both squat and 

seated kicking task without falling into singularity. When thinking about it graphically (Figure 38 – A – 1, 

D), the arrow should never point up- or down (singularity) in neither of the ranges of motion the tasks 

require. To exemplify, the thigh-IMU shall be as far as possible from singularity in both extreme points. For 

squatting that would be standing and squatting, for the seated kicking task that is sitting with maximal 

flexion and extension. Since the pitch-axis has a uniquely displayable range of motion of 180° (-90° to 90°) 

and the requirement asks for a 160° range (-10° to 150°), I placed it in the middle.  

The attachment needed to be firm, but adjustable to accommodate several patient's legs. Therefore, it was 

decided to use a flexible band that has Velcro-parts on the ends. These were lead through the casing’s 

designated strap attachment holes (Figure 36 – A - 2). In order to make sure that the orientation of the 

system on the leg is correct, a label and an arrow indicated the correct side and direction (Figure 36 – C).  

Since the sensors entailed a clip on one of the ends, the casing entails a complementary clip-holder. The 

ramped surface on the right (Figure 36 – A – 3, B) allows for the patient to push onto the sensor without 
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preloading the clip and thereby achieving a clip-in. A sharp edge on the bottom was consciously put to 

achieve a clicking sound once the sensor is properly attached. Taking the sensor out can be done by loading 

the spring and moving it up.  

Final Design - Software 

 

Figure 39 Flowchart describing all parts of the pipeline from original datasets to classification and evaluation. The data is passed from left to 

right. The first row determines steps, while the lower ones describe sub-steps within the top row’s items. The datasets were named using letters 

for participants. 

Since objective 2 identifies as detecting compensatory movements, the above pipeline was constructed to 

achieve that. In the following paragraphs, this classification pipeline is described for each individual step 

(Figure 39).  

Data acquisition 
For two participants, two datasets each were recorded on two IMUs namely shank-IMU and thigh-IMU at 

150 Hz. Each dataset consisted of 12-15 squat executions for ten different movement patterns (Table 11). 

Table 11 Description of acquired datasets of classes in full name, short name and sentence. Within this report all texts and figures will entail the 

short name. Close attention needs to be paid to the labeling of “instability” since in physio-therapeutical terminology this means to be out of 

balance, where within this report it was used to indicate shaking of the legs. 

class full name class name 
short 

description 

full squat fulls Feet hip-width apart, weight on heels, flexion > 90° 

half squat halfs Feet hip-width apart, weight on heels, flexion = 90° 

x-legged squat xlegs Inwards rotation of legs 

o-legged squat olegs Outwards rotation of legs 

standing squat standings Sensor-leg raise while standing, flexion > 90° 

shaking squat instability Shaking legs while squatting 

asymmetric squat right asymright Asymmetrically bear weight more on right side 

asymmetric squat left asymleft Asymmetrically bear weight more on left side 

knee beyond toes squat kneepasttoes Heels on the floor, perpendicular of knee reaches beyond 
toes 

Signal selection 
A series of recordings was done both on video and via the IMUs to see which signals might be the most 

crucial. These recordings were made with a preliminary Velcro-strap setup. 
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A B 

Figure 40 Participant execution of standard squat (A), heels-lift squat (B) 

The video was used to get an intuitive understanding which signal might play the most detrimental role in 

detecting CM. As indicated in Figure 40, for the heelslift-CM, a possibly highly indicative signal was shank 

pitch as well as thigh pitch.  

Continuing the same approach for all movements, 7 signals (roll, pitch, yaw from both IMUs and 

acceleration in z orientation from shank IMU) were chosen to extract features from. During these 

recordings, it became clear that it's hard to maintain a certain calibration angle with this setup. For that 

reason, a mechanical structure was developed to keep a calibration angle (for more information, see Final 

Design – Hardware). 

Preprocessing 
Interpolate NANs 

NAN-values were identified and linearly interpolated.  

Select peak to peak periods 

 

Figure 41 Degrees versus samples of participant A's second kneepasttoes recording after peak/valley detection and correction. 

Each event (one squat) was isolated by utilizing the peakfinder function from the scipy library (Figure 41). 

The window was defined by the following properties: 

- All other signals were windowed according to the indices based on thigh-pitch. This is since the 

thigh pitch signal was identified as an intuitive signal in terms of determining when a squat-

movement is executed. 
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- Standing can be defined as peak, squatting as valley. This is due to the calibration angle of the thigh-

IMU. 

- One squat was defined as a peak-valley-peak sequence. 

- Standing threshold was the mean of the overall signal. 

- Squatting threshold was set as 85% of the mean of the overall signal. However, if less than twelve 

valleys were detected (a priori knowledge: per recording at least 12 squats), this threshold was 

moved upwards consecutively until at least 12 valleys were identified.  

- A time-difference threshold determined the minimum sample number in between two consecutive 

peaks.  This number was chosen due to this assumption: 150 samples / second * 1 seconds / squat= 

150 samples/squat. Accounting for quick participants, 100 samples were used. 

- Since peaks might also resemble walking around or taking breaks, valleys were likelier to stem from 

squat-only behavior. Therefore, they were chosen to be the indicator of a squat. 

Within these properties, a trade-off relationship between the number of peaks/valleys detected and the 

correctness of the latter was present. I.e., if every peak/valley was found, also some additional wrong ones 

were identified. Therefore, the window cutter thresholds were optimized to find the maximum number of 

peaks/valleys with the minimum number of false ones. 

Delete faulty squat-periods 

If a valley was not surrounded by exactly one peak before and one after, this would be representative of 

either a resting period, initial/terminal period or falsely negative peak. Therefore, these squat periods were 

deleted. 

Feature extraction 
Features were extracted from each of the windows. Features calculated were average, standard deviation, 

maximum, minimum, height (max – min), sum, quantiles at 25, 50 and 75%, variance, most prominent 

frequency in tremor spectrum and its power, slope in the first 25 and 75 samples. This was done for each 

individual signal (number of signals = 7), as well as the differences for all complementary signals (e.g. 

diff_roll = shank-roll - thigh-roll) (number of signals = 3). Therefore, we end up with 140 features.  

Data exploration 

 

Figure 42 Barplot of all squats ordered by participants (A,B) and classes. This was done to see if there is a class-imbalance.  
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Figure 43 Boxplot showing duration feature across dataset 1 of participant A 

 

Figure 44 Pairplot of features min thigh_pitch and height thigh_pitch to check for feature correlation 

To inspect, data exploration was done via three plots. A bar-plot was used to check for class-imbalance 

(Figure 42). A box-plot was used to intuitively see if there are differences between the classes for each 

feature (Figure 43). Lastly, a pairplot was used to see if the features correlate (Figure 44).  

Feature scaling 
Each feature needs to be scaled to a unified range such that no numerically higher feature dominates the 

other. For that reason, it was decided to choose the MinMaxScaler from sklearn to rescale the data from 0 to 

1 as recommended by (51). 

Feature Selection 
In order to select the best features, the function selectkbest from the sklearn library was used. The best 

features were extracted with the chi-square test. This test gives an indication of how dependent target and 

feature variable are (52).  
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 𝜒𝑐
2 =

Σ(Oi−𝐸𝑖)
2

𝐸𝑖
⁡From (34) 

 

Equation 14 

 

The chi-square-test entails observed (O) and expected values (E) (Equation 14) and is used in statistics to 

assess the independence of two events. In feature selection, these two events are feature and class. 

Therefore, individual scores per feature can be calculated. If the score is high, the null-hypothesis of the chi-

square-test can be rejected, i.e. class and feature are dependent and we should include the feature within our 

model training. While this measure excludes features that are not indicative for the class, it does not exclude 

highly correlated features. 

Highly correlated features might cause individual decisions to yield the same classification. In e.g. the 

random forest classifier (explained next chapter), two decision trees with correlated features will be 

aggregated to have a higher voting power although the features could have been summarized as one. This 

causes overfitting since the model would perform well on the training dataset but fails to generalize (53). 

Therefore, the pair plot was used to intuitively analyze if correlating features are present. These pairs were 

identified via the correlation function corr() and a threshold of 0.8. Then, each feature's corresponding score 

of the chi-square test (select k best) was crucial for keeping either. All following measures were taken in 

regard to this new dataset, namely one that has run through select k best and the feature correlation pipeline. 

Classification 
This chapter describes the pathway from a matrix entailing features to a classification decision.  

Three models were selected as for the requirement of being capable to perform multi-class, supervised 

classification: k-nearest neighbor (KNN), random forest classification (RFC), and support vector machine 

classifier (SVC). These were chosen since they were successfully used in other human activity 

distinguishing tasks for multi-class problems (54)(55)(56). A brief description of each of the classifiers 

follows.  

K-nearest neighbor 

 

Figure 45 Intuitive graphical explanation of mechanism of K nearest neighbor. The dashed circle produces another classification (blue) than the 

solid line (red). From (57) 

When plotting each training datapoint in an n-feature space (example for two features) (Figure 45), the 

KNN-algorithm finds the closest neighbors and decides the label of an unknown point based on the majority 

class of neighbors. A hyperparameter for this algorithm is the number of neighbors considered.  
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Random Forest 

 

Figure 46 Intuitive graphical display of mechanism of RFC, showing individual decision trees and their aggregated decisions. From (58) 

The RFC algorithm is based on the decision tree. A decision tree takes all data and forms bifurcations based 

on features (e.g. > 1 or “entails digit 2”). Although highly intuitive, decision trees are prone to overfit since 

they take one line of decisions to classify an event. Therefore, RFC was developed as a collection of 

decision trees that each take an individual classification decision based on both a random subset of the 

training data (bootstrapping) and random features (Figure 46). Then, class decisions are aggregated to come 

up with a more robust, final decision.  

Tuned hyperparameters for this algorithm are the number of trees (estimators) and the maximum number of 

features used per tree. These were chosen since the other parameters did not cause a change in accuracy. 

Support Vector Machine 

 

Figure 47 Intuitive graphical display of mechanism of SVC. Separator hyperplanes (lines) are used to determine class affiliation. While the 

yellow line leads to a more robust differentiation, the green line might cause overfitting. From (59) 
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Although the SVC algorithm works on the same n-feature dimension base as KNN, it forms a class decision 

by drawing a line or another geometrical shape (kernel) to separate the classes (Figure 47). It does so by 

adding another dimension with the designated kernel. The ideal hyperplane is thereby defined by the one 

with maximized margin. That means, it tries to increase the distance between the drawn hyperplane and any 

point. Hyperparameters for this algorithm are C and gamma. C determines how strictly the separation is 

executed. If C is high, most samples from one class will be separated from the other. This reduces 

generalizability but ensures most datapoints in the training set to be detected correctly. Gamma determines 

the reach of the support vectors, namely if datapoints further away from the decision boundary are 

considered.  

Classification options 

This paragraph describes how the datasets can be used for two use-cases (Figure 48).  

 

Figure 48 Options of using the datasets. Option 1 is patient-dependent and option 2 is patient-independent. Letters A and B indicate 

participants, while the numbers 01 and 02 indicate the datasets. 

The first option describes the use-case in which the physiotherapist creates a training set per person and 

creates a model, after which the patient can use this model at home. The second option assesses whether the 

approach can be used to collect data on one patient and generalize it onto another. Potentially, this could be 

used in a shared-data network entailing patient information from several practices to allow for different 

specifications e.g. different tasks or impairments. 
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Hyperparameter tuning 

 

Figure 49 Hyperparameter tuning pipeline entailing three machine learning algorithms namely KNN, RFC and SVC, subsequent 

hyperparameter searches (grid search and random search), and final evaluation. Consider that this is an explanatory pipeline for option 2. 

Option 1 was executed the same way but with patient-dependent datasets 01 and 02 from both participants. 

Each machine learning algorithm has certain parameters that can be tweaked to optimize it for a specific 

problem (hyperparameters) (Figure 49). Each dataset (Option 1 - A, Option 1 - B, Option 2) was split into 

test and training set to allow for later verification as described before. 

Each dataset and algorithm ran through an individualized search for hyperparameters by the randomsearch 

(RFC) and gridsearch (all) functions from sklearn. They find the best set of hyperparameters by testing 

through input grids and cross-validate (three per set of parameters) with subsets of the training data to 

decrease the risk of overfitting. Both searches are systematically changing the hyperparameters in a different 

way. Randomsearch receives a grid of possible hyperparameters and randomly choses some, whereas 

gridsearch runs through all possible combinations. By cross-validating each combination of 

hyperparameters, they make sure to not lose generalizability.  

The chosen grids for random-search can be seen in the table below and were based on recommendations 

from current research, internet references as well as reasonability (Table 12). 

Table 12 Grids for random grid-search / random-search for Random Forest Classifier (RFC), Support Vector Machine (SVC) and K-Nearest 

Neighbor (KNN) 

RFC  start  end  SVC start end KNN start end 

estimators  5  1000  kernel linear','poly','rbf','sigmoid' n_neighbors 2 10 

max 

features  

1  X_train.shape[1] C 2^(-3) 2^6 

   gamma 2^-13 2^3 

For RFC, to find a trade-off between timing and optimization, two parameters were optimized (n_estimators 

and max_features), while other parameters stayed in default-state (60). SVC ranges were chosen due to 

(61)(51). K-nearest neighbors were chosen to be robust (>1), and an end-range was chosen that is 

substantially less than the amount of datapoints per class in the training set (<15). For RFC a following grid-

search on the 10 values surrounding each best parameter was conducted. 
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Hyperparameter tuning was performed on the training subset of each individual dataset namely option 1 - 

dataset A, option 1 - dataset B and option 2. The scoring parameter chosen was accuracy-score and Matthew 

correlation coefficient due to the following reasoning. 

A false positive could mean that a squat is detected, but it is a compensatory movement. Therefore, the 

player would be encouraged to continue the latter, thereby opposing the initial project's idea. Therefore, this 

is important to reduce (optimize for recall). A false negative could mean that a squat is detected as a non-

squat. That would mean that the game gives the player the indication, that his movement is wrong though it 

is correct. This motivates the player to continue a wrong movement or discourages him to continue the game 

since the perfect execution the physician taught is not detected as such. It is therefore important to reduce 

(optimize for precision). Thus, both measures are useful to optimize for to find a trade-off between an 

increase in game motivation and reduction in execution error. For balanced datasets, a metric that accounts 

for both is accuracy. Additionally, in case the slight class-imbalance is giving overly optimistic accuracy-

scores, Matthew correlation coefficient was used since it was found to be more robust as a performance 

metric in cases of class imbalance (62). For comparability with other studies, more commonly used metrics 

such as F1-score, precision, and recall were reported.  

Two different classifications were done with the datasets provided. One on all labels (10) and one on two 

labels (squat, non-squat). For the latter case, the dataset was turned into a two-label problem by 

differentiating squat (fulls, halfs) and non-squat (all other labels).  

  
1 2 

Figure 50  Barplots of class-distributions. Initial class imbalance after relabeling (1), adjusted class-balance after 

downsampling (2) 

After relabeling, a moderate class-imbalance was present (Figure 50 - 1)(63). The majority-class (non-squat) 

took up 79% (dataset A) and 80% (dataset B). Therefore, four random samples out of the eight non-squat 

classes each were drawn (32), trying to equalize the number of squats (30) (Figure 50 - 2). 

For these two options we could state two hypotheses. 

1. We hypothesize to be able to distinguish 10 different squat movements (including CM and normal 

squatting) via machine learning with an accuracy of more than 70%. 

2. We hypothesize to be able to distinguish normal squatting from squatting with CM via machine 

learning with an accuracy of more than 70%. 
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Results 
Table 13 Results for 10- and 2-label classification problem shown as accuracy, f1-score, Matthew correlation coefficient, precision and recall 

for each dataset namely option 1 A, option 1 B, option 2. If the best score was achieved by a hyperparameter-tuned model, it is indicated by a 

leading “best_”. 

dataset model features  accuracy matcorcoef f1 precision recall labels 

option 1 - 

A 

base_SVC 9 0,52 0,50 0,47 0,47 0,52 10 

option 1 - 

B 

base_KNN 9 0,47 0,43 0,38 0,37 0,47 10 

option 2 base_SVC 35 0,45 0,41 0,38 0,53 0,45 10 

option 1 - 

A 

best_RFC 9 0,75 0,53 0,79 0,68 0,94 2 

option 1 - 

B 

best_RFC 9 0,89 0,80 0,88 1,00 0,78 2 

option 2 best_RFC 2 0,94 0,89 0,94 1,00 0,89 2 

Judging from (Table 13), hypothesis 1 must be falsified for any of the options. Hypothesis 2 cannot be 

falsified for all datasets.  

Ten labels – Confusion matrices 

 
Figure 51 Option 1 – participant A – Confusion matrix for 10 labels classification  
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Figure 52 Option 1 – participant B – Confusion matrix for 10 labels classification 

 
Figure 53 Option 2 – Confusion matrix for 10 labels classification 

The best model for Option 1 – dataset A is base_SVC with an accuracy of 52% (Table 13). The algorithm 

was able to detect labels ‘xlegs’ and ‘standings’ best, while labels ‘fulls’, ‘kneepasttoes’,’olegs’,’asymleft’ 

and ‘asymright’ were never correctly detected (Figure 51).  

The best model for Option 1 – dataset B is base_KNN with an accuracy of 47% (Table 13). While it 

detected fulls, standings and asymleft with a maximum true positive rating, halfs, kneepasttoes, olegs, and 

asymright were never detected correctly (Figure 52).  

The best model for Option 2 is base_SVC with an accuracy of 45% (Table 13). While halfs were always 

correctly detected, fulls and asymleft were never detected correctly (Figure 53). 

For the ten-label classification, none of the hyperparameter-tuned models showed increased performance 

(Table 13). 
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Two labels 

   

Option 1 – A – 2 labels Option 1 – B – 2 labels Option 2 – 2 labels 
Figure 54 Confusion matrices after two-label classification problem for option 1 participant A, B and option 2 

For the binary classification task, the tuned RFC scored best with accuracies of 75% for dataset A, 89% for 

dataset B and 94% for option 2. In all datasets, hyperparameter tuning was successful in the pursuit of 

increasing performance (Table 13). 

While in dataset A, the algorithm caused more squats to be detected as non-squats (14 vs. 0), dataset B 

detected more non-squats as squats (7 vs. 14) (Figure 54). In the second option, the algorithm detected 7 

non-squats as squats (Figure 54). 
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Discussion 
Due to the nature of the design, the camera-sensor was the only pre-concept that was tested on human body 

data and not with a test-stand as for the flex-sensor and IMUs. Therefore, it is to be questioned if the IMU 

would still be superior if all concepts were tested in a human body setting.  

Another project showed (45), that one main difficulty to acquire knee angle with the Xsens sensors was to 

avoid singularity without the need for calibrating an entire set of 17 IMUs. This thesis used a casing that 

entails a calibration angle to allow for full range of motion (-10° to 150°) recordings for the squat and seated 

kicking task with two IMUs only. This increase in usability is desired for a home-setting. At the same time, 

the MATLAB-code that allows for this recording is not designed in a user-friendly way and can only be 

executed by running MATLAB. A future project could expand this approach and connect the code to a 

graphical user interface.  

Two indicators can be mentioned why there seems to be no (sufficient) generalizability from the training to 

the test datasets in the ten-label case. The first indicator is the accuracy which is highest for dataset A with 

the base_SVC classifier (52%) and for dataset B with the base_KNN classifier (47%). The second indicator 

is the unsuccessful hyperparameter tuning on both datasets for Option 1 (no “best_” in Table 10). That 

shows that optimizing the training dataset’s feature contribution and decision arrangement (hyperparameter 

tuning) does not project onto the test dataset. I.e. the test datasets seem to be too different for a trained 

model to give a sufficient judgement. This might be due to the fact, that the datasets were recorded, 

assuming that giving a simple oral explanation will give 10 different, isolated squat-varieties. However, 

movement execution of one type might be fused with the other. Also, it was thought that the datasets 

recorded for this thesis were unlikely to produce results achieving objective 2 (in the ten-label case) which 

was the case as shown by the accuracy for option 2 with the base_SVC classifier (45%). This might be due 

to the fact that the number of participants was small (2) and their body structure was different. Since 

relabeling to simplify the classification problem was possible, this particular parameter was checked for 

improvement. It is to be answered if any other parameters (e.g. using more participants, more features, more 

sensors) has a crucial impact. Although some features were created using squat-specific knowledge (slope 

and tremor frequency features), another possible limitation might be that the features were not tailored to the 

purpose. Zhang et al. (2014) tried to distinguish non-CM gait from CM gait due to lower-limb fatigue (64). 

Seventeen individuals participated and kinematic, time and frequency information were derived from IMU-

data from shank and sternum. Intra-participant accuracy was 97% (this project 75% for A and 89% for B), 

inter-subject accuracy was 88% (this project 94%). They included features such as resultant acceleration, 

skewness, kurtosis, and resultant jerk. Adding these to the feature extraction of our dataset might improve 

accuracy. On the one hand, the score for inter-subject accuracy is higher in this project, and therefore must 

be seen with caution since it shall be tested if the generalizability of option 2 expands beyond two 

participants. On the other hand, these findings were surprising and infer that a system that entails several 

databases from independent practices could work. Adding to this, it needs to be emphasized that the datasets 

were recorded with two healthy participants. For that reason, it is to be questioned if a generalization of this 

approach to patients is possible since their capabilities of reproducing a specific type of squat is impaired. 

However, as option 2 showed in the binary use-case, it might be possible to train using a healthy dataset and 

then generalizing this onto a patient population.  

A potential use-case for the two-label algorithm can be to have a patient perform an entire home-training 

session with a multitude of exercises (e.g. squatting, seated kicking task). The classification results for each 

exercise would indicate weaknesses in particular exercises. As preparation for the next in-practice session, 

the physiotherapist could examine which of the tasks yielded the worst scores and focus on these.  

The proposed approach only allows for reward-based post-squat feedback. I.e. only after execution, a 

classification is made. This is not ideal for home-training since it requires the patient to remember prior 
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movements instead of receiving feedback mid-execution and adjust his/her movements accordingly. Using 

the same approach and datasets, it could be tested how the classification performance changes in case of e.g. 

25% squat-duration. Although this might be able to pick up a classification earlier, it will only be able to 

catch errors within that interval. Potentially, a moving window could be used that classifies every x samples. 

However, this approach was thought to be unreasonable since for every window there needs to be a separate 

model trained. Alternatively, by giving feedback as a function of time along a predetermined pathway, 

trajectory-based feedback might pose a robust solution for this problem. Trajectory analysis is used in many 

different human movement tasks such as gait and balance analysis (65). A study testing the impact of 

trajectory-based feedback on a circle-drawing task showed only early-stage improvements. They implied 

that new tasks can be acquired well using this approach, however they hypothesized that in later motor 

learning stages, proprioception dominates judgement on good execution as opposed to the feedback (66). 

Mapping these findings onto our use-case, we could implement a reverse-order approach: first home-training 

for individual exercises, then in-practice training. It seems that these findings can be projected onto physio-

therapeutical tasks due to the findings of another study. Basalp et al. (2019) trained naïve participants on a 

trunk-arm sweep rowing task in a rowing simulator with a pre-recorded expert-rower trajectory and found 

reduction in spatial and velocity errors (67). By calculating the RMSE between the actual and the ideal 

trajectory, the approach would satisfy the requirement of CM quantification.  

Conclusion 
The first objective of designing a system that can acquire knee angle was achieved by a concept based on a 

two-IMU concept. The second objective to achieve more than 70% accuracy was not achieved for the 

patient-dependent and patient-independent options in the ten-labels classification problem. However, in the 

binary classification task, the objective was reached for both options [table all results]. Physio-therapeutic 

sessions that are designed for rehabilitation have a slowly progressing outcome and are highly repetitive [P]. 

These properties are hypothesized to make the patient lose motivation. That might not be the case for onsite 

sessions since the presence of the physiotherapist extrinsically motivates the patient. However, at home uses 

will not benefit from such a training program. Therefore, combining the given approach with a serious 

gaming environment might cause a synergy effect of fun and training is hypothesized to increase 

rehabilitation success [P]. Using similar two-label (CM, non-CM) datasets for other tasks which are 

recorded by healthy individuals might allow for a generalization onto a patient population as suggested by 

the results of this project. These tasks could entail typical physio-therapeutic movements such as seated 

kicking or seated shank rotation. For each of the tasks, a game could be developed that predominantly needs 

knee angle or shank rotation angle as an input to govern the character’s response. Simultaneously, an input 

to the game would also be whether the movement was executed sufficiently, i.e. if a CM was present.  
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