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Abstract: In Reinforcement Learning, an agent is often trained in only one environment. Conse-
quently, it becomes fitted to this environment and is therefore ineffective in other environments.
Human learning capabilities, on the contrary, show that learning multiple tasks at once is possi-
ble and can even be beneficial in terms of learning efficiency and time. Simultaneously learning
multiple tasks is called Multi-Task Learning. This paper investigates whether a Deep Q-Learning
agent using a multilayer perceptron as a function approximator could also benefit from Multi-
Task Learning by simultaneously training it on the classic control problems Acrobot, Cartpole,
and Mountaincar. Ultimately, we find that an agent can be trained to solve Acrobot and Cart-
pole comparably to a traditionally trained agent. We observe varying success between different
hyperparameter configurations of epsilon-values, episodes between switching environments, or
usage of regularizers. However, an agent trained in three environments shows less evidence of
successful training in all environments.

1 Introduction

Traditionally in Machine Learning, a model is
trained to succeed at one task. Whether this is im-
age classification, object recognition or a reinforce-
ment learning problem, the training of the model
is limited to one task [Teh et al., 2017]. A major
drawback of this approach is that the model be-
comes overspecialized to one specific problem and
therefore will be unable to perform in another set-
ting.

Humans, however, can learn multiple tasks simul-
taneously and use the learning process of one task
to benefit learning another task. As illustrated by
Zhang and Yang [2017], the skill of learning ten-
nis can prove to be beneficial when also learning
squash. When learned at the same time, humans
will ultimately be able to play both tennis and
squash. Additionally, learning these skills simulta-
neously could be beneficial for the learning speed.

Multi-Task Learning (MTL) [Caruana, 1997], is
an approach in machine learning that aims to repli-
cate this way of learning by training a model on sev-
eral tasks at once. The goal is to enable one model
to perform well on multiple tasks. By training on

multiple tasks simultaneously, knowledge from one
task can be used while learning other tasks po-
tentially enhancing the speed of learning and the
performance after training. Most importantly, the
trained model is more versatile as it is able to per-
form in multiple tasks [Zhang and Yang, 2017].
MTL should not be confused with Transfer Learn-
ing (TL) [Pan and Yang, 2010, Zhuang et al., 2019],
in which a model is pre-trained in a setting be-
fore being fine-tuned on the target task, effectively
using learned information from the pre-training to
improve learning on the target task.

MTL can be a workaround in situations of
data sparsity or lack of computational resources
[Sabatelli and Geurts, 2021]. When tasks have in-
sufficient data to train independently, MTL enables
a model to be trained on using multiple tasks, effec-
tively combining the sparse data sets to guarantee
good performance after training [Zhang and Yang,
2017, Mormont et al., 2021, Parisotto et al., 2016].
Furthermore, in fields such as Natural language
Processing (NLP) where sufficient data is present,
deep MTL models can achieve better performance
than single-task models because they are less likely
to overfit [Collobert and Weston, 2008, Zhang and
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Yang, 2017]. Additionally, when a model has been
trained on enough base tasks with use of MTL, it
could become a promising pre-training candidate
for TL [Parisotto et al., 2016, Sabatelli and Geurts,
2021].
Most success with MTL is achieved in combina-

tion with supervised learning [Liao and Carin, 2006,
Gong et al., 2014], but also Reinforcement Learn-
ing (RL) can benefit from MTL [Wilson et al., 2007,
Lazaric and Ghavamzadeh, 2010]. Recent work on
MTL for object localization in combination with
RL showed that MTL methods achieved higher av-
erage precision with fewer search steps in the state
space [Wang et al., 2019]. In addition to this, Desh-
mukh et al. [2017] used MTL on a variation of
the multi-armed bandit problem. The agent had
to leverage similarities of different arms in order to
better predict rewards. While their multi-task ap-
proach outperforms other methods, there remains
room for improvement. Another study, [Sodhani
et al., 2021], shows that RL agents, when given ac-
cess to so called metadata, can achieve state-of-the-
art results on challenging multi-task benchmarks.
While these results are promising, issues could

arise when MTL is combined with RL. Instead of
improving the training results, the multitask ap-
proach can affect the learning negatively on an indi-
vidual task level, resulting in mediocre performance
across all tasks, or specific tasks being dominant
over others [Parisotto et al., 2016, Teh et al., 2017].
It is believed that this is a consequence of inter-
ference between the various policies, reward scales
that differ, and complications in learning value
functions in a stable way [Rusu et al., 2016]. Simi-
lar issues arise when RL is combined with Transfer
Learning [Sabatelli and Geurts, 2021]. To obtain
desirable results when two or more tasks are in-
volved during training, additional techniques seem
to be necessary.
Teh et al. [2017], for example, propose a new ap-

proach on shared network training called ”Distral”,
which allows task-specific policies to contribute to a
shared policy by using a variation of the distillation
technique [Rusu et al., 2016]. In essence, knowledge
from one task is ’distilled’ into the shared policy
and later to the other task-specific policies and vice
versa.
While these more complex methods show promis-

ing performance, extra complexity is often Sunde-
sirable and raises the question whether MTL can

be successful in RL without additional techniques.
Ideally, a straightforward and simple approach to
MTL in combination with RL would be found,
while sticking as close to the original RL-algorithms
as possible.

In this study, we seek to find out whether there
is a difference in task performance of a Deep Q-
Learning-agent on classic control problems after
training between a multi-task model and a single-
task model. Both dual- and triple-task models
are attempted solely with different hyperparame-
ter configurations to keep the approach similar to
the single-task ’single-task’ models. Additionally,
the different learning trajectories will also be anal-
ysed to determine whether MTL also proves to be
beneficial for the speed of learning these tasks.

We hypothesise that there is a difference in
performance after training between the multi-task
model and the single-task model, but with addi-
tional differences between hyperparameters config-
urations as well. Issues such as the ones presented
in Parisotto et al. [2016], Rusu et al. [2016], Teh
et al. [2017] could arise.

2 Background

2.1 Preliminaries

In Reinforcement Learning (RL) artificial agents
are tasked to learn an optimal behaviour in a speci-
fied setting by interacting with an environment and
receiving rewards based on this interaction [Sutton
and Barto, 2018].

An essential concept to model uncertain envi-
ronments in which these agents take decisions are
Markov Decision Processes (MDPs). A definition of
a discrete MDP as in Sutton and Barto [2018] can
be the following: An agent interacts with an envi-
ronment during episodes with a specified length T ,
which is a number of discrete time steps. Therefore,
at each time step t, a representation of the state of
the environment, st ∈ S is given to the agent. It is
then up to the agent to choose an action, at ∈ A
to perform. As a consequence of this action, the
agent receives a numerical reward, rt+1, and subse-
quently has arrived in a new state, st+1. The tra-
jectory repeats itself until the episode has finished
or the goal has been reached. The Markov prop-
erty, which states that the conditional distribution
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of state st+1 solely depends on st is an essential
assumption here.

Additionally, action selection of the agent is de-
termined by a policy π : S → A. π is a map that
contains which action to perform in each state.
To evaluate policies and the goodness of a state or
a state-action pair, dynamic programming princi-
ples originating from Howard [1960] and Bellman
[1966] are used. More specifically, the state value
function V (st) to assess the value of a state st and
state-action function Q(st, at) to evaluate a state st
and its corresponding action at [Sutton and Barto,
2018] are used.

When a policy π is followed by the agent, the
expected return when starting in a state s can be
computed with the state-value function V π:

V π(s) = E

[ ∞∑
k=0

γkrt+k+1|st = s, π

]
. (2.1)

Here, γ describes the so-called discount factor,
which can be set between [0, 1]. When the discount
factor is increased, the aim of the agents shifts from
only considering rewards gained in the near future
(γ closer to 0) to maximizing the rewards obtained
over a distant future (γ closer to 1). To guarantee
an effect of discounting, it is typically not set to 1.

In addition to the V π, the expected return for
taking an action a in a state s is given by the state-
action value function Qπ, again assuming the agent
is following policy π:

Qπ(s, a) = E

[ ∞∑
k=0

γkrt+k+1|st = s, at = a, π

]
.

(2.2)

In RL, training the agents consist of finding the
optimal policy π∗, which maximizes the expected
future reward from all possible states such that

π∗(s) = argmax
π

V π(s). (2.3)

A novel and central idea in RL is temporal-
difference (TD) learning. Instead of updating the
value function only after each episode, in TD this
function is updated after each time step t. To do
so, the reward of time step t and an estimation of
the value for state st+1 are used. With these values,

the temporal difference target is computed [Sutton
and Barto, 1990, Tesauro et al., 1995].

In classic RL, Tabular methods are often used.
This works well for simple tasks, but many inter-
esting tasks for RL come with an enormous state
space. Saving, updating, and reading tables of these
state spaces becomes a task that is computation-
ally demanding and not feasible [Sutton and Barto,
2018]. A workaround for this computational prob-
lem is to use nonparametric function approximators
[Busoniu et al., 2010], which nowadays often come
in the form of Artificial Neural Networks (ANNs).

2.2 Deep Q Learning

A breakthrough in RL with help of TD Learning is
the off-policy control algorithm Q-learning, which
uses the state-action value Q(st, at) Watkins and
Dayan [1992]. It can be defined as:

Q(st, at)← Q(at, at) + α[

rt+1 + γ max
a∈A

Q(st+1, a)−Q(st, at)]. (2.4)

rt+1 + γ max
a∈A

Q(st+1, a) is the temporal differ-

ence target and α symbolizes the learning rate and
defines how drastically the q-values should be up-
dated.

During the training, actions are selected by ei-
ther selecting the highest valued action from a Q-
table in which q-values are stored or at random,
often following an epsilon value or comparable ex-
ploration strategy. The obtained reward that fol-
lows from this action is then used to update the q-
values in the table. This process repeats itself until
a terminal state is reached.

Essentially, the learned action-value function Q
approximates an optimal action-value function Q∗.
This is done without considering the policy that
the agent is following. When training is finished,
the optimal policy can be found by always choosing
the action that maximizes the Q-value in each state
[Watkins, 1989, Watkins and Dayan, 1992, Sutton
and Barto, 2018].

In this study, we use a Q-Learning variant with
a function approximator. In this so-called Deep Q
Learning, an ANN is trained as a function approx-
imator for the state-action pair Q(s, a). The func-
tion approximator replaces the Q-table. The pa-
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rameterized neural network for the Q-value is de-
fined as θ and it’s corresponding loss function ex-
pressed in Mean Squared Error terms is defined as:

Lθ = E[(rt + γ max
a∈A

Q(st+1, a; θ)

−Q(st, at, ; θ))
2]. (2.5)

This loss function can then be minimized when
training the Q function with the use of gradient
descent.
The epsilon-greedy algorithm is used as explo-

ration strategy (see 2.1 or 2.2). It consists of a lin-
early decreasing ϵ-value that determines whether
the agent should choose a random action (explore)
or choose an action based on the q-value prediction
of its function approximator (exploit).
In order to improve the stability of the train-

ing, the technique of ”Experience Replay” [Lilli-
crap et al., 2015, Fedus et al., 2020] is added to
the training routine. This method de-correlates the
experiences used for training and enables the net-
work to be trained on past episodes, which greatly
benefits the stability of the training process of the
ANN.
The experience replay buffer D, with size

N , that is filled with experiences from the en-
vironment allows the agent to train on past
episodes. These experiences are 5-tuples of the
form ⟨st, at, st+1, rt, done⟩, where done indicates
whether or not an episode has finished after action
at was selected. When enough of these experiences
have been saved in the buffer, a random sample of
these can be taken to be used for training, allowing
the model to benefit from past experiences mul-
tiple times. Moreover, the buffer is designed in a
dequeue-like manner, which allows for a gradually
increasing quality of the experiences. As training
progresses, new experiences that led to higher re-
wards will enter the buffer, while old experiences
with bad rewards from the exploration phase will
be removed, allowing the quality of the samples to
improve over time as well.
In this study, we will use replay buffers with sizes

N = 2000 for Acrobot and Cartpole in all configu-
rations, N = 10.000 for Mountaincar when trained
on independently, and N = 4000 for Mountaincar
when in the multi-task training cycle.
The Target Network is another concept that

is used to increase stability during the training of

Deep Reinforcement Learning agents. It involves a
second ANN with the same architecture as the orig-
inal model. The target network is used to estimate
the targets that are necessary for computing the
TD errors. Instead of updating the weights of this
network each time a sample is taken from the Ex-
perience Replay Buffer, the Target Network acts
as a stable network that is only updated periodi-
cally. Furthermore, instead of training the weights
of this Target Network, the weights of the opti-
mized network are simply copied. The target net-
work is parameterized as θ−. The addition of this
target network leads to a slight modification of the
loss function from Equation 2.5:

Lθ = E⟨st,at,rt,st+1⟩∼U(D)[

(rt + γ max
a∈A

Q(st+1, a; θ
−)

−Q(st, at; θ))
2] (2.6)

The whole procedure of Deep Q learning is sum-
marized in Algorithm 2.1

2.3 Multitask Deep Q Learning

In MTL, the RL agent is trained in multiple en-
vironments at once. To do so, it will cyclically al-
ter these environments. The goal is to optimize the
ANN used for function approximation so that it
masters all tasks. We use a slightly modified ver-
sion of the Deep Q-Learning algorithm. We de-
fine an RL agent that is trained on multiple en-
vironments G. Because the environments have dif-
ferent action spaces A, the ANN must have multi-
ple output heads for all g ∈ G. In essence, a model
with corresponding output heads will be created for
each environment, while keeping the hidden layers
shared.

Additionally, the Experience Replay Buffer D is
extended to containN experiences for each environ-
ment. These experiences are environment-specific
in terms of saving and sampling during the opti-
mization of θ. Moreover, multiple ϵ-values are uti-
lized. These can have different start values so that
the balance between exploration and exploitation
can be manipulated per unique environment. At
last, a new hyperparameter has to be introduced
that determines when training should continue to
the next environment. We call this the switch-
parameter. The environment alterations are done
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Algorithm 2.1 Deep Q Learning

Require: Experience Replay Dequeue D with size
N

Require: Q network with parameters θ and θ−

Require: total e = 0
Require: N = 1000
Require: ϵmin = 0.01
for e ∈ EPISODES do
while e¬ over do

observe st
select random action at with probability ϵ;
Otherwise select at = argmaxaQa(st, a, θ);
Execute at and obtain rt and st+1;
Store e as ⟨st, at, st+1, rt, done⟩ in D;
if ϵ > ϵmin then
ϵ∗ = 0.999

end if
total e += 1
if total e ≥ N then

sample minibatch of 64 e from D
Use gradient descent to minimize loss
function Eq. 2.6 and update θ

end if
end while
Copy training parameters θ to target parame-
ters θ−

end for

in a cyclic way, where only the starting environ-
ment is determined at random. A summary of the
Multitask Learning with Deep Q Learning can be
found in Algorithm 2.2

3 Methods

To test our hypothesis that there is a perfor-
mance difference between multi-task models and
their single-task models, we perform a series of ex-
periments that shall be described below. These ex-
periments will use several classic control problems,
which are relatively computationally inexpensive
and an important benchmark within the field of RL.
These environments are provided by the Open-AI
Gym package [Brockman et al., 2016]. Specifically,
our RL agent will be trained on Acrobot [Sutton,
1996], Cartpole [Barto et al., 1983], and Mountain-
car Moore [1990].

Algorithm 2.2 Multitask Learning with Deep Q
Learning

Require: Experience Replay Dequeues Dg∈G with
size N

Require: Q network with parameters θg and θ−g ,
each with output heads g ∈ G

Require: total e = 0
Require: N = 1000
Require: ϵmin = 0.01
Require: Random start environment gcurrent ∈ G
for e ∈ EPISODES do
if (e mod Switch) == 0 then

gcurrent ⇐ gnew
end if
while e¬ over do

observe st
select random action at with probability ϵ;
Otherwise select at = argmaxaQa(st, a, θ);
Execute at and obtain rt and st+1;
Store e as ⟨st, at, st+1, rt, done⟩ in Dg;
if ϵg > ϵmin then
ϵg∗ = 0.999

end if
total e += 1
if total e ≥ N then
sample minibatch of 64 e from Dg

Use gradient descent to minimize loss
function Eq. 2.6 and update θg

end if
end while
Copy training parameters θg to target param-
eters θ−g

end for

3.1 Environments

3.1.1 Acrobot

The Acrobot-v1 environment contains the Acrobot
problem from Sutton [1996]. More specifically, it
uses the implementation that is used by Geramifard
et al. [2015]. The acrobot exists out of two joints
and two links. The goal for the agent is to make
the outer link swing above the horizontal line (see
3.1) in as little time as possible by controlling the
torque on the joint that connects the links. This is
done from a starting position where both links are
facing downwards.

The observation space contains six numbers that
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Figure 3.1: Acrobot-v1

provide information about the rotational joints and
their angular velocities. Specifically: the angular ve-
locity of the inner link θ1 (where 0 indicates it fac-
ing downwards), the relative angle of the outer link
θ2 with respect to θ1 (where 0 indicates the link
being in a straight line with the inner link), and
the sine and cosine for both θ1 and θ2.
The action space consists of three possible ac-

tions. At each time step, the agent can choose to
apply either positive or negative torque on the con-
nection joint, or not apply torque at all. For each
time step that the goal is not reached, a reward of
-1 is obtained. When the goal state is reached, the
reward for that time step is 0. The maximum dura-
tion of an episode is 500 time steps, making the
minimum total reward -500. Acceptable rewards
that display successful training are -150 and higher,
which is higher than the single-task model.

3.1.2 Cartpole

The Cartpole problem contains a cart with an at-
tached pole on top. The cart is controlled and can
move in either the left or right direction. The at-
tached pole is free to move in any direction, only
remaining attached to the top of the cart. The goal
is to keep the pole facing upwards by moving the
cart.
The CartPole-v0 environment follows the prob-

lem description from Barto et al. [1983]. An episode
is over once the pole passes a 15-degree angle from
the vertical starting position. The equations of mo-
tion of the cart-pole system are unknown. The Q-
learning agent must move the cart in such a way
that it avoids triggering this fail signal. The obser-

vation space is made of cart position, cart velocity,
pole angle, and pole angular velocity. The action
space consists of moving the cart left or right. Per
timestep that the fail signal has not been given, the
program receives a reward of +1. If the fail signal
is given, the episode is over. The goal is to train the
controller to achieve the highest possible reward of
200. In this version of the problem, cart friction
is not taken into account. The single-task model
achieves a perfect score of 200 in every episode, but
stable rewards > 175 marks successful training.

Figure 3.2: CartPole-v0

3.1.3 Mountaincar

The MountainCar-v0 environment contains a car
placed in the valley of a sinusoidal wave. An imple-
mentation following Moore [1990] will be used for
our experiment. The goal is to make the car reach
the red flag in as few time steps as possible.

The observation space consists of 2 floating-point
numbers: the position of the car along the x-axis
and the velocity of the car. At each time step, there
are three possible actions that the agent can choose
from. It can either accelerate the cart to the left,
accelerate the cart to the right, or choose to not
accelerate at all.

For every time step in which the flag is not
reached, a reward of -1 is given. When the flag is
reached, a reward of 0 is given and the episode is
terminated. The maximum duration of an episode
is 200 time steps, making the minimum reward -
200. An acceptable reward after training is around
-100, which is what our single-task model obtains.
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Figure 3.3: MountainCar-v0

3.2 Acrobot, Cartpole & Mountain-
car Models

To verify the working of our multitask models.
The performance of the trained models and aver-
age learning trajectory in each environment will be
compared to that of a single-task model. To do so,
one model is created for each environment that is
solely trained on one of the three tasks.
All of these models are Multilayer Perceptrons

(MLPs) with two hidden layers that use either
ReLU non linearity (f(x) = max(0, x)) or linear
(f(x) = x) as activation functions. The input and
output layers are made to fit the state space and ac-
tion space of each environment and the dense layers
differ in size (see 3.4).
The Adam optimizer ([Kingma and Ba, 2014]) is

used to optimize all MLPs. The epsilon-greedy al-
gorithm is used as exploration strategy. The initial
ϵ value is set to 0,5 for Acrobot and 1 for Cartpole
and Mountaincar. This value is then linearly de-
creased to 0.01 (see 2.1 or 2.2). The discount factor
is set to 0.99 and a learning rate of 0.001 is used.

3.3 Multitask Model

We examine two Multi-Task models. A Dual-Task
model, and a Triple-Task model. Both follow the
same architecture, only differing in the number of
hidden layers and the number of output heads. For
each environment in the training cycle, a shared
hidden layer of 128 nodes is added to the model.
Moreover, with each environment, a separate out-
put head has to be added to the model to guar-
antee fitting action output. Essentially, this trans-
lates to 2 shared hidden layers followed by 2 output
heads for the dual model and 3 of each for the triple

model.
The multitask model, three tasks specifically,

(see Figure 3.5) consists of three different models,
that have shared input and hidden layers, but sep-
arate output heads. Because of differences in state
space size, the states of Cartpole and Mountaincar
are padded with 0’s until equal in size to an Acrobot
state. This way, all input can be fed to the model
through one input layer.

To handle different action spaces, an output head
is created for each environment. In addition to an
environment-specific output layer, another unique
dense layer is added to every head to allow more
accurate action predictions. This architecture is
loosely based on the model presented in Zhang and
Yang [2017].

Again, the Adam optimizer [Kingma and Ba,
2014] is used to optimize the MLPs and the epsilon-
greedy algorithm as an exploration strategy. How-
ever, the ϵ values are altered during the experiment
and will be discussed more in-depth in Section 3.4.
The discount factor and learning rate remain the
same as for the single-task models.

3.4 Experiments

With these models, we perform a series of experi-
ments, each with different hyper parameter config-
urations to see how performance is influenced. The
following parameters are altered:

• Use of layer weight regularizers

• Amount of episodes before switching to an-
other environment (see 2.2)

• The distribution of initial ϵ values

Layer weight regularizers are a tool in the
Keras library [Chollet et al., 2015] that enables
the user to apply penalties on layer activity dur-
ing optimization. Essentially, the regularizer makes
sure the individual weights of the MLP are not
changed too drastically and therefore stabilizes the
optimization process of the network. By allowing a
more stable change of weights, regularizers could
prove to be beneficial for an MTL model. Our
model should be general enough to perform well
in three tasks. Therefore, if the model weights are
changed too drastically, a risk of ’forgetting’ other
tasks could emerge and performance would greatly
fluctuate during training.
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Figure 3.4: The structure of the 3 MLPs used as control models. The activation-function of the
hidden layers is Relu, while the output layers are linearly activated.

Figure 3.5: The structure of the MLP used for the Multi-Task model. To suit the different action
spaces, an output head for each environment has been created. The hidden layers are shared
except for one environment-specific layer before the output.

For our models, we use kernel regularization
across the weights. L2 regularization [Farahmand
et al., 2008], also known as ’Ridge Regularization’,
is applied instead of L1 regularization to avoid be-
coming too insensitive to some inputs. The model
should be less sensitive to very subtle changes, but
not completely ignore them either. For all config-
urations, an experiment with and without regular-
ization is performed.

Switch-episodes are the number of episodes the
MTL model will be trained on an environment be-
fore proceeding to the next environment. If this is
done too fast, the model might not learn enough
from these episodes to remember. If done too slow,

on the other hand, the agent risks forgetting about
what was learned earlier, which will result in a per-
formance drop right after switching. To find an op-
timal length, three values will be examined. Envi-
ronments are switched after 5, 10, or 20 episodes.

ϵ-values are the essential part of the epsilon-
greedy exploration strategy. Each environment in
the loop will have its individual ϵ, which will
only be decreased while training on said environ-
ment. In theory, this leads to slower decreasing
epsilons during training as these will only be de-
creased half or a third of the total training time.
For the dual-task model, epsilon values ⟨1; 0.5⟩,
⟨0.75; 0.75⟩, ⟨0.5; 0.5⟩, ⟨0.5; 1⟩ will be considered.
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For the triple-task model, these are ⟨1; 0.5; 1⟩,
⟨0.5; 1; 1⟩, ⟨1; 1; 0, 5⟩, ⟨0.5; 0.5; 0.5⟩, ⟨1; 1; 1⟩.
This leads to a series of experiments in which ev-

ery configuration is trained for 1000 episodes for the
dual-task model (500 episodes per environment)
and 1200 episodes for the triple-task model (400
episodes per environment). Every training experi-
ment is performed four times after which the aver-
age is taken. During training, the environment in
which the model is trained changes in a cyclic man-
ner starting with Cartpole, moving to Acrobot from
here, and, in the case of the triple task model, at
last, the Mountaincar environment. When all envi-
ronments are seen, Cartpole is selected again. The
starting environment is randomly initiated.
To verify proper training of the models, a 100-

episode greedy run of every saved model will be
performed. The averaged values of these will be
tested for significant differences and compared to
the single-task models.

4 Results

Graphs of all results can be found in Appendix C
and D; Subtle differences between different config-
urations can be observed, but, in general, the influ-
ence of hyperparameter follows the same trend. The
exploitation run results are statistically compared
to the exploitation data of the teacher models. Re-
sults of these tests can be found in Appendix A.

4.1 Dual-Task model

The results obtained with the Dual-Task model on
Acrobot and Cartpole show considerable success in
achieving desired performance levels on both tasks
after training.
Figure 4.1 shows that the learning curve of the

Dual-Task model on Acrobot is very comparable to
that of the teacher model trained on Acrobot. Cart-
pole, however, falls short. When running the trained
models from this Noreg-0,75-0,75-5eps configura-
tion greedily for 100 episodes, we obtain an aver-
age reward of -90.1±17.2 for Acrobot and 176.1±
for Cartpole. Both these are significantly different
from the control averages of the teacher models (see
Appendix A), with the Acrobot-score being higher
and the Cartpole-score being lower. Nevertheless,
both scores are close to those of the teacher model.

Figure 4.1: Training with 5 episodes in between
switching environments. Average learning tra-
jectories of the Dual-Task model on Acrobot and
Cartpole when training for 1000 epochs total.
The average was taken over 4 rounds of train-
ing.

Furthermore, when comparing Figure 4.2 with
Figure 4.1, less successful training can be observed
when the episodes between environments are in-
creased to 20. The trajectory of Acrobot has more
fluctuations with multiple downwards peaks. In
Figure 4.1 only one serious peak can be observed.
Cartpole’s trajectory also has more drops when
compared, but recovers quickly back to desired per-
formance. However, it never manages to remain on
this level for more than around 15 episodes.

Similar trends, where training performance de-
creases as the episodes before switching increase,
are observed across all configurations of the Dual-
Task model (see Appendix C).

From Figure 4.3, an observation on the use of L2
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Figure 4.2: Training with 20 episodes in between
switching environments. Average learning tra-
jectories of the Dual-Task model on Acrobot and
Cartpole when training for 1000 epochs total.
The average was taken over 4 rounds of train-
ing.

kernel regularizers can be made when compared to
Figure 4.1. We see an overall decrease in rewards for
Acrobot at around 150 episodes. From this point on,
the rewards obtained on Cartpole seem to increase.
Moreover, when compared, the regularized model
has more fluctuated rewards. This is especially ac-
centuated in the graph for Acrobot. A decrease in
performance when regularizers are used is visible
for all configurations of the Dual-Task model (see
Appendix C).

4.2 Triple-Task model

The results obtained with the Triple-Task model
on Acrobot, Cartpole and Mountaincar do not dis-
play successful training on all three tasks. In Fig-

Figure 4.3: Training with regularizers. Average
learning trajectories of the Dual-Task model on
Acrobot and Cartpole when training for 1000
epochs total. The average was taken over 4
rounds of training.

ure 4.4 it is possible to see that Acrobot reaches a
performance level somewhat similar to the teacher
model and follows its training pattern. However,
from the exploitation data a mean of -366±19.5 is
obtained, which is statistically different from the
control mean of -145.8±51.6 and below acceptable
performance. Cartpole is able to reach the maxi-
mum reward of 200, but fails to contain this learn-
ing and falls back to a reward below 100 throughout
the training episodes. At last, Mountaincar shows
small peaks of learning, after which periods of com-
plete failure can be observed where the reward stays
at -200. The amount of learning is the least for
this task and the exploitation data confirms that
no learning has occurred (see Appendix A).

Interestingly, however, training benefits do seem
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Figure 4.4: Training with 5 episodes in between switching environments. Average learning tra-
jectories of the Triple-Task model on Acrobot, Cartpole and Mountaincar when training for 1200
epochs total. The average was taken over 3 rounds of training.

to occur in the first 50 episodes of the training. In
Figure 4.4 it can be observed that for all 3 envi-
ronments, the Triple-Task network obtains higher
rewards faster than the teacher models in all en-
vironments. After these initial episodes, this phe-
nomenon disappears and the obtained rewards de-
crease.

Even more so than with the Dual-Task models,
we can observe an increase in fluctuated learning
behavior when the amount of episodes in between
switching environments is increased to 20. Specifi-
cally, in Figure 4.5 it can be observed that the ob-
tained rewards in Acrobot keep reaching the same
heights as in Figure 4.4 but on the other hand, also
drops down to -400 at around 260 episodes. The
results of Cartpole show similar fluctuations when
compared to Figure 4.4, but the peaks and drops
are steeper. From the Mountaincar graph, we ob-
serve less learning overall, with fewer peaks. Addi-
tionally, all evidence of an initial learning benefit
has disappeared.

Similar to the Dual-Task model, configurations
with regularizers show a decreased learning perfor-
mance. The data in Figure 4.6 show an overall de-
creased training performance for Acrobot where the
obtained results are lower and the desirable reward
of > −150 is achieved less often than configura-
tion without the use of regularizers. Cartpole and
Mountaincar show no learning at all. Only small
increases in rewards can be observed, but for both
environments, not even half the maximum reward
is ever reached.

Similar trends as a result of hyperparameter
changes can be observed for all configurations of
the Triple-Task model (see Appendix D).

5 Discussion

Successfully applying Multi-Task Learning in a
two-task setting seems to be achievable without
additional techniques when sufficient alteration be-
tween tasks is present during the training phase
and the ANN can freely change its weights while
optimizing. Dual-Task models are able to beat the
teacher Acrobot model in some configurations (see
Appendix A), but the perfect score that the single-
task model achieves in Cartpole is not matched in
any configuration. The Dual-Task model can only
come close.

The Triple-Task model does show successful
Multi-Task Learning on three tasks. While Acrobot
and Cartpole do show an attempt at learning in
some configurations, the added third task of Moun-
taincar is never mastered and performance does not
even come close to that of the teacher model.

In both dual and triple task configurations, the
use of regularizers seems to be a deciding factor
for successful training. More specifically, configura-
tions that do not use regularizers perform better
than ones that do. In some cases such as Figure 4.6
task domination as described by Teh et al. [2017]
could possibly be observed. Cartpole and Moun-
taincar show little learning, but the Acrobot model
at least shows a careful increase in reward over
time. It could be that the network becomes too
overfitted to Acrobot and is not flexible enough to
incorporate the other two tasks again. The poor re-
sults obtained when using regularization could ei-
ther mean that the optimization of the weights of
the model should not be held back to keep maxi-
mum flexibility, or that further tuning of the regu-
larizers is required. Additionally, trying out a com-
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Figure 4.5: Training with 20 episodes in between switching environments. Average learning tra-
jectories of the Triple-Task model on Acrobot, Cartpole and Mountaincar when training for 1200
epochs total. The average was taken over 3 rounds of training.

Figure 4.6: Training with regularizers. Average learning trajectories of the Triple-Task model on
Acrobot, Cartpole and Mountaincar when training for 1200 epochs total. The average was taken
over 3 rounds of training.

bination of both L1 and L2 regularization or using
activation regularization instead of kernel regular-
ization could provide us with different insights.

Another visible factor affecting the learning is
the number of episodes before switching environ-
ments. More so for the Triple-Task models than
for the Dual-Task models, a period of 20 episodes
in between an environment switch seems to feed
fluctuating rewards. The model likely spends too
much time training other tasks sequentially, forget-
ting about the most previous task. Logically, this
effect is graver for the Triple-Task model, where
an episode switch of 20 translates to 40 episodes
of training on other environments before restarting
the environment cycle. For the Dual-Task model,
this is only half. When the model eventually re-
sumes training on this specific task again, the ob-
tained rewards quickly return to previous levels,
suggesting that only subtle changes to the weights
are required to correct for this forgetting.

The initial epsilon values do not seem to affect
the learning trajectories greatly. Other than subtle

differences across configurations (See Appendix C
and D), they do not seem to be the deciding factor
for performance on all tasks.

These findings, especially the mediocre perfor-
mance of the Triple-Task model, are in line with
the possible drawbacks and issues for RL in combi-
nation with MTL as described by Rusu et al. [2016],
Parisotto et al. [2016], Teh et al. [2017]. We observe
either equal or worse performance of our multi-task
models when compared to the teacher models as the
results presented in Rusu et al. [2016]. Their results
show an overall drop in learning across all 3 tasks,
with Acrobot showing the most evidence of learning
and Mountaincar often not at all.

However, in the trajectories of the Triple-Task
model, there is some evidence of MTL being benefi-
cial during training. As displayed in Figure 4.4, the
multitask model outperforms the single-task model
for all 3 tasks in the first 50 episodes. Likely, knowl-
edge gained in one environment is used while train-
ing in another environment to accelerate learning
speed and obtain higher rewards faster as described
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by Zhang and Yang [2017]. The question that re-
mains is why the rewards drop after these initial
episodes instead of continuing this trend.
Additional limitations to our methods could be

that the Multi-Task models possibly require a
longer training time before the network converges.
Especially for the Triple-Task model, the number of
training episodes per environment decreased to 400
as compared to the 500 for the teacher model. This
might simply not be enough time for our model to
find general patterns across all tasks and combine
those in a useful way.
Alternatively, the ANN used for our Multi-Task

model may not have been sufficiently large to gen-
eralize all 3 tasks. Considering that the teacher
Mountaincar model has two dense layers with 512
nodes each, 3 layers with 128 nodes and one task-
specific layer with 68 nodes might not be enough.
Future research could look further into this and

vary in network architecture. Bigger, more complex
networks, might result in better performance for all
tasks. Several small tests with different architec-
tures can be found in Appendix B.
Moreover, regularizers should be studied more

in-depth in order to find out whether they could
be a useful contribution to MTL. Although the re-
sults of this study do not point in that direction,
this could be a consequence of our implementation
rather than the properties of regularizers not being
suitable for MTL.
At last, Deep Q-Learning in combination with

Multi-Task Learning was explored in this thesis.
Future research could combine MTL with other fa-
mous RL algorithms and explore if these are more
suitable for training a multi-task network on Clas-
sic Control Tasks or other RL benchmarks.
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A Appendix - Verification Run Results

Environment Switch Epsilon (AB-CP) Statistical Test Results
Acrobot 5 0,5-1 (M=-174.8, SD=62.9); t(99)=-3.5, p=0.0005
Cartpole 0,5-1 (M=139.4, SD=6.1); t(99)=-99.1, p=1.1e-170
Acrobot 0,75-0,75 (M=-90.1, SD=17.2); t(99)=10.2, p=7.0e-20
Cartpole 0,75-0,75 (M=176.1, SD=2.8); t(99)=-85.3, p=4.6e-158
Acrobot 0,5-0,5 (M=-225.5, SD=12.6); t(99)=-14.9, p=3.1e-34
Cartpole 0,5-0,5 (M=195.6, SD=15.9); t(99)=-2.7, p=0.007
Acrobot 1-0,5 (M=-177.0, SD=66.4); t(99)=-3.7, p= 0.0003
Cartpole 1-0,5 (M=166.7, SD=6.5); t(99)=-50.9, p=9.3e-116
Acrobot 10 0,5-1 (M=-108.5, SD=42.5); t(99)=5.6, p=9.0e-8
Cartpole 0,5-1 (M=12-.2, SD=6.8); t(99)=-115.4, p=1.5e-183
Acrobot 0,75-0,75 (M=-99.4, SD=21.9); t(99)=8.2, p=2.3e-14
Cartpole 0,75-0,75 (M=192.6, SD=7.9); t(99)=-9.3, p=2.1e-17
Acrobot 0,5-0,5 (M=-140.7, SD=70.3); t(99)=0.6, p=0.56
Cartpole 0,5-0,5 (M=136.3, SD=6.9); t(99)=-91.3, p=9.7e-164
Acrobot 1-0,5 (M=-184.9, SD=90.3); t(99)=-3.7, p=0.0002
Cartpole 1-0,5 (M=197.9, SD=2.9); t(99)=-7.3, p=7.9e-12
Acrobot 20 0,5-1 (M=-202.0, SD=58.1); t(99)=-7.2, p=1.3e-11
Cartpole 0,5-1 (M=186.5, SD=19.2); t(99)=-7.0, p=4.2e-11
Acrobot 0,75-0,75 (M=-232.2, SD=12.9); t(99)=-16.1, p=5.8e-38
Cartpole 0,75-0,75 (M=80.3, SD=5.6); t(99)=-211.4, p=3.6
Acrobot 0,5-0,5 (M=-93.1, SD=15.5); t(99)=9.7, p=1.5e-18
Cartpole 0,5-0,5 (M=106.7, SD=17.6); t(99)=-52.7, p=1.6e-118
Acrobot 1-0,5 (M=-112.0, SD=44.5); t(99)=4.9, p=1.7e-6
Cartpole 1-0,5 (M=72.9, SD=32.0); t(99)=-39.5, p=6.7e-96

Table A.1: Dual Task model without regularizers. Statistical test consists of a unpaired two-tailed
t-test with (M=-145.8, SD=51.6) for the Acrobot control model and (M=200, SD=0.0) for the
Cartpole control model.
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Environment Switch Epsilon (AB-CP) Statistical Test Results
Acrobot 5 0,5-1 (M=-500, SD=0.0); t(99)=-68.3, p=1.5e-139
Cartpole 0,5-1 (M=145.8, SD=7.1); t(99)=-76.2, p=1.1e-148
Acrobot 0,75-0,75 (M=-500, SD=0.0); t(99)=-68.3, p=1.5e-139
Cartpole 0,75-0,75 (M=138.5, SD=19.8); t(99)=-30.9, p=1.3e-77
Acrobot 0,5-0,5 (M=-243.7, SD=59.5); t(99)=-12.4, p=2.1e-26
Cartpole 0,5-0,5 (M=148.5, SD=14.1); t(99)=-36.4, p=1.4
Acrobot 1-0,5 (M=-454.3, SD=42.6); t(99)=-45.9, p=1.9e-107
Cartpole 1-0,5 (M=117.9, SD=3.8); t(99)=-215.0, p=1.3e-236
Acrobot 10 0,5-1 (M=-493.4, SD=22.7); t(99)=-61.3, p=10.0e-131
Cartpole 0,5-1 (M=65.7, SD=18.5); t(99)=-72.2, p=3.6
Acrobot 0,75-0,75 (M=-477.5, SD=46.9); t(99)=-47.3, p=7.4e-110
Cartpole 0,75-0,75 (M=152.1, SD=16.0); t(99)=-30.4, p=2.1e-76
Acrobot 0,5-0,5 (M=-500, SD=0); t(99)=-68.3, p=1.5e-139
Cartpole 0,5-0,5 (M=190.2, SD=5.0); t(99)=-19.6, p=3.0e-48
Acrobot 1-0,5 (M=-500, SD=0); t(99)=-68.3, p=1.5e-139
Cartpole 1-0,5 (M=172.6, SD=1.6); t(99)=-170.4, p=9.9e-217
Acrobot 20 0,5-1 (M=-200.3, SD=75.8); t(99)=-5.9, p=1.4e-8
Cartpole 0,5-1 (M=78.5, SD=6.7); t(99)=-180.1, p=2.0e-221
Acrobot 0,75-0,75 (M=-427.0, SD=17.3); t(99)=-51.3, p=2.3e-116
Cartpole 0,75-0,75 (M=187.8, SD=9.2); t(99)=-12.1, p=9.7e-29
Acrobot 0,5-0,5 (M=-500, SD=0); t(99)=-68.3, p=1.5e-139
Cartpole 0,5-0,5 (M=198.0, SD=2.6); t(99)=-7.7, p=5.7e-13
Acrobot 1-0,5 (M=-251.7, SD=12.1); t(99)=-19.9, p=5.0e-49
Cartpole 1-0,5 (M=136.4, SD=0.2); t(99)=-2978.4, p=0.0

Table A.2: Dual-Task model with regularizers. Statistical test consists of a unpaired two-tailed
t-test with (M=-145.8, SD=51.6) for the Acrobot control model and (M=200, SD=0) for the
Cartpole control model.

Environment Switch Epsilon (AB-CP-MC) Statistical Test Results
Acrobot 5 0,5-0,5-1 (M=-382.3, SD=25.5); t(99)=-41.2, p=5.0e-99
Cartpole 0,5-0,5-1 (M=91.5, SD=6.3); t(99)=-170.8, p=6.5e-217

Mountaincar 0,5-0,5-1 (M=-200.0, SD=0); t(99)=-163.5, p=3.6e-213
Acrobot 0,5-1-0,5 (M=-240.1, SD=25.6); t(99)=-16.3, p=2.1e-38
Cartpole 0,5-1-0,5 (M=180.2, SD=4.7); t(99)=-42.1, p=9.5e-101

Mountaincar 0,5-1-0,5 (M=-195.1, SD=6.2); t(99)=-108.4, p=3.2e-178
Acrobot 1-0,5-0,5 (M=-366.8, SD=19.5); t(99)=-39.9, p=1.6e-96
Cartpole 1-0,5-0,5 (M=82.1, SD=5.9); t(99)=-200.4, p=1.4e-230

Mountaincar 1-0,5-0,5 (M=-200.0, SD=0); t(99)=-163.5, p=3.6e-213
Acrobot 0,5-0,5-0,5 (M=-240.1, SD=32.5); t(99)=-15.4, p=1.3e-35
Cartpole 0,5-0,5-0,5 (M=115.4, SD=5.6); t(99)=-151.0, p=2.2e-206

Mountaincar 0,5-0,5-0,5 (M=-200.0, SD=0); t(99)=-163.5, p=3.6e-213
Acrobot 1-1-1 (M=-326.7, SD=70.1); t(99)=-20.7, p=2.4e-51
Cartpole 1-1-1 (M=195.5, SD=11.5); t(99)=-3.9, p= 0.0001

Mountaincar 1-1-1 (M=-200.0, SD=0); t(99)=-163.5, p=3.6e-213
Acrobot 10 0,5-0,5-1 (M=-242.7, SD=32.1); t(99)=-15.8, p=4.7e-37
Cartpole 0,5-0,5-1 (M=103.8, SD=29.7); t(99)=-32.3, p=9.2e-81

Mountaincar 0,5-0,5-1 (M=-199.6, SD=0.7); t(99)=-161.7, p=3.1e-212
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Acrobot 0,5-1-0,5 (M=-367.2, SD=15.8); t(99)=-40.8, p=2.5e-98
Cartpole 0,5-1-0,5 (M=45.2, SD=17.5); t(99)=-88.1, p=8.3e-161

Mountaincar 0,5-1-0,5 (M=-200.0, SD=0); t(99)=-163.5, p=3.6e-213
Acrobot 1-0,5-0,5 (M=-376.4, SD=13.5); t(99)=-43.0, p=51.6
Cartpole 1-0,5-0,5 (M=118.1, SD=11.4); t(99)=-71.7, p=1.4e-143

Mountaincar 1-0,5-0,5 (M=-200.0, SD=0); t(99)=-163.5, p=3.6e-213
Acrobot 0,5-0,5-0,5 (M=-500.0, SD=0.0); t(99)=-68.3, p=1.5e-139
Cartpole 0,5-0,5-0,5 (M=34.7, SD=5.5); t(99)=-301.5, p=1.3e-265

Mountaincar 0,5-0,5-0,5 (M=-200.0, SD=0); t(99)=-163.5, p=3.6e-213
Acrobot 1-1-1 (M=-443.1, SD=56.5); t(99)=-38.7, p=3.4e-94
Cartpole 1-1-1 (M=102.7, SD=18.7); t(99)=-51.7, p=5.9e-117

Mountaincar 1-1-1 (M=-200.0, SD=0); t(99)=-163.5, p=3.6e-213
Acrobot 20 0,5-0,5-1 (M=-316.3, SD=57.4); t(99)=-22.0, p=5.6e-55
Cartpole 0,5-0,5-1 (M=69.5, SD=7.1); t(99)=-183.4, p=5.4e-223

Mountaincar 0,5-0,5-1 (M=-200.0, SD=0); t(99)=-163.5, p=3.6e-213
Acrobot 0,5-1-0,5 (M=-348.1, SD=43.6); t(99)=-29.8, p=4.4e-7
Cartpole 0,5-1-0,5 (M=18.0, SD=3.7); t(99)=-495.0, p=3.7e-308

Mountaincar 0,5-1-0,5 (M=-200.0, SD=0); t(99)=-163.5, p=3.6e-213
Acrobot 1-0,5-0,5 (M=-185.0, SD=50.0); t(99)=-5.4, p=1.6e-7
Cartpole 1-0,5-0,5 (M=31.9, SD=3.7); t(99)=-450.0, p=5.7e-300

Mountaincar 1-0,5-0,5 (M=-200.0, SD=0); t(99)=-163.5, p=3.6e-213
Acrobot 0,5-0,5-0,5 (M=-500.0, SD=0.0); t(99)=,-68.3 p=1.5e-139
Cartpole 0,5-0,5-0,5 (M=16.7, SD=1.6); t(99)=-1140.6, p=0.0

Mountaincar 0,5-0,5-0,5 (M=-200.0, SD=0); t(99)=-163.5, p=3.6e-213
Acrobot 1-1-1 (M=-500.0, SD=0.0); t(99)=-68.3, p=1.5e-139
Cartpole 1-1-1 (M=157.3, SD=7.7); t(99)=-55.0, p=6.9e-122

Mountaincar 1-1-1 (M=-200.0, SD=0.0); t(99)=-163.5, p=3.6e-213

Table A.3: Triple-Task model without regularizers. Statistical test consists of a unpaired two-
tailed t-test with (M=-145.8, SD=51.6) for the Acrobot control model, (M=200, SD=0) for the
Cartpole control model and (M=-100.8, SD=6.0) for the Mountaincar control model.

Environment Switch Epsilon (AB-CP-MC) Statistical Test Results
Acrobot 5 0,5-0,5-1 (M=0379.9, SD=22.8); t(99)=-41.3, p=3.5e-99
Cartpole 0,5-0,5-1 (M=23.0, SD=5.8); t(99)=-306.0, p=7.4e-267

Mountaincar 0,5-0,5-1 (M=-200.0, SD=0.0); t(99)=-163.5, p=3.6e-213
Acrobot 0,5-1-0,5 (M=-470.4, SD=51.6); t(99)=-44.2, p=1.5e-104
Cartpole 0,5-1-0,5 (M=20.6, SD=4.8); t(99)=-368.0, p=1.0e-282

Mountaincar 0,5-1-0,5 (M=-200.0, SD=0.0); t(99)=-163.5, p=3.6e-213
Acrobot 1-0,5-0,5 (M=-500.0, SD=0.0); t(99)=-68.3, p=1.5e-139
Cartpole 1-0,5-0,5 (M=9.4, SD=0.5); t(99)=-4143.8, p=0.0

Mountaincar 1-0,5-0,5 (M=-200.0, SD=0.0); t(99)=-163.5, p=3.6e-213
Acrobot 0,5-0,5-0,5 (M=-424.1, SD=55.5); t(99)=-36.5, p=6.6e-90
Cartpole 0,5-0,5-0,5 (M=15.6, SD=2.6); t(99)=-700.3, p=0.0

Mountaincar 0,5-0,5-0,5 (M=-200.0, SD=0.0); t(99)=-163.5, p=3.6e-213
Acrobot 1-1-1 (M=-500.0, SD=0.0); t(99)=-68.3, p=1.5e-139
Cartpole 1-1-1 (M=22.2, SD=5.0); t(99)=-351.3, p=1.0e-278

Mountaincar 1-1-1 (M=-200.0, SD=0.0); t(99)=-163.5, p=3.6e-213
Acrobot 10 0,5-0,5-1 (M=-306.3, SD=38.7); t(99)=-24.8, p=1.6e-62
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Cartpole 0,5-0,5-1 (M=9.3, SD=0.4); t(99)=-4449.5, p=0.0
Mountaincar 0,5-0,5-1 (M=-200.0, SD=0.0); t(99)=-163.5, p=3.6e-213
Acrobot 0,5-1-0,5 (M=-374.9, SD=8.6); t(99)=-43.5, p=2.3e-103
Cartpole 0,5-1-0,5 (M=12.4, SD=1.8); t(99)=-1028.2, p=0.0

Mountaincar 0,5-1-0,5 (M=-200.0, SD=0.0); t(99)=-163.5, p=3.6e-213
Acrobot 1-0,5-0,5 (M=-497.9, SD=)6.4; t(99)=-67.3, p=2.0e-138
Cartpole 1-0,5-0,5 (M=12.3, SD=1.1); t(99)=-1571.1, p=0.0

Mountaincar 1-0,5-0,5 (M=-200.0, SD=0.0); t(99)=-163.5, p=3.6e-213
Acrobot 0,5-0,5-0,5 (M=-500.0, SD=0.0); t(99)=-68.3, p=1.5e-139
Cartpole 0,5-0,5-0,5 (M=24.2, SD=3.6); t(99)=-488.9, p=4.2e-307

Mountaincar 0,5-0,5-0,5 (M=-200.0, SD=0.0); t(99)=-163.5, p=3.6e-213
Acrobot 1-1-1 (M=-500.0, SD=0.0); t(99)=-68.3, p=1.5e-139
Cartpole 1-1-1 (M=42.0, SD=11.2); t(99)=-140.2, p=4.2e-200

Mountaincar 1-1-1 (M=-200.0, SD=0.0); t(99)=-163.5, p=3.6e-213
Acrobot 20 0,5-0,5-1 (M=-159.0, SD=63.2); t(99)=-1.6, p=0.11
Cartpole 0,5-0,5-1 (M=9.3, SD=0.4); t(99)=-4417.2, p=0.0

Mountaincar 0,5-0,5-1 (M=-200.0, SD=0.0); t(99)=-163.5, p=3.6e-213
Acrobot 0,5-1-0,5 (M=-326.5, SD=64.3); t(99)=-21.8, p=1.6e-54
Cartpole 0,5-1-0,5 (M=13.6, SD=1.4); t(99)=-1283.1, p=0.0

Mountaincar 0,5-1-0,5 (M=-200.0, SD=0.0); t(99)=-163.5, p=3.6e-213
Acrobot 1-0,5-0,5 (M=-271.9, SD=26.3); t(99)=-21.6, p=4.3e-54
Cartpole 1-0,5-0,5 (M=9.4, SD=0.5); t(99)=-4141.5, p=0.0

Mountaincar 1-0,5-0,5 (M=-200.0, SD=0.0); t(99)=-163.5, p=3.6e-213
Acrobot 0,5-0,5-0,5 (M=-404.3, SD=20.2); t(99)=-46.4, p=2.7e-108
Cartpole 0,5-0,5-0,5 (M=28.9, SD=7.6); t(99)=-222.9, p=1.1e-239

Mountaincar 0,5-0,5-0,5 (M=-200.0, SD=0.0); t(99)=-163.5, p=3.6e-213
Acrobot 1-1-1 (M=-500.0, SD=0.0); t(99)=-68.3, p=1.5e-139
Cartpole 1-1-1 (M=16.4, SD=5.9); t(99)=-310.2, p=4.8e-268

Mountaincar 1-1-1 (M=-200.0, SD=0.0); t(99)=-163.5, p=3.6e-213

Table A.4: Triple-Task model with regularizers. Statistical test consists of a unpaired two-tailed t-
test with (M=-145.8, SD=51.6) for the Acrobot control model, (M=200, SD=0) for the Cartpole
control model and (M=-100.8, SD=6.0) for the Mountaincar control model.
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B Appendix - Various Alternative Model Architectures

As discussed before, a possible way to achieve better results for the Triple-Task model could be to
modify the network structure. Considering the relatively big amount of nodes used in the layers of the
Mountaincar single-task network compared to those of Acrobot and Cartpole and the poor results of
our current Multi-Task model on all 3 tasks, we believe that an architecture with more nodes could be
beneficial for the performance on the tasks.
Two attempts to Multi-Task Learning with slightly modified methods can be found below. These are

by no means proper research, but the presented figures could aid in deciding on which modifications
could be most useful in future research.

Figure B.1: Model architecture where the task specific layer of Mountaincar is increases to fit 128
nodes in stead of 64. Without regularizers; 5 episode switch; epsilon values: AB: 0.5, CP: 0,5, MC:
1. Learning over 400 episodes averaged over 3 runs.

Firstly, an increased number of nodes only in the task specific layer of Mountaincar, does seem to
increase the rewards obtained in this environment as seen in Figure B.1. Here the dense layer with 64
nodes was doubled to 128. Further directions could incorporate an even higher number of nodes or even
experiment with an extra task specific layer only for Mountaincar.

Figure B.2: Model architecture where the shared hidden layers are increases to 256 nodes and the
task specific layer for all tasks is increased to 128. Without regularizers; 5 episode switch; epsilon
values: AB: 0.5, CP: 0,5, MC: 1. Learning over 400 episodes averaged over 3 runs.

At last, when all nodes except for input and output layers are doubled, we also see an increase in
reward in Mountaincar environment. Even though this is by no means a proper learning trajectory,
these results do push us in the direction of attempting the same experiments, but simply with bigger,
more complex networks.
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C Appendix - Dual-Task Model Results

Figure C.1: Dual-Task results without regularizers and 5 episodes in between switching episodes.
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Figure C.2: Dual-Task results with regularizers and 5 episodes in between switching episodes.
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Figure C.3: Dual-Task results without regularizers and 10 episodes in between switching episodes.
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Figure C.4: Dual-Task results with regularizers and 10 episodes in between switching episodes.
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Figure C.5: Dual-Task results without regularizers and 20 episodes in between switching episodes.
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Figure C.6: Dual-Task results with regularizers and 20 episodes in between switching episodes.
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Figure C.7: Dual-Task results without regularizers and initial epsilon values of 1 for Acrobot and
0.5 for Cartpole.
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Figure C.8: Dual-Task results with regularizers and initial epsilon values of 1 for Acrobot and 0.5
for Cartpole.
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D Appendix - Triple-Task Model Results

Figure D.1: Triple-Task model results without regularization and 5 episodes in between switching.
Initial epsilon values are 0.5 (left) or 1 (right) for all environments.
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Figure D.2: Triple-Task model results with regularization and 5 episodes in between switching.
Initial epsilon values are 0.5 (left) or 1 (right) for all environments.
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Figure D.3: Triple-Task model results without regularization and 10 episodes in between switching.
Initial epsilon values are 0.5 (left) or 1 (right) for all environments.
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Figure D.4: Triple-Task model results with regularization and 10 episodes in between switching.
Initial epsilon values are 0.5 (left) or 1 (right) for all environments.
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Figure D.5: Triple-Task model results without regularization and 20 episodes in between switching.
Initial epsilon values are 0.5 (left) or 1 (right) for all environments.
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Figure D.6: Triple-Task model results with regularization and 20 episodes in between switching.
Initial epsilon values are 0.5 (left) or 1 (right) for all environments.
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Figure D.7: Triple-Task model results without regularization and 5 episodes in between switching.
Initial epsilon values are 0.5 for AB; 1 for CP; and 0.5 for MC (left) or 1 for AB; 0.5 for CP; 0.5
for MC (right) for all environments.
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Figure D.8: Triple-Task model results with regularization and 5 episodes in between switching.
Initial epsilon values are 0.5 for AB; 1 for CP; and 0.5 for MC (left) or 1 for AB; 0.5 for CP; 0.5
for MC (right) for all environments.
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Figure D.9: Triple-Task model results without regularization and 10 episodes in between switching.
Initial epsilon values are 0.5 for AB; 1 for CP; and 0.5 for MC (left) or 1 for AB; 0.5 for CP; 0.5
for MC (right) for all environments.
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Figure D.10: Triple-Task model results with regularization and 10 episodes in between switching.
Initial epsilon values are 0.5 for AB; 1 for CP; and 0.5 for MC (left) or 1 for AB; 0.5 for CP; 0.5
for MC (right) for all environments.
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Figure D.11: Triple-Task model results without regularization and 20 episodes in between switch-
ing. Initial epsilon values are 0.5 for AB; 1 for CP; and 0.5 for MC (left) or 1 for AB; 0.5 for CP;
0.5 for MC (right) for all environments.
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Figure D.12: Triple-Task model results with regularization and 20 episodes in between switching.
Initial epsilon values are 0.5 for AB; 1 for CP; and 0.5 for MC (left) or 1 for AB; 0.5 for CP; 0.5
for MC (right) for all environments.
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Figure D.13: Triple-Task model results without (left) and with (right) regularization and 10
episodes in between switching. Initial epsilon values are 0.5 for AB; 0.5 for CP; and 1 for MC
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Figure D.14: Triple-Task model results without (left) and with (right) regularization and 20
episodes in between switching. Initial epsilon values are 0.5 for AB; 0.5 for CP; and 1 for MC
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