
Master’s Thesis

University of Groningen

Department of Artificial Intelligence

Improving Offline Handwritten Text Recognition Using
Conditional Writer-Specific Knowledge

First Supervisor :
Prof. dr. L.R.B. Schomaker

Second Supervisor :
M. Dhali

Author:
Tobias van der Werff
s4314719

July 4, 2022

Abstract

Modern neural networks suffer from a major flaw: an inability to deal with changing data
distributions. In the field of handwritten text recognition (HTR), this shows itself in poor
recognition accuracy for writers that are not similar to those seen during training. In this re-
search, the question is asked whether explicit information regarding writer identity can be used
to condition a neural network to a writer-specific distribution. For example, writer information
can be presented in the form of a small batch of labeled examples originating from a particular
writer. Two state-of-the-art HTR architectures are used as baseline models (writer-unaware),
using a ResNet backbone along with either an LSTM or Transformer sequence decoder. Using
these base models, various methods are proposed to make them writer-adaptive, based pri-
marily on 1) an idea originating from automatic speech recognition known as speaker codes,
and 2) model-agnostic meta-learning (MAML), an algorithm commonly used for tasks such
as few-shot classification that has gained much attention in recent years. Results show that
an HTR-specific version of MAML known as MetaHTR improves performance compared to
the baseline with a 1.4 to 2.0 improvement in word error rate. Furthermore, it is shown that
a deeper model lends itself better to adaptation using MetaHTR than a shallower model.
Speaker codes do not show a concrete benefit for writer-aware adaptation.

Keywords: offline handwritten text recognition, writer adaptation, few-shot adaptation,
conditionality

1

Acknowledgements

Working on this thesis has been an exhilarating journey for me. It has made me realize how
much fun research can be (even if it does not always lead to the conclusions you would have
liked). I would like to thank Lambert Schomaker for his insightful comments and critical
thought process, which often challenged me and forced me to question my assumptions. I am
grateful for the various interesting conversations we had on the topic of deep learning and
machine learning more broadly. I also would like to thank Maruf Dhali, who was always ready
to help out and provide guidance whenever I needed it. Over the last few years that I have
been working with Maruf, I have come to value him both as a teacher and as a friend. Lastly,
I thank the Center for Information Technology of the University of Groningen for providing
access to the Peregrine high performance computing cluster.

2

Contents

1 Introduction 5

2 Background 10
2.1 Neural networks and deep learning . 10

2.1.1 Cost functions . 11
2.1.2 Stochastic gradient descent . 13
2.1.3 Normalization methods . 13
2.1.4 Other ingredients for successful neural network training 14

2.2 Offline handwritten text recognition . 16
2.2.1 LSTM-based model . 17
2.2.2 Transformer-based model . 19

2.3 Meta-learning . 21
2.3.1 Episodic learning . 21
2.3.2 Model-agnostic meta-learning . 23
2.3.3 MetaHTR . 25

2.4 Related work . 28
2.4.1 Handwritten text recognition . 28
2.4.2 Writer identification and verification 29
2.4.3 Adaptation for speech recognition . 30
2.4.4 Conditionality . 30
2.4.5 Transfer learning and domain adaptation 31
2.4.6 Meta-learning . 32
2.4.7 Writer adaptation . 32

3 Methods 34
3.1 Dataset . 34

3.1.1 IAM . 35
3.1.2 Data augmentation . 35

3.2 Evaluation . 36
3.3 Base models . 37

3.3.1 Training procedure . 37
3.4 Writer codes . 38

3

3.4.1 Code insertion . 39
3.4.2 Learned codes . 42
3.4.3 Hinge codes . 42
3.4.4 Style codes . 43
3.4.5 Training procedure . 44

3.5 Meta-learning . 44
3.5.1 Training procedure . 45

3.6 Domain adaptation . 45

4 Results 48
4.1 Base models . 48
4.2 Writer codes . 49
4.3 Meta-learning . 50

4.3.1 Testing the adaptation premise of MetaHTR 52
4.4 Domain adaptation . 54

5 Discussion and conclusion 55
5.1 Discussion . 55

5.1.1 Writer codes . 55
5.1.2 Meta-learning . 57
5.1.3 Domain adaptation . 59

5.2 Conclusion . 59

A Hyperparameters 72

B Number of parameters per model 74

C Batch normalization in MAML 76

4

Chapter 1

Introduction

Deep learning has achieved tremendous success in recent years. However, neural networks
are still lacking when it comes to adapting to novel environments. This manifests itself in an
inability to deal with changing data distributions [58]. Most modern neural networks tend to
be one-trick ponies, in the sense that they work very well for specific task and data conditions,
but fail – sometimes catastrophically – when such conditions are violated. In some sense, this
is understandable, as the high dimensionality of the input space for common applications
such as images leads to an inconceivable amount of possible variations. Arguably, much of
the modern success of neural networks can be attributed to collecting massive amounts of
data to cover as many parts of the underlying data distribution as possible, combined with a
proportional increase in computing power and model size [53].

However, such a brute-force approach to learning is not always practical, e.g., in domains
where there is limited data for training a high-capacity neural network. In such cases, more
efficient use of data and reusability of previously learned representations suddenly play an
important role. An example of a possible solution is transfer learning, where previously learned
model parameters are reused for a new but related task that has only a modest amount of
training data. This approach has led to notable successes in fields such as natural language
processing [22] and computer vision [74]. In the ideal case, neural networks should be able to
autonomously adapt in a flexible manner to various input values. Or, put slightly differently,
neural networks should have the ability to be properly conditioned on various possible input
values.

In this thesis, we explore notions of conditionality and adaptivity in the realm of deep
learning, zooming in on the field of offline handwritten text recognition (HTR) as a concrete
use case. Offline handwritten text recognition refers to the process of automatically turning
images of handwritten text into letter codes. Within the deep learning framework, this is
presented as an image-to-sequence problem: A handwriting image (input) is converted into a
sequence of characters (output) transcribing the handwritten text in the image.

Handwriting recognition, which encompasses a broader body of research than just text
recognition, has seen major successes using deep learning. This includes areas such as hand-
written text recognition [71, 3], writer identification [114, 41], binarization [23], and word

5

Figure 1.1: The word “algebra” written by different writers. Each row contains handwriting
for a single writer, recorded at four different times. Note that variation manifests itself between
writers but also within individual writers. Figure taken from [87].

spotting [17]. Accurate and reliable handwritten text recognition remains a challenging prob-
lem, mainly due to the large number of possible handwriting variations. The underlying
biomechanical process for handwriting involving coordinated control of the arm, wrist, and
finger joints effectively leads to an infinite amount of possible style variations. When it comes
to disentangling the factors of variation in handwriting, a distinction can be made between
within-writer variability and between-writer variation. Within-writer variability refers to the
inherent variation that a single writer can produce due to changing circumstances such as pen
grip, writing hand, etc. Between-writer variation refers to larger differences in handwriting
that are a result of a change in writer. This is illustrated in Fig. 1.1, where within-writer
variability is displayed along the columns and between-writer variation along the rows.

When it comes to collections of handwritten documents, it is common to have access
to additional information regarding a piece of handwritten text. One could refer to such
additional information as metadata, e.g., who wrote the text, what year it was written, what
the script is, etc. For example, consider the Monk collection1 [102], a large and diverse
database of historical handwritten documents containing large amounts of variation in style,
language, and script. The material contained in the Monk collection varies from Western
medieval, Western administrative and diaries from 1400-1900, to Chinese, Hebrew, Arabic,
and Egyptian hieroglyphs, as well as low-resource language variants. The images in the Monk
collection often contain additional metadata provided by human labelers.

We ask the question how modern HTR models can be designed in such a way as to be
flexible in taking into account additional metadata that comes along with handwriting images.

1http://monk.hpc.rug.nl/

6

http://monk.hpc.rug.nl/

Specifically, we consider one of the most common kinds of metadata for handwriting, namely
writer identity. This can be the real-life identity of the writer, or simply an anonymous label
indicating that a set of handwriting images is produced by the same writer. We thus ask
the question how additional information about the writer of a handwriting image can be
used to efficiently improve recognition. This is useful because it is generally not possible to
capture all relevant handwriting variations in a single dataset. The writer identity provides
an additional signal source that can be used to constrain the expected variation in pixel and
character sequence space. Essentially, there are two problems at hand: Improving recognition
accuracy for writers that have been seen during training, and improving recognition accuracy
for novel writers whose handwriting may lie outside the training distribution. We will be
focusing mainly on the latter problem.

A change in writer is a manifestation of distributional shift, i.e., a change in the joint
probability distribution of pixels and character sequences. For example, certain letters exhibit
more variation across writers than others. The letter “k” is more likely to exhibit variation
across writers than a more “neutral” letter such as the “o”. In the ideal case, we would cap-
ture this distributional shift by considering distributions conditioned on the writer identity.
This notion of conditionality is elegantly expressed within the framework of Bayesian statis-
tics. Generically speaking, Bayesian statistics deals with updating a current hypothesis H as
additional evidence E comes in. This is commonly known as Bayes’ rule:

P (H|E) =
P (E|H)P (H)

P (E)
(1.1)

where P (H|E) is a conditional probability indicating the probability of H given E. We
can use the same notation for the case of HTR. If we assume that the writer identity w for
a handwritten image I can meaningfully inform a transcription T , we can express this as a
change in the data distribution by including w:

P (T |I) 6= P (T |I, w) (1.2)

In other words, we now model the target probability conditioned on the input image and
the writer identity. The Bayesian notation thus provides a flexible way to include various
kinds of conditionals into a modeling framework. Unfortunately, Bayesian statistics applied
in practice tends to become problematic for high-dimensional probability distributions, where
the computational complexity of modeling such a distribution becomes prohibitively expensive.
However, the underlying conceptual idea is still highly relevant.

The issue of how to effectively include writer identity into a HTR neural network as a
conditioning variable as shown on the right side of Eq. 1.2 is one of the central questions of this
research. It is important to note that the potential benefit of explicitly including writer identity
as a conditional variable cannot easily be decoupled from architectural choice. For example,
Hidden Markov Models [10] have been a common choice for HTR in the past, and methods
have been developed to include writer identity in such models. However, these methods are
often not useable for modern approaches to HTR using deep neural networks, which make use
of powerful hierarchical representations that outperform methods of the past. In this sense,

7

the more suitable question to ask is whether state-of-the-art deep learning approaches to HTR
can benefit from explicit writer information in the first place. For example, a convolutional
neural network (specialized to process images) may learn convolutional kernels that are good
at detecting cursive letter shapes. If the cursive style is modeled well enough, the added
value of adaptation based on information about whether a style is cursive or not may prove
negligible. Thus, in order to adapt effectively based on style information, there is a clear need
to identify what exactly the model has not learned yet. In the case of writer-based adaptation,
the question can be formulated as “what novelty does this new writer introduce, that is not
effectively handled by the neural network?”. At the same time, the question then also rises
what signal source can be provided to allow for adaptation, as well as the non-trivial question
of how to effectively include such information into a HTR model.

Using a conditional variable to steer the model output is commonly seen in generative
networks such as Generative Adversarial Networks (GAN) [32]. The quintessential example of
this is the Conditional GAN (or cGAN) [72], an extension of the generator and discriminator
models used in a traditional GAN where an additional conditional variable is part of the input.
For generative models, this can serve as a way to constrain the stochastic output space. For
example, in the case of generating images of handwritten digits, the conditional variable can
indicate what number from 0 to 9 should be generated. However, generative models generally
perform a fundamentally different task than discriminative models (which we are concerned
with in this research), and the benefit of explicit conditionality for discriminative models is
less clear.

Recently, a paper was published by Bhunia et al. [13] which employs meta-learning to
flexibly adapt HTR models to different writers, seemingly with great success. Meta-learning
(also known as learning-to-learn) is currently an active area of research [44]. Broadly speaking,
meta-learning is concerned with improving the learning algorithm itself. Oftentimes, the idea
is to adapt a learning algorithm to a new task based on a small number of task-specific
examples. The aim is to learn underlying meta-knowledge that can be transferred to various
tasks, even those unseen during training. The paper by Bhunia et al. (2021) makes use of
a modified form of model-agnostic meta-learning (MAML) [28] which they call MetaHTR.
This work formed the initial inspiration for the current research. We will be exploring several
versions of the MAML approach in later chapters and will test its ability to perform writer-
specific adaptation.

Additionally, we experiment with several other approaches. The first approach is based
on writer codes : Compact vector representations of individual writers that are supposed to
capture the most relevant information about a writer to allow for effective adaptation. A
writer code can be learned, or explicitly given as part of the model input. The codes can be
inserted into a trained HTR model by adjusting the parameters of batch normalization layers.
We experiment with several approaches to creating such a writer code: One based on learned
feature vectors, and one based on traditional handcrafted features used for writer identifica-
tion. Lastly, we employ an approach originating from literature on domain adaptation, where
statistics for intermediate normalization layers are dynamically adjusted based on individual
writer statistics.

8

Let us now formulate the primary research question for the current research:

Can state-of-the-art deep learning-based HTR models benefit
from writer identity as a conditioning variable?

To help answer the primary research question, we pose three secondary research questions:

1. How can writer information be represented in a way that is effective for facilitating
adaptation and improving recognition performance?

2. What is a suitable method to include writer information in a state-of-the-art deep
learning-based HTR architecture?

3. Does architectural choice play a meaningful factor in facilitating effective adaptation?

These research questions will be answered in the following chapters. We summarize the
contributions in this thesis as follows:

� We show that MAML-based methods applied to a trained HTR model can lead to
improved recognition accuracy, showing an improvement between 1.4 and 2.0 word error
rate compared to a naive finetuning baseline;

� We test the capability of MetaHTR to perform writer-specific adaptation, finding that
it leads to an improvement of 0.7 word error rate for a deep HTR model, but shows no
significant effect for smaller models;

� We analyze how a trained HTR model can be effectively adapted based on writer-
specific vector representations, finding that finetuning batch normalization scale and
bias parameters can be an effective way to obtain additional performance gains, even
without writer-specific information;

� Finally, we find no concrete benefit to including writer-specific vector representations
into a trained HTR model.

This thesis is structured as follows. In Chapter 2, we provide background informa-
tion regarding relevant topics, as well as related work. In Chapter 3, we propose several
methods for writer-adaptive HTR, as well as experiments to verify their performance. In
Chapter 4, we show results for the proposed methods, and finally, in Chapter 5, we dis-
cuss the results and future work. Code used for this research will be released at https:

//github.com/tobiasvanderwerff/master-thesis.

9

https://github.com/tobiasvanderwerff/master-thesis
https://github.com/tobiasvanderwerff/master-thesis

Chapter 2

Background

2.1 Neural networks and deep learning

The current section will highlight some key aspects of deep learning and neural networks that
the reader should be aware of. Explanations of various concepts will be brief, and are not
intended as a comprehensive introduction to neural networks. For this, the reader is referred
to [31].

In a mathematical sense, neural networks are powerful function approximators capable
of modeling complex probability distributions. At a conceptual level, deep learning revolves
around creating neural networks that are sufficiently deep (referring to the number of layers
in the network) to learn complex concepts in a hierarchical manner. In this way, complex
representations are built out of other, simpler representations. For example, a convolutional
neural network (CNN) – a neural network architecture often used for image processing –, builds
upon crude visual shapes such as corners and contours in order to represent more complex
shapes deeper into the network (such as the notion of a cat or dog). The quintessential
deep learning model is the multilayer perceptron or MLP (shown in Fig. 2.1), which can be
represented as a mapping y = fθ(x), where θ is a vector of learned parameters, also referred
to as the weights of the network.

The output of a single layer l of a MLP can be represented as a matrix-vector multiplication,
followed by the addition of a bias vector and a non-linear activation function,

zl = σ(Wlzl−1 + bl) (2.1)

where zl−1 is the output from the previous layer in the network, Wl and bl are learnable
parameters for layer l, and σ is a non-linear activation function. The activation function
serves to explicitly make the layer transformation non-linear, in order to increase its modeling
capacity.

At the most basic level, deep neural networks consist of many consecutive layers such as the
one shown in (2.1). Besides the MLP architecture, many specialized architectures exist, such
as Convolutional Neural Networks for image processing, and LSTMs [42] or Transformers [103]
for sequence processing tasks. We will not cover these architectures in depth here.

10

Figure 2.1: Graph representation of a simple multilayer perceptron with three layers. Taken
from [36].

In order to learn the correct mapping from input to output, the learned parameters at
each layer have to encapsulate representations that are most relevant for the task at hand.
For example, a task could consist of mapping an input image of a dog (fed into the neural
network using the raw pixel values) to the dog species that the dog belongs to. The represen-
tations learned inside the neural network will have to contain meaningful information about
various dog features that allow the network to make a correct classification of the species.
This is therefore also known as representation learning, where features are learned inside the
model itself. This approach contrasts with an earlier approach to machine learning building
on so-called handcrafted features, relying on human judgment and manual effort to design
appropriate features for a task. Instead, neural networks make use of learned features trained
using gradient descent (introduced in Section 2.1.2). In other words, we do not explicitly
tell a model how input data should be processed to produce a desired outcome. Instead, we
simply design the computational infrastructure for the input/output mapping, and let the
model itself learn the most suitable way to process the data. Given enough relevant data, a
deep neural network will be able to learn representations that are appropriate for performing
a particular task, such as classifying the content of an image.

2.1.1 Cost functions

Training a neural network requires specifying a cost function: A differentiable function of the
learned parameters that measures the performance of the model. The particular cost function
of choice depends on the task at hand. Most neural networks employ the cross-entropy cost
function, which assumes that the output is a probability function p(y|x; θ), where y is a target

11

variable and x the input. The cost (or loss) for a single input-output pair is then of the form

L(x, y; θ) = − log p(y|x; θ) (2.2)

Or for an entire dataset D = {(x1, y1), (x2, y2), . . . , (xN , yN)},

L(D; θ) = − 1

N

N∑
i=1

log p(yi|xi; θ) (2.3)

An important requirement of any cost function is that its gradient must be large enough
to serve as a guide for the learning algorithm. This is an important principle in designing cost
functions, but also for designing neural network architectures. Cost functions or activation
functions that saturate (become very flat) are generally not a good choice in that they vio-
late this principle. An example of this in practice is the replacement of the logistic sigmoid
activation function (which saturates for large regions of the input space), with the rectified
linear unit (ReLU) activation function (which is nearly linear and has more stable gradients
of larger magnitude).

Although the cost function acts as an optimization metric for training a neural network, it is
usually not used directly to measure model performance. Instead, a specialized performance
metric is chosen that more directly measures the model performance, e.g., the number of
correctly classified examples. The performance metric of choice depends on the task at hand
(for the task in this research, we define appropriate metrics in Section 3.2).

In order to get a more accurate picture of model performance on unseen data, datasets
are commonly split into three disjoint sets: a training set, validation set, and a test set. The
training set is used to train the model; the validation set is used for the purpose of tuning
hyperparameters, and the test set is used as a final evaluation of the model performance.

A common phenomenon occurs when a neural network memorizes spurious correlations
present in the training set instead of learning representations that generalize to unseen data.
This is known as overfitting, and can be measured by considering the gap in training perfor-
mance and validation performance. Overfitting provides yet another reason why performance
is not measured directly on training data, but on another set not seen during training. The
way overfitting is handled is an aspect of deep learning which differs from the field of statisti-
cal learning theory (e.g. [37]), a field from which many of the principles of deep learning are
derived. A point of departure between the two fields lies in the idea that model complexity,
expressed as the number of parameters, can be increased to large numbers without catas-
trophic overfitting. Modern neural networks can consist of millions of parameters, commonly
exceeding the number of data points available for training.

Commonly, the cost function will include an additional term called the regularization term,
designed to mitigate overfitting. In the context of machine learning, this is commonly referred
to as weight decay. The total loss function is then of the following form

L = L(D; θ) +R (2.4)

12

where R is a regularization term. For example, in the case of weight decay, this term is a
function of the magnitude of the parameters θ. Other regularization methods exist for neural
networks that are not included in the cost function – most commonly the dropout method [95].

2.1.2 Stochastic gradient descent

Modern neural networks are trained through an iterative, gradient-based procedure called
stochastic gradient descent (SGD). It optimizes a specified cost function using iterative up-
dates. A single update is of the form

θ ← θ − α∇θL (2.5)

where α is a predefined learning rate, controlling the magnitude of the updates. An
important aspect of these updates is that the loss function is not measured over the entire
training dataset, but rather over randomly sampled batches of data, also called minibatches.

Since minibatches are generally much smaller than entire datasets (generally chosen to
range between 1 to a few hundred examples), computing a single gradient descent update is
much less computationally expensive. By randomly sampling batches of data from the dataset,
the cost function gradient is an approximation of the true gradient. By sampling minibatches
randomly – and not in the same order every time – the approximation of the gradient is not
influenced by the ordering of the examples in the dataset.

Although SGD is an important algorithm for training neural networks, it is generally
not used in the form presented in (2.5). Instead, many methods have been proposed to
make gradient-based training run more smoothly. One of the most commonly used methods
is Adam [56], but many other methods exist. We will not provide further details on such
methods here; the reader is referred to [31] for an overview. The question of what method is
generally preferable is far from settled, and often depends on the nature of the task at hand,
as well as the personal preference of the practitioner.

2.1.3 Normalization methods

Normalization layers are commonly used in modern neural networks. As they will play a
prominent role in future chapters – the Batch Normalization method in particular –, we cover
them here. In a general sense, neural network normalization involves normalizing intermediate
layer activations of a neural network to have zero mean and unit variance.

Batch normalization (Batch Norm or BN) [47] is one of the most prominent normalization
methods, used in well-known computer vision architectures such as ResNet [39] and Inception-
v3 [97]. For Batch Norm, normalization statistics are calculated over a full minibatch of
activations. Applied to a minibatch of activations B = {x1,...,m}, batch normalization layers
are of the following form:

yi =
xi − µB√
σ2
B + ε

· γ + β (2.6)

13

where

µB =
1

m

m∑
i=1

xi (2.7)

σ2
B =

1

m

m∑
i=1

(xi − µB)2 (2.8)

γ and β are learnable parameter vectors of size equal to the number of channels in the
input. The ε parameter is a small constant added for numerical stability.

As an example, consider an intermediate layer input for a CNN network, with shape
(N,C,H,W), where N is the batch axis, C the channel axis, and (H,W) the spatial axes.
Batch normalization then calculates µ and σ along the (N,H,W) axes and normalizes each
channel independently. Fig. 2.2 displays this graphically, along with a few other common
normalization strategies.

The learnable parameters γ and β are an important component of Batch Norm because
they enable the layer output to represent the identity transform if needed (negating the nor-
malization).

The original explanation for the effectiveness of Batch Norm was that it reduces “internal
covariate shift”, referring to changes in a layer’s input distribution during training. However,
more recently, evidence has been put forward indicating that Batch Norm instead leads to
reduced sensitivity to weight initialization [83]. This manifests itself in smoother optimization
landscapes, which in turn allow for easier training with higher learning rates and reduced
sensitivity to hyperparameter settings.

One of the downsides of Batch Normalization is its dependence on batch size. For smaller
batch sizes, the estimate of the mean and variance will be less accurate. It is standard practice
to use the statistics in a single batch for normalization during training, while stored statistics
accumulated during training are used at test time to reduce the dependence on batch size.
The discrepancy between train and test time statistics used for normalization can lead to
performance differences between the two modes. To reduce the dependence on batch size,
several modifications have been proposed, most notably batch renormalization [46] and group
normalization [110].

2.1.4 Other ingredients for successful neural network training

Neural networks are not a recent invention, dating back to the late 50s to Frank Rosenblatt’s
brain-inspired perceptron [79]. However, it is only until relatively recently that deep networks
have been successfully trained on complex tasks (e.g. [59, 39]). Factors like numerical instabil-
ity, too slow convergence, or poor model quality largely prevented the successful application
of deep networks. The relatively recent success of large neural networks is mostly due to
several important innovations in the field. We here provide a brief overview of some of the
most important innovations.

14

Figure 2.2: Different normalization methods used in neural networks. Each subplot shows
a feature map tensor, with N as the batch axis, C as the channel axis, and (H,W) as the
spatial axes. The pixels in blue are normalized by the same mean and variance, computed by
aggregating the values of these pixels. Image taken from [110]

� Backpropagation for gradient descent. The error backpropagation algorithm [80] serves
as a way to efficiently calculate gradients for neural network training via gradient descent,
through the application of the chain rule. It served as a key innovation for training deeper
neural networks.

� Better methods for weight initialization. Due to a large number of sequential matrix-
vector multiplications, intermediate layer outputs, as well as their corresponding gradi-
ents, can drastically increase or decrease in magnitude, leading to numerical instability
issues. This is most commonly known as vanishing or exploding gradients. Due to
the high sensitivity to weight initialization, the choice of initial weights can determine
whether a model will converge at all. Modern weight initialization schemes are often
simple and heuristic (e.g., [30, 38]).

� Adaptive learning rates. The learning rate (shown in Eq. 2.5) is widely established to
be one of if not the most important hyperparameter to tune, because it has a significant
impact on model performance. However, using the same scalar learning rate for all pa-
rameters ignores differences in optimization sensitivity along different parameter axes.
Algorithms for adaptive learning rates address this issue by using per-weight learning
rates that are dynamically updated during training. At this moment, the Adam algo-
rithm [56] is one of the most widely used methods for this. It is regarded as being fairly
robust to the choice of hyperparameters, which makes it a relatively easy choice for most
tasks.

Other important factors include the increasing capacity and decreasing price of computing
hardware, as well as the availability of large datasets. A common thread throughout deep
learning research is that innovations are often found and verified experimentally, rather than
providing hard theoretical guarantees about new techniques. In this sense, deep learning
research is very much an experimental science.

15

2.2 Offline handwritten text recognition

Given these neural network essentials, we now turn to the task of the current research: Offline
handwritten text recognition – commonly referred to in this research as HTR. The goal of
offline handwritten text recognition is to recover the handwritten text represented in an input
image, containing one or several handwritten words and/or letters. Another way to describe
the task is that of turning images of handwritten text into letter codes. Depending on the
context, input images can contain handwritten text at the word, line, or even document-
level [93]. Research on handwritten text recognition dates back to the early sixties [70], but
we will only consider modern approaches to HTR making use of deep neural networks, which
have been most successful thus far.

From a probabilistic interpretation, an HTR model fθ – corresponding to a deep neural
network –, is trained to maximize the probability of the correct transcription given an input
image,

θ∗ = arg max
θ

∑
(I,Y)∈D

p(Y |I; θ) (2.9)

Here, p(.) refers to the probability distribution modelled by the neural network given its
weights θ, I represents the input image and Y = (y1, y2, . . . , yL) the ground truth character
sequence, where each yi is picked from a vocabulary V (such as ASCII characters). The
full-sequence probability used during training is the multiplication of the invididual character
probabilities conditioned on the previous ground truth characters in the sequence:

p(Y |I; θ) =
L∏
t=1

p(Yt = yt|y<t, I; θ) (2.10)

The training dataset D = {(I1, Y1), (I2, Y2), . . . , (IN , YN)} consists of tuples containing
an image Ii and the corresponding character sequence Yi. The cost function is derived from
cross-entropy, which, for a single example, is of the following form:

L(I, Y ; θ) = − 1

L
log(p(Y |I; θ))

= − 1

L

L∑
t=1

log p(Yt = yt|y<t, I; θ)
(2.11)

Modern architectures for HTR most commonly consist of a CNN backbone for initial
processing of the image, followed by a sequence modeling architecture such as a Recurrent
Neural Network (RNN) or Transformer, sometimes combined with an additional decoding
module based on CTC or attention, to predict a sequence of output tokens in an autoregressive
manner.

We now discuss two state-of-the-art models for offline handwritten text recognition that
will be used throughout this research. In particular, we will be focusing on HTR for word

16

Figure 2.3: Schematic of SAR, the LSTM-based model used in [61].

images. We will refer to the architectures that follow as base models because they will be used
as a starting point for most of the methods discussed in Chapter 3.

2.2.1 LSTM-based model

Our first base model [61] is based on the Long short-term memory (LSTM) architecture [42].
The full architecture is displayed in Fig. 2.3 and consists of a ResNet image processing back-
bone, LSTM encoder, LSTM decoder, and a 2-dimensional attention module. We will refer
to this architecture as SAR (Show, Attend, and Read), and add a suffix indicating what im-
age encoder is used (e.g., SAR-31 indicates that a ResNet with 31 layers is used). As the
name of the paper suggests (a “simple and strong baseline”), the architecture itself is rela-
tively straightforward, consisting for the most part of standard neural network building blocks.
Although the architecture is presented for the task of natural scene text recognition, the gen-
erality of the architecture makes it such that it can just as easily be applied to handwritten
text.

CNN backbone

The CNN backbone consists of a modified ResNet [39] with the final average-pooling and
linear projection layer removed. The authors use a 31-layer ResNet, with small modifications
specifically for the HTR task [91]. It outputs a 2-dimensional feature map, which is used
by the consecutive LSTM encoder to extract a holistic feature vector for the whole image,
and also serves as context for the 2D attention network. The ResNet architecture consists of
31 layers and 2 × 1 max pooling for some layers as proposed in [91]. The modified pooling
kernels preserve more information along the horizontal axis and are supposed to benefit the
recognition of narrow-shaped characters (e.g. ‘i’, ‘l’). However, due to the large number of
parameters that this architecture has (see Appendix B.1), we also make use of a standard
ResNet-18 architecture. This allows for faster experimentation and fewer potential problems
with fitting all the necessary components into GPU memory.

17

Figure 2.4: Structure of the LSTM encoder used in SAR. Here, v:,i represents the i’th column
of the 2D feature map V. At each time step, a single column feature is max-pooled along the
vertical direction, and then fed into the LSTM. Figure taken from [61].

LSTM encoder

The LSTM encoder processes the extracted feature map as a sequence of feature vectors. The
2D feature map V extracted from the CNN is reduced to its horizontal dimension by applying
max-pooling across the vertical dimension, after which it is sequentially fed into an LSTM.
This is displayed visually in Fig. 2.4. After all image columns have been consumed by the
LSTM, the final hidden state hW is used as a fixed-size representation of the input image and
provided for the decoding that follows.

LSTM decoder

The LSTM encoder is followed by another LSTM, used for decoding. This is shown in Fig. 2.5.
The last hidden state hW of the LSTM encoder is used as the initial input for the decoder.
Then for the first time step, a special start-of-sequence token (<SOS>) is fed as input to the
LSTM. At each timestep of the LSTM, a new character is sampled autoregressively. Each
input at the timesteps that follow is either 1) the previous character from the ground truth
character sequence (also known as teacher forcing), or 2) the sampled character from the
previous timestep (at test time). If the latter is the case, the end of the sampling procedure
is signified by sampling a special end-of-sequence token (<EOS>).

All token inputs are fed in as vector representations, followed by a linear transformation,
ψ(.). After being fed through an LSTM cell along with the previous hidden state, the timestep
prediction is then calculated as

yt = φ(h′t, gt) = softmax(Wo[h
′
t; gt]) (2.12)

where h′t is the current hidden state and gt is the output of the attention module. Wo is a
linear transformation, which maps the features to a vector whose size is equal to the number
of character classes.

18

Figure 2.5: Structure of the LSTM decoder used in SAR. The last hidden state from the
LSTM encoder, hW , is fed as initial input to the decoder, followed by the start-of-sequence
token and characters from the previous time steps. If teacher forcing is not used, sampling is
halted by sampling the end-of-sequence token. At each time step t, the output yt is computed
as φ(h′t,gt), where h′t is the current hidden state and gt is a glimpse vector obtained from the
2D attention module. Figure taken from [61].

The attention module is a modification of the standard 1D attention module for dealing
with a 2D spatial layout. It takes into account neighborhood information in the 2D plane:

eij = tanh(Wvvij +
∑

p,q∈Nij
W̃p−i,q−j · vpq + Whh

′
t)

αij = softmax(wT
e · eij)

gt =
∑

i,j αijvij, i = 1, . . . , H, j = 1, . . . ,W

Explanation of the symbols: vij is the local feature vector at position (i, j) in V; Nij is

the eight-neighborhood around this position; Wv,Wh,W̃ are learned linear transformations;
αij is the attention weight at location (i, j); and gt is the weighted sum of local features, also
known as a glimpse. The difference with a traditional attention module is the addition of the∑

p,q∈Nij
W̃p−i,q−j · vpq term when weighing vij.

2.2.2 Transformer-based model

With the success of the Transformer architecture [103] in the field of Natural Language Pro-
cessing, there has been a trend in recent years [51, 93, 119, 62] to replace the attention-based
LSTM [42] with the Transformer architecture, which allows for efficient parallelization. This
is especially relevant for modeling longer sequences, e.g. lines or paragraphs, where the recur-
rence and lack of parellization of the LSTM architecture can become a bottleneck.

We use a recent architecture proposed in [93], displayed in Fig. 2.6. It consists of a CNN
backbone combined with a standard Transformer for decoding the visual feature map into a

19

Figure 2.6: Schematic of the Transformer-based model used in [93]. It combines a CNN
backbone (referred to in the figure as an encoder) with a Transformer sequence decoder.

character sequence. The architecture was originally proposed for full-document HTR, but due
to its generic nature, it can easily be applied to both word and line images without any real
modifications. We will refer to this model as FPHTR, with a suffix indicating the number of
layers for the ResNet encoder that is used, e.g. FPHTR-18 indicates that a ResNet with 18
layers is used.

CNN backbone

Just like in the LSTM-based model, the CNN backbone consists of a ResNet architecture
with the final average-pooling and linear projection layer removed. We use the same ResNet
architecture as for SAR, with 18 or 31 layers, consisting of 11.3M and 46.0M parameters,
respectively (see Table B.1). The CNN takes as input an image and produces as output a 2D
feature map with hidden size dmodel. A 2D position encoding based on sinusoidal functions is
added (Equation 2.13) and the feature map is flattened into a 1D sequence of feature vectors –
each representing a position in the image –, that can be processed by the Transformer decoder.

PE(y, 2i) = sin(y/100002i/dmodel)

PE(y, 2i+ 1) = cos(y/100002i/dmodel)

PE(x, dmodel/2 + 2i) = sin(x/100002i/dmodel)

PE(x, dmodel/2 + 2i+ 1) = cos(x/100002i/dmodel)

i ∈ [0, dmodel/4)

(2.13)

20

Transformer decoder

The decoder is a standard Transformer architecture [103] with non-causal attention to the
encoder output (it can attend to the entire output of the encoder), and causal self-attention
(it can only attend to past positions of its character input).

Input vectors are enhanced with 1D position encodings, as in [103]. The “optional line
number encoding” displayed in Fig. 2.6 is omitted because within the current context the
focus is on word images – not line images.

Sampling is done autoregressively by feeding in all previously sampled tokens as input and
taking the argmax of the final layer output as the next sampled token.

2.3 Meta-learning

In this section, we provide relevant knowledge concerning the topic of meta-learning. Meta-
learning is broadly defined as the process of improving a learning algorithm over multiple
learning episodes [44]. It serves as one of the main inspirations for the work proposed in this
research.

This section is structured as follows. First, we discuss the underlying framework used for
meta-learning and how it relates to the HTR task in Section 2.3.1. Then, in Section 2.3.2, we
turn to the meta-learning algorithm used in the current research known as MAML. Lastly, in
Section 2.3.3, we explain a recent approach called MetaHTR that applies MAML to the task
of writer-adaptive HTR.

2.3.1 Episodic learning

Neural network-based meta-learning makes use of an alternate framework for training and
evaluating models, sometimes referred to as episodic learning [44]. One of the distinguishing
characteristics of this framework is that it requires a labeled batch of task-specific data at test
time that can be used to update an existing base model. For example, the MAML algorithm,
which will discussed in Section 2.3.2, trains a model that – at least in most cases – requires
adaptation on a batch of labeled task-specific inputs to function properly.

Note that this approach to learning is a different kind of conditioning than what has been
discussed so far. Rather than conditioning a model output on a specific variable such as the
writer identity, a model is now conditioned on a small set of images that share a common
feature (such as the writer who produced the handwriting samples). For the case of few-shot
learning (a common meta-learning problem), the adaptation batch contains examples of a new
output class that should be learned. The neural network is then conditioned on this specific
task.

In contrast to regular neural network learning, learning here occurs over multiple learning
episodes, using a limited amount of adaptation data, combined with test data to evaluate
the effectiveness of the adaptation. Within the meta-learning literature, these two sets are
commonly referred to as the support set and the query set, respectively. In the K-shot learning

21

setting, a model is adapted based on K samples sharing a piece of conditional information,
which we denote as the conditional label l ∈ W . The current setup presumes that each sample
from a dataset contains a conditional label, and for simplicity it is presumed that a single
sample only contains a single conditional label.

For training a model, the label set W is split into three subsets: a training meta-set W tr,
validation meta-set Wval, and a testing meta-set W test. Each set contains a disjoint set of
labels, i.e., W tr ∩Wval ∩W test = ∅. This serves as a way to test how well the adaption works
on unseen conditional labels. During training, we sample a set of labels L ⊂ W and use each
l ∈ L to sample from the label-specific set Dl a support set Dtr consisting of K examples, and
a query set Dval containing all remaining examples, such that Dl = Dtr ∪Deval. The support
set Dtr is used for fast adaptation of the model based on the label-specific examples, and
the query set Dval is used to estimate generalization performance on conditional label-specific
examples after adaptation on Dtr.

During episodic learning, the parameters of a base model fθ are adapted by applying some
differentiable function, leading to conditional label-specific parameters θ

′
i, with an update rule

of the form

θ
′

i = G(θ,Dtr) (2.14)

where G depends on the specifics of the conditional adaptation algorithm. In essence, one
of the primary goals of the current research is to explore what forms G can take to effectively
adapt to conditional information for the specific case of handwritten text recognition.

During this research, writer identity will be used as the primary piece of conditional in-
formation used to adapt a learning algorithm. Thus, each conditional label l corresponds to
a writer identity, i.e., Dl contains labeled data from a specific writer. Therefore, we will use
the terms “conditional label” and “writer identity” interchangeably in what follows. However,
it should be noted that using writer identity as the main piece of conditional information
is not the only option. For example, generic writing styles could also be used for episodic
learning, assuming that images can be clustered effectively by style. Using writer identity as
the primary conditional information in this research serves as a proof of concept for the idea
of conditional adaptation for handwriting recognition.

It is worth noting that the additional information source that the conditional label provides
is not so much in the label itself, but in the fact that each support batch used for adaptation
consists of samples that share the same conditional label. In contrast to regular learning
where a single batch would contain randomly sampled writers, knowing that a single batch
contains only a single writer provides additional information that can hopefully be utilized.
The primary challenge, therefore, lies in effectively utilizing this holistic knowledge related to
a batch of data to adapt a learning algorithm.

Rather than creating an adaptive model from scratch, we start from a trained neural net-
work base model trained in a standard way for the HTR task, as mentioned in Section 2.2.
Then, the base model should be modified to make adaptation possible. Ideally, the modifi-
cation required for making the model adaptive is as model-agnostic as possible and does not
require complete retraining of all the weights in the base model. This serves to make the

22

Algorithm 1 Model-agnostic meta-learning, as defined in [28].

Require: p(T): distribution over tasks
Require: α, β: step size hyperparameters

1: Randomly initialize θ
2: while not done do
3: Sample batch of tasks Ti ∼ p(T)
4: for all Ti do
5: Evaluate ∇θLTi(fθ) with respect to K examples
6: Compute adapted parameters with gradient descent: θ′i = θ − α∇θLTi(fθ)
7: end for
8: Update θ = θ − β∇θ

∑
Ti∼p(T) LTi(fθ′i)

9: end while

adaptive approach as flexible and non-intrusive as possible; ideally allowing it to be applied
to existing HTR models without too much additional effort in retraining or redesigning the
architecture.

During base learning of a learning algorithm fθ, the learning algorithm is trained to perform
handwritten text recognition, i.e., transcribing handwritten text from images. This stage of
training does not include any conditional information. Recall from Eq. 2.9 that an HTR
model is trained to maximize the probability of the correct transcription given the input
image. During the meta-learning stage, episodic learning is used to find the optimal model
parameters:

θ∗ = arg max
θ

El∈W

EDtr⊂Dl

 ∑
(I,Y)∈Dval=Dl\Dtr

p(Y |I; θ
′

i)

 (2.15)

Given this background on episodic learning, we now turn to the primary meta-learning
algorithm used in this research: model-agnostic meta-learning.

2.3.2 Model-agnostic meta-learning

Model-agnostic meta-learning (MAML) [28] is an approach to meta-learning aimed at finding
initial parameters θ that facilitate rapid adaptation. A model is adapted to varying tasks, and
the meta-learner aims to find initial model parameters that are sensitive to various tasks. The
purpose of MAML is not to directly optimize for any particular task, but rather to optimize
for rapid adaptability, where adaptation is done by performing a small number of gradient
updates on a support batch. Thus, whenever a new task arrives, a MAML-adapted model
should be able to rapidly adapt to that particular task.

As the name suggests, MAML is model-agnostic, which means that no assumptions are
made about the form of the model, other than to assume that it is parameterized by some
parameter vector θ and that the loss function is smooth enough in θ that gradient-based

23

learning can be employed. We consider a distribution over tasks p(T) to which a model
should be able to adapt. For example, for image classification, these tasks could represent
novel image classes, and samples from the task would represent images labeled with the task-
specific image class. During meta-training, a batch of tasks Ti ∼ p(T) is sampled, where
samples from each task are split up in a support set Dtr of size K for adaptation (where
typically K is relatively small, e.g., K ≤ 16), and a query set Dval for testing the task-specific
performance after adaptation.

Training is done using stochastic gradient descent (SGD), where the model parameters are
adapted to a task as follows:

θ′i = θ − α∇θLinner(Dtr
i ; θ) (2.16)

This is also referred to as the inner loop. The inner loop can consist of a single gradient
update, but can also possible be repeated several times using the updated parameters. After
inner loop adaptation, the adapted parameters θ

′
i are evaluated on the query set, and the

original parameters are updated by aggregating the loss over the sampled tasks:

θ ← θ − β∇θ

∑
Ti∼p(T)

Louter(Dval
i ; θ′i) (2.17)

This is known as the outer loop. It is important to note the subtle difference in the use
of the parameter vector θ in (2.16) and (2.17). The result of the inner loop in (2.16) is the
updated parameter vector θ′i, which is subsequently used to calculate the loss on the query
set Dval

i in the outer loop (2.17). The final gradient update however (2.17), is performed
with respect to the original parameters, and not with respect to the same parameters used
for calculating the outer loss. This also implies that the outer loop gradient update requires
backpropagating through multiple computational graphs, calculating second-order derivatives.

Whereas the inner loop optimizes for task-specific performance, the outer loop optimizes
for a parameter set θ so that the task-specific training is more efficient. This is referred to as
the meta-objective. In this way, the goal is to achieve a good generalization across a variety
of tasks. The full general case MAML algorithm using the notation from the original paper
is shown in Algorithm 1. Fig. 2.7 provides a visual representation of the MAML update.

Note that MAML requires defining two learning rates, α and β. However, since α is part of
an inner objective function optimized in the outer loop, it can be learned along with the model
parameters. This was originally proposed in [65], where the authors propose using a single
learned learning rate for each model parameter. In this way, we optimize not just for good
initial parameters, but also for the learning rate and update direction used for adaptation (the
learning rate can be negative and thus change the direction of the update).

Although Algorithm 1 suggests starting from random parameters, depending on the nature
of the tasks, it is also an option to start with pre-trained parameters. This means that in
some cases, MAML can be applied to already-trained models, which shows the flexibility of
this approach for adaptive learning.

24

Figure 2.7: Diagram of the MAML approach, taken from [28]. MAML optimizes for a repre-
sentation θ that can rapidly adapt to new tasks. After adapting the original parameters to
several task-specific parameter vectors θ∗i , the original model parameters are updated using
the aggregate of task-specific gradients with respect to θ.

2.3.3 MetaHTR

Given the backdrop of the MAML algorithm as described in the previous section and its
flexibility in handling changing data distributions, the question rises how this algorithm could
potentially be applied as an adaptive approach to handwritten text recognition. Since MAML
allows – at least in principle – absorbing information from related tasks to generalize to unseen
ones during testing, it could perhaps be applied in the same way to HTR, where the idea is
to generalize to arbitrary writing styles. To this end, Bhunia et al. [13] propose MetaHTR, a
writer-adaptive approach to HTR grounded in the MAML framework. Compared to several
baseline HTR models, MetaHTR shows increased performance on benchmark HTR datasets.
This framework is shown in Fig. 2.8. It is worth noting that the HTR model architecture
specified in this figure (CNN + BiLSTM + GRU + attention module) is not specific to the
MetaHTR framework itself, and can be replaced by other HTR architectures.

Within the MetaHTR framework, each task instance Ti corresponds to a different writer.
The classification target however remains the same – the model still needs to produce a correct
transcription of the text displayed in an image. This distinguishes it from the usual MAML
setup for few-shot classification, where the classification targets themselves change as the tasks
change. For MetaHTR, the task merely serves as a piece of meta-data that can be used for
improving performance on a fixed model objective, namely transcribing text in an image.
This matches closely our problem definition where we would like to include conditional label
information to improve text recognition performance.

The MetaHTR approach aims to adapt general-purpose HTR models to specific writers
based on a limited amount of adaptation data. The underlying assumption, according to the
authors, is that “there is always a new writing style that is unobserved, and is drastically
different to the already captured”. By modeling knowledge across styles, the aim is to learn

25

Figure 2.8: Schematic of the MetaHTR approach as proposed in [13]. The optimization process
sequentially involves an inner loop (left) and outer loop (right). The inner loop trains pseudo-
updated model parameters θ′ on the support set, by means of the inner loss Linner weighted
by learnable character instance-specific weights γ. This also includes a learnable layer-wise
learning rate, α. The pseudo-updated parameters are evaluated in the outer loop by means
of the outer loss Louter on the validation set, after which the meta-parameters (θ, ψ, α) are
updated.

the general rules of handwritten text more effectively than could be done using regular HTR
training, where the model has no knowledge of commonalities in writing style among samples.

The full training process is summarized in Algorithm 2. It is good to emphasize once more
that after training MetaHTR, the model is now ready for adaptation using task-specific data
(which also holds for MAML more generally). In other words, the inference process requires
adapting the model to a batch of writer examples, after which the model can make predictions
on another set from the same writer. This process is summarized in Algorithm 3.

We now discuss the main modifications made to MAML to give rise to MetaHTR. The
authors propose two modifications to the MAML algorithm to make it more effective for HTR:
character instance-specific weights, and learnable layer-wise learning rates.

Character instance-specific weights

The authors conjecture that task adaptation could be made more efficient by additionally
learning weight values for each character instance-specific loss, such that the model adapts
better with respect to those characters having a high discrepancy. This leads to a modification
of the inner loop loss using instance weights. Given a ground truth character sequence Y =
{y1, y2, . . . , yL} and an image I, the cross-entropy loss used in the inner loop now uses an
additional weight value γt for each timestep t. This leads to an inner and outer loss of the

26

form

Linner = − 1

L

L∑
t=1

γt log p(yt|I; θ) (2.18)

Louter = − 1

L

L∑
t=1

log p(yt|I; θ) (2.19)

where (2.19) is the same as (2.11), and (2.18) additionaly includes γt values inside the
summation, denoted as character instance-specific weights. The inner and outer loop losses
are also displayed in Fig. 2.8. To ensure that the the loss instances – i.e., the summands
in (2.18) – correspond one-to-one to ground truth character instances, we always use teacher
forcing in the inner loop (see Section 3.3). This presumes the ground truth character sequence
is available, which is always the case in the inner loop.

In order to calculate γt, gradient information from the final classification layer is used.
The idea of using gradient information directly as input to another learned module originates
from earlier work that suggests the inner loop gradient contains relevant information related
to disagreement with respect to the model’s initialization parameters [9]. Specifically, let the
weights of the final classification be denoted as φ. The gradients of the t’th instance loss
with respect to the weights of the final classification layer are used, denoted as ∇φLt, in
combination with the gradients of the mean loss (Eq. 2.11), denoted as ∇φL. Both inputs are
concatenated and fed as input to a network gψ,

γt = gψ([∇φLt;∇φL]) (2.20)

where gψ takes the form of a 3-layer MLP with parameters ψ, followed by a sigmoid layer
to produce a scalar output value in the range [0, 1].

Learnable layer-wise learning rates

As mentioned in Section 2.3.2, the inner loop learning rate used in MAML can be replaced
by a learnable one, since it resides inside the outer loop objective function and can thus be
differentiated as part of the outer loop gradient. Specifying a learnable learning rate for every
model parameter is more expressive since it allows the model to express natural differences
between what parameters should be updated more or less. However, using a learning rate for
every parameter also implies a doubling in the parameter count. Therefore, a compromise is
used, namely layer-wise learnable learning rates. Every layer in the model receives a individual
learning rate, which is trained along with all the other parameters. This is also shown in
Algorithm 2. In other words, in the inner loop update rule specified in (2.16), α is now a
vector of size equal to the number of layers in the model.

27

Algorithm 2 Training for MetaHTR, adapted from [13].

Require: Training dataset D =
{
D1,D2, . . . ,D|Wtr|

}
Require: β: learning rate

1: Initialize θ, ψ, α
2: while not done do
3: Sample writer-specific Ti =

{
Dtr
i , D

val
i

}
∼ p(T)

4: for all Ti do
5: Evaluate inner objective: Linner(θ;Dtr

i)
6: Adapt: θ′i = θ − α∇θLinner(θ;Dtr

i)
7: Compute outer objective: Louter(θ′i;Dval

i)
8: end for
9: Update meta-parameters: (θ, ψ, α)← (θ, ψ, α)− β∇(θ,ψ,α)

∑
Ti L

outer(θ′i;D
val)

10: end while

Algorithm 3 Inference for MetaHTR, adapted from [13].

Require: Testing dataset D =
{
D1,D2, . . . ,D|Wtest|

}
Require: Meta-learned model parameters {θ, ψ, α}
Require: A given writer j

1: Evaluate inner objective: Linner(θ;Dtr
j)

2: Adapt: θ′j = θ − α∇θLinner(θ;Dtr
j)

return Writer-specialized HTR model parameters θ′j

2.4 Related work

In this section, we provide an overview of related works that connect to the topic of the current
research. A recent trend in deep learning is the gradual convergence to architectures that are
largely domain-agnostic, minimizing domain and task assumptions [50]. Because of this, we
approach the problem of writer-adaptive HTR broadly, by looking not only at the literature
on handwriting recognition but also at various distinct subfields of deep learning that may
provide relevant insights.

2.4.1 Handwritten text recognition

Early approaches to HTR often employed Hidden Markov Models [14] (HMM). More recently,
the field of HTR has progressed from HMM-based methods to end-to-end trainable neural
networks with many layers. Recurrent neural networks (RNN), and in particular Multidi-
mensional Long Short-Term Memory (MDLSTM), networks [34] have been commonly used
sequence modeling architectures for HTR models [76]. The MDLSTM architecture in combi-
nation with the Connectionist Temporal Classification [33] loss (CTC) served as a replacement
for Hidden Markov Model-based methods [35]. Whereas standard RNN architectures process
data along a one-dimensional axis – e.g., a time axis –, the MDLSTM architecture allows

28

recurrence across multi-dimensional sequences, such as images.
In more recent years, it has been observed that the expensive recurrence of the MDLSTM

could be replaced by a CNN + bidirectional LSTM architecture [91, 76]. The CNN-RNN
hybrid + CTC architecture has been a commonly used architecture in recent years (e.g., [27,
96, 107]). For example, in [27], a spatial transformer network, residual convolutional blocks
(ResNet-18), stacked BiLSTMs and a CTC layer are used.

Although CTC has been a common decoding method, some of its downsides – such as
the inability to consider linguistic dependency across tokens – have led to architectures that
replace CTC in favor of attention modules [8]. Attention-based encoder-decoder architectures
have reached state-of-the-art performance in recent years [71]. Attention alleviates constraints
on input image sizes and the need for segmentation or image rectification [49] for irregular
images. This thus allows for simplification in the design of HTR architectures. In [61], a
ResNet-31 is combined with an LSTM-based encoder-decoder along with a 2-dimensional
attention module for irregular text recognition in natural scene images.

A trend in recent years has been to replace the linear recurrence of RNNs with the more
parallelizable Transformer architecture and attention-based approaches more broadly. In a
recent work [24], various architectures for universal text line recognition are studied, using
various encoder and decoder families. The authors find that a CNN backbone for extracting
visual features, coupled with a Transformer encoder, a CTC decoder, and an explicit language
model is the most effective approach for recognition of line strips.

Building on top of the recent trend [25] of using Transformer-only architectures for vision
tasks, [62] explore an end-to-end Transformer encoder-decoder architecture for text recog-
nition, initialized with a pretrained vision Transformer for extracting visual features and a
pretrained RoBERTa [67] Transformer for sequence decoding. After initialization, the model
is pretrained on large-scale synthetic handwritten images and finetuned on a human-labeled
dataset.

2.4.2 Writer identification and verification

Let us now consider related tasks in the field of Handwriting Recognition. In the fields of
writer identification and verification [88], writer identity is the primary target. These tasks
are potentially relevant since the incorporation and representation of writer-based conditional
information is one of the fundamental questions present in the current research.

Numerous approaches have been proposed for writer identification based on handcrafted
features, where, roughly speaking, the characteristics of writer individuality can be based
on textural or character-shape features (“allographs”). The Hinge feature [16] attempts to
characterize writer individuality independently of the textual content of the written samples.
It uses a probability distribution of the angle combination of two hinged edge fragments to
characterize writer individuality.

Connected-Component Contours [90] uses a codebook of prototypical character shapes as
a reference for describing new samples of handwriting, using connected components as the
basis for constructing the codebook. The histogram of normalized distances to the prototypes

29

is then used as the feature vector for new handwriting samples.
Approaches also exist based on learned features. In [40], multi-task learning with soft

parameter sharing is employed to enforce the emergence of reusable features for writer identi-
fication, using a single auxiliary task related to explicit attributes of handwritten word images.
The authors try out thee auxiliary tasks: word recognition, word length estimation and char-
acter attribute recognition, with word recognition and word length estimation performing
best.

2.4.3 Adaptation for speech recognition

A closely related subject to writer-based adaptation for HTR is that of adaptation for auto-
matic speech recognition [12] (ASR). Here too, there is a notion of speaker or writer identity
(a particular speaker producing the speech signal), as well as style (e.g., spoken language
dialects). Adaptation methods are commonly known under terms like speaker adaptation and
accent adaptation, and sometimes under the broader term of domain adaptation. In a similar
vein, speaker enrollment denotes using speaker-specific data to finetune a network to a par-
ticular speaker. Work on adaptive models has mostly been done in speaker adaptation – the
adaptation of a model to a target speaker [12]. This method dates back to the 1990s [109],
with numerous examples (e.g., [66, 1, 12]).

When it comes to creating compact representations of speaker style, the method proposed
in [1] is commonly referenced. This method involves learning speaker codes, meant to nor-
malize speaker variation in feature space. The speaker codes are integrated into a pretrained
model using a separately trained adaptation network, where the speaker codes and adaptation
network are jointly learned. At test time, speaker codes for unknown speakers are created by
randomly initializing a new code, followed by backpropagation on a small batch of speaker-
specific examples to update the code. Several follow-up papers have been introduced, e.g.,
adapting the method to CNN architectures [2], and feeding the speaker code into multiple
stages of the network [112]. The notion of speaker codes has also successfully been used for
speech synthesis [68, 43], i.e., producing acoustic signals based on textual input. The speaker
code modulates the output signal based on the specifics of the speaker code.

So-called identity vectors (or i-vectors), estimated using means from Gaussian Mixture
Models (GMM) trained on acoustic features [12], have also been used for speaker adaptation
(e.g., [84]) and speech synthesis (e.g., [111]). Such a code can be fed in as part of the model
input. For example, as auxiliary input in parallel with the regular acoustic featuress [85]. The
usage of other contextual information, such as gender and age, has also been attempted for
speaker adaptation [68].

2.4.4 Conditionality

The idea of including conditional variables into deep neural networks is commonly seen in the
case of conditional generative models [72], where they steer the generating function towards
a particular class of outputs. The conditioning variables can be discrete, e.g., generating

30

images conditioned on a particular digit [72], or continuous, e.g., conditioning on a style
representation [29, 54] or an image [48].

Another field where conditionality plays a major role is in the field of style transfer. Style
transfer refers to the generative process of extracting style information from an image and
applying it to the content of another image. Previous work in this field suggests that in order
to model a style, it can be sufficient to specialize scaling and shifting parameters after normal-
ization layers, which vary according to the style of the input [26]. Several works have applied
this approach to various normalization layers. For example, [54] and [26] both make use of
instance normalization layers [100], which are commonly used for normalizing image contrast.
This approach normalizes each channel of each image in a minibatch independently, in order to
normalize the contrast present in an image. A similar approach applied to the popular batch
normalization layer [47] is proposed in [20], called conditional batch normalization. In con-
trast to instance normalization, batch normalization calculates statistics over an entire batch
of images (see Fig 2.2). The conditional batch normalization method was originally proposed
for visual question answering, where it is used to modulate high-level image features from a
pretrained ResNet by means of a language embedding. In this case, the batch normalization
parameters are conditioned on linguistic input, i.e., a vector representation of a question in
the visual question answering task.

2.4.5 Transfer learning and domain adaptation

Transfer learning and domain adaptation refer to the situation where what has been learned in
one setting is exploited to improve generalization in another setting [31]. Domain adaptation
refers to the situation where the input distribution changes slightly (along with the optimal
input-output mapping), although the task remains the same. Transfer learning involves learn-
ing a different kind of target while the type of input remains the same, by reusing previously
learned features for a previous task. It is generally done by pretraining a large neural network
on large amounts of training data, and consequently reusing the model for various related
tasks, often by replacing the final layers of the network or finetuning parts of the network.
The assumption here is that the features learned by pretraining on a large corpus are reusable
for other tasks. For vision tasks, pretraining often involves training a CNN or Transformer
architecture on an image classification task on the ImageNet database [21, 81]. For Natural
Language Processing (NLP), an LSTM [45] or transformer-based model [22, 77] can be trained
on large amounts of (unlabeled) natural language.

In the case of NLP, training one model for several languages has shown to lead to useful
features across languages, even when training data in the target language is limited ([60, 19]),
recently outperforming specialized models for single languages [19] or specific language pairs
in the case of machine translation [99]. This means that well-resourced languages can be
used to train models that lay the foundation for representations generalizing across languages.
What’s more, such representations can become more robust and effective by considering data
across domains. However, it should be noted that such impressive results often build on a
combination of increasingly large models and datasets.

31

2.4.6 Meta-learning

Meta-learning, or learning-to-learn, is an alternative paradigm to traditional neural network
training, which aims to improve the learning algorithm itself [44]. By learning shared knowl-
edge across various tasks over multiple learning episodes, the aim is to improve future learning
performance.

The main meta-learning method we focus on here is Model-Agnostic Meta-Learning [28]
(MAML). MAML aims to find a parameter initialization such that a small number of gradient
updates using a handful of labeled samples produces a classifier that works well on validation
data. MAML is related to transfer learning, in the sense that finding good initialization
parameters for a model to facilitate adaptation to various tasks plays a central role. Due
to its model-agnostic nature, MAML can be applied to various application domains without
significant modifications.

Due to the inner/outer-loop optimization process (see Eq. 2.16 and 2.17), MAML has great
flexibility in terms of the kinds of parameters that can be learned in the inner loop, e.g., pa-
rameterized loss functions [11], learning rates [65], and attenuation weights [9]. Meta-learning
has been applied to various areas such as reinforcement learning and few-shot classification,
but, notably, also to speech recognition, in the form of accent adaptation [108] and speaker
adaptation [57].

MetaSGD [65] is a modification of MAML and involves learning the update direction and
learning rate along with the parameter initialization. MAML++ [4] addresses the training
instability of MAML that is commonly observed. MAML has also been used in combination
with other types of meta-learning. For example, in [82], the authors combine MAML with
model-based meta-learning, using a latent generative representation of model parameters and
applying MAML in this lower-dimensional latent space.

2.4.7 Writer adaptation

Lastly, we turn to writer-based adaptation in the field of handwritten text recognition. Adap-
tation to individual writers can be referred to as writer adaptation. Many early approaches
for writer adaptation are proposed for HMMs using Gaussian Mixture Models. For exam-
ple, [104] use linear transformations between original parameters and re-estimated parameters
for adjusting GMM parameters using maximum likelihood linear regression. More recently,
there have been several attempts at adaptation in the space of HTR using neural networks.
We list the most relevant work here.

In [73], the authors perform simple finetuning on a new handwriting collection, showing
that this can lead to efficient transfer between datasets using a limited amount of finetuning
data. In [98], the authors cluster writers by style and train a classifier for each cluster,
using a mixture-of-experts setup for choosing the best combination of classifiers. For a new
writer, the combination of classifiers is based on classification confidence for that writer.
In [116], the authors learn a linear writer-specific feature transformation in order to create a
style-invariant classifier, which they call Style Transfer Mapping (STM). Whereas the original
approach was not used in the context of neural networks, a later approach [115] has successfully

32

used STM for neural networks in the context of Chinese character recognition. In [106], the
authors employ writer codes for writer-specific Chinese handwritten text recognition using a
CNN-HMM hybrid model. They feed a writer code into adaptation layers tied to individual
convolution layers. The result is added element-wise to the intermediate CNN feature maps.
At train time, writer codes are jointly learned with the adaptation layers. At test time, codes
for new writers are randomly initialized and optimized using one to three gradient steps.
Recently, [105] use a style extractor network trained on a writer identification task to extract
a writer code, used to adapt a writer-independent recognizer. Specifically, the writer code is
added to the convolutional layer output after being fed through a fully-connected layer.

The writer adaptation problem has also been formulated as a domain adaptation prob-
lem [117, 52, 113]. In [117], a gated attention similarity unit is used to find character-level
writer-invariant features. In [52], the authors employ an adversarial learning approach using
synthetic data. A generic HTR model is initially trained using synthetic data and adapted to
new writers using a domain discriminator network.

33

Chapter 3

Methods

In this chapter, we propose various methods for writer-adaptive HTR and formulate exper-
iments to test their efficacy. Based on extensive experimentation, we aim to answer the
research questions posed in Chapter 1, pertaining to three main aspects: 1) how to repre-
sent writer information, 2) how to include writer information into an HTR model, and 3) the
role of different architectures when it comes to adaptability. By approaching these problems
from various angles, we attempt to answer the primary research question of this research: Can
state-of-the-art deep learning-based HTR models benefit from writer identity as a conditioning
variable?.

The chapter is structured as follows. In Section 3.1, we provide information about the used
dataset, along with evaluation metrics in Section 3.2. Details about the training procedure
for the base models are presented in Section 3.3. The remaining three chapters propose
concrete methods for writer-adaptive HTR. An approach based on writer codes is presented
in Section 3.4. Then, an approach based on meta-learning is presented in Section 3.5. Finally,
in Section 3.6, we explore an approach based on a method used in domain adaptation.

3.1 Dataset

We now describe the dataset used to train and evaluate HTR models. First and foremost, we
focus on recognition of isolated word images. Alternatively, recognition could be done on line
strips or full documents. However, both alternatives bring with them additional challenges,
such as increased memory requirements and often a lack of data. Therefore, we focus on word
images throughout this research.

An important condition for choosing an appropriate dataset is that it should contain the
writer identity along with the handwriting images. We therefore make use of the commonly
used IAM dataset [69], which contains (anonymized) writer identity information for all its
images. The dataset statistics are summarized in Table 3.1.

34

Table 3.1: Statistics of the IAM dataset, showing the number of images and writers per set.

Set # Images # Writers

Training 47,841 283
Validation 7,520 56
Testing 20,115 161

3.1.1 IAM

The IAM dataset [69] consists of English handwritten texts contributed by 657 writers, making
a total of 1,539 handwritten pages consisting of 115,320 segmented words. The data is labeled
at the sentence, line, and word level. Examples of word images are shown in Fig. 3.1.

For splitting the data into a training, validation, and test set, we use the widely used
Aachen splits [94]. An important property of these splits is that the writer sets are disjoint,
i.e., writers seen during training are not seen during testing. The Aachen splits contain 500
writers making up a total of 75,476 images.

Something to note is that the IAM dataset contains additional metadata where images are
tagged with a “segmentation” attribute, which indicates whether an error occurred during the
original segmentation of the word bounding box from a line strip. In some cases, when this
attribute indicates an error, the image does not consist of a word image, but a complete line of
text (supposedly since the segmentation failed). In other cases, the segmentation appears fine
even when the “segmentation” attribute says otherwise. After running experiments with and
without images indicated as badly segmented, we found that excluding the bad segmentation
images led to higher performance on the validation set. Therefore, we discard the images
that are indicated to have a segmentation error, since they adversely impact recognition
performance of the base models. It should be noted that the image count in Table 3.1 therefore
does not include the badly segmented images. Also worth noting is that most papers do not
report on this detail concerning the IAM dataset, even though there are multiple thousands
of images that are tagged with the bad segmentation attribute.

Figure 3.1: Examples of word images from the IAM dataset.

3.1.2 Data augmentation

In order to increase the effective size of the training dataset and the visual diversity of the
images, we make use of image augmentations. Augmentations such as rotation, translation,
and scaling, are commonly used to improve recognition performance for HTR models (e.g. [76,

35

27, 92]). For all augmentation modules, we randomly sample their hyperparameters every time
they are used, to increase diversity. For a given training image, we use the following image
transformations sequentially:

1. Random scaling (scale range: (0.9, 1.1))

2. Rotation (max. angle: 10◦)

3. Random brightness and contrast adjustment (max. factor: 0.2)

4. Gaussian noise (µ = 0, σ2 ∈ [10, 50])

Each transformation has a 50% probability of being applied. Hyperparameter ranges for
the transformations are set based on empirical evaluation, and the used hyperparameters are
sampled from a uniform distribution every time an augmentation is applied. Furthermore, all
images in the dataset (for all splits) are reduced to 50% resolution to reduce memory footprint.
This is an acceptable reduction in resolution that still keeps the text legible.

The augmentation stack is kept relatively simple. Other augmentations such as elastic
distortions [92] or dilation/erosion are also options that can be part of an augmentation
pipeline. The use of synthetic data is also a common practice [27, 51], but not used in the
current research.

3.2 Evaluation

For evaluation, character error rate (CER) and word error rate (WER) are used. Given a
ground truth label sequence and a predicted label sequence, CER is defined as the character-
level Levenshtein distance between the two strings divided by the total number of characters
in the ground truth (Nc). The Levenshtein distance is defined as the sum of the substitutions
(Sc), insertions (Ic), and deletions (Dc) to transform one string into the other. Thus, we have:

CER =
Sc + Ic +Dc

Nc

(3.1)

Similarly, WER is calculated as the word-level Levenshtein distance divided by the number
of words in the ground truth label sequence:

WER =
Sw + Iw +Dw

Nw

(3.2)

Note that we use a different subscript in this case, to indicate that the substitutions,
insertions, deletions, and the token count occur at the word level.

36

ResNet CNN

Feature map

Transformer decoder "follows"

ResNet CNN

Feature map

LSTM encoder "follows"LSTM decoder

Input image

Input image

2D attention

GlimpsesHidden
states

FPHTR

SAR

1D
representation

Figure 3.2: Schematic overview of the two base models: FPHTR and SAR.

3.3 Base models

We make use of two baseline models: FPHTR [93] and SAR [61], as explained in Section 2.2.2
and 2.2.1. As a reminder: FPHTR builds on the Transformer architecture and SAR on the
LSTM architecture. In Fig. 3.2, we show a schematic overview of both models to highlight
their overall structure and similarity. For both models, we use two versions: a smaller version
using an 18-layer ResNet and a larger version with a 31-layer ResNet (see Appendix B.1 for
parameter counts).

The base models are standard HTR models that do not make use of explicit writer in-
formation, chosen based on their competitive performance on common benchmarks. Their
performance serves as a baseline for “writer-unaware” HTR models. In the following sections,
various methods will be proposed that make these models writer-aware, in order to verify
whether this can lead to improved recognition accuracy. In the following section, we explain
how these models are trained.

3.3.1 Training procedure

We do not use a word lexicon, in order to provide maximum flexibility in decoding and pre-
venting the issue of “out of lexicon” words. Instead, we use a character-level vocabulary,
converting all characters to lower case. This results in a vocabulary of size 56, containing
ASCII-printable characters as well as special tokens to demarcate beginning and end of se-
quence and padding. For sampling characters, we use greedy decoding, i.e., choosing the
character with the highest probability at each time step.

Images within a batch are padded with 0 values to the size of the maximum image width

37

and length in the batch. Ground truth character sequences are padded to the maximum
sequence length in the batch.

We do not use any kind of linguistic post-processing on word predictions, such as using a
statistical language model for better accuracy.

For training, the Adam optimizer is used [56], with β1 = 0.9 and β2 = 0.999 (default
configuration). We use gradient clipping to avoid exploding gradients, based on the L2-norm
of the gradient vector.

All models are implemented using PyTorch [75], using a single Nvidia V100 GPU with
32GB of memory.

Best models are chosen based on the validation word error rate (WER). The performance
for a single run is recorded as the epoch with the highest performance. See appendix A.1 for
full details about hyperparameter settings.

3.4 Writer codes

Our first attempt to include writer information into the base HTR models is based on the idea
of representing style or writer information as a compact feature vector. In speech recognition,
such a code is known as a speaker code [1]. We take a similar approach by trying to model
writers or styles using a small feature vector, which is used to adapt the weights of an existing
HTR model. We will refer to such vectors as style codes or writer codes.

In its simplest form, the writer identity for the k-th writer could be expressed as a one-hot
vector xk ∈ RN ,

xki =

{
1, if i = k

0, otherwise
(3.3)

where N is the total number of writers. This approach however is inherently limiting
because it assumes a predetermined set of writers, and the writer codes have little repre-
sentational capacity. Therefore, we focus on dense representations, also sometimes known
as distributed representations [31]. In this case, the writer identity is represented by many
features in the form of a densely populated feature vector xk ∈ RM , where M is set based on
the desired representational capacity.

We experiment with style codes that have varying levels of granularity. At the lowest level
of granularity, this means supplying information concerning the high-level writing style, e.g.,
if a writer writes cursively or not. At a more granular level, we would provide information
that is highly writer-specific. As mentioned in Chapter 1, this is not so much a question about
what information is useful for transcribing handwritten text in general, but rather a question
about what information is not yet learned effectively by a deep learning-based HTR model.

A relevant property of writer codes is that it should be able to obtain them even for writers
that are not part of the training set (note that this is effectively forced by our dataset, since
the writers in IAM are mutually exclusive in the train, validation and test sets).

38

Writer codes have various properties that make them appealing as a method for writer-
adaptive HTR. They can be studied and compared among writers since they are compact in
size. This potentially allows studying the factors of variation that are distinctly the result
of writer individuality. Moreover, most methods that we will discuss using writer codes are
computationally efficient and require relatively little modification of the original base archi-
tectures.

This section is structured as follows. In Section 3.4.1, we first discuss suitable ways to
insert a writer code into the base models. Then, we turn to the problem of creating the writer
codes. In Section 3.4.2, we propose a method for learning writer codes jointly with other
parameters. Next, we turn to a more traditional approach for representing writer information
in Section 3.4.3, using handcrafted features for writer identification. If writers can be clustered
in some sort of representative feature space it may also be possible to find generic style codes,
which we explore in Section 3.4.4.

3.4.1 Code insertion

First, we attempt to answer the question how the codes should be inserted into the base model
for effective adaptation. This is non-trivial, since adaptation based on such codes requires
updating the weights of the network without catastrophic forgetting of previously learned
representations. Where to insert the writer code into the network is indirectly a question
about what features are most suitable for adaptation, and what features are effectively shared
among writers. For example, the sequence decoding stage of the model may not benefit
much from writer adaptation, since language representations may not change considerably for
different writers. Based on various experiments, we found that naive insertion of style codes
into the base models could easily deteriorate performance. Therefore, this requires a more
delicate approach to preserve the original representations.

One possible approach is proposed in [106], where the authors generate an additional bias
vector generated from a writer code, which is added to the convolutional layer output right
before the batch normalization layer. The bias vector is generated by a linear transform of
the writer code. However, due to the immediate normalization following the addition of the
writer-dependent bias vector, the expressiveness of the writer code seems to be fairly limited,
which was confirmed by our experiments with this approach.

When it comes to deciding what parts of the models should be adapted based on writer
information, the ResNet backbone seems like a suitable location, since it pertains to the visual
features that can differ among writers, e.g., individual letters written in an idiosyncratic way.
We can apply adaptation to the output of the ResNet backbone, which contains high-level
image features over a 2D spatial grid. Modulating these high-level features based on writer
information seems promising since it does not affect the low-level feature representations, and
only applies adaptive finetuning of the visual features at their final stage. First, note that
all base models make use of a ResNet image encoder that produces a 2-dimensional feature
map (see Fig. 3.2), which means that this approach can be applied to both models. Let the
extracted feature map be Q ∈ RC×h′×w′

, with h′ and w′ representing height and width of the

39

feature map, and C the number of channels. By flattening the feature map in the temporal
dimension to create R ∈ RC×(h′·w′), we can represent the feature map as an array of feature
vectors H = [f1, f2, . . . , fh′·w′] with fi ∈ RC . Given this array of feature vectors H containing
high-level image representations and a writer code w, we can adapt each vector fi based on
the writer code by concatenating the feature vector with the conditional code and passing it
through an MLP:

f ′i = φ([fi;w]) (3.4)

where f ′i is the adapted feature vector and φ is an MLP. The new feature map H ′ =
[f ′1, f

′
2, . . . , f

′
h′·w′] then contains all adapted feature vectors f ′i .

Although this approach is appealing in its conceptual simplicity, it limits the expressivity
of the adaptation, i.e., its ability to alter the previously learned representations, since it
occurs only in a single location. Therefore, we additionally experimented with approaches
where codes are inserted in multiple stages of the network. However, this can quickly lead to
catastrophic forgetting if the original weights are jointly finetuned with the new adaptation
weights, or suboptimal interaction between the code features and the original base model
weights in the case when the base model weights are frozen. For example, one of the major
pain points is the presence of batch normalization in the ResNet encoder (see Section 2.1.3).
Retraining the γ and β parameters or reinitializing running batch statistics tends to have a
drastic impact on performance and can quickly deteriorate previously learned representations.

In order to find a suitable method for inserting style information into neural networks, we
take inspiration from works on generative models using style information, such as conditional
GANs [54, 118] and methods for style transfer [26, 100]. In these research areas, style informa-
tion plays an important role in modulating image features along a visual processing pipeline.
As mentioned in Section 2.4.4, previous work in the field of style transfer suggests that in
order to adapt features to a particular style, it can be sufficient to specialize scaling and shift-
ing parameters after normalization layers, conditioned on style information [26]. However,
such style transfer architectures often make use of instance normalization layers rather than
batch normalization, which is the normalization layer used in our base models. In contrast
to batch normalization, instance normalization normalizes each channel of each image in a
minibatch independently, to normalize image contrast. Batch normalization, on the other
hand, calculates statistics over an entire batch of images (see Fig. 2.2).

We therefore experiment with an alternative method designed for batch normalization.
Conditional batch normalization [20] was originally proposed for visual question answering,
in order to modulate high-level image features from a ImageNet pretrained ResNet using
a language embedding (see Fig. 3.3). In the original application, the batch normalization
parameters are conditioned on linguistic input in the form of a question from the visual
question answering task. A regular batch normalization layer is of the form shown in Eq. 2.6,
with trainable β and γ parameters of size C. In the typical case of batch normalization
following a convolutional layer, C equals the number of kernels in the convolutional layer.
The idea behind conditional batch normalization is to modify the β and γ parameters based
on an input code. Given pretrained parameters βc and γc, changes in these parameters are

40

Figure 3.3: Schematic of conditional batch normalization as applied to the ResNet architec-
ture. The parameters for each Batch Norm layer are modulated by a writer code, using a
two-layer MLP. Image modified from [20].

predicted based on an input code e and a two-layer MLP:

∆β = φ1(e) ∆γ = φ2(e) (3.5)

where φ1 and φ2 are MLPs. The predicted deltas are then added to the original βc and γc
parameters:

β̂c = βc + ∆βc γ̂c = γc + ∆γc (3.6)

where β̂c and γ̂c replace the Batch Norm parameters for the current forward pass. All
other parameters are frozen during training, including β and γ. Note that because of this,
during training, only the MLPs associated with the Batch Norm layers are trained, while all
other parameters are kept frozen.

By changing the γ and β affine parameters that follow normalization, there is great flexi-
bility in changing the intermediate feature maps according to the specifics of a particular code.
Feature maps produced by convolutional layers can be modified by scaling them up or down,
negating them, shutting them off, etc. By freezing the original batch normalization parame-
ters and predicting changes to them, it is straightforward to preserve the original parameters
by producing a zero output. Because of this, the risk of catastrophic forgetting is mitigated.

Based on experiments, the conditional batch normalization approach proved more effective
as well as more stable than the single insertion approach presented in Eq. 3.4. Therefore, we
use this approach going forward.

41

3.4.2 Learned codes

Now that we have laid out a method for inserting writer codes into a HTR model, we turn
to the question of how to actually create writer codes.

One way to obtain learned writer codes is to extract them from a bottleneck layer in a
neural network trained to distinguish between writers [105]. However, such a network would be
trained under a closed writer set assumption: Given N possible writers, the model only has to
learn representations that distinguish those N writers. This is a fundamentally different task
than that of finding representations that encode relevant writer information for all possible
writers.

Another, more promising approach is to learn writer codes in the same way as the weights
of the network, i.e., using gradient descent. A similar idea is commonly seen in NLP (e.g.,
[22]), where for each token in a predefined vocabulary, an associated vector representation is
learned (often called an “embedding”) that is more expressive than, for example, a one-hot
vector indicating the identity of the token.

For creating learned codes, we therefore build on this idea. Specifically, we take inspiration
from an approach originating from automatic speech recognition [1]. This approach was
originally applied in the case of a hybrid NN-HMM model, where the neural network (NN)
acts as a feature extractor. In the original approach, the principal idea is to insert a speaker
code into a pretrained network using an adaptation MLP at the start of the network (as is
done in Eq. 3.4). This is shown visually in Fig. 3.4.

The main aspect we are interested in here is the creation of the code itself, which we do
by applying the approach presented in the paper by Abdel-Hamid et al. [1]. In [1], codes are
trained in the same way as the weights of the adaptation MLP, namely by taking the derivative
of the loss with respect to the speaker code values and updating them using gradient descent.
Note that this implies a fixed set of writer codes initialized at the start of training – one for
each speaker in the training set. In the case when a new writer is presented that is unseen
during training, the solution proposed in [1] is to randomly initialize a new writer code,
followed by one or several gradient steps on the newly initialized code, using a small batch of
labeled speaker-specific data. In other words, a separate batch of labeled data is required to
initialize the speaker code for a new speaker. Note that this is similar to the episodic learning
scheme used for MAML (see Section 2.3.1), where a task-specific batch is used to adapt the
model parameters to the task, after which inference can be done on that new task using the
task-adapted model.

3.4.3 Hinge codes

When it comes to capturing writer individuality, there exists a rich literature on this topic
in the field of writer identification [88]. In contrast to the learned features discussed in the
previous section, features for writer identification are often handcrafted or statistical in nature.

One of the more successful features for writer identification is the Hinge feature [16]. As
mentioned in Section 2.4.2, the Hinge feature uses a probability distribution of the angle com-
bination of two hinged edge fragments to characterize writer individuality. If these features

42

Figure 3.4: Schematic of the approach presented in [1], originally applied to automatic speech
recognition. On the left side is a network without speaker adaptation, whereas the network
on the right side does include speaker adaptation. A speaker code is inserted into a dedicated
MLP (adaptation NN), which takes both the original features and the speaker code as input,
and outputs transformed features.

can lead to a meaningful clustering of writers based on their style differences, they can po-
tentially serve as meaningful writer codes. These writer codes are attractive because they are
1) easy to calculate, and 2) do not require additional adaptation data at test time, as is the
case for the learned codes discussed in Section 3.4.2. We obtain Hinge features for each writer
by concatenating all images for that particular writer, after which we apply Hinge feature
extraction to it.

3.4.4 Style codes

Given the backdrop of the Hinge features discussed in the previous section, there is an open
question of how writer-specific the codes should be. Potentially, it could be more meaningful
to focus on generic style clusters in feature space, rather than features that are highly writer-
specific. For example, style clusters could point to high-level writing styles such as cursive
or mixed-cursive. If Hinge provides us with meaningful style clustering, it can be used to
initialize generic style codes.

We perform k-means clustering on Hinge codes to obtain generic style clusters. For each
style cluster, we train a writer code using backpropagation. Thus, given an image input, we
find the closest style cluster based on the Hinge features and map the style cluster identity
to a learned writer code that is updated using gradient descent. One of the more appealing
properties of this approach is that it does not require initialization of new codes for unseen

43

writers, as is the case for the approach presented in Section 3.4.2.

3.4.5 Training procedure

For all writer codes, we insert them using the conditional batch normalization method pre-
sented in Section 3.4.1. Hyperparameters are chosen based on validation set performance.

For the learned writer codes discussed in Section 3.4.2, we require adaptation data at test
time to initialize codes for novel writers. Given the j’th writer with Nj total examples, we
randomly split the data into an adaptation batch of size K, and use the remaining Nj − K
examples for evaluation using the learned writer code. To reduce the effect of randomness, we
repeat this procedure 10 times for every test writer and take the mean performance. During
training, the weights of the trained HTR model are frozen, and only the writer code values
and the parameters of the Conditional Batch Norm MLPs are updated. We use a code size
of 64 and an adaptation batch of size 16.

Training and testing for Hinge and style codes is done in the standard, non-episodic way.
For style codes, we use k-means clustering with k = 3. Complete hyperparameters are shown
in Appendix A.2.

Full hyperparameter settings for writer code models are shown in Appendix A.2).

3.5 Meta-learning

Our second attempt to make HTR models writer-adaptive uses meta-learning, a research
area that has gathered much interest in recent years [44]. In this case, adaptation occurs by
providing the model with labeled examples of a writer that the model should adapt to, which
is done by updating all the weights in the model. Thus, the approach requires a handful of
labeled data at test time. This can be seen as an efficient form of transfer learning: Given
a small amount of writer-specific labeled data not seen during training, this data should be
used to improve writer-specific performance in a way that is maximally efficient in making use
of previously learned representations.

We build on top of the MAML algorithm (see Section 2.3.2) and use the modifications as
proposed in [13]. One downside of the MAML approach and MetaHTR in particular is that it
leads to a notable increase in memory and computational requirements. We therefore analyze
variations of the MAML-based approach to investigate to what degree it can be simplified.
Concretely, we experiment with three different models: MAML, MAML + llr, and MetaHTR.

1. MAML. The original MAML algorithm as proposed in [28], using the sequence-based
cross-entropy loss function shown in 2.11.

2. MAML + llr. The MAML algorithm is complemented with learnable inner loop
learning rates, as explained in Section 2.3.3. This alleviates the need to manually set
the inner loop learning rate, at the cost of only a few hundred additional parameters
(see Appendix B.3)

44

3. MetaHTR. The full MetaHTR model as explained in Section 2.3.3. A downside of the
MetaHTR approach is the additional complexity that it introduces. Next to the calcula-
tion of higher-order derivatives as part of the MAML algorithm, MetaHTR also requires
an additional backward pass in order to calculate the instance-specific weights. This
makes the approach expensive both in terms of computation and in terms of memory
usage, therefore making it challenging to scale to larger contexts such as sentence-level
HTR.

3.5.1 Training procedure

In the K-shot N -way meta-learning formulation, we use K = 16 and N = 8, as is done in [13].
This means that during adaptation, a batch of K = 16 writer-specific examples are used to
adapt the model to a specific writer, and outer loop gradients are averaged over N = 8 writers
(see Eq. 2.17). For adaptation, we use a single inner loop optimization step, as additional
steps did not seem to improve performance further.

During training, we randomly sample writer-specific batches of size 2K, split into a support
and query set of size K. At test time, we use all examples for a given writer: Given the j’th
writer with Nj total examples, we randomly split the data into a support batch (adaptation
batch) of size K, and use the remaining Nj−K examples for evaluation of the adapted model.
To reduce the effect of randomness, we repeat this procedure 10 times for every test writer
and take the mean performance. Furthermore, we ensure that the used splits remain constant
with respect to each writer.

For all models, we use dropout in the outer loop. Batch Norm statistics are fixed to
their running values and not updated during training, as this led to more stable performance
(see Appendix C for a more extensive discussion concerning the particulars of using Batch
Norm in combination with MAML). We use the learn2learn library [6] for implementing all
meta-learning methods. Full hyperparameter settings are shown in Appendix A.3.

3.6 Domain adaptation

Our final attempt for writer-adaptive HTR is based on an approach employed in domain
adaptation. We established in Section 3.4.1 that batch normalization parameters are some
of the most effective parameters to tune for modulating the convolutional layers of a ResNet
architecture based on a writer code. Whereas conditional batch normalization focuses on
modulating the affine β and γ parameters, the accuracy of the mean and variance used for
normalization also forms a potentially important part of the effectiveness of batch normaliza-
tion [47]. Therefore, we explore whether adaptation could be done by modifying the running
statistics of the batch normalization layers based on the writer-specific mean and variance. As
a reminder: during training time, a running average of the activation statistics is collected for
each batch normalization layer. At test time, batch statistics are replaced with saved running
statistics.

45

This approach has been used before in domain adaptation [58]. Within the field of domain
adaptation, the aim is to transfer learned model features from a source domain to a new, target
domain. It has been proposed that this could be done by modulating batch normalization
statistics from the source domain to the target domain in all batch normalization layers across
a model [64, 63, 18]. Furthermore, this approach has also been applied to improve robustness
against image corruptions [86]. If we view a novel writer analogously to a domain shift, i.e.,
a distribution shift, we can apply the same idea here, applying writer-specific normalization
statistics at each Batch Norm layer. As shown in Fig. 3.5, the difference between writer-specific
activation statistics is substantial enough to make this plausible.

We use a variation of the approach proposed in [64], named adaptive batch normalization
(AdaBN). This approach involves a complete replacement of source statistics with target
statistics. However, completely replacing the writer-independent Batch Norm statistics can
be harmful to model performance. Therefore, we calculate the new statistics by taking a
weighted combination of writer-independent and writer-dependent statistics, as done in [86].
For a given writer w and activation neuron j, we have:

µ̄wj = (1− α)µwj + αµj

(σ̄wj)2 = (1− α)(σwj)2 + α(σj)
2

(3.7)

where α ∈ [0, 1], µwj and (σwj)2 are writer-dependent statistics, and µj and (σj)
2 are writer-

independent statistics. The hyperparameter α controls the trade-off between writer-dependent
and writer-independent statistics.

This approach is straightforward and simple: It does not require additional training of
model parameters and can be calculated efficiently using existing implementations for batch
normalization 1. Note that setting α = 1 is the same as not using writer-specific statistics, i.e.,
using the default statistics for the base models. We select the α hyperparameter by picking
the best performing value on the validation set. For all settings, we use a batch size of 256.

1We make use of PyTorch’s torch.nn.BatchNorm2d module for efficiently calculating both writer-
dependent and writer-independent statistics.

46

Figure 3.5: ResNet-18 layer activation statistics for 100 randomly selected writers from IAM.
The x-axis indicates writer identity. Activations are recorded right before batch normalization
occurs.

47

Chapter 4

Results

In this chapter, we report results for all models and experiments proposed in Chapter 3. A
direct comparison between models is not always possible, as some models (such as MetaHTR)
use a different learning scheme that relies on additional adaptation data at test time. There-
fore, we indicate the closest baseline on an individual basis.

For all results, we report average performance over 5 different random seeds, along with
standard deviations. For the purpose of rapid experimentation, we mainly perform experi-
ments using the smaller SAR-18 and FPHTR-18 models. Whenever it is deemed relevant we
also include results for the larger 31-layer variants of the base models. We select the best
performing models based on lowest word error rate (WER).

It is worth noting that due to the way image padding is employed in the pipeline (all
images are padded to the maximum size in the batch), the batch size influences the degree of
padding, which can have an impact on performance. Therefore, we show base model results
that use the same amount of padding as the models to which they are compared.

4.1 Base models

The results for the base models on the IAM validation and test set are shown in Table 4.1 and
visually in Fig. 4.1. We report average performance as well as performance of the best run.

From the results in Table 4.1 and Fig 4.1, we can see that the Transformer-based model
(FPHTR) outperforms the LSTM-based model (SAR) on validation and test, both for the
smaller 18-layer case (15-18M weights) and the larger 31-layer case (52-58M weights). This
difference is significant in the case of the larger 31-layer models, with FPHTR outperforming
SAR on test with a difference of 4.1 WER and 4.8 CER. For the smaller 18-layer models,
FPHTR outperforms SAR by a difference of 0.5 WER and 0.7 CER.

48

Table 4.1: Results of the base models on the IAM val and test set.

Val Test

WER CER WER CER

Avg. Best Avg. Best Avg. Best Avg. Best

SAR-18 16.3± 0.6 15.5 13.5± 1.0 12.2 20.7± 0.8 19.7 17.3± 0.8 15.8
FPHTR-18 16.0± 0.4 15.3 12.6± 0.4 12.1 20.2± 0.2 19.9 16.6± 0.3 16.4

SAR-31 14.9± 0.2 14.7 11.3± 0.5 10.6 19.7± 0.7 18.8 15.7± 1.0 14.5
FPHTR-31 11.6± 0.3 11.1 7.9± 0.4 7.5 15.6± 0.8 14.6 10.9± 0.7 10.0

SAR-18 FPHTR-18 SAR-31 FPHTR-31
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

W
ER

SAR-18 FPHTR-18 SAR-31 FPHTR-31
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

CE
R

Figure 4.1: Base model results on the IAM test set, measured in WER (left) and CER (right).
Confidence intervals are obtained by bootstrapping.

4.2 Writer codes

We now consider the results of the writer code approach as discussed in Section 3.4. The idea
of writer codes is attractive due to its relative simplicity and limited additional computational
costs. We show results for all writer codes in Table 4.2.

From the table, it can be seen that the learned codes created using backpropagation do
not improve upon the performance of the baseline. The fact that writer codes at test time are
created by random initialization followed by a small number of gradient steps is a potential
factor here, since the writer codes obtained during training have been updated for many more
gradient steps. Potentially, the writer codes used during training may contain more relevant
information as they have been finetuned over several epochs. However, training error alone
is not a good metric to test the efficacy of the writer codes obtained during training, as a
low training error may simply be a result of overfitting. In order to gain more insight into

49

the learned writer codes during training, we plot the codes for a single run of the FPHTR-18
model (Fig. 4.2). Although it is difficult to draw hard conclusions from such a plot, the lack
of meaningful style clusters seems to suggest that the writer codes are not used effectively by
the model.

Next, we consider Hinge and style codes. Both methods outperform the baseline. For the
Hinge code, this is a difference of 1.7 and 1.6 WER for FPHTR and SAR, respectively. A
similar performance improvement can be seen for the style code, obtained by clustering Hinge
codes with a single learned code per style cluster. In this case, the difference is 1.8 and 1.7
WER for FPHTR and SAR, respectively.

Although these results show improvement compared to the baselines, these results alone do
not provide adequate insight into the efficacy of the codes themselves. Recall from Section 3.4.1
that Conditional Batch Norm uses a 3-layer MLP with the writer codes as input to predict
changes to the original Batch Norm weights. In theory, it is possible that the MLP can learn
effective bias vectors that improve performance regardless of the writer code input, i.e., the
writer code could simply be ignored (e.g., assigned zero weights). In order to test this, we
replace the writer codes with a single code that contains no writer information whatsoever:
a zero code, i.e., a vector with only zero values. As can be seen from Table 4.2, this leads to
almost identical performance compared to both the Hinge and style code. This is a strong
indication that writer information is not the direct cause of the increase in performance, but
rather, Conditional Batch Norm simply seems to be an effective way to finetune the Batch
Norm weights, even without the presence of conditional information. Although this is an
indication that tuning the Batch Norm weights is an effective way to finetune a trained HTR
model, this result does not rely on writer information to make it possible.

Table 4.2: Writer code results on the IAM test set, measured in WER.

FPHTR-18 SAR-18

Baseline 20.2± 0.2 20.7± 0.8

Learned code 24.5± 0.3 23.7± 0.4
Hinge code 18.5± 0.2 19.1± 0.6
Style code 18.4± 0.2 19.0± 0.6
Zero code 18.5± 0.3 19.0± 0.5

4.3 Meta-learning

We now turn to the models based on MAML [28], discussed in Section 3.5. These models are
the most complex and require more computation to run.

It should be noted that since all models presented here make use of additional adaptation
data at test time, a direct comparison between the base models in Table 4.1 is not directly
meaningful. In other words, the MAML-based models have access to parts of the test data as

50

Figure 4.2: Writer codes learned through backpropagation for FPHTR-18, reduced to two
dimensions using t-SNE [101]. Although it is difficult to draw hard conclusions from such a
plot, the lack of meaningful style clusters seems to suggest that the writer codes are not used
effectively by the model.

part of their adaptation procedure. Therefore, we devise a different baseline, by evaluating the
base models after performing finetuning on the same adaptation data that is made available
to the MAML-based models. Specifically, we finetune the final classification layer of a base
model using the adaptation data. We use the Adam [56] optimizer with a learning rate of 1e-3
for 3 optimization steps. Results including these baselines are shown in Table 4.3. Due to
persistent out-of-memory errors for the SAR-31 MetaHTR model, we only include FPHTR-31
in addition to the smaller 18-layer variants. From these results, we can see that MetaHTR
performs best, improving upon the baseline by 1.4, 2.0, and 1.7 WER for FPHTR-18, SAR-18,
and FPHTR-31, respectively.

We can plot the learned inner loop learning rates to get an idea of the relative weight
assigned to each layer in the adaptation process (Fig. 4.3). We show learned inner loop
learning rates for two randomly chosen runs of the FPHTR-18 and FPHTR-31 models using
MAML + llr. Looking at these plots, we can observe an increasing trend in the Transformer
learning rates across layers. This is an indication that the lower layers of the Transformer
network require relatively fewer adaptation than layers closer to the output, with the final
classification layer requiring the most adaptation. Furthermore, we can see that some of
the layers in the Transformer sequence decoder are adapted with approximately the same
magnitude as many of the ResNet layers. In some sense, this can be interpreted as counter-
evidence for the hypothesis that the ResNet backbone is the most important part of the base

51

models for adaptation, as suggested in Section 3.4.1.
It is worth noting that MetaHTR requires calculation of instance-specific gradients, which

is at the time of writing something that is not supported in batch form in the PyTorch library.
Therefore, this required a manual calculation of instance-specific gradients using a for-loop,
which made the MetaHTR training procedure considerably slower than MAML. This problem
is something that can be fixed using additional software, but the additional complexity due
to the extra backward pass remains.

It is worth noting here that the performance gains for MetaHTR (an improvement between
1.4 to 2.0 WER compared to the baseline) are much smaller than reported in the original
paper [13], where MetaHTR improved upon the SAR baseline by a difference of 7.1 WER,
and 6.8 after naive finetuning on the adaptation data. In email correspondence with the
authors of the MetaHTR paper, we were not able to resolve the cause of this discrepancy.
This ambiguity is exacerbated by the absence of published code for MetaHTR.

Table 4.3: Meta-learning results on the IAM test set, measured in WER.

FPHTR-18 SAR-18 FPHTR-31

Baseline 20.0± 0.2 20.6± 0.6 15.3± 0.7

MAML 19.1± 0.3 19.5± 0.7 14.3± 0.3
MAML + llr 19.3± 0.5 19.3± 0.7 14.3± 0.2

MetaHTR 18.6± 0.4 18.6± 0.5 13.5± 0.2

4.3.1 Testing the adaptation premise of MetaHTR

An important question concerning the efficacy of MetaHTR is to what degree it truly adapts
based on a set of writer-specific images at test time. This is an important premise, since the
additional computational overhead of MetaHTR as well as the increased complexity compared
to regular neural network training is supposedly warranted by a clear goal: An ability to adapt
in a flexible way to various writers leading to a concrete performance improvement compared
to a writer-unaware model. In the words of the authors, the goal of MetaHTR is to offer a
“adapt to my writing button” [13], where one is asked to write a specific sentence in order to
make recognition performance of that handwriting more accurate.

It has been suggested that feature reuse is an important part of the success of MAML,
more so than rapid adaptation [78]. According to [78], in the case of few-shot adaptation, the
inner loop adaptation could be skipped for most of the layers of the network. The head of the
network, however, requires inner loop adaptation to enable task specificity. Note that this is a
result of the nature of the few-shot classification task. In order to adapt a base model to a new
few-shot classification task, it is necessary to calibrate the weights of the final output layer,
as the output neurons may correspond to different classes, depending on the task. However,
in the current context, this is not strictly necessary, as the output neurons (corresponding to

52

25 50 75 100 125 150
layer index

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

le
ar

ni
ng

 ra
te

stage
ResNet
Transformer

(a)

25 50 75 100 125 150 175 200
layer index

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

le
ar

ni
ng

 ra
te

stage
ResNet
Transformer

(b)

Figure 4.3: Learned per-layer learning rates for the MAML + llr model, for (a) FPHTR-18
and (b) FPHTR-31.

53

ASCII characters) stay the same across tasks. Therefore, it is not obvious whether the inner
loop adaptation plays an important role in the performance of MetaHTR.

In order to test this, we perform an additional experiment where we leave out the inner
loop adaptation at test time. More concretely, we train MetaHTR the same way as done
before, but evaluate it without performing inner loop adaptation on a support batch of K
images. Results are shown in Table 4.4. The additional benefit of adaptation is 0.2 WER
for FPHTR-18, 0.7 WER for SAR-18, and 0.7 WER for FPHTR-31. Since the sample mean
of the performance on the test set across different random seeds will approximately follow
a normal distribution (according to the central limit theorem), we can use a two-sample t-
test to measure the statistical significance of the difference in results. Using a significance
level α = 0.05, we observe that the difference in results is not significant for FPHTR-18
(p = 0.4143) and SAR-18 (p = 0.0832), but is significant for FPHTR-31 (p = 0.0001). In
other words, adaptation only shows a significant effect for the larger FPHTR-31 model, but
not for the smaller 18-layer variants.

Table 4.4: MetaHTR performance with and without writer adaptation, measured in WER.

FPHTR-18 SAR-18 FPHTR-31

w/ adaptation 18.6± 0.4 18.6± 0.5 13.5± 0.2
w/o adaptation 18.8± 0.4 19.3± 0.5 14.2± 0.2

4.4 Domain adaptation

Lastly, we turn our attention to the domain adaptation approach as presented in Section 3.6.
The results for AdaBN are shown in Table 4.5. From these results it is clear that AdaBN
does not produce a tangible performance improvement, performing the same or slightly worse
than the baseline on the test set. Most of the time (70% of all results), the best results were
obtained by setting the α weighing parameter equal to 1, meaning that it was most effective
to use the writer-independent statistics and to ignore the writer-specific information.

Table 4.5: Results for the AdaBN approach on the IAM test set, measured in WER.

FPHTR-18 SAR-18

Baseline 20.2± 0.3 20.5± 0.8

AdaBN 20.2± 0.3 20.6± 0.7

54

Chapter 5

Discussion and conclusion

In this section, we discuss the findings from Chapter 4 in more depth. Then, in the conclusion,
we use our findings to answer the research questions posed in Chapter 1.

5.1 Discussion

5.1.1 Writer codes

The results in Table 4.2 show the limited effectiveness of the writer code idea. It is difficult
to isolate the usefulness of the writer codes themselves since the performance is determined
by both 1) the writer code itself and 2) the way the writer code is inserted into the model.
We chose conditional batch normalization as an approach for inserting writer codes, based
on credible literature in related fields indicating that adaptation of batch normalization pa-
rameters lends itself well to vector-based adaptation. Furthermore, this approach mitigates
the risk of catastrophic forgetting. However, at the same time, it does not provide any kind
of adaptation for either the Transformer or LSTM sequence decoder following the ResNet
backbone (see Fig. 3.2), since these architectures do not use batch normalization. In a more
ideal case, the writer code would be inserted into all stages of the full architecture, not just
in the CNN backbone. Therefore, it is possible that there may be a more refined way to
effectively insert the writer codes. As long as the insertion scheme is not optimal, it is difficult
to isolate the usefulness of the writer codes themselves. Effectively, this is a chicken-and-egg
problem: Measuring the effectiveness of the writer codes requires knowing the effectiveness of
the insertion scheme, and vice versa.

Compare this to the MAML approach, where all the weights in a model can be adapted.
This allows for more flexibility in deciding how the model representations should change to
allow for effective adaptation. It could be argued that this approach better fits the overarching
trend of deep learning, moving away from handcrafted solutions to solutions that can be
learned from data. Some even argue that meta-learning, or in this case more fittingly, learning-
to-learn, is the next step of integrating joint feature, model, and algorithm learning [44].

Then, there is the question of how writer information should be represented in the first

55

Figure 5.1: Examples of codebooks that capture shape information based on clustering of
character shapes. The codebook entries act as prototypes representative of the types of shapes
commonly seen in handwriting. Figure taken from [16].

place. We showed that statistical features for characterizing writer identity do not appear to
show a benefit over a constant zero vector. The fact that the Hinge feature is designed to be
independent of the textual context of the handwriting samples may play a role here [16]. An
option for future work would be to explore features that lend themselves better to characterize
the most relevant writer characteristics, such as idiosyncratic letter shapes that are difficult
to classify. For example, a Fraglet approach based on shape codebooks [16] may capture the
individual shape features of a particular handwriting more appropriately (see Fig. 5.1). By
matching codebook prototypes with the character shapes observed for an individual writer, a
histogram can be compiled counting the matched codebook entries. The normalized histogram
can subsequently be used as a vector representation. Still, this leaves open the problem of
applying the writer-specific vector in an appropriate way to the previously learned model
weights.

Despite the limited success of the conditional context vector for the HTR models, the use
of context vectors is highly successful for generative deep learning models. Why is this the
case? This can perhaps best be understood by looking at the difference in the role of the
context vector in generative and discriminative models. In generative models, the context
vector provides a way to constrain the output of a stochastic process. Put another way, it
reflects a decision by the user that constrains an otherwise random process, e.g., the decision of
the ethnicity of a person when generating images of human faces. Compare this to the case of
discriminative models such as the HTR models presented in this research. The model output
is deterministic, in the sense that any particular input will always produce the same output
(given that the training process is completed, of course). There is no notion of stochasticity
because there should only be a single correct output, e.g., the correct transcription for an
input image containing handwritten text. In this case, the context vector only serves to make
the implicit more explicit, rather than providing a signal source that could not be learned by
the model itself since it is non-deterministic.

It is interesting to draw parallels between the field of HTR and that of automatic speech
recognition, where context vectors for, e.g., speaker adaptation, seem to be more common.

56

Just like most areas of deep learning, research in speech recognition shows how large-scale data
is important for obtaining features that generalize well [55], e.g., for transferability to other
languages. This is relevant because one facet in which speech and text recognition diverge is
in the availability of large-scale labeled datasets. Whereas collecting and labeling handwriting
samples can be cumbersome and labor-intensive, speech transcriptions are generally easier to
obtain. Thus, if data volume is the critical bottleneck for learning robust representations that
lend themselves well to adaptation, methods used in speech recognition relying on large-scale
datasets may not transfer as well to HTR.

5.1.2 Meta-learning

Table 4.3 shows that meta-learning improves upon the performance of the baseline models.
Several aspects make this approach appealing. First, the MAML framework allows for adap-
tation that does not rely on the insight of the human practitioner. Most notably, by adding a
small number of learnable parameters such as the learnable layer-wise learning rates explained
in Section 2.3.3, there is a great deal of flexibility in the way the model can adapt to a writer.
This is shown in Fig. 4.3, which shows how such learning rates take shape. Considering that
deep learning models build upon low-level concepts to create more complex ones in a hierarchi-
cal way, it makes sense to adjust parameters by taking into account their layer-wise position in
the network (as opposed to using a single learning rate, as is done for standard SGD). MAML
allows learning such parameters from the data, without relying on human insight.

Learning (hyper)parameters directly from training data is an appealing property that is
often mentioned within a Bayesian context [15]. In the Bayesian framework, prior distributions
can be set for various hyperparameters, followed by marginalization with respect to these
variables. However, practical implementations of this method often revert to approximations.
This is due to the computational complexity of marginalizing over continuous probability
distributions, scaling exponentially with the number of parameters and quickly becoming
intractable for high-dimensional cases.

Nevertheless, the added benefit of writer-adaptation using MetaHTR is not always obvious,
as shown in Section 4.3.1. Even without using any adaptation data at test time, the MetaHTR
model still improves upon the baseline performance. This is an indication that more effective
feature reuse plays a role in the additional performance gains, rather than rapid adaptability
of the model parameters – a phenomenon that has been observed before in the literature on
meta-learning [78].

A downside of the MetaHTR approach is the additional complexity that it introduces. Next
to the calculation of higher-order derivatives as part of the MAML algorithm, MetaHTR also
requires an additional backward pass to calculate the instance-specific weights (as explained in
Section 2.3.3). This makes the approach expensive both in terms of computation and memory
usage and makes it challenging to scale to larger contexts such as sentence-level HTR. This
is exemplified by the fact that we were not able to train MetaHTR in combination with the
SAR-31 base model due to persistent out-of-memory errors.

The principle of Occam’s razor may perhaps be applied here. Common benchmarks can

57

be deceptive, and a simpler solution should in principle be preferred over one that is more
complex. Along with the additional complexity of MetaHTR, training of MetaHTR requires
a good deal of finetuning of various settings and hyperparameters to make it work well,
which is something that has also been observed for MAML more broadly [4]. We showed in
Table 4.2 that a relatively simple procedure like finetuning of Batch Norm parameters can
lead to performance gains competitive with the meta-learning approach. Of course, it cannot
be excluded that this improvement is orthogonal to the benefits of the MAML approach –
they are not necessarily mutually exclusive. However, the additional complexity introduced
by the MetaHTR approach is something to be taken into account and should be weighed with
its potential benefit.

The results in Table 4.4 seem to indicate that a deeper model lends itself better to adap-
tation using MetaHTR than a shallower one. A similar conclusion has also been found in
a recent meta-learning study [5], which showed that MAML adapts better with deep archi-
tectures, even if the tasks need only a shallow one. However, as mentioned before, scaling
up MAML-based approaches to deeper HTR models brings additional challenges in terms of
memory requirements, as well as increased computation time.

Something that was not studied in the current research is how varying the size of the
adaptation batch impacts performance, although this is mentioned in the original MetaHTR
paper [13]. One difficulty in using small sample sizes for adaptation is that the most relevant
information for adaptation may not always be present. For example, knowing that a writer
writes a particular letter in an idiosyncratic way makes it more relevant to see examples of that
particular letter, whereas other, more generically written letters (such as the letter “o”), are
not as rich in information. As part of future work, a more extensive analysis of the relationship
between the adaptation sample size and the performance using adaptation should shed more
light on the efficacy and potential benefit of the MetaHTR approach.

An interesting question is how well MetaHTR can adapt to more radical changes in hand-
writing, such as handwriting seen in historical collections. Digitization efforts could benefit
from more flexible HTR solutions that can adapt based on changes in writer, but also changes
in other attributes such as script and background conditions. This could lend itself to a lifelong
learning setup [89], whereby new models would not have to be trained for every new collection
of handwritten documents. A change in script poses an additional challenge, since the output
classes, pertaining to individual characters, change in this case. Nevertheless, MAML-based
learning could potentially be applied in this case as well. Recall that the traditional few-shot
classification problem setting using MAML generally requires replacing the existing classifi-
cation head of a network with a newly initialized one, which can be trained in a handful of
gradient updates using the support batch. In a similar vein, a new classification head could
be trained using MAML that reflects the dictionary set of a novel script. On the other hand,
using only a small adaptation batch will most likely not cover all characters in a script, which
means that some of the weights of the new classification head would not be trained at all.
This would then require some sort of feature reuse of the initial classification head to make
this feasible. In the case of the addition of a small number of additional characters, however,
this approach seems more feasible (e.g., the addition of the ß character when switching from

58

English to German). This is an interesting possibility for future work. It is good to note
in this case that switching to a different language will most likely require adaptation of the
implicit language model, which may be more difficult to perform using only a single batch of
data.

5.1.3 Domain adaptation

It can be seen from Table 4.5 that the domain adaptation approach using AdaBN does not
provide a meaningful benefit. The AdaBN layer was originally proposed to alleviate the
problem of domain shift, i.e., how layer activation statistics diverge for different domains.
Although we showed in Fig 3.5 that writer-specific activation statistics tend to show a good
deal of variation, it may be the case that the impact of a new writer compared to the impact
of a completely new domain such as a different dataset is not comparable, which makes the
method less effective, and sometimes even harmful to performance. Even though handwriting
from unseen writers may be difficult to transcribe accurately if the handwriting is sufficiently
novel, the performance decrease is generally not as steep as in the case of transfer from one
domain to another. In such cases, it may be relatively easier to improve upon an unadapted
baseline, as naive transfer of a deep learning model from one dataset to another can lead to
serious performance degradation [73].

Furthermore, the question can be asked what the added benefit is of using writer-specific
normalization statistics. After all, the claim that limiting distributional shift plays a major role
in the effectiveness of Batch Norm has been disputed [83]. Replacing the writer-independent
statistics with statistics for specific writers will lead to activations that are closer to having
zero mean and unit variance, but at the same time, it is clear from the results that placing
large emphasis on the writer-specific statistics also interferes with the learned representations
in a way that is detrimental to performance.

5.2 Conclusion

In this thesis, we proposed various methods for integrating writer information into deep
learning-based models for offline handwritten text recognition. To conclude, we now refer
back to the research questions posed in Chapter 1 and try to answer them. First, we go
through the secondary research questions, after which we attempt to answer our primary
research question.

RQ1: How can writer information be represented in a way that is effective for
facilitating adaptation and improving recognition performance?

We found that the most effective way to represent writer information is in the form of
labeled data examples that can be used to directly update the weights of an HTR model,
as is done in MAML-based approaches such as MetaHTR. Although compact representations

59

of writers in the form of writer-specific vectors are conceptually appealing, these vectors are
difficult to create effectively.

RQ2: What is a suitable method to include writer information in a state-of-the-art
deep learning-based HTR architecture?

Out of all the methods for writer-based adaptation covered in this research, the MAML-
based models showed the most promising results. Effectively, this implies that letting the
model learn how to adapt its weights using methods such as learnable learning rates is a
promising direction. This is more flexible than manually deciding which parts of the model
architecture should be adapted and which parts should be left unchanged.

RQ3: Does architectural choice play a meaningful factor in facilitating effective
adaptation?

For the MAML-based models, the depth of the base model is potentially an important
factor to allow for effective adaptation. Therefore, when applying MAML-based methods to
HTR, it seems reasonable to assume that architectures with more layers should be preferred
over more shallow architectures.

Given these conclusions, we can attempt to answer our main research question: Can state-
of-the-art deep learning-based HTR models benefit from writer identity as a conditioning
variable? Overall, there seems to be a small benefit to writer-adaptation using methods based
on meta-learning. Nevertheless, these improvements are not substantial, and it remains to
be seen whether MAML could be used to handle more radical domain shifts such as histor-
ical handwriting. In a practical setting, the additional effort needed to implement such a
method, both in terms of computational cost and other factors such as collecting sufficiently
many adaptation samples, may not weigh up to the potential gains that these methods offer.
However, in cases where high-precision recognition is crucial, writer-specific adaptation using
MetaHTR may still provide a meaningful performance boost.

Methods based on writer codes did not show promising results. Even though this method
has been used in more shallow neural networks using HMMs, it’s possible that the deep
hierarchical representations learned by state-of-the-art neural networks make it difficult to
meaningfully add information that is not already learned by the model itself.

One (perhaps obvious) conclusion that can be made is that the problem of effectively
integrating writer information into deep learning-based HTR models is a non-trivial one.
This is not to say that integrating writer information – or conditional variables more broadly
– into HTR models is not useful, but there are many ways in which tinkering with previously
learned representations can prove problematic. Therefore, it seems reasonable to conclude
that interjections based on human insight about how an HTR model “should” adapt are to be
seen with a healthy dose of skepticism. If there is one thing that the success of deep learning
has shown, it is perhaps that learning from data is best done by minimizing human judgments,
while maximizing the capability of a model to learn autonomously.

60

Bibliography

[1] Ossama Abdel-Hamid and Hui Jiang. Fast speaker adaptation of hybrid nn/hmm model
for speech recognition based on discriminative learning of speaker code. In 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 7942–7946.
IEEE, 2013.

[2] Ossama Abdel-Hamid and Hui Jiang. Rapid and effective speaker adaptation of convo-
lutional neural network based models for speech recognition. In INTERSPEECH, pages
1248–1252, 2013.

[3] Mahya Ameryan and Lambert Schomaker. A limited-size ensemble of homogeneous
cnn/lstms for high-performance word classification. Neural Computing and Applications,
33(14):8615–8634, 2021.

[4] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml. In
International Conference on Learning Representations, 2018.

[5] Sébastien Arnold, Shariq Iqbal, and Fei Sha. When maml can adapt fast and how
to assist when it cannot. In International Conference on Artificial Intelligence and
Statistics, pages 244–252. PMLR, 2021.

[6] Sébastien M R Arnold, Praateek Mahajan, Debajyoti Datta, Ian Bunner, and Kon-
stantinos Saitas Zarkias. learn2learn: A library for meta-learning research. August
2020.

[7] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[9] Sungyong Baik, Seokil Hong, and Kyoung Mu Lee. Learning to forget for meta-learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 2379–2387, 2020.

[10] Leonard E Baum and Ted Petrie. Statistical inference for probabilistic functions of finite
state markov chains. The annals of mathematical statistics, 37(6):1554–1563, 1966.

61

[11] Sarah Bechtle, Artem Molchanov, Yevgen Chebotar, Edward Grefenstette, Ludovic
Righetti, Gaurav Sukhatme, and Franziska Meier. Meta learning via learned loss. In
2020 25th International Conference on Pattern Recognition (ICPR), pages 4161–4168.
IEEE, 2021.

[12] Peter Bell, Joachim Fainberg, Ondrej Klejch, Jinyu Li, Steve Renals, and Pawel Swi-
etojanski. Adaptation algorithms for neural network-based speech recognition: An
overview. IEEE Open Journal of Signal Processing, 2:33–66, 2021.

[13] Ayan Kumar Bhunia, Shuvozit Ghose, Amandeep Kumar, Pinaki Nath Chowdhury,
Aneeshan Sain, and Yi-Zhe Song. Metahtr: Towards writer-adaptive handwritten text
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 15830–15839, 2021.

[14] Anne-Laure Bianne-Bernard, Fares Menasri, Rami Al-Hajj Mohamad, Chafic Mokbel,
Christopher Kermorvant, and Laurence Likforman-Sulem. Dynamic and contextual
information in hmm modeling for handwritten word recognition. IEEE transactions on
pattern analysis and machine intelligence, 33(10):2066–2080, 2011.

[15] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learn-
ing, volume 4. Springer, 2006.

[16] Marius Bulacu and Lambert Schomaker. Text-independent writer identification and ver-
ification using textural and allographic features. IEEE transactions on pattern analysis
and machine intelligence, 29(4):701–717, 2007.

[17] Sukalpa Chanda, Jochem Baas, Daniel Haitink, Sébastien Hamel, Dominique Stutz-
mann, and Lambert Schomaker. Zero-shot learning based approach for medieval word
recognition using deep-learned features. In 2018 16th International Conference on Fron-
tiers in Handwriting Recognition (ICFHR), pages 345–350. IEEE, 2018.

[18] Woong-Gi Chang, Tackgeun You, Seonguk Seo, Suha Kwak, and Bohyung Han. Domain-
specific batch normalization for unsupervised domain adaptation. In Proceedings of the
IEEE/CVF conference on Computer Vision and Pattern Recognition, pages 7354–7362,
2019.

[19] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume
Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin
Stoyanov. Unsupervised cross-lingual representation learning at scale. arXiv preprint
arXiv:1911.02116, 2019.

[20] Harm De Vries, Florian Strub, Jérémie Mary, Hugo Larochelle, Olivier Pietquin, and
Aaron C Courville. Modulating early visual processing by language. Advances in Neural
Information Processing Systems, 30, 2017.

62

[21] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[23] Maruf A Dhali, Jan Willem de Wit, and Lambert Schomaker. Binet: Degraded-
manuscript binarization in diverse document textures and layouts using deep encoder-
decoder networks. arXiv preprint arXiv:1911.07930, 2019.

[24] Daniel Hernandez Diaz, Siyang Qin, Reeve Ingle, Yasuhisa Fujii, and Alessandro Bis-
sacco. Rethinking text line recognition models. arXiv preprint arXiv:2104.07787, 2021.

[25] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929, 2020.

[26] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned representation
for artistic style. arXiv preprint arXiv:1610.07629, 2016.

[27] Kartik Dutta, Praveen Krishnan, Minesh Mathew, and C.V. Jawahar. Improving cnn-
rnn hybrid networks for handwriting recognition. In 2018 16th International Conference
on Frontiers in Handwriting Recognition (ICFHR), pages 80–85, 2018.

[28] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In International Conference on Machine Learning, pages
1126–1135. PMLR, 2017.

[29] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using
convolutional neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2414–2423, 2016.

[30] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 249–256. JMLR Workshop and Conference
Proceedings, 2010.

[31] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[32] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances
in neural information processing systems, 27, 2014.

63

[33] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Con-
nectionist temporal classification: labelling unsegmented sequence data with recurrent
neural networks. In Proceedings of the 23rd international conference on Machine learn-
ing, pages 369–376, 2006.

[34] Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. Multi-dimensional recurrent
neural networks. In International conference on artificial neural networks, pages 549–
558. Springer, 2007.

[35] Alex Graves and Jürgen Schmidhuber. Offline handwriting recognition with multidimen-
sional recurrent neural networks. Advances in neural information processing systems,
21:545–552, 2008.

[36] DR Guérillot and J Bruyelle. Uncertainty assessment in production forecast with an
optimal artificial neural network. In SPE Middle East oil & gas show and conference.
OnePetro, 2017.

[37] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The ele-
ments of statistical learning: data mining, inference, and prediction, volume 2. Springer,
2009.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[40] Sheng He and Lambert Schomaker. Deep adaptive learning for writer identification
based on single handwritten word images. Pattern Recognition, 88:64–74, 2019.

[41] Sheng He and Lambert Schomaker. Fragnet: Writer identification using deep fragment
networks. IEEE Transactions on Information Forensics and Security, 15:3013–3022,
2020.

[42] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

[43] Nobukatsu Hojo, Yusuke Ijima, and Hideyuki Mizuno. An investigation of dnn-based
speech synthesis using speaker codes. In INTERSPEECH, pages 2278–2282, 2016.

[44] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-
learning in neural networks: A survey. arXiv preprint arXiv:2004.05439, 2020.

[45] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text
classification. arXiv preprint arXiv:1801.06146, 2018.

64

[46] Sergey Ioffe. Batch renormalization: Towards reducing minibatch dependence in batch-
normalized models. Advances in neural information processing systems, 30, 2017.

[47] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on machine
learning, pages 448–456. PMLR, 2015.

[48] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image trans-
lation with conditional adversarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134, 2017.

[49] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer net-
works. Advances in neural information processing systems, 28, 2015.

[50] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin
Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer,
Olivier J Henaff, Matthew Botvinick, Andrew Zisserman, Oriol Vinyals, and Joao Car-
reira. Perceiver IO: A general architecture for structured inputs & outputs. In Interna-
tional Conference on Learning Representations, 2022.

[51] Lei Kang, Pau Riba, Marçal Rusiñol, Alicia Fornés, and Mauricio Villegas. Pay attention
to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint
arXiv:2005.13044, 2020.

[52] Lei Kang, Marçal Rusinol, Alicia Fornés, Pau Riba, and Mauricio Villegas. Unsupervised
writer adaptation for synthetic-to-real handwritten word recognition. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 3502–
3511, 2020.

[53] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. arXiv preprint arXiv:2001.08361, 2020.

[54] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for gen-
erative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4401–4410, 2019.

[55] Kazuya Kawakami, Luyu Wang, Chris Dyer, Phil Blunsom, and Aaron van den
Oord. Learning robust and multilingual speech representations. arXiv preprint
arXiv:2001.11128, 2020.

[56] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[57] Ondřej Klejch, Joachim Fainberg, and Peter Bell. Learning to adapt: a meta-learning
approach for speaker adaptation. arXiv preprint arXiv:1808.10239, 2018.

65

[58] Wouter M Kouw and Marco Loog. A review of domain adaptation without target labels.
IEEE transactions on pattern analysis and machine intelligence, 43(3):766–785, 2019.

[59] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing systems,
25, 2012.

[60] Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining. arXiv
preprint arXiv:1901.07291, 2019.

[61] Hui Li, Peng Wang, Chunhua Shen, and Guyu Zhang. Show, attend and read: A simple
and strong baseline for irregular text recognition. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 8610–8617, 2019.

[62] Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li,
and Furu Wei. Trocr: Transformer-based optical character recognition with pre-trained
models. arXiv preprint arXiv:2109.10282, 2021.

[63] Yanghao Li, Naiyan Wang, Jianping Shi, Xiaodi Hou, and Jiaying Liu. Adaptive batch
normalization for practical domain adaptation. Pattern Recognition, 80:109–117, 2018.

[64] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch
normalization for practical domain adaptation. arXiv preprint arXiv:1603.04779, 2016.

[65] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly
for few-shot learning. arXiv preprint arXiv:1707.09835, 2017.

[66] Hank Liao. Speaker adaptation of context dependent deep neural networks. In 2013
IEEE International Conference on Acoustics, Speech and Signal Processing, pages 7947–
7951. IEEE, 2013.

[67] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly opti-
mized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[68] Hieu-Thi Luong, Shinji Takaki, Gustav Eje Henter, and Junichi Yamagishi. Adapting
and controlling dnn-based speech synthesis using input codes. In 2017 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4905–
4909. IEEE, 2017.

[69] U-V Marti and Horst Bunke. The iam-database: an english sentence database for offline
handwriting recognition. International Journal on Document Analysis and Recognition,
5(1):39–46, 2002.

[70] Paul Mermelstein and Murray Eyden. A system for automatic recognition of handwritten
words. In Proceedings of the October 27-29, 1964, fall joint computer conference, part
I, pages 333–342, 1964.

66

[71] Johannes Michael, Roger Labahn, Tobias Grüning, and Jochen Zöllner. Evaluating
sequence-to-sequence models for handwritten text recognition. In 2019 International
Conference on Document Analysis and Recognition (ICDAR), pages 1286–1293. IEEE,
2019.

[72] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784, 2014.

[73] Rathin Radhakrishnan Nair, Nishant Sankaran, Bharagava Urala Kota, Sergey
Tulyakov, Srirangaraj Setlur, and Venu Govindaraju. Knowledge transfer using neural
network based approach for handwritten text recognition. In 2018 13th IAPR Interna-
tional Workshop on Document Analysis Systems (DAS), pages 441–446. IEEE, 2018.

[74] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring
mid-level image representations using convolutional neural networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1717–1724, 2014.

[75] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
torch: An imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019.

[76] Joan Puigcerver. Are multidimensional recurrent layers really necessary for handwritten
text recognition? In 2017 14th IAPR International Conference on Document Analysis
and Recognition (ICDAR), volume 01, pages 67–72, 2017.

[77] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal of Machine Learning Research, 21:1–67,
2020.

[78] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning
or feature reuse? towards understanding the effectiveness of maml. In International
Conference on Learning Representations, 2020.

[79] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

[80] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representa-
tions by back-propagating errors. nature, 323(6088):533–536, 1986.

67

[81] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of computer vision, 115(3):211–
252, 2015.

[82] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon
Osindero, and Raia Hadsell. Meta-learning with latent embedding optimization. In
International Conference on Learning Representations, 2018.

[83] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does
batch normalization help optimization? Advances in neural information processing
systems, 31, 2018.

[84] George Saon, Hagen Soltau, David Nahamoo, and Michael Picheny. Speaker adaptation
of neural network acoustic models using i-vectors. In 2013 IEEE Workshop on Automatic
Speech Recognition and Understanding, pages 55–59. IEEE, 2013.

[85] George Saon, Hagen Soltau, David Nahamoo, and Michael Picheny. Speaker adaptation
of neural network acoustic models using i-vectors. In 2013 IEEE Workshop on Automatic
Speech Recognition and Understanding, pages 55–59. IEEE, 2013.

[86] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and
Matthias Bethge. Improving robustness against common corruptions by covariate shift
adaptation. Advances in Neural Information Processing Systems, 33:11539–11551, 2020.

[87] Lambert Schomaker. Patronen en symbolen: een wereld door het oog van de machine.
s.n., 2002.

[88] Lambert Schomaker. Advances in writer identification and verification. In Ninth Inter-
national Conference on Document Analysis and Recognition (ICDAR 2007), volume 2,
pages 1268–1273. IEEE, 2007.

[89] Lambert Schomaker. Lifelong learning for text retrieval and recognition in historical
handwritten document collections. World Scientific Publishing, 2021.

[90] Lambert Schomaker and Marius Bulacu. Automatic writer identification using
connected-component contours and edge-based features of uppercase western script.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(6):787–798, 2004.

[91] Baoguang Shi, Xiang Bai, and Cong Yao. An end-to-end trainable neural network for
image-based sequence recognition and its application to scene text recognition. IEEE
transactions on pattern analysis and machine intelligence, 39(11):2298–2304, 2016.

[92] Patrice Y Simard, David Steinkraus, John C Platt, et al. Best practices for convolutional
neural networks applied to visual document analysis. In Icdar, volume 3, 2003.

68

[93] Sumeet S Singh and Sergey Karayev. Full page handwriting recognition via image to se-
quence extraction. In International Conference on Document Analysis and Recognition,
pages 55–69. Springer, 2021.

[94] Open SLR. Aachen data splits (train, test, val) for the iam dataset.
https://www.openslr.org/56/.

[95] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[96] Jorge Sueiras, Victoria Ruiz, Angel Sanchez, and Jose F Velez. Offline continuous
handwriting recognition using sequence to sequence neural networks. Neurocomputing,
289:119–128, 2018.

[97] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2818–2826, 2016.

[98] Martin Szummer and Christopher M Bishop. Discriminative writer adaptation. In Tenth
International Workshop on Frontiers in Handwriting Recognition. Suvisoft, 2006.

[99] Chau Tran, Shruti Bhosale, James Cross, Philipp Koehn, Sergey Edunov, and An-
gela Fan. Facebook ai wmt21 news translation task submission. arXiv preprint
arXiv:2108.03265, 2021.

[100] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The
missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[101] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(11), 2008.

[102] Tijn Van der Zant, Lambert Schomaker, and Koen Haak. Handwritten-word spotting
using biologically inspired features. Ieee transactions on pattern analysis and machine
intelligence, 30(11):1945–1957, 2008.

[103] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008, 2017.

[104] Alessandro Vinciarelli and Samy Bengio. Writer adaptation techniques in hmm based
off-line cursive script recognition. Pattern Recognition Letters, 23(8):905–916, 2002.

[105] Zi-Rui Wang and Jun Du. Fast writer adaptation with style extractor network for
handwritten text recognition. Neural Networks, 147:42–52, 2022.

69

[106] Zi-Rui Wang, Jun Du, and Jia-Ming Wang. Writer-aware cnn for parsimonious hmm-
based offline handwritten chinese text recognition. Pattern Recognition, 100:107102,
2020.

[107] Curtis Wigington, Seth Stewart, Brian Davis, Bill Barrett, Brian Price, and Scott Co-
hen. Data augmentation for recognition of handwritten words and lines using a cnn-
lstm network. In 2017 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR), volume 1, pages 639–645. IEEE, 2017.

[108] Genta Indra Winata, Samuel Cahyawijaya, Zihan Liu, Zhaojiang Lin, Andrea Madotto,
Peng Xu, and Pascale Fung. Learning fast adaptation on cross-accented speech recog-
nition. arXiv preprint arXiv:2003.01901, 2020.

[109] Phil C Woodland. Speaker adaptation for continuous density hmms: A review. In ISCA
Tutorial and Research Workshop (ITRW) on Adaptation Methods for Speech Recogni-
tion, 2001.

[110] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European
conference on computer vision (ECCV), pages 3–19, 2018.

[111] Zhizheng Wu, Pawel Swietojanski, Christophe Veaux, Steve Renals, and Simon King.
A study of speaker adaptation for dnn-based speech synthesis. In Sixteenth Annual
Conference of the International Speech Communication Association, 2015.

[112] Shaofei Xue, Ossama Abdel-Hamid, Hui Jiang, and Lirong Dai. Direct adaptation of hy-
brid dnn/hmm model for fast speaker adaptation in lvcsr based on speaker code. In 2014
IEEE international conference on acoustics, speech and signal processing (ICASSP),
pages 6339–6343. IEEE, 2014.

[113] Hong-Ming Yang, Xu-Yao Zhang, Fei Yin, Jun Sun, and Cheng-Lin Liu. Deep transfer
mapping for unsupervised writer adaptation. In 2018 16th International Conference on
Frontiers in Handwriting Recognition (ICFHR), pages 151–156. IEEE, 2018.

[114] Weixin Yang, Lianwen Jin, and Manfei Liu. Deepwriterid: An end-to-end online text-
independent writer identification system. IEEE Intelligent Systems, 31(2):45–53, 2016.

[115] Xu-Yao Zhang, Yoshua Bengio, and Cheng-Lin Liu. Online and offline handwritten
chinese character recognition: A comprehensive study and new benchmark. Pattern
Recognition, 61:348–360, 2017.

[116] Xu-Yao Zhang and Cheng-Lin Liu. Writer adaptation with style transfer mapping. IEEE
transactions on pattern analysis and machine intelligence, 35(7):1773–1787, 2012.

[117] Yaping Zhang, Shuai Nie, Wenju Liu, Xing Xu, Dongxiang Zhang, and Heng Tao Shen.
Sequence-to-sequence domain adaptation network for robust text image recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 2740–2749, 2019.

70

[118] Zhenxing Zhang and Lambert Schomaker. Divergan: An efficient and effective single-
stage framework for diverse text-to-image generation. Neurocomputing, 473:182–198,
2022.

[119] Yiwei Zhu, Shilin Wang, Zheng Huang, and Kai Chen. Text recognition in images based
on transformer with hierarchical attention. In 2019 IEEE International Conference on
Image Processing (ICIP), pages 1945–1949, 2019.

71

Appendix A

Hyperparameters

In this section, we include all relevant hyperparameters used to train the models in Chapter 3.
We show hyperparameters for the base models in Table A.1, hyperparameters for writer code
models in Table A.2, and meta-learning hyperparameters in Table A.3.

Table A.1: Hyperparameters for the base HTR models.

FPHTR-{18,31} SAR-18 SAR-31

Batch size 32 32 32
Learning rate 1e-4 1e-3 1e-3
Adam β1 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999
d model 260 - -
Feedforward hidden size 1024 - -
Hidden size LSTM encoder - 256 512
Hidden size LSTM decoder - 256 512
Attention module dim. - 256 512
Dropout encoder 0.1 0.1 0.1
Dropout decoder 0.1 0.0 0.0
Transformer heads 4 - -
Transformer layers 6 - -
LSTM encoder layers - 2 2
LSTM decoder layers - 2 2
Max sequence length 55 55 55
Max gradient L2-norm - 5.0 5.0

72

Table A.2: Hyperparameters for the writer code approach.

Learned code Hinge code Style code Zero code

Learning rate 1e-3 1e-3 1e-3 1e-3
Learning rate codes 1e-3 - 1e-3 -
AdaBN MLP hidden units 128 128 128 128
Batch size 128 64 64 64
Code size 64 465 64 465
Shots (K) 16 - - -
Num. clusters (k) - - 3 -

Table A.3: Hyperparameters for the meta-learning approach.

MAML / MAML + llr MetaHTR

FPHTR-18 SAR-18 FPHTR-31 FPHTR-18 SAR-18 FPHTR-31

Learning rate (β) 3e-5 1e-4 3e-5 8e-6 1e-4 8e-6
Inner learning rate (α) 1e-4 1e-3 1e-4 - - -
MLP (gψ) hidden units - - - 128 128 128
Shots (K) 16 16 16 16 16 16
Ways (N) 8 8 8 8 8 8
Num. inner steps 1 1 1 1 1 1
Max gradient L2-norm 5.0 5.0 5.0 5.0 5.0 5.0

73

Appendix B

Number of parameters per model

We indicate learable parameter counts for all models below. Base model parameters are
shown in Table B.1, whereas additional parameters required for each approach in Chapter 3
are shown in Tables B.2 and B.3.

Table B.1: Total number of trainable parameters per base model. For each model, the total
parameter count is decomposed into the constituent submodules.

parameters

FPHTR-18 17.8M

ResNet 11.3M
Transformer decoder 6.5M

SAR-18 14.9M

ResNet 11.1M
LSTM encoder 1.4M
LSTM decoder 2.4M

FPHTR-31 52.6M

ResNet 46.1M
Transformer decoder 6.5M

SAR-31 57.4M

ResNet 45.8M
LSTM encoder 4.5M
LSTM decoder 6.9M

74

Table B.2: Additional number of learnable parameters per writer code variant.

FPHTR SAR

Learned code 1.4M 1.4M
Hinge code 2.4M 2.4M
Style code 1.6M 1.6M

Zero code 2.4M 1.6M

Table B.3: Additional number of learnable parameters per meta-learning variant.

FPHTR-18 SAR-18 FPHTR-31

MAML 0 0 0
MAML + llr 173 87 209
MetaHTR 3.7M 14.7M 3.7M

75

Appendix C

Batch normalization in MAML

In this section, we discuss the role of batch normalization in the MAML-based models. For
MAML and MetaHTR models, using batch normalization [47] (see Section 2.1.3) in the right
way was generally crucial to obtain good performance, and would often determine whether a
model could work at all. However, this is something that is not mentioned in the MetaHTR
paper [13]. Although the current discussion is not directly relevant to the main narrative of
the thesis, we include it here for the sake of completeness.

It has been reported in [4] that the implementation from the original MAML paper [28]
makes use of batch statistics to normalize the activations in batch normalization layers, and
that [4] discovered through experimentation that standard batch normalization using stored
statistics does not work well. One can imagine why batch normalization could be problematic
when training on radically different tasks. During normal neural network training, batches
of data are randomly sampled, which, if large enough, have statistics that are close to the
dataset statistics. This implies that the batch statistics will remain relatively stable during
training. However, introducing task-specific batches of data can potentially lead to large shifts
in activation statistics during training, since batches of data are now task-specific, i.e., one
batch contains a single task. Especially as the number of inner loop optimization steps is
increased, the deviation from the global mean and variance will tend to grow.

Nevertheless, based on our experiments, we found the opposite to hold true for our HTR
models. Using batch statistics degraded performance, and depending on the base model, it
would lead to consistently inferior performance. Numerous setups have been tried out in
this regard, based on what was proposed in [4], e.g., fixing the γ parameter in the batch
normalization layers, or only using batch statistics in the inner loop, but none of these setups
yielded good results.

The explanation for this discrepancy may lie in the nature of the tasks used in MAML.
In traditional MAML setups such as few-shot image classification, introducing a new task
implies introducing one or several new image classes. The image distribution may therefore
change radically, along with the distribution of the intermediate layer activations, and the
previously stored statistics may not work well anymore. By contrast, in the HTR setting,
different handwriting styles may be similar enough such that shared statistics can still be

76

used for normalization.
Interestingly, the effect of batch normalization was much stronger for the LSTM-based

model (SAR). For the SAR base model, using batch statistics for normalization would lead to
a significant drop in performance to about 40% WER. For the FPHTR model, performance
was generally worse than with stored statistics, but only by a margin of a few percentage
points.

Note that the only place where batch normalization takes place is in the ResNet backbone
(which FPHTR and SAR both use). Therefore, the LSTM model seems to be more sensitive
to the changes in normalization statistics expressed in the ResNet output. Recall that the
structure of SAR is such that the output of the ResNet encoder is passed through an initial
encoder LSTM processing image strips, followed by a decoder LSTM for language decoding
using 2D attention (Fig. 2.3). One difference between the FPHTR and SAR models is that
FPHTR uses layer normalization [7] following the multi-head attention modules. By contrast,
SAR uses no normalization layers after the ResNet encoder. Possibly, this could result in a
larger sensitivity to changes in the ResNet output distribution, since the additional variability
does not get normalized along the way.

77

	Introduction
	Background
	Neural networks and deep learning
	Cost functions
	Stochastic gradient descent
	Normalization methods
	Other ingredients for successful neural network training

	Offline handwritten text recognition
	LSTM-based model
	Transformer-based model

	Meta-learning
	Episodic learning
	Model-agnostic meta-learning
	MetaHTR

	Related work
	Handwritten text recognition
	Writer identification and verification
	Adaptation for speech recognition
	Conditionality
	Transfer learning and domain adaptation
	Meta-learning
	Writer adaptation

	Methods
	Dataset
	IAM
	Data augmentation

	Evaluation
	Base models
	Training procedure

	Writer codes
	Code insertion
	Learned codes
	Hinge codes
	Style codes
	Training procedure

	Meta-learning
	Training procedure

	Domain adaptation

	Results
	Base models
	Writer codes
	Meta-learning
	Testing the adaptation premise of MetaHTR

	Domain adaptation

	Discussion and conclusion
	Discussion
	Writer codes
	Meta-learning
	Domain adaptation

	Conclusion

	Hyperparameters
	Number of parameters per model
	Batch normalization in MAML

