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Abstract 

The threshold autoregressive (TAR) model is a model that describes state-dependent changes 

in regulatory behaviour of a system. Recently, the TAR model has been used by psychologists 

to study its potential in measuring state-dependent affect regulation over multiple timepoints 

across multiple individuals. This research is a follow up in which we study how many 

timepoints are sufficient for the model to make sound inferences about possible state-

dependent regulation of affect for a single person. We make use of simulation trials to assess 

the capability of the TAR model to converge and produce good estimates for each model 

parameter while we vary the number of timepoints and some regulation parameters of the 

TAR model. We further apply a real dataset to the model in order to illustrate how to estimate 

the model and interpret the results. The results are discussed in light of clinical practice. 
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     An important aspect of human behaviour that is studied by psychologists is the dynamics of human 

affect over time. There are at least two models that have been used by researchers to analyze affect 

dynamics. One model is the autoregressive (AR) model (Brose, Schmiedek, Koval, & Kuppens, 2015; 

Koval et al., 2015; Koval, Butler, Hollenstein, Lanteigne, & Kuppens, 2015; Koval, Kuppens, Allen, & 

Sheeber, 2012; Koval, Pe, Meers, & Kuppens, 2013; Koval & Kuppens, 2012; Kuppens, Allen, & Sheeber, 

2010; Suls, Green, & Hillis, 1998). For example, Suls et al. (1998) used the AR model to measure 

emotional inertia in healthy individuals. Here, emotional inertia is the resistance of an individual to 

change their emotional state over time. Therefore, emotional inertia represents the autoregressive 

effect in the model. For example, a high autoregressive effect (i.e., high emotional inertia) indicates 

that an individual has more consecutive scores on an affect scale that lay close to each other. In other 

words, the individual lingers for longer into an emotional state. The opposite goes for a low 

autoregressive effect. Thus, the autoregressive effect or inertia can be seen as a measure of affect 

regulation that can differ between persons (Suls et al., 1998; Kuppens et al., 2010, 2012). Typically, a 

higher autoregressive effect indicates a weaker regulation of affect. (de Haan-Rietdijk, Gottman, 

Bergeman, & Hamaker, 2016). 

     The AR model has been proven successful in analysing and understanding of the dynamics of human 

affect. However, the AR model assumes that affect regulation is constant over time. This is a problem, 

as research shows that affect regulation may change with affect intensity (de Haan-Rietdijk, Gottman 

et al., 2016). Therefore, the threshold-autoregressive (TAR) model has been used recently (de Haan-

Rietdijk, Gottman et al., 2016). Namely, the TAR model allows a state-dependent regulation of affect. 

This means that change in affect regulation is possible. In this way, the interpretation of time series 

data can become more valuable, as clinicians could track down changes in affect regulation.  

     Consequently, in a simulation study, de Haan-Rietdijk, Gottman et al. (2016) assessed how well a 

true TAR process – that was generated with simulated data – could be detected with the Bayesian 

estimation method. This ability with which an estimation technique detects a process that is truly there 

is defined as the detection rate or power. It could be observed that the power increased with an 

increasing number of timepoints and subjects. In the following sections, de Haan-Rietdijk, Gottman et 

al. (2016) used real datasets with a sufficient number of timepoints and subjects. For example, they 

found that individuals had a lower inertia for more intense negative mood states (de Haan-Rietdijk, 

Gottman et al., 2016). 

     However, what is missing is that the TAR model for a single person has not been investigated into 

detail. For instance, it is yet precarious how many timepoints are sufficient for the TAR model to 

converge for a single person. This is very important to know for several reasons. Firstly, clinicians often 

evaluate only one person at a time. Secondly, time series measurements on affect regulation are time 

consuming and it may take days, weeks or even months to complete those measurements 

(Kossakowski, Groot, Haslbeck, Borsboom, & Wichers 2017; Koval et al., 2012; Suls et al., 1998). It is 

therefore useful to know what the smallest number of timepoints is at which the TAR model functions 

well enough to make sound inferences about one’s affect dynamics. 

     This study is built up as follows. Firstly, we provide background literature of research on both the 

AR and the TAR model. Next, we describe the basic AR and TAR model. After that, we determine the 

proper sampling conditions for our simulation study. Thereafter, we evaluate model convergence 

criteria and the accuracy of TAR model estimates with a simulation study, while we vary the number 

of measurements (timepoints) for a single person. We do this in order to get an answer to the question 

of how many timepoints we need to let the TAR model converge and function well for a single person. 

Lastly, an empirical dataset of a single person on affect regulation is used to show how the model 



would work in a real-life example. To achieve all this, we use Bayesian inference methods throughout 

the entire study. Lastly, we discuss the results in light of the existing literature. 

1 - Background 
     In the AR model, each single observation can be regressed on one or more previous observations. 

The autoregressive coefficients determine to what extent an observation is predicted by its previous 

observations. Let us now focus on a system in which an observation only depends on the previous 

observation. In this case, we have one autoregressive coefficient that links the two observations 

together.  To begin with, the system has an equilibrium, which is the state that the system tends to be 

near to. The autoregressive coefficient can take values between -1 and 1. For example, a system with 

a high autoregressive coefficient takes relatively long to recover back to equilibrium. The opposite goes 

for a system with a low autoregressive coefficient. The autoregressive coefficient can therefore be 

seen as a measure of resistance of a system to recover after an external shock that perturbs the system 

away from its equilibrium. In the field of affect dynamics, this is also called emotional inertia. For 

example, Suls and colleagues (1998) found that a bad mood at a current timepoint was significantly 

predicted by a bad mood at the previous timepoint with inertia 𝜑 = 0.25 (Suls et al., 1998). Bearing 

this in mind, Kuppens and others (2010) found statistically significant inertias for eight emotions 

ranging from 0.20 to 0.33 while sampling emotional states from daily life of students (Kuppens et al., 

2010). In another study, inertias for both positive and negative emotions ranged from 0.15 to 0.40 in 

a sample of some 300 students (Koval, Sütterlin, & Kuppens, 2016). This indicates a low to moderate 

predictability of emotional states. In other words, the emotional states of some of these individuals 

tend to recover rather quickly to the equilibrium.  

     However, a limitation of the AR model is that it assumes that affect regulation is constant over time. 

This means that inertia is presumed stationary and does not vary over time. To overcome this 

limitation, the AR model can be extended to the so-called TAR model. In this model, affect regulation 

is allowed to vary over time. This is realized by adding a so-called threshold parameter to the TAR 

model, hence this is called the threshold-AR or TAR model. These thresholds actually divide the AR 

model into multiple individual AR processes or regimes that each have their own autoregressive 

coefficients (Tsay, 1989). In the simplest case we have a TAR model with only one threshold, thus two 

regimes with their own emotional inertias. As a consequence of this, emotional inertia can change as 

the intensity of affect changes. To concretize this idea, we shortly discuss some results of the study of 

de Haan-Rietdijk et al. (2016). In this study, they focussed on the multilevel extension of the TAR model. 

They used a dataset that describes the affect dynamics of 129 newlywed couples during a 15 minutes 

lasting discussion (Gottman, Swanson, & Murray, 1999; de Haan-Rietdijk, Gottman et al., 2016) They 

used the model to estimate the two inertias for each person. The result was that the data followed a 

TAR process, with an inertia of 0.3 and another inertia of around 0.6 for both men and women. The 

first inertia was obtained for an affect intensity was below a certain threshold, whereas the second 

inertia was obtained when their affect intensity was above this threshold (de Haan-Rietdijk, Gottman, 

et al., 2016). 

 

2 – Methods  
     In this section, we discuss the mathematical properties of both the AR and TAR model for a single 

case and Bayesian inference. The chapter is built up as follows. We first discuss the generalized version 

of the AR model. Next, we discuss a special case of the AR model with one regression coefficient and 

graphically illustrate how this version of the model is used in the field of affect dynamics. We further 



present an alternative parameterization of the AR model that is used in an article of de Haan-Rietdijk, 

Gottman et al. (2016). The sections for the TAR model are built up the same; we explain a generalized 

version, then focus on a special case with two regimes and finally discuss its alternative equivalent (de 

Haan-Rietdijk, Gottman, et al., 2016). Finally, we discuss Bayesian inference, which we used to estimate 

the TAR model for a single person. 

 

2.1 – The AR model 
 

2.1.1 – The AR model in general 
     The autoregressive (AR) model is described by one or multiple regression coefficients that link one 

or multiple previous observations to the current observation at a certain timepoint (Figueiredo, 

Figueiras, Park, Farrar, & Worden, 2011). In this way, a variable on a timepoint that depends on itself 

at lagged timepoints can be modelled. In general, let 𝑝 be the number of previous timepoints that can 

be regressed on the current timepoint. In that case, we have an autoregressive process of order 𝑝, 

denoted as AR(𝑝). The AR(𝑝) model can be represented as follows: 

 

𝑌𝑡 = 𝑐 + ∑ 𝜑𝑖𝑌𝑡−𝑖

𝑝

𝑖=1

+ 𝜀𝑡  (1), 

 

where 𝑐 is a constant, which can be interpreted as the intercept. 𝑌𝑡−𝑖 are the previous observations. 

The parameters 𝜑𝑖  are the autoregressive coefficients that determine the extent with which the 

current observation is linked to the previous observations. Lastly, 𝜀𝑡 represents random shocks that 

happen in daily life and is also called ‘white noise’. It is assumed that the random shocks are normally 

distributed around a mean of 0, with a variance specific for these random shocks. Thus, 

 

𝜀𝑡 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜀
2)     (2) 

 

Furthermore, the parameters can be estimated using several methods (e.g., Box, Jenkins, Reinsel, & 

Ljung, 2015). One method that is used and will be elaborated on later is Bayesian Inference. 

 

2.1.2 – The AR(1) model and affect regulation 
      

     In the previous section, we wrote about the generalized AR model. However, one special case of 

the AR model that lends itself very well to study affect dynamics in psychology is the AR(1) model (Suls 

et al., 1998; Kuppens et al., 2010; Koval & Kuppens, 2012). The AR(1) model for a single person can 

be defined as follows: 

 

𝑌𝑡 = 𝑐 + 𝜑𝑌𝑡−1 + 𝜀𝑡  (3) 



      

As for the general version of the model, 𝑐 is the intercept, 𝜑 is the autocorrelation parameter and 𝜀𝑡 

is the random shock, or innovation parameter. In the article of de Haan-Rietdijk, Gottman et al. (2016), 

the AR(1) model is used to simulate data, they make use of an alternative parameterization of the 

model, because the intercept is not meaningful, but having a mean or equilibrium is interesting to 

interpret. In this article, we work with this version of the model. In this way, the AR(1) model becomes: 

 

𝑌𝑡 = 𝜇 + 𝜑(𝑌𝑡−1 − 𝜇) + 𝜀𝑡  (4) 

 

Without this reparameterization, the intercept 𝑐 would be equal to 

 

𝑐 = 𝜇(1 − 𝜑)     (5) 

 

As already mentioned, this intercept value has no intuitive interpretation. Therefore, de Haan-Rietdijk 

et al. (2016) and we prefer to use Equation 3. 

     Now, the dynamics of the AR(1) can be visualized in Figure 1. Both panels represent the NA score 

for two hypothetical individuals A and B (de Haan-Rietdijk, Gottman, et al., 2016). The horizontal lines 

in the plot represent the equilibrium a person tends toward. For example, for both individuals the 

equilibrium is equal to 15. However, their inertias may differ. For instance, for individual A (upper 

panel) with an inertia of 𝜑 = 0.2, the affect score at a certain timepoint has little influence on the 

affect score at the next timepoint. Thus, for this individual the affect quickly recovers towards their 

equilibrium. However, individual B has an inertia of 0.8, so that there is a slower recovery towards the 

equilibrium, with consecutive scores below or above the equilibrium. Corresponding state-space plots 

are seen on the right of the figure, in which the underlying autoregression is depicted (de Haan-

Rietdijk, Gottman, et al., 2016). Also, note that the mean over the timeseries is equal to the equilibrium 

for both person A and B. 



 

Figure 1. Hypothetical NA scores for persons A and B with state-space plots representing the underlying 

autoregression. The vertical dashed line in these plots represents the equilibrium. The random shock or 

innovation parameter comes from a standard normal distribution with variance 4; 𝜀𝑡 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,4). On the 

right plots, simulated data for 1000 timepoints is included. On the left plot, only the first 200 timepoints are 

shown. 

 

     Thus, Figure 1 represents two cases that have each a different inertia. Notice that the regression 

lines in each of the state-space plots of the figure have the same slope, irrespective of which side of 

the equilibrium (dotted line) the points are. Actually, the state-space plots imply that inertia is constant 

over time and does not vary within persons. However, recent research shows that inertia may actually 

covary with intensity of affect level (de Haan-Rietdijk, Kuppens, & Hamaker, 2016). In this study, two 

datasets were used that contained measurements of multiple persons on affect intensity and inertia. 

It was found that there was a substantial correlation between affect intensity and the inertia for that 

affect (de Haan-Rietdijk, Kuppens et al., 2016). Thus, despite the fact that this study included multiple 

persons, it lends support for the hypothesis that inertia may also vary with affect intensity within a 

system or person. The threshold autoregressive (TAR) model offers a solution to this. 

 

2.2 – The TAR model 
 

2.2.1 – The TAR model in general 
     The general TAR model is an extension of the AR model in which it is assumed that the strength of 

the autoregressive effect depends on the observed values of the previous occasions. As a consequence, 

there are multiple processes that describe the time series of interest and each of these processes is 

known as a regime. Let us now introduce the TAR(k; p, d) model (Tong & Lim, 1980; Tsay, 1989). Here, 

𝑘 is the number of regimes separated by 𝑘 − 1 thresholds. Again,  𝑝 is the order of the autoregression. 

Although not applicable to this article, it should be noted that 𝑝 may differ between regimes (Tsay, 



1989). Lastly, 𝑑 is the lag of the threshold and determines which timepoint before the current 

timepoint is used as the threshold variable. Thus, the model is defined mathematically as follows: 

 

𝑌𝑡 = 𝜑0
(𝑗)

+ ∑ 𝜑𝑖
(𝑗)

𝑌𝑡−𝑖

𝑝

𝑖=1

+ 𝑎𝑡
(𝑗)

      with 𝑟𝑗−1 ≤ 𝑌𝑡−𝑑 < 𝑟𝑗 (6), 

 

where 𝑗 is the index for the regime the model is in, with 𝑗 = 1, … , 𝑘. In each regime, there exists a 

particular AR model that is effective in only one regime. Furthermore, 𝑟 is a threshold value that 

separates two regimes from each other. Which regime is active depends on what the value of the 

threshold variable is. Also, 𝑌𝑡−𝑑 is always enclosed by the two threshold values of the (𝑗 − 1)𝑡ℎ and 

𝑗𝑡ℎ regime, thus 𝑟𝑗−1 ≤ 𝑌𝑡−𝑑 < 𝑟𝑗. 

     To make this more concrete, the TAR(2; 1, 1) model has two regimes, with 𝑟0 = −∞, 𝑟1 and 𝑟2 = ∞. 

In this case we have the two states in which −∞ < 𝑌𝑡−𝑑 < 𝑟𝑗 and 𝑟𝑗 ≤ 𝑌𝑡−𝑑 < ∞. More practically, for 

the lower regime we can write that 𝑌𝑡−1 < 𝑟1 and for the upper regime 𝑌𝑡−1 ≥ 𝑟1. For example, in the 

study of de Haan-Rietdijk, Gottman et al. (2016), they make use of the TAR(2; 1,1) model, with which 

they tried to model the same concept as mentioned before; affect regulation. To clarify, they use a 

two-regime model of lag-order 1 separated by one threshold parameter. A lag-order 1 indicates that 

only the previous timepoint is used for the threshold variable (i.e. 𝑑 = 1). This results in the following 

model for a single person: 

 

𝑌𝑡 = {
𝜏 + 𝜑1(𝑌𝑡−1 − 𝜏) + 𝜀𝑡      if     𝑌𝑡−1 < 𝜏

𝜏 + 𝜑2(𝑌𝑡−1 − 𝜏) + 𝜀𝑡      if     𝑌𝑡−1 ≥ 𝜏
       (7), 

 

where 𝜏 is the threshold parameter and intercept at the same time. However, in a TAR process, the 

parameter 𝜏 need not be equal to the equilibrium or mean. For example, if the autocorrelation above 

the threshold is higher, then scores above the threshold may be more persistent and in greater number 

than scores below the threshold. In this case, the mean would be higher than the threshold (de Haan-

Rietdijk, Gottman et al., 2016). Again, 𝜑1 and 𝜑2 are the inertias that are dependent on what the value 

of 𝑌𝑡−1 is relative to the threshold parameter 𝜏. 

     To illustrate the TAR model with two regimes, of lag-order 1 and with a threshold parameter that 

has lag 1, we present an example based on de Haan-Rietdijk, Gottman et al (2016). Consider that the 

affect dynamics of a person follows a TAR process and their time series are presented on the left panel 

of Figure 2 Here, the two different inertias are 𝜑1 = 0.1 and 𝜑2 = 0.7. The two regimes are separated 

by the threshold value of 𝜏 = 15. The two states of affect are each a regime in which another inertia 

value is in effect.  Thus, when the NA value of this person is below 15 and thus less intense, their inertia 

is relatively low (0.1). However, if this person has an affect of above 15, then their inertia is 0.7. This 

means that a more intense NA has a larger carry-over effect than an affect that is less intense and that 

inertia is thus state-dependent, as can be seen in Figure 2 (de Haan-Rietdijk, Gottman, et al., 2016). 

 



 

 

Figure 2. An instance of the TAR(2; 1,1) model. Person C has more consecutive scores above the equilibrium of 

15 due to the larger inertia of 0.7. Scores below the equilibrium are scanter because of quicker recovery to the 

equilibrium caused by the low inertia of 0.1 in the state of lower NA. The state-space plot on the right is 

partitioned into two regimes by the vertical line representing the equilibrium. Of note is the flexure in the state-

space plot that is caused by two differing inertias in each regime. 

 

2.3 – Bayesian inference 
 

2.3.1 – In theory 
          In this article, we implemented the TAR(2; 1, 1) model within the Bayesian framework. Hence, in 

this section we present a brief overview of Bayesian inference. Bayesian inference is a statistical 

method that combines prior beliefs with the observations about a certain phenomenon to do statistical 

inferences about the data. It is based on Bayes’ rule. Concretely, the idea is that the knowledge or 

belief (prior) that we have about a phenomenon can be updated after observing the evidence (data). 

Consistently, the updated knowledge is the posterior, which in turn can become the prior in yet 

another following experiment. Suppose that we have some data and we would like to estimate 

parameter 𝜃. Then Bayes’ rule is defined as follows: 

 

Pr(𝜃|𝑑𝑎𝑡𝑎) =
Pr(𝑑𝑎𝑡𝑎|𝜃) × Pr(𝜃)

Pr(𝑑𝑎𝑡𝑎)
     (8) 

 

Here, Pr(𝜃|𝑑𝑎𝑡𝑎) is the posterior distribution of parameter values. That is, it is the distribution of 

parameter values that is observed after the data are seen. This distribution is determined by the 

product of the prior distribution Pr(𝜃) and the likelihood function Pr(𝑑𝑎𝑡𝑎|𝜃).  The likelihood function 

is the likelihood of observing the data given the parameter value 𝜃. This product of the prior 

distribution and the likelihood function is then divided by the probability of observing the data 

irrespective of parameter values (marginal probability), which is Pr(𝑑𝑎𝑡𝑎). Thus, we could say that the 

posterior distribution is proportional to the product of the prior distribution and the likelihood 

function: 

 

Pr(𝜃|𝑑𝑎𝑡𝑎) ∝ Pr(𝑑𝑎𝑡𝑎|𝜃) × Pr(𝜃)     (9) 



 

It should be noted that a particular group of priors may not even influence the shape of the posterior 

distribution. Such priors are called ‘flat priors’. Flat priors are thus prior distributions that have a 

probability density function for the parameter value that is hardly influenced by this value itself. In our 

case we used flat priors, in order to get similar estimates as we would get if we have used frequentist 

approaches. In this study, flat priors are also used, so that the posterior distribution is more 

determined by the data, which makes the process of finding the posterior more data-driven. 

 

2.3.2 – In practice 
     The most popular Bayesian estimation methods are the Markov Chain Monte Carlo (MCMC) 

algorithms. In short, these algorithms describe an iterative process that samples possible estimated 

values from an approximation of the posterior distribution without actually computing the posterior 

distribution. Additionally, it is possible to run a model multiple times with these algorithms. In each 

run or iteration, parameters of interest are estimated, given the input data. After many runs, there is 

a substantial sample of parameter estimates for each parameter of interest. This sample is also an 

approximation of the posterior distribution of parameter values (Kruschke, 2014). An MCMC algorithm 

should be run with multiple chains. Here, a chain is a sequence of a finite number of model runs. It is 

recommended to run two or more parallel chains at a time, in order to see if the model converges to 

a stable posterior distribution. It usually takes a couple of iterations for the chains to converge to the 

same region in the parameter space. This period, in which the chain converges to the highest density 

region of the parameter space from its initial value is called the burn-in period. 

     One of the problems of the MCMC algorithms is that there is never certainty that the model 

converged. Because of this, multiple visual and numerical quality checks of the samples are done. For 

instance, the entirety of values in the chain should represent the posterior distribution, or at least an 

approximation thereof. Also, the posterior distribution of chain values should not be influenced too 

much by the initial values for the parameters. Ideally, chains should be generated in a time-efficient 

manner, with as few iterations as possible (Kruschke, 2014). Furthermore, a chain of good quality is a 

chain that fluctuates well and is thus not stuck at one single location in the parameter space, which 

can be seen in a trace plot. Chains that fluctuate in a similar way within the posterior distribution are 

said to mix or overlap well with each other (Kruschke, 2014; Toft, Innocent, Gettinby, & Reid, 2007).  

     There exist also numerical quality checks of the chain. Two important instances of these are the 

autocorrelation and the Gelman-Rubin diagnostic (Gelman & Rubin, 1992). The autocorrelation is the 

correlation of the chain values with other chain values that are 𝑘 steps ahead of the former. When 

there is a high autocorrelation in a chain at a certain lag 𝑘, it means that a chain moves slowly through 

the parameter space. This means that there is also less variation in chain values, which in turn leads to 

a lower variance in the posterior distribution. Therefore, the autocorrelation is to some extent 

predictive of the certainty with which the parameters are estimated (Link & Eaton, 2012). The 

advantage of a low autocorrelation is that sampling values are more independent from each other. In 

this way, draws from the posterior distribution cannot be predicted so well by previous draws. Thus, a 

low autocorrelation can be used such that we can obtain more useful information from the posterior 

distribution. Also, by reducing the autocorrelation between draws, we can increase the effective 

sample size (Lanfear, Hua, & Warren, 2016). One way to make the autocorrelation lower is by making 

use of thinning. Thinning is the process in which every 𝑖𝑡ℎ step in the chain is stored. The costs and 

benefits of thinning are shortly discussed. For example, one may use thinning in order to lower the 

autocorrelation, which benefits sampling independence at the cost of estimation accuracy and time 



(Geyer, 1992; Link & Eaton, 2012; Maceachern & Berliner, 1994). On the other hand, not using thinning 

of chains benefits the accuracy with which parameters are estimated and shortens time consumption 

at the cost of sampling independence (Link & Eaton, 2012).  

     The other numerical quality check is known as the Gelman-Rubin statistic or diagnostic. This is a 

statistic that tells how much variance there is between chains relative to the amount of variance within 

chains (Gelman & Rubin, 1992). This ratio between between-variance and within-variance decreases 

and comes close to 1.0, once chains have all settled in the same parameter space with the same extent 

of fluctuation around the mode value of the parameter. Thus, a Gelman-Rubin statistic value close to 

1.0 indicates that the model actually converges. In the end, the statistic converges downwards to 1.0 

with more iterations (Brooks & Gelman, 1998; Gelman & Rubin, 1992; Kruschke, 2014). As a rule of 

thumb, the Gelman-Rubin diagnostic should preferably be below 1.1, because higher values indicate 

non-convergence (Kruschke, 2014). 

 

3 – Simulations 
     We performed simulation studies to assess at what number of timepoints the TAR model becomes 

a feasible model to describe affect dynamics. To achieve this, we first determined the proper settings 

of some relevant MCMC parameters in a preliminary simulation. Thereafter, we used these settings to 

perform a simulation study in which we measured model performance under different conditions. 

Conditions could vary by number of timepoints and true value for the inertia parameters. We assessed 

the ability of the MCMC algorithm to estimate the parameter values from the simulated data and to 

detect the underlying TAR process of the simulated data. 

 

3.1 – Choosing the MCMC design 
     There are MCMC-specific values that may need to be specified in order to obtain proper results. 

These are the total number of iterations, thinning and fraction of burn-in iterations. We prefer to 

choose an optimal thinning, such that high autocorrelation can be removed without losing an excessive 

amount of time. In our case, we use the TAR model in the Bayesian framework for clinical practice. 

Thus, what we want is that the accuracy with which the parameters are estimated only depends on 

the given data (and eventual prior beliefs), not on high autocorrelation (see Supplementary Materials 

and Results). Also, with a decent thinning level, we can make the autocorrelation lower for all model 

parameters, such that differences in estimation accuracy between model parameters are only 

explained by the data. Based on a short simulation design and the results thereof that are explained in 

detail in the Supplementary Materials and Results, we decided to use a thinning factor of 30, total 

number of iterations 20.000 and a burn-in fraction of 0.5 (Figure S1). 

 

3.2 – Data generation 
     In the simulation study, we focused on studying the model convergence and accuracy with which 

the parameters were estimated. Several simulation conditions were realised. Conditions could differ 

by (1) the true value for the first inertia 𝜑1, (2) the true value for the second inertia 𝜑2, and (3) the 

number of timepoints. The values of 𝜑1 and 𝜑2 were varied such that 

{𝜑1, 𝜑2} = {0.2, 0.4}, {0.2, 0.6}, {0.4, 0.6}, {0.4, 0.2}, {0.6, 0.2}, {0.6, 0.4}     (10), 



which is based on observations in spousal relationships in an earlier study (de Haan-Rietdijk, Gottman 

et al., 2016). The number of timepoints was varied as follows, based on the literature: 90, 150, 200, 

300, 500 (Borkenau & Ostendorf, 1998; Ferrer, Steele, & Hsieh, 2012; Gottman et al., 1999; Hamaker, 

Grasman, & Kamphuis, 2016; Kuppens et al., 2010; Schuurman, Houtveen, & Hamaker, 2015; Tong & 

Lim, 1980). This resulted in a total of 30 conditions. Each condition was replicated 100 times, resulting 

in 3000 analyses. The seed numbers were simply denoted with the numbers 1 to 100. The results of 

the simulation are shown below and are discussed into more detail. The total duration of the 

simulation session lasted 4 days, 17 hours and 46 minutes on an Intel core i-9100T 3.10GHz with 8GB 

of RAM. 

 

3.3 – Results 
     To start with, the plots that are shown are built up as follows. Each plot grid consists of six plots. In 

each plot, there is one combination of values for the two inertias for 𝜑1 (phi1) and 𝜑2 (phi2) that is 

effective. Furthermore, each point line in a plot represents values of a variable of inference that are 

plotted against the number of timepoints, for one model parameter. For instance, the upper left plot 

in Figure 5 presents the point estimates of the two inertias phi1 and phi2 against the number of 

timepoints when the true values of phi1 and phi2 were set at 0.4 and 0.2, respectively. Note that in 

each plot, the lines may be shifted towards a certain direction from each other. This is done to make 

sure that the lines do not overlap too much, such that the variation around each point is well visible. 

In the following sections, we analyse several aspects of the results. The model parameters that needed 

to be estimated include phi1, phi2 (inertias), phi_diff (difference between inertias), sigma2 (variance 

of the trait level of affect) and tau (𝜏, threshold parameter). However, in most cases we omitted the 

results for the parameters phi_diff, sigma2 and tau to save space, but the visualization of these results 

can be regenerated using the script provided in the Supplementary Materials. 

 

3.3.1 – Model convergence 
     Firstly, we discuss the results with regard to model convergence. To summarize, there were no 

indications that the TAR model had problems with converging. In all the simulations for any parameter, 

the median autocorrelation was 0.014 (IQR: 0.045; 0.003 – 0.048) (data not shown), which is 

acceptable for model convergence (Kruschke, 2014, p. 184). Furthermore, the maximum value of the 

Gelman-Rubin diagnostic across all of the simulation results was 1.039 (data not shown). This means 

that all of the Gelman-Rubin diagnostic values were below the acceptable threshold of 1.05. 

 

3.3.2 – Parameter estimation 
     Secondly, we have the results that involve parameter estimation. These include the detection rate, 

point estimates, width of the credibility interval (CI), bias, absolute bias and relative bias. First, the 

detection rate is the fraction the hundred replications that contains the true value of the parameter in 

the 95% CI.  The detection rate could thus range from 0 to 100%. The detection rate of the model 

parameters (i.e., phi1, phi2, sigma2, tau) was as expected. The smallest value observed was 0.9 and 

the largest value was 1. The mean detection rate was 0.96, which is around the expected value of 0.95. 

This was the detection rate for the four model parameters phi1, phi2, sigma2 and tau (Figure 3).  

     For the difference between the two inertias, we actually computed the proportion of the 

replications in which the 95% CI of phi_diff did not include zero. In other words, it is the rate with which 

the underlying TAR process is detected. Thus, it should be noted that the detection rate has a different 



meaning for this parameter. It turned out that the mean and median detection rate were 0.23 and 

0.19 across all of the conditions, respectively. Note that, however, the detection rate increases with 

an increasing number of timepoints (see Figure 4). This suggests an improvement of the model to 

detect a TAR process as the number of timepoints increases. 

     The point estimates per simulation for the two inertias are represented as means of the posterior 

distribution. In Figure 5, the violin plots show the distribution of all of the posterior means from the 

hundred replicates. For example, one pattern that we can see is that the distribution of point estimates 

becomes narrower as the number of timepoints and inertia value increases. Also, from Figure 6 we can 

infer that the width of the CI is indeed systematically smaller when the value for either inertia is 

greater. Moreover, the values of the point estimates of these inertia parameters depend relatively 

more on the number of timepoints that is used than the other model parameters (see also information 

about the relative bias in Figure 7). Especially the width of the CI and the relative bias are of 

importance, as they are a measure of accuracy with which the model parameters are estimated. It is 

also very important to maintain a high accuracy for parameter estimation, because then conclusions 

can be drawn with more reliability. We therefore decided to do an analysis of variance of these 

parameter values between the timepoint number groups. 

     Furthermore, for sigma2, the mean point estimate was 4.01, which clearly approximates the true 

value of 4 (95% CI: [3.21, 4.96]), with a median relative bias very close to zero, measured across all the 

simulation conditions for all the model parameters. The same is true for parameter tau, (mean: 15.02, 

95% CI: [14.22, 15.88]) with a relative bias very close to zero. Also, the estimates of these parameters 

became more certain as the number of timepoints increases (data not shown). 

 

Figure 3. The detection rate of the true value of the model parameter in the simulations for the parameters phi1, 

phi2 (inertias), sigma2 (variance of the trait level affect) and tau (threshold parameter). The detection rate is the 

percentage of seeds of which the CI contained the true value of the parameter. Each set of 100 seeds represented 

one timepoint, one model parameter and one set of true values for phi1 and phi2. 



 

Figure 4. The detection rate of the of the TAR process. The detection rate is the percentage of seeds of which the 

CI of the difference parameter did not contain the value 0. Each set of 100 seeds represents one timepoint and 

one set of true values for phi1 and phi2. 

 



Figure 5. The point estimates of the two inertias (phi1 and phi2) plotted against the number of timepoints for the 

six possible combinations of true values for the two inertias. A violin shape in each plot for each group of 

timepoint number represents the density of the dependent variable over the 95% confidence interval. A greater 

width indicates a higher density. 

 

Figure 6. The width of the CI plotted against the number of timepoints for phi1 and phi2 (inertias). A violin shape 

in each plot for each group of timepoint number represents the density of the dependent variable over the 95% 

confidence interval. A greater width indicates a higher density. 



 

Figure 7. The relative bias plotted against the number of timepoints for the parameters phi1 and phi2 (inertias). 

The absolute bias was calculated by dividing the aforementioned bias by the true value. A violin shape in each 

plot for each group of timepoint number represents the density of the dependent variable over the 95% 

confidence interval. A greater width indicates a higher density. 

 

Analysis of variance (ANOVA) between groups of timepoint number of model performance 

criteria 
     For the width of the CI and the relative bias, we conducted an analysis of variance (ANOVA) between 

the numbers of timepoints for all of the model parameters except phi_diff of all of the six possible 

combinations for the two inertias. We did a slight, but important modification on the variable that was 

the relative bias. From the relative bias, we created the so-called absolute relative bias, such that 

groups could not differ due to over- or underestimation. Now, the absolute relative bias is merely a 

measure of the accuracy with which the parameters are estimated. The absolute relative bias was 

created by simply taking the absolute value of the relative bias. 

     The ANOVA was performed after we did tests for normality of the data and homogeneity of 

variances between numbers of timepoints. We used the Shapiro-Wilk test to test for normality of the 

data in the timepoint groups for all of the six combinations of inertias for both inertias and both the 

variables width of the CI and absolute relative bias, leaving us with 48 sets of 5 comparable timepoint 

number groups. To summarize, in all of the 48 groups, there was at least one timepoint number that 

contained a non-normal distribution of variable values. This makes a regular ANOVA that assumes 

normality of all groups unfeasible. Next, we tested the homogeneity of variance in the 48 sets of 5 

groups, using the Fligner-Killeen test of homoscedasticity. This test has the advantage that it does not 

require normality of the data (Fligner & Killeen, 1976). In 46 out of the 48 sets, there was 

heteroscedasticity between the timepoint number groups. Therefore, we decided to do a Kruskal-



Wallis rank sum test to test for significant differences between the medians of the timepoint number 

groups. In this case, the Kruskal-Wallis test is a test that does not assume normality of the data and is 

therefore close to a suitable solution for the ANOVA. The Conover’s non-parametric all-pairs 

comparison test was used as a post-hoc analysis to investigate which timepoint number groups 

differed significantly from one another in the 48 sets. The level of significance was held at 𝛼 = 0.05. 

     The results for the ANOVA for the two inertias are summarized in the figures 8A through 9B. Note 

that here as well, the results for the other parameters have been omitted, because they were similar. 

The visualization of these results can be regenerated with a script provided in the Supplementary 

Materials. Figure 8 represents the results for the absolute relative bias and Figure 9 represents the 

results for the width of the CI. One of the results is that only the group of simulations with 500 

timepoints always differs significantly from the group of 90 timepoints with regard to the values of the 

absolute relative bias and width of the CI. However, for only the width of the CI, all of the time point 

number groups differ significantly from one another. This suggests that there is little variation between 

timepoints in the accuracy with which the MCMC algorithm estimates the two inertias, but more 

variation in the certainty of the parameter estimates. In this case, the certainty seems to be of more 

concern than the accuracy when a clinician has to choose the appropriate number of timepoints. We 

will elaborate on this more in the discussion section. 
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Figure 8. ANOVA of the results of the absolute relative bias compared between the five timepoint number groups 

for all of the six combinations of true inertia values, for (A) phi1 and (B) phi2. The significance labels are placed 



to the right and upwards from the median point of each timepoint number group value. Different letters between 

two groups indicates a significant difference between those groups. A group that has a letter in common with 

two or more other groups does not significantly differ from either group. A point in each line indicates the median 

of a time point number group, while length of the vertical lines are determined by the 2.5 percentile and the 97.5 

percentile. 
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Figure 9. ANOVA of the results of the width of the CI compared between the five timepoint number groups for 

all of the six combinations of true inertia values, for (A) phi1 and (B) phi2. The significance labels are placed to 

the right and upwards from the median point of each timepoint number group value. Different letters between 

two groups indicates a significant difference between those groups. A group that has a letter in common with 

two or more other groups does not significantly differ from either group. A point in each line indicates the median 

of a time point number group, while length of the vertical lines are determined by the 2.5 percentile and the 97.5 

percentile. 

 

4 – Empirical applications for the TAR model 
 

4.1 – Affect and sleep dynamics in a patient diagnosed with major depressive 

disorder 
 

4.1.1 – The dataset 
     The dataset consists of data that were collected during a case study conducted by the participant 

of the study themselves. The participant has a history of major depression.  For more details on their 

psychiatric course, readers are referred to (Groot, 2010). The data were collected on 239 consecutive 

days between August 13, 2012 and April 11, 2013. The maximal number of measurements per day 

could be 10. The total number of observations was 1474, resulting in an average completion of 62% 

per day (Kossakowski et al., 2017; Wichers et al., 2016). The dataset contains a total of 85 variables, of 

which 50 are momentary items. These items were collected using a semi-random version of the 

experience sampling method (ESM; which was also used in the studies mentioned in the beginning of 

this paper). Items that were used represent facets of affect a person can have. Examples of affect items 

include irritation, contentment, loneliness, anxiety, enthusiasm, cheerfulness, and more (Wichers et 

al., 2016). Such items were often measured on a Likert scale (Joshi, Kale, Chandel, & Pal, 2015), ranging 

from 1 to 7 or -3 to 3. For a more extensive overview of ESM and the dataset itself, see (Larson & 

Csikszentmihalyi, 2014) and (Kossakowski et al., 2017), respectively. 

 

4.1.2. – Research question and hypotheses 
     For this empirical dataset, we are interested in whether inertia in positive affect (PA), negative affect 

(NA) and sleep are state-dependent. For PA, we hypothesize that the inertia for the lower state is 

higher than the inertia for the upper state. This is because of the negative correlation between PA 

mean level and inertia (de Haan-Rietdijk et al., 2016). On the other hand, for NA, we presume that the 

inertia for the lower state is lower than the inertia for the higher state, because of the reportedly 

positive correlation between NA level and inertia (de Haan-Rietdijk, Kuppens, et al., 2016). 

 

In summary, this yields the following TAR model: 

 

𝑌𝑡 = {
𝜏 + 𝜑1(𝑃𝐴𝑡−1 − 𝜏) + 𝜀𝑡      if     𝑃𝐴𝑡−1 < 𝜏

𝜏 + 𝜑2(𝑃𝐴𝑡−1 − 𝜏) + 𝜀𝑡      if     𝑃𝐴𝑡−1 ≥ 𝜏
 

 



According to our hypothesis, we assume that 𝜑1 > 𝜑2. For NA we have the same model, but then 

substitute 𝑃𝐴 with 𝑁𝐴. With the model for NA, we instead assume that 𝜑1 < 𝜑2. 

      

4.1.3. Pre-processing of the dataset 
     Firstly, variables that needed recoding were recoded. This was done for some mood variables and 

most of the variables related to sleep. For instance, the variables that represent measurements of 

anxiety (mood_anxious) and feelings of guilt (mood_guilty) were recoded such that they could range 

from 1 to 7 instead of -3 to 3. 

     Next, we aggregated variables of interest into subscales. For instance, variables that are related to 

affect were aggregated into the two affect dimensions PA and NA. More precisely, the PA dimension 

entailed the variables that represented measurements on feeling: relaxed (mood_relaxed), satisfied 

(mood_satisfi), enthusiastic (mood_enthus), cheerful (mood_cheerf), strong (mood_strong), 

concentrated (pat_concent). The NA dimension encompassed measurements of feeling: down 

(mood_down), irritated (mood_irritat), lonely (mood_lonely), anxious (mood_anxious), guilty 

(mood_guilty), agitated (mood_agitate), worried (pat_worry) and ashamed (se_ashamed). This 

grouping of items is based on an extensive body of literature in which researchers determined a factor 

structure for the Positive and Negative Affect Schedule in children (Wróbel, Finogenow, Szymańska, & 

Laurent, 2019; Yamasaki, Katsuma, & Sakai, 2006), adolescents (Melvin & Molloy, 2000; Villodas, 

Villodas, & Roesch, 2011; Watson, Clark, & Tellegen, 1988), (young) adults (Crawford & Henry, 2004; 

Pandey & Srivastava, 2008; Pires, Filgueiras, Ribas & Santana, 2013; Terraciano, McCrae, & Costa Jr, 

2003; Tuccitto, Giacobbi Jr, & Leite, 2010), elderly (Buz, Pérez-Arechaederra, Fernández-Pulido, & 

Urchaga, 2015; Kercher, 1992) and people with mental disorders (Díaz-García et al., 2020; Lim, Yu, Kim, 

& Kim, 2010). 

     Lastly, since the TAR model is a discrete time model, it must be that there is an equal amount of 

time between two measurements. Therefore, we first inserted rows with missing values for which 

there could be actual measurements. Thereafter we inserted rows with missing values at timepoints 

where measurements could have been possible (e.g., at night-time). All this led to a total of 16 possible 

observations per day, including these ‘missing’ observations [see also (Asparouhov, Hamaker, & 

Muthén, 2018) for a more detailed description of this procedure]. 

 

4.1.4. Results 
     The analysis took 4 hours, 18 minutes and 9 seconds on a device with 8 GB RAM and 2.80 GHz 

processing speed. 

 

Table 1. Point estimates (posterior means) and 95% credible intervals for the selected parameters of 

the TAR model for a single person with clinical data. 

 Mean 95% CI 

Positive affect (PA)   
𝜑1 0.56 [0.46, 0.64] 
𝜑2 0.41 [0.26, 0.53] 

𝜑1 − 𝜑2 0.15 [-0.05, 0.35] 
𝜏 25.2 [24.5, 26.0] 

𝜎𝜀
2 13.6 [12.6, 14.6] 



 
Based on the credible intervals, we conclude that only negative affect is state-dependent. For positive affect and 

sleep, there was no indication of state-dependent regulatory mechanisms. 

 

     Table 1 summarizes the results of the model parameters estimated from the empirical dataset. Of 

note is that only NA showed a credibility interval for the difference between inertias that did not 

include zero. This means that NA might follow a state-dependent regulation in this dataset. In this case, 

𝜑1 − 𝜑2 < 0. Although, we did not find significantly state-dependent regulatory mechanisms for PA 

and sleep, we can still say something about the mean value of their inertias. For instance, the mean 

level of 𝜑1 is smaller than the mean level of 𝜑2 for both PA and sleep. With regard to the thresholds 

for PA and NA, we see that the threshold for PA is significantly higher than the threshold for NA. This 

might suggest that the subject overall experienced higher positive feelings than negative feelings. The 

variance of both PA and NA scores were similar, indicating a comparable variability for both emotion 

dimensions. 

    Figure 10 shows the state-space plot for NA, of which the data follows a TAR process. The dotted 

line indicates the threshold value. The line on the left from the threshold is less steep than the line on 

the right from the threshold. This indicates that the person has a higher inertia for more intense 

negative mood states. 

Negative affect (NA)   
𝜑1 0.38 [0.24, 0.51] 
𝜑2 0.58 [0.51, 0.65] 

𝜑1 − 𝜑2 -0.20 [-0.38, -0.02] 
𝜏 16.4 [15.8, 17.0] 

𝜎𝜀
2 12.6 [11.7, 13.6] 



 

Figure 10. State-space plot of negative affect (NA). The dotted line indicates the threshold value. The steepness 

of the lines indicates the autoregressive effect that each timepoint has on the next. The inertia is around 0.38 in 

the area that is left from the threshold value, whereas the inertia is around 0.58 in the area that is right from the 

threshold value. The size of the points indicates the observation count for a data point. 

 

Discussion 
     In this article, we tried to answer the question of how many timepoints are sufficient to make the 

TAR model a reliable model. We used Bayesian estimation methods to achieve this. We first tuned the 

MCMC parameters, such as the thinning and total number of iterations to appropriate values. 

Thereafter, we simulated data that followed a TAR process under 30 conditions with 100 replications 

per condition. We calculated several variables of interest that represented aspects of model 

performance. Next, we performed an ANOVA on the absolute relative bias and width of the CI for the 

model parameters. Lastly, we used an empirical dataset to show how to fit and interpret the TAR 

model. All of these results are discussed below in respective order. 

     The number of iterations we chose was 20.000 with thinning factor 30. We thought that this number 

of iterations was reasonable, as it was the minimal number at which the autocorrelation stabilized and 

the fluctuations in the Gelman-Rubin diagnostic mostly stabilized. Taking a minimal value was 

important here, so that time consumption for the simulation study could be minimized. With regard 

to the thinning, we initially considered a thinning factor of 40. This was because the lines in plot with 

autocorrelation against thinning factor mixed well at this point (Figure S1D). However, we later chose 

a thinning factor of 30, because that would be less time-consuming. Besides, we gained little 



improvement in the autocorrelation with a thinning factor of 40 relative to the thinning factor of 30. 

Although we did use the autocorrelation of 0.05 as a criterion to assess model convergence in the 

MCMC test phase, we omitted this in the simulation study. Namely, in the MCMC test phase the 

autocorrelation was a useful measure as to indicate which thinning factor would be needed 

approximately. However, maintaining an autocorrelation of lower than 0.05 in the simulation session 

would be fairly strict, which is why we dropped this as a criterion for model convergence. The fraction 

of burn-in iterations in this study was half of the total iterations. This fraction of burn-in iterations was 

also chosen in another study concerning the TAR-model (de Haan-Rietdijk, Gottman et al., 2016). We 

think that this was an appropriate choice, as having a fraction that is too small may lead to a significant 

bias in estimates (Cowles, Roberts, & Rosenthal, 1999).  

     After that, we ran the simulation study. An important point here is the estimation of the two 

inertias. The TAR model overall had no problems with convergence for the simulated data, taking into 

account the Gelman-Rubin diagnostic that did not exceed 1.05. On top of that, there are some remarks 

with regard to the parameter estimation. Our power analysis revealed that the estimation method 

could detect the TAR process in only 23% of all cases. Even with 500 timepoints, the power could not 

come above 0.80, which is a recommendable level according to de Haan-Rietdijk, Gottman et al. 

(2016). This means that there is a high type II error rate. This implies that in many cases, the estimation 

algorithm fails to detect a true effect. Our research is in line with that of other research (de Haan-

Rietdijk, Gottman et al., 2016). For example, with a multilevel TAR model, it was found that the power 

rate decreased consistently, such that more timepoints were needed for an adequate power when the 

number of subjects decreased. This observed relation between number of subjects and timepoints 

may explain why the type II error rates are high when few timepoint measurements from just a single 

person are used (de Haan-Rietdijk, Gottman et al., 2016). 

     From a clinical perspective, this means that a researcher may observe a difference between the two 

inertias for a patient from some data, whereas it is not statistically significant. For example, the 

credibility interval of the difference between the two inertias may still include 0. However, knowing 

that there is a relatively high type II error rate may prompt the researcher to expect that there may 

still be a remarkable difference. Hence, if the estimation algorithm is supplied with fewer than 500 

timepoints, there is still sufficient reason to do hypothesis generating research. For hypothesis testing 

research, however, the researcher should rely on methods that collect data more intensively. For 

example, in the dataset of Peter Groot (2010), measurements were taken 10 times a day. This may be 

costly for a patient who is under clinical assessment. However, this may be accounted for by only 

focusing on measurement variables that directly relate to a person’s vulnerability. 

     Furthermore, there is the ANOVA that was performed on the absolute relative bias and the width 

of the CI of the model parameters. We could observe that the absolute relative bias showed relatively 

little variation across the number of timepoints. On the contrary, there was more variation in the width 

of the CI across timepoints. From this it follows that the number of timepoints chosen by a clinician is 

determinative of the certainty with which the parameters of interest are estimated. Thus, if a clinician’s 

goal is to focus on hypothesis generating research and still maintain a high certainty with which 

parameters are estimated, then 300 timepoints or more would be required. We could say that the 

choice of the number of timepoints should depend on the set up of the research (hypothesis 

generating or -testing) and the certainty with which the clinician wants to estimate their parameters. 

     Also, a clinician may want to reconsider the choice of the threshold variable, such that it fits to the 

question that is asked. A limitation of the TAR model that is used in this paper is that it assumes that 

the threshold variable is the same as the regression variable. This can be overcome by the 

implementation of another variable as the threshold variable. For example, there exists an intimate 



relationship between measures of sleep quality and subsequent mood states (Konjarski, Murray, Lee, 

& Jackson, 2018). Hence, the TAR model that we used can be modified by substituting the emotional 

threshold variable by a variable that represents sleep quality. In addition, the current TAR model 

contains only one variable that is regressed on itself. A multivariate extension of the TAR model is the 

vector-TAR model (VTAR), where multiple variables are regressed on the dependent variable (Takano, 

Stefanovic, Rosenkranz, & Ehring, 2021). In this way, there might exist separate regimes in which some 

variables have a stronger or weaker effect on the variable of interest. For example, it is interesting to 

speculate that poor quality of sleep might be more predictive of weak emotional regulation if an 

individual experiences higher intensities of negative affect than if an individual experiences low 

intensities of negative affect. The latter requires a reciprocal relationship between affect and sleep, 

which seems to exist (Konjarski et al., 2018). 

     In general, time is an important aspect with regard to the TAR model. The TAR model in this paper 

assumes that there is equal spacing between timepoints. Hence, it is a discrete timepoint TAR model. 

Therefore, we had to include missing values in the empirical dataset of Groot (2010) at the timepoints 

where there could actually have been data. This is a limitation, because inserting missing values 

requires an extra step in the pre-procession of the dataset. One way to circumvent this is to account 

for variation in the length of the periods between measurements by using continuous-time dynamic 

models. In this way, the clinician may be able to handle uneven time intervals. More details on how to 

use continuous-time dynamic models can be found here (de Haan-Rietdijk, Voelkle, Keijsers, & 

Hamaker, 2017).  

     In relation to this, there exists another way in which time can play a role in the TAR model. For 

example, the inertia parameter in the TAR model used here only depends on affect intensity. However, 

it might be interesting to make the different inertia parameters time-variant. For example, there is 

evidence that an emotional state may influence the next emotional state more as time progresses 

(Bringmann, Ferrer, Hamaker, Borsboom, & Tuerlinkcx, 2018). This implies that inertia can change over 

time. This can be modelled using a time-varying autoregressive (TVAR) model (Bringmann et al., 2017). 

Interestingly, this TVAR model can be combined with the TAR model. With this, we may even model a 

situation in which the change in affect regulation depends on affect intensity. 

     To conclude, the TAR model for a single person can be useful for both hypothesis generating and 

hypothesis testing research. In general, the choice of the number of timepoints should depend on the 

goal of the research and the certainty with which the clinician wants to estimate their parameters. 

Together with that, there exists a broad range of extensions on the TAR model of which the use can be 

investigated in future research. 
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