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Abstract

The electron electric dipole moment (eEDM) enhancement factor Wd and the scalar-
pseudoscalar (S-PS) interaction enhancement factor WS are required to determine the eEDM
and S-PS interaction parameters from an experiment measuring an energy shift. In this
thesis, these enhancement factors, along with the equilibrium bond distances, are determined
for the YbCu, YbAg and YbAu molecules, to investigate whether these molecules are suitable
to be utilized for eEDM searches. The computations are performed using the Fock space
coupled cluster method. A triple zeta basis set is used for the computations of the Wd

values for YbCu and YbAg, and all the WS values, while a quadruple zeta basis set is
used for the computation of Wd for YbAu. Relativity is treated with the four component
Dirac Hamiltonian. The core orbitals of the molecules are frozen to reduce computational
costs. The uncertainty of Wd is determined by performing many computations to identify
the individual sources of error. One computation of WS is performed to gauge its magnitude.
The relative uncertainty found for Wd is attributed to WS and a full uncertainty analysis
should be done in further research. The found values are: Wd = 12.98 ± 1.27 · 1024 h Hz

e cm for

YbCu, Wd = 11.76±0.98 ·1024 h Hz
e cm for YbAg and Wd = 1.31±0.33 ·1024 h Hz

e cm for YbAu. The
Wd to WS ratio is found to be significantly lower for YbAu than for the other two molecules.
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1. Introduction

In recent years, there have been many phenomena discovered that cannot be explained by the
Standard Model of particle physics. These phenomena include, but are not limited to, neutrino
oscillations, the matter-antimatter asymmetry in the universe and the existence of dark matter and
dark energy [1–3]. In an effort to explain these phenomena, many new theories have emerged, often
referred to as beyond the Standard Model (BSM) theories, or new-physics theories. Some examples
of these new theories are: the supersymmetry models, where every Standard Model particle acquires
a supersymmetric partner particle, or extradimensional theories, that introduce extra dimensions
on top of the four-dimensional spacetime that is currently assumed [4].

To solve some of the main questions within particle physics, it will be essential to determine which
of the many new-physics theories yields the most accurate description of reality. A useful probe to
test these theories is the electric dipole moment of the electron (eEDM) [5]. The existence of an
eEDM violates both parity (P) and time reversal (T ) conservation. This is because under parity
transformation, the eEDM switches sign while the spin of the electron does not and under time
reversal the opposite occurs [6]. Then, if we assume that total CPT symmetry is conserved, T
violation implies the combined CP violation (where C denotes the charge conjugation) [1].

According to the Standard Model, the eEDM arises from the CP violating components of the CKM
matrix1. The effect is caused by electrons coupling to virtual particles and is thus expected to
be very small [1]. The Standard Model predicts an eEDM of |de| < 10−38 e cm [8], which is not
measurable with the current practical limitations [5]. Many of the new-physics theories predict the
eEDM to be orders of magnitude larger (mostly between 10−25 − 10−33 e cm [9]). This increase of
the predicted value of the eEDM is caused by a higher degree of CP violation, which is required to
explain the matter-antimatter asymmetry in the universe [1].

To actually measure the eEDM, high precision experiments are required. Still, this value cannot
be measured directly. This is because an electric field is imperative for the measurement and since
the electron is charged, the electric field will accelerate the electron away from the experiment2

[10]. To find the value of the eEDM, either atoms or molecules are required, since the eEDM can
interact with the internal electric fields within these particles, which results in an energy shift that
can be measured [11]. The outer shell of these systems will be an open shell, since for closed-shell
systems, there is no energy shift to be measured. The internal electric field from the point of view
of the valence electron is the effective electric field Eeff [12]. The Eeff is directly proportional to the
Wd parameter that will be found in this research. The energy shift in the particles will be tiny, so
system with a large enhancement factor Wd have to be used [13].

The energy shift that is measured in these experiments is not only due to the eEDM. The second
interaction that contributes to the found energy shift is the scalar-pseudoscalar (S-PS) interaction,
which has its own enhancement factor WS and interaction parameter ks [5]. These are analogous
to Wd and de for the eEDM interaction. To determine the eEDM, not only Wd needs to be known,
but WS has to be known as well. Furthermore, to decouple the ks and de interaction parameters,
measurements on two different systems are required, as will become clear in Section 2.4.

The eEDM enhancement factor Wd is required to be as large as possible. There are multiple key
characteristics of systems that give rise to a large Wd. First, molecules are preferred over atoms
since they possess more degrees of freedom — both rotational and vibrational — and therefore,
more and denser energy levels. Then, since the energy differences between the levels are smaller,

1The CKM or Cabibbo-Kobayashi-Maskawa matrix describes the mixing between the mass eigenstates and flavour
eigenstates of quarks [7].

2A proposal for the direct measurement of the eEDM has been made, which uses magnetic storage rings and is
further explained in [10].
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the effect of a perturbative coupling is amplified [14]. Also, since the eEDM enhancement factor
is roughly proportional to the atomic number cubed, a molecule with at least one heavy atom will
drastically increase Wd [11]. Furthermore, the molecule should be as polar as possible to increase
Wd [14], which can be done by choosing atoms with unequal electronegativities [15].

The ACME collaboration found the current upper limit of the eEDM to be |de| < 1.1 · 10−29 e cm
[16], using a molecular beam of thorium monoxide (ThO) which has many of the properties described
above. Since this value is below some of the predictions from the BSM theories, those theories have
either been discarded or have had to restrict their parameters [17].

The molecules discussed in this research (YbCu, YbAg and YbAu) contain at least one heavy atom3

and are polar molecules, with the electronegativity of the coinage-metal atoms being at least 0.8
larger than that of ytterbium4 according to the Pauling scale, which fixes the electronegativity of
fluorine to 3.98 and that of caesium to 0.79 [19]. The chosen molecule should possess an unpaired
electron spin in its ground state, which is the case for the molecules in question, since the ytterbium
atom has a closed outer shell and the coinage-metals have an unpaired s-electron in the valance shell
[13]. Then, since the sensitivity of the measurement increases linearly with the coherent interaction
time, the molecules will have to be cooled and trapped to produce an accurate result [5]. Since the
ytterbium-containing molecules consist of two metals, it is possible to assemble the molecule from
ultracooled atoms instead of having to laser-cool the molecule itself, which is a difficult process [15].

So, the three ytterbium-containing molecules seem to be promising candidates to start looking for
the eEDM in high precision experiments. The measured quantity during the experiment will be
the energy shift, so to find the corresponding value of the electric dipole moment of the electron,
the enhancement factor needs to be known among other parameters. This factor cannot be found
through experiments and has to be calculated numerically [5]. This research will provide a value
for the eEDM enhancement factor Wd for YbCu, YbAg and YbAu, with benchmark uncertainty,
using ab initio5 calculations. This is implemented by first looking into the theory behind the eEDM
enhancement factor in Section 2. Subsequently, the main computational considerations to take into
account for the calculations will be explained in Section 3. Then, in Section 4 the results of the
calculations will be compared and the optimal combination of parameters will be used to acquire
Wd with the lowest possible uncertainty. In Section 5 the accuracy of the results will be discussed
and compared to previous works. Finally, in Section 6 a summary and recommendations will be
given. For the rest of the thesis, Hartree atomic units (ℏ = e = a0 = me = 1) will be implied unless
stated otherwise explicitly.

3For YbCu and YbAg the heavier atom is ytterbium with atomic number 70 and for YbAu the heavier atom is
gold with atomic number 79.

4The Pauling electronegativity of ytterbium is 1.1, of copper is 1.90, of silver is 1.93 and of gold is 2.54 [18].
5Ab initio means “from first principles” in Latin, and in this context, that the only inputs used for the calculations

are physical constants.
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2. Theory

In this section, the equation for the enhancement factor of the eEDM and the equation for the
enhancement factor of the S-PS interaction will be derived by using first-order perturbation theory
on the relativistic Dirac-Coulomb Hamiltonian.

2.1. Hamiltonian of the eEDM. To find the value of the eEDM enhancement factor Wd, the
effect of the eEDM on the system is required. The Hamiltonian for the interaction caused by the
eEDM is given by

(1) ĤeEDM = −de(γ
0Σ ·E + iγ ·B),

where de is the eEDM, E the total electric field, B the total magnetic field, γµ = {γ0,γ} =
{γ0, γ1, γ2, γ3} denotes the Dirac gamma matrices, which are

γ0 =

[
12×2 ∅2×2

∅2×2 −12×2

]
, γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 , γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


and Σ denotes the vector of Pauli spin matrices, given by

Σ =

[
σ ∅2×2

∅2×2 σ

]
, σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
.

The second term of the Hamiltonian, describing the interaction of the eEDM with the magnetic
field, is negligible when compared to the term describing the interaction of the eEDM with the
electric field [5]. Then, the effective eEDM Hamiltonian can be described by a one-body operator,
given by

(2) ĤeEDM
eff = 2icde

n∑
i

γ5βp2
i ,

where n is the total number of electrons of the system, c is the speed of light in vacuum, β is one
of the Dirac matrices defined in Equation 7, pi is the momentum of electron i and γ5 = iγ0γ1γ2γ3

[20, 21]. A full derivation from Equation 1 to Equation 2 can be found in [22].

2.2. Hamiltonian of the S-PS interaction. Just as for the eEDM enhancement factor, WS will
also follow from an expectation value of a Hamiltonian. Now, the Hamiltonian describing the S-PS
interaction is required, which is defined as

(3) ĤS-PS = i
GF√

2
Zks

n∑
i

γ0γ5ρ(ri),

where again the Dirac gamma matrices appear, along with the Fermi constant GF , the atomic
number Z, the dimensionless electron-nucleus S-PS coupling constant ks and the nuclear charge
density ρ(riN ) [23]. The Fermi constant is 2.2225 · 10−14 in atomic units [5] and the dimensionless
constant ks can be split up, giving Zks = Zks,p + Nks,n, where ks,p is the eletron-proton coupling
constant, ks,n is the eletron-neutron coupling constant and N is the neutron number [23].

2.3. Perturbation on the relativistic Dirac-Coulomb Hamiltonian. Now, the Hamiltonian
caused by the eEDM can be used as a first-order perturbation to a model Hamiltonian to obtain
the total electronic Hamiltonian,

(4) Ĥel = Ĥ(0) + λ
ĤeEDM

de
= Ĥ(0) + λ2ic

n∑
i

γ5βp2
i .
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Similarly, the S-PS Hamiltonian is treated as a perturbation,

(5) Ĥel = Ĥ(0) + λ
ĤS-PS

ks
= Ĥ(0) + λi

GF√
2
Z

n∑
i

γ0γ5ρ(ri).

Here, λ is the field strength which is chosen such that λ2-terms and higher order terms can be
ignored. For the purposes of this research, the field strength will be equal for both interactions,
although different values could be taken. Then, Ĥ(0) is the relativistic Dirac-Coulomb Hamiltonian,
given by

(6) Ĥ(0) =

n∑
i

[
βimc2 + cαi · p̂i − VNN (ri)

]
+

1

2

n∑
i ̸=j

1

rij
,

where m is the electron mass, VNN is the Coulomb potential due to the nucleus, ri is the distance
between electron i and the nucleus, rij is the distance between electrons i and j and the Dirac
matrices α and β are given by

(7) α =

[
∅2×2 σ
σ ∅2×2

]
, β =

[
12×2 ∅2×2

∅2×2 −12×2

]
.

The Dirac-Coulomb Hamiltonian is based on the Born-Oppenheimer approximation, which will be
further explained in Section 3.1. Then, since perturbation theory is employed, the expectation value
of the Hamiltonian in Equation 4 can be expanded in a Taylor series around λ = 0,

(8) EΩ = E
(0)
Ω + λE

(1)
Ω + λ2E

(2)
Ω + O(λn).

Now, because of the choice of λ, the terms with λ2 and all higher order terms will vanish, leaving

(9) EΩ = E
(0)
Ω + λE

(1)
Ω .

Thus, the eEDM enhancement factor is given by

(10) Wd =
1

Ω

dEΩ

dλ

∣∣∣∣
λ=0

=
Eeff

Ω
≈

〈
ĤeEDM

eff

〉
Ω

,

where Ω is the electronic angular momentum projected along the internuclear axis [5, 12, 13]. It is
equal to 1

2 for the X2Σ+ ground states of the YbCu, YbAg and YbAu molecules [24]. Similarly,
the S-PS interaction enhancement factor is given by

(11) WS =
1

Ω

dEΩ

dλ

∣∣∣∣
λ=0

,

where the value will be different from Wd, due to the different perturbation used in the process [5].

2.4. Ratio and other parameters. As mentioned in the introduction, to determine de, both
Wd and WS are required. This is because the electric dipole moment that is measured during
experiments can be expressed as,

(12) dpara ≈ Wd · de + WS · ks.
From Equation 12, it can be observed that at least two measurements of the electric dipole moments
of systems with a different WS

Wd
ratio are required to disentangle the values of de and ks. The

other parameters that can influence the value of dpara are orders of magnitude smaller than the
contributions from the eEDM and the S-PS interaction for diatomic molecules [25].
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3. Computational considerations

In theory, solving the full Schrödinger or Dirac equation will yield the exact energy of a system.
However, the sad and harsh truth of the matter is that fully modelling a system such as a molecule
takes too much computational effort. This indicates that some approximations need to be made,
which will reduce the accuracy of the calculation, but will decrease the computational costs. Fur-
thermore, there are a variety of methods that can be employed to find the energy of a system. These
approximations, methods and other considerations will be explained in the rest of this section.

3.1. Born-Oppenheimer approximation. The approximation that is fundamental for many
computational methods to reduce the computational complexity of the calculation, is the Born-
Oppenheimer (BO) approximation or adiabatic approximation. This approximation assumes that
the nuclei of a system stay in a fixed position, while the electrons move around the nuclei. This
approximation is really efficient and only slightly affects the calculated chemical properties of the
system [26]. The approximation works so well, since the nuclei of a system are typically far heavier
than the surrounding electrons, therefore their relative velocity will be way lower.

Using the BO approximation, the total wavefunction of a system can be separated into a nuclear
part and an electronic part. Then, the full Hamiltonian can also be split up into an electronic
Hamiltonian and a nuclear Hamiltonian [27]. The general form of the electronic Hamiltonian will
be given by

(13) Ĥel =

n∑
i

ĥ(i) +
1

2

n∑
i ̸=j

ĝ(i, j) + VNN ,

where n is the total number of electrons within the system, ĥ(i) is the one-electron operator, ĝ(i, j)
is the two-electron operator and VNN is the potential between the nuclei [28].

3.2. Molecular orbital theory. For atoms, electrons are described by orbital wavefunctions, but
it is not completely clear what happens to these orbitals when atoms are placed together into
molecules [29]. One approach to approximate the molecular orbitals (MOs) is to assume that they
consist of a linear combination of atomic orbitals (AOs),

(14) χ =
N∑
A

CAϕA,

where χ is the MO, ϕA is the AO of atom A, N is the number of atoms within the molecule and CA

is a linear coefficient. This is the LCAO-MO approximation, and it is used by the computational
methods that study molecules [26].

3.3. Relativistic Hamiltonians. Including relativity will be important for the calculation of the
eEDM and S-PS enhancement factors. This is because the electrons surrounding the heavy nuclei of
the molecules can reach velocities close to the velocity of light. It has been found that both the Wd

parameter and the WS parameter increase for increasing atomic number Z. The actual dependence
differs for each group in the periodic table of elements, although a general approximation for Wd is
given by

(15) Wd ≈ −4

3

Z3α2κ
γ4

,

where α ≈ 1
137 is the fine structure constant, κ is a constant that depends on the effective electronic

structure of the system and γ = 1√
1− v2

c2

is the Lorentz factor with velocity v and speed of light c.
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The approximation for the S-PS enhancement factor is given by

(16) WS ≈ − GF

2π
√

2a30
R(Z,A)γZ3ακ,

where a0 is the Bohr radius and R(Z,A) is a relativistic enhancement factor. Although both
approximations contain different constants, their dependence on the atomic number is equal. The
true power of Z can vary between ∼ 2.5−3.8 depending on the system [21]. Consequently, relativity
is an important contribution to the Wd and WS factors for molecules containing heavy atoms.

As a matter of fact, when going to the non-relativistic limit, there will not be a measurable energy
shift and therefore, no eEDM can be determined, due to Schiff’s theorem [1, 11]. This follows from
the fact that, a non-relativistic particle experiencing the sum of an internal electric field from other
particles and an external electric field, has a Hamiltonian

(17) H =
p2

2m
+ qϕ,

where p is the particle’s momentum, m is its mass, q is its charge and ϕ is the total electrostatic
potential. Then, since the total electric field Etot = −∇ϕ and the momentum p = −iℏ∇, the expec-
tation value of Etot will vanish for any eigenstate. Thus, the energy shift ⟨ĤeEDM⟩ = −de·⟨Etot⟩ = 0.
As a result, to evade Schiff’s theorem, relativity has to be included to ensure a measurable energy
shift [1].

The choice of Hamiltonian is usually defined by the amount of components that are used for the
one electron operator (as defined in Equation 13). In the non-relativistic regime, the one electron
operator is a scalar, hence it is described by one component (1c). When relativity is added to
the system, this gives rise to the existence of the antiparticle of the electron, the positron [30].
Now, the one electron operator has four components (4c), describing both the particle and the
antiparticle with their spins. It is also possible to use two component (2c) Hamiltonians, where the
positronic part of the 4c Hamiltonian has been frozen. The spin-orbit interaction, caused by the
interaction of the electron spin with the magnetic field created by the motion of the electron [31],
is already described well by the 2c Hamiltonian. However, full relativity is best described by the
4c Hamiltonian [28]. Another useful Hamiltonian is the spin-free (SF) Hamiltonian, which removes
the spin orbit interaction from the 4c Hamiltonian.

Generally, the 2c Hamiltonian will be less accurate in calculating the properties of particles, since it
is missing the degrees of freedom from the antiparticle. Yet, a new Hamiltonian has been developed,
which is the exact two component (X2c) Hamiltonian. This Hamiltonian is able to match the results
of the 4c Hamiltonian for the positive energy solutions. Usually, this method is less computationally
heavy than the 4c Hamiltonian [28].

The overall best technique to describe the relativity of the system would be to use full quantum
electrodynamics (QED). However, solving the QED Hamiltonian is not feasible for many-particle
systems. So instead, we resort to the Dirac Hamiltonian with the Born Oppenheimer approximation.
The difficulty for this Hamiltonian lies within the two-electron operator ĝ(i, j). This operator can
be expanded as a Taylor series in 1

c and the terms up to 1
c2

then yield,

ĝ(i, j) = ĝCoulomb(i, j) + ĝBreit(i, j),(18)

= ĝCoulomb(i, j) + ĝGaunt(i, j) + ĝGauge(i, j),(19)

=
14×4

rij
− αi ·αj

rij
+

[
αi ·αj

2rij
−
(
αi · rij

) (
αj · rij

)
2r3ij

]
,(20)
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where α is the Dirac matrix as defined in Section 2.3, the Coulomb term is the zeroth-order approx-
imation of the full Coulomb interaction and the Breit term is the first-order correction, consisting of
the Gaunt interaction term and the Gauge interaction term [31, 32]. The Coulomb term describes
the time-independent action between electrons, not taking relativity into account. The Breit term
adds the delay to the Coulomb interaction caused by relativity [31]. The Gaunt term describes the
spin-other-orbit, spin-spin and orbit-orbit interactions, while the Gauge term describes the spin-free
or scalar interaction. Usually, the Gauge term is less important than the Gaunt term [32].

3.4. Electron correlation. While relativity is treated by the Hamiltonian, the electron correlation
is determined by the method [32]. The methods will be explained in Section 3.6. The electron
correlation describes the interaction between the electrons within the molecular orbitals. Coulomb
correlation is the interaction between electrons with opposite spin, and Fermi correlation is the
interaction between electrons with the same spin. The Coulomb correlation will be the largest
contribution to the full correlation, since it occurs between electrons within the same orbital and
between electrons within separate orbitals. The Fermi correlation cannot occur between electrons
within the same orbital due to Pauli’s exclusion principle.

The static electron correlation is given by electrons within the system seeing all the other electrons as
a charge distribution, while the dynamic correlation will be given by the excitation of the electrons.
In a system, the orbitals that contain electrons are the occupied orbitals, while the rest of the
orbitals are virtual orbitals. If electrons get excited, they move to these virtual orbitals. Usually,
the valence electrons are more likely to be excited, since the energy gap between the valence electrons
and the first virtual orbital is minute. This implies that the core orbitals can be frozen to reduce
computational costs [31]. The active space cut-off is generally set at −20 a.u.6, however to get highly
accurate results for properties such as the eEDM enhancement factor or the S-PS enhancement
factor, this will not be enough. This is because Wd and WS are very dependent on the correlation
of core electrons. The usual cut-off for the virtual orbitals lies at 30 a.u.. Yet again, for this
research, this virtual space cut-off should be extended significantly, since high-lying virtual orbitals
are essential for capturing the electron correlation of the core electrons [5].

3.5. Basis sets. To describe the electrons of a molecule, the molecular orbitals have to be con-
structed, this is done by using one-particle basis functions. Together, these basis functions form a
basis set [34]. There are a variety of ways to perform the construction of the orbitals. Since the
LCAO-MO approximation (explained in Section 3.2) is utilized, the AOs will be constructed first,
which will then form the MOs. The AOs are composed of a general form,

(21) ϕnlm(r, θ, ϕ) = Rn(r)Ylm(θ, ϕ),

where Rn(r) is the radial part and Ylm(θ, ϕ) the angular part of the AO wavefunction. The radial
part can be described by either Slater type orbitals (STOs) or Gaussian type orbitals (GTOs).
Then, in Cartesian coordinates they take the forms

(22) ϕSTO
mno = Nxmynzoe−ζr, ϕGTO

mno = Nxmynzoe−ζr2 .

Here, m,n and o define the total angular momentum as L = m + n + o,
1

ζ
defines the width of the

orbital, r =
√

x2 + y2 + z2 and N is a normalization factor [35].

The actual behaviour of the orbitals is better described by the STO, it has a cusp at the origin and
the right exponential decay, but it is computationally heavy. The cusp near the origin is necessary,
due to the nuclear cusp condition. This condition states that when the electron is coinciding with
the nucleus, the electronic Hamiltonian has to become singular [36]. The GTO functions can be
evaluated more rapidly, although the behaviour near the core and the outer regions is not correct,

61 a.u. or one Hartree is equal to 27.211 386 245 988 eV [33].
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as can be seen from Figure 1. This can be solved by using a linear combination of GTOs to mimic
the behaviour of the STO. This requires less computational cost than the STO itself, therefore using
a linear combination of GTOs is the preferred method to use [34]. Now, the GTO is described as a
contracted Gaussian type orbital (CGTO) consisting of primitive Gaussian type orbitals (PGTOs),

(23) ϕCGTO =
K∑
j=1

cjϕ
PGTO
j , ϕPGTO

j =
M∑
i=1

dijχi.

Here, K is the number of used PGTOs per CGTO, M is the number of Gaussians used per PGTO,
dij are fixed linear coefficients and χi are fixed basis functions [37].

Figure 1. An example plot showing the differences between a Slater type orbital and a Gauss-
ian type orbital.

When a single basis function (either an STO, GTO or CGTO) is used for each AO, this is called
the minimal basis set or single zeta (Sz) basis set. Using two independent basis functions per AO
is a double zeta (Dz) basis. This can proceed to triple zeta (Tz), quadruple zeta (Qz) and further
[34, 37]. The number of basis functions used per orbital gives the cardinality of the basis set.
Using a larger basis set, i.e. using more basis functions per AO, increases both the accuracy and
the computational cost of the calculation. When an infinite number of basis functions is used per
AO, the basis set is complete and the resulting energy is the complete basis set (CBS) limit. This
CBS value can be derived by extrapolating the found values for smaller basis sets [38]. For the
computations in this work, Dyall’s uncontracted relativistic basis sets were employed [39].

Split valence basis sets (vXz) use just a single basis function for the core electrons7 and multiple
basis functions for the valence electrons. In the case of vQz, four basis functions are used per AO
in the valence region.

These basis sets can be improved by adding either tight or diffuse basis functions to the orbitals.
Tight functions will have a small width, hence they can increase the quality of the description of the
AO near the nucleus and the core electrons. If tight functions are added to the basis set, it is then
usually indicated as cvXz, a core-valence basis set with X functions per orbital in the core region
and the valence region. Diffuse functions will have a large width, therefore they can increase the
quality of the description of the AO in the outer regions of the system, near the valence electrons

7The core electrons are those with a lower principal quantum number than the valence electrons.
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[34]. If diffuse functions are added to the basis set, it is then usually indicated as s-aug-vXz, a single
diffuse function is augmented to a basis set with X functions per orbital [5].

3.6. Methods. To obtain the molecular properties of a system, one needs to solve the time-
independent electronic Schrödinger equation to obtain the energy, or the Dirac equation when
dealing with a 4c Hamiltonian. There are many various computational methods that approach this
problem from a variety of angles. In this subsection, the Dirac-Hartree-Fock approach, the coupled
cluster method, the Fock space coupled cluster method and the Møller–Plesset perturbation theory
will be discussed in detail, since these approaches will be used in Section 4 to obtain the eEDM
enhancement factor.

3.6.1. Dirac-Hartree-Fock. The Dirac-Hartree-Fock (DHF) approach is one of the simpler meth-
ods to solve the time-independent electronic Schrödinger equation. It is a variational method that
is based on the assumption that every electron within the system sees all the other electrons as a
charge distribution with which it can interact. Thus, it is referred to as a mean field theory. For
the derivation of this method, the notes by David Sherrill provided in [40] will be followed. This
method does not include electron correlation as described in Section 3.4. The difference between
the true energy and the energy found using the DHF method is called the correlation energy. The
time-independent electronic Schrödinger equation is given by
(24)

ĤNR
el

∣∣Ψ(r;R)
〉

=

−1

2

n∑
i

∇2
i −

N,n∑
A,i

ZA

rAi
+

N∑
A>B

ZAZB

RAB
+

n∑
i>j

1

rij

∣∣Ψ(r;R)
〉

= Eel

∣∣Ψ(r;R)
〉
,

where ĤNR
el is the non-relativistic electronic Hamiltonian, Ψ the electronic wavefunction, r the

electronic coordinates, R the nuclear coordinates, N the total amount of nuclei, ZX the atomic
number of nucleus X, RAB the distance between nuclei A and B and Eel the electronic energy.
This cumbersome long expression for the Hamiltonian can be simplified by expressing it in terms
of one-electron operators and two-electron operators, using a variation of Equation 13,

(25) ĤNR
el =

n∑
i

ĥ(i) +

n∑
i<j

v̂(i, j) + VNN ,

where now,

ĥ(i) = −1

2
∇2

i −
N∑
A

ZA

riA
, v̂(i, j) =

1

rij

and VNN is the Coulomb potential between the nuclei described by
∑N

A>B
ZAZB
RAB

in Equation 24.

Here, the two-electron operator does not include the Breit correction, as defined in Section 3.3, to
simplify the calculations.

The DHF method’s first guess for the electronic wavefunction is the Hartree product,

(26) ΨHP = χ1(x1)χ2(x2) · · ·χn(xn),

where χi(xi) is the spin-orbital of electron i, which is the product of the spatial orbital and a spin
function (α or β8). This wavefunction does not satisfy Pauli’s principle, since it is not antisymmetric
under exchange of any two electrons. This can be solved by using a specific linear combination of

8Generally, α is the spin up wavefunction and β is the spin down wavefunction.



High Accuracy Calculations of the eEDM Enhancement Factor Wd in YbCu, YbAg & YbAu 13

these spin-orbitals which is given by the Slater determinant [26, 40]

(27) Ψ =
1√
n!

∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) · · · χn(x1)
χ1(x2) χ2(x2) · · · χn(x2)

...
...

. . .
...

χ1(xn) χ2(xn) · · · χn(xn)

∣∣∣∣∣∣∣∣∣ ≡ |12 · · ·n⟩ .

Now, each row contains the orbitals and each column the electrons. This wavefunction is indeed
antisymmetric, since the determinant switches sign under exchange of either rows or columns. Also,
the wavefunction vanishes if there are two electrons in the same quantum state, since the determinant
vanishes when two rows or columns are equal [41].

Then, by using the variational theorem with the Hamiltonian from Equation 25 and the Slater
determinant as the wavefunction, the Hartree-Fock energy can be derived to be

(28) EHF =

n∑
i

⟨i|ĥ|i⟩ +
1

2

∑
ij

[
(ii|jj) − (ij|ji)

]
,

where ⟨i|ĥ|j⟩ is a one electron integral denoted by

(29) ⟨i|ĥ|j⟩ =

∫
χ∗
i (x1)ĥ(i)χj(x1) dx1

and (ij|kl) is a two-electron integral denoted by

(30) (ij|kl) =

∫
χ∗
i (x1)χj(x1)

1

rij
χ∗
k(x2)χl(x2) dx1dx2.

Since the DHF approach is a variational method, the Hartree-Fock energy will always be an upper
limit to the true energy of the system.

To optimize the wavefunction given by a single Slater determinant, the Hartree-Fock energy needs
to be minimized by varying the orbitals. The constraint for the variation is that the orbitals should
stay orthonormal throughout the entire variational procedure, therefore the constraint equation
is ⟨i|j⟩ = δij . Then, by using the Lagrange method of undetermined multipliers and finding the
minimum of the Lagrangian, the Hartree-Fock equations can be derived,

(31)

ĥ(x1) +
n∑

j ̸=i

[
Jj(x1) − Kj(x1)

]χi(x1) = ϵiχi(x1).

Here, ϵi is the energy eigenvalue associated with the spin-orbital χi(x1), Jj(x1) is the Coulomb
term which gives the potential at x1 from the average charge distribution of the electron in orbital
χj(x2) and is denoted by

(32) Jj(x1) =

∫ |χj(x2)|2

r12
dx2

and Kj(x1) is the exchange operator which exchanges the orbitals and is a requirement to satisfy
the antisymmetry of the wavefunction. It is denoted by

(33) Kj(x1)χi(x1) =

[∫
χ∗
j (x2)χi(x2)

r12
dx2

]
χj(x1).

The Hartree-Fock equations can be further simplified by introducing the Fock operator,

(34) f̂(x1) = ĥ(x1) +

n∑
j

[
Jj(x1) − Kj(x1)

]
.
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Then, the nonlinear Hartree-Fock equations are given by

(35) f̂(x1)χi(x1) = ϵiχi(x1).

The solutions to these equations can be found by guessing an initial trial orbital wavefunction,
calculating the Fock operator and then solving Equation 35 to obtain new orbital wavefunctions.
Next, these new orbitals are used for the calculations, and this process continues until convergence.
This is where the energy of the new orbitals is within a threshold value of the energy of the previous
orbitals [26]. Thus, solving the Hartree-Fock equations is an iterative procedure and hence, the
DHF method is a self-consistent-field (SCF) approach [40]. The iteration is required, since the Fock
operator is dependent on the orbitals.

The DHF method illustrated in this section only allows for orbitals that are occupied by two
electrons, therefore it is known as the restricted Hartree Fock (RHS) method. If one allows for the
two spin orbitals to have different spatial orbitals, a pair of coupled equations is found, one for spin
up and one for spin down [42]. This method is known as the spin-unrestricted Hartree Fock method
(UHF). Both methods can be used for open-shell and closed-shell systems [26].

Both RHS and UHF have the property that they are size-extensive. This means, that the energy
calculated using these methods scales linearly with the number of electrons in the system. The
methods differ in size-consistency, which is the property that if two systems are far apart, they
should not be able to interact with each other, and that the behaviour of the total energy should be
correctly described for all separations. Generally, both methods are size-consistent. However, for
excitations into open-shell systems UHF is size-consistent, whereas RHF is not size-consistent [43].

3.6.2. Coupled cluster. Another method to solve the time-independent electronic
Schrödinger equation is the coupled cluster (CC) method. This method is perturbative, so it
does not yield an upper limit to the energy of the system. However, it is one of the most effective
methods to use. Although, that does mean that this method is computationally expensive. It can
be used for the calculation of properties of molecules in the ground state and low excited states [44].
Unlike the DHF method, the CC method does include electron correlation, hence it will be more
accurate. To introduce this method, the derivation by Ira N. Levine given in [45] will be followed.

The CC method is based on the definition of the cluster operator T̂ and the fundamental equation
is given by

(36) Ψ = eT̂Φ0,

where Ψ is the exact wavefunction and Φ0 is some model wavefunction, for instance a Slater deter-
minant. The exponential of the cluster operator can be expanded as a Taylor series,

(37) eT̂ ≡ 1 + T̂ +
T̂ 2

2!
+

T̂ 3

3!
+ · · · .

The Taylor expansion is performed, since only a couple of these terms will actually be used in
this method to save resources. The cluster operator, or excitation operator, can be split up in the
following way,

(38) T̂ = T̂1 + T̂2 + · · · + T̂n.

Here, T̂1 is the one-particle excitation operator, T̂2 is the two-particle excitation operator and T̂n

is the n-particle excitation operator, where n again is the number of electrons within the system.
The one- and two-particle excitation operators are defined as,

(39) T̂1Φ0 =

∞∑
a=n+1

n∑
i=1

tai Φa
i , T̂2Φ0 =

∞∑
b=n+1

∞∑
a=n+1

n∑
j=i+1

n−1∑
i=1

tabij Φab
ij ,
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where the indices i, j, · · · indicate occupied orbitals and a, b, · · · indicate virtual orbitals. The
one-particle excitation operator excites an electron from orbital i to orbital a as described by the
singly excited Slater determinant Φa

i . The amplitude of this excitation is given by the numerical
coefficient tai . Similarly, the two-particle excitation operator excites two electrons from orbitals i
and j to orbitals a and b as described by the doubly excited Slater determinant Φab

ij . The amplitude

of this excitation is given by the numerical coefficient tabij .

Next, the expression for the cluster operator will be truncated to reduce the computational costs. If
only the one- and two-particle excitation operators are used, this gives the CC singles and doubles
(CCSD) method. If the three-particle excitation operators are also included, this is the CCSDT
method. For CCSD, Equation 37 becomes

(40) eT̂ = eT̂1+T̂2 = 1 + T̂1 + T̂2 +
(T̂1 + T̂2)

2

2!
+ · · · = 1 + T̂1 + T̂2 +

T̂ 2
1 + T̂ 2

2 + T̂1T̂2 + T̂2T̂1

2!
+ · · · .

The term 1
2! T̂

2
1 describes a double excitation, with a product of two single-excitation amplitudes

tai t
b
j , which are disconnected contributions. This can be seen as two electrons being excited inde-

pendently. This is similar to the T̂2 term, which also excites two electrons, however, the amplitude
is now a single double-excitation amplitude tabij , which is a connected term. The term 1

2! T̂
2
2 describes

a quadruple excitation, with a product of two double-excitation amplitudes tabij t
cd
kl , which are dis-

connected contributions. This can be seen as two electron pairs being excited independently. The
other two terms ( 1

2! T̂1T̂2 and 1
2! T̂2T̂1) describe the situation where three electrons are excited, one

lone electron and one electron pair.

Then, the Schrödinger equation can be solved by using the wavefunction given in Equation 36,

(41) Ĥ |Ψ⟩ = E |Ψ⟩ =⇒ Ĥ
∣∣∣eT̂Φ0

〉
= E

∣∣∣eT̂Φ0

〉
.

Now, multiplying by the complex conjugate of the model wavefunction yields

(42)
〈

Φ0

∣∣∣Ĥ∣∣∣eT̂Φ0

〉
= E

〈
Φ0

∣∣∣eT̂Φ0

〉
= E

⟨Φ0|Φ0⟩ +
〈

Φ0

∣∣∣T̂Φ0

〉
+

〈
Φ0

∣∣∣∣∣ T̂ 2

2!
Φ0

〉
+ · · ·

 = E.

This final equality is true, since ⟨Φ0|Φ0⟩ = 1 and all the higher order terms vanish because all
the spin-orbitals are orthogonal to each other and the higher order terms all contain an excited

Slater determinant. Then, multiplying Equation 41 by
〈

Φab
ij

∣∣∣ and substituting Equation 42 gives

the general CC equation,

(43)
〈

Φab
ij

∣∣∣ Ĥ ∣∣∣eT̂Φ0

〉
= E

〈
Φab
ij

∣∣∣eT̂Φ0

〉
=
〈

Φ0

∣∣∣Ĥ∣∣∣eT̂Φ0

〉〈
Φab
ij

∣∣∣eT̂Φ0

〉
.

For CCSD, this becomes

(44)
〈

Φab
ij

∣∣∣ Ĥ ∣∣∣eT̂1eT̂2Φ0

〉
=
〈

Φ0

∣∣∣Ĥ∣∣∣eT̂1eT̂2Φ0

〉〈
Φab
ij

∣∣∣eT̂1eT̂2Φ0

〉
.

The left-hand side of Equation 44 can be reduced to

(45)

〈
Φab
ij

∣∣∣∣Ĥ∣∣∣∣(1 + T̂5
)

Φ0

〉
,

where

T̂5 = T̂1 + T̂2 +
T̂ 2
1 + T̂ 2

2 + T̂1T̂2 + T̂2T̂1

2!
+

T̂ 3
1 + T̂ 2

2 T̂1 + T̂1T̂2T̂1 + T̂2T̂
2
1 + T̂ 2

1 T̂2 + T̂1T̂
2
2 + T̂2T̂1T̂2

3!

(46)

+
T̂ 4
1 + T̂1T̂2T̂

2
1 + T̂2T̂

3
1 + T̂ 2

1 T̂2T̂1 + T̂ 3
1 T̂2

4!
+

T̂ 5
1

5!
.
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All higher order terms vanish, since the Cordon-Slater rules show that matrix elements of the
Hamiltonian between Slater determinants differing by four or more spin-orbitals vanish. Similarly,
for the first integral on the right-hand side of Equation 44,

ECCSD =
〈

Φ0

∣∣∣Ĥ∣∣∣eT̂1eT̂2Φ0

〉
=

〈
Φ0

∣∣∣∣∣∣Ĥ
∣∣∣∣∣∣
(

1 + T̂1 + T̂2 +
T̂ 2
1 + T̂1T̂2 + T̂2T̂1

2!
+

T̂ 3
1

3!

)
Φ0

〉
,(47)

= EHF +

〈
Φ0

∣∣∣∣∣∣Ĥ
∣∣∣∣∣∣
(
T̂1 + T̂2 +

T̂ 2
1 + T̂1T̂2 + T̂2T̂1

2!
+

T̂ 3
1

3!

)
Φ0

〉
,(48)

≡ EHF +
〈

Φ0

∣∣∣Ĥ∣∣∣T̂3Φ0

〉
,(49)

where EHF is the Hartree-Fock energy and T̂3 denotes the sum of one-, two- and three-electron

excitations. As for the final integral in Equation 44, it is only non-zero if eT̂1eT̂2 excites two
electrons due to the orthogonality of the Slater determinants. Therefore, it reduces down to

(50)
〈

Φab
ij

∣∣∣eT̂1eT̂2Φ0

〉
=

〈
Φab
ij

∣∣∣∣(T̂ 2
1 + T̂2

)
Φ0

〉
.

Subsequently, Equation 44 can be written like

(51)

〈
Φab
ij

∣∣∣∣Ĥ∣∣∣∣(1 + T̂5
)

Φ0

〉
=

(
EHF +

〈
Φ0

∣∣∣Ĥ∣∣∣T̂3Φ0

〉)〈
Φab
ij

∣∣∣∣(T̂ 2
1 + T̂2

)
Φ0

〉
.

Then, this equation can be further rewritten in terms of amplitudes. This becomes a number of
equations with an equal number of unknowns (amplitudes) which can be solved iteratively to obtain
the amplitudes. Finally, using the amplitudes, the CCSD energy can be found. A similar derivation
can be performed for CCSDT and higher order methods.

The CCSDT method requires significantly more computation time than the CCSD method, since it
scales as N8, compared to N6 for CCSD, where N is the size of the basis set [28]. To find a middle
ground, the fourth-order terms of CCSDT can be added to CCSD to create the CCSD + T method
[46]. The method that is used most frequently, adds a subset of fifth-order terms along with the
fourth-order terms to CCSD, creating the CCSD(T) method. This method scales as N7 and is thus
less computationally heavy than the full CCSDT method [47, 48]. The final CC method that will
be used, is the CCSD−T method, which adds another fifth-order perturbation term to CCSD(T)
[46].

All CC methods are size-extensive. Furthermore, CC methods are also size-consistent, provided
that an RHF determinant is not used as the model determinant. If RHF is used as a foundation
for the CC method, systems exciting to open-shell states will not be size-consistent [49].

Currently, it is too computationally demanding to include QED effects and the Breit correction to
the molecular CC method. However, adding QED effects and the Gaunt and Gauge interaction
terms would improve the accuracy of the final result.

3.6.3. Fock space coupled cluster. The single-reference CC (SRCC) method introduced in the
previous section works especially well for closed-shell systems, but performs worse for open-shell
systems. This is mainly due to the use of a single Slater determinant as the model wavefunction [50].
Since all three molecules considered in this work contain an electron in an open shell, optimizing
the CC method would produce more accurate results.

To improve upon the SRCC method, the single Slater determinant can be changed to a manifold
of reference states (model space). This model space then forms the basis of the multi-reference
CC (MRCC) method. There are two main types of MRCC approaches: the Hilbert-space MRCC
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(HSCC) and the Fock-space MRCC (FSCC) [51]. The method described here is the FSCC, which
requires calculations of the system for states with a different number of electrons [52]. The FSCC
method starts with a closed-shell system and then either adds or removes electrons until the desired
state is reached [53].

In the FSCC method, the orbitals (configuration space) are split up into three parts: the core
orbitals, which are occupied, the valence orbitals, from which electrons can get excited, and the
virtual orbitals, which are unoccupied. The model space P represents the valence orbitals, while
the orthogonal space Q represents the core orbitals and virtual orbitals. The model space is d-
dimensional and spanned by the model determinants, thus its projection operator can be described
by

(52) P̂
(p,h)
M =

d∑
i

|Φi⟩ ⟨Φi| ,

where p stands for particles, h stands for holes, Φi is the model determinant i, and d is the amount
of model determinants used. If d is more than one, then the method is a multi-reference method.
The projection operator of the orthogonal space, or complementary space can be described by

(53) Q̂
(p,h)
M = 1 − P̂

(p,h)
M .

The model and orthogonal spaces can be split up into sectors, the four main sectors are defined

here. P̂
(0,0)
M generates the model space that consists of just a single determinant Φ0, while then the

orthogonal space Q̂
(0,0)
M , consists of all the excited determinants. P̂

(0,1)
M generates the model space

for singly ionized states9, since there is a hole in the model space. P̂
(1,0)
M generates the model space

for the wavefunction with one attached electron. P̂
(1,1)
M generates the model space for states where

a single electron is excited from a core orbital to a virtual orbital [51].

Now, these projection operators will be used to determine the correlation energy using the effective
Hamiltonian formalism. Starting with the Schrödinger equations

(54) Ĥ |Ψi⟩ = Ei |Ψi⟩ , i = 1, · · · ,m,

with exact eigenfunctions Ψi. The earlier defined projection operator for the model space can
project the exact eigenfunctions onto the model space, giving the projected eigenfunctions

(55)
∣∣∣Ψ̃i

〉
= P̂

(p,h)
M |Ψi⟩ .

Then, a new operator Ω̂, the universal wave operator, is introduced that performs the opposite

projection as P̂
(p,h)
M , defined as

(56) |Ψi⟩ = Ω̂
∣∣∣Ψ̃i

〉
, Ω̂ =: eS̃

(p,h)
:,

where the colons that surround the exponential indicate that the operator within the colons is
normal ordered, such that all annihilation operators are placed to the right [30, 54]. The term in
the exponential of Equation 56 is the cluster operator or excitation operator of FSCC, defined by

(57) S̃(p,h) =

p∑
k=0

h∑
l=0

Ŝ(k,l),

where the cluster operator of a particular sector can be described as [50, 55]

(58) Ŝ(k,l) = Ŝ
(k,l)
1 + Ŝ

(k,l)
2 + · · · + Ŝ(k,l)

n .

9In other works, the sectors are also sometimes indicated by (h,p) instead of (p,h).
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Equation 58 can be truncated to reduce the computational costs. If only the single and double
excitations are taken into account, this is the FSCCSD method. This method will be used for the
computations in this work.

To solve the set of equations, the Bloch equation is used. The normal ordering done in Equation 56
ensures that the equations are decoupled. Then, the specific Bloch equations only contain operators
of its own sector and lower sectors [55].

The Schrödinger equation from Equation 54 can be rewritten in terms of projected eigenfunctions,
yielding

(59) ĤΩ̂
∣∣∣Ψ̃i

〉
= EiΩ̂

∣∣∣Ψ̃i

〉
.

Then, by bringing the universal wave operator to the left side of Equation 59, the effective Hamil-
tonian can be defined as

(60) Ĥeff

∣∣∣Ψ̃i

〉
= Ω̂−1ĤΩ̂

∣∣∣Ψ̃i

〉
= Ei

∣∣∣Ψ̃i

〉
.

Next, by imposing the intermediate normalization P̂ Ω̂P̂ = P̂ , the effective Hamiltonian can be
described by

(61) Ĥeff = P̂ ĤΩ̂P̂ = Ĥ0 + V̂eff.

Finally, the dynamic correlation can be determined from

(62) Q̂(ĤΩ̂ − Ω̂Ĥeff)P̂ = 0,

which follows from projecting Equation 59 on the orthogonal space Q [54].

An alternative derivation of the FSCC approach can be found in [56].

3.6.4. Møller–Plesset perturbation theory. The final method that will be used in this research
is the Møller–Plesset (MP) perturbation theory, which builds on the DHF method explained in
Section 3.6.1. It does this by adding the missing electron correlation as a perturbation to DHF.
Following the derivations by Christopher Cramer in [57] and Ira Levine in [45], MP sets the model
Hamiltonian to the sum of the one-electron Fock operators,

(63) Ĥ(0) =

m∑
i

f̂i,

where m is the number of basis functions. The zeroth-order energy is given by the eigenvalue
equation,

(64) Ĥ(0)Φ0 = E(0)Φ0 =
n∑
i

ϵiΦ0,

where Φ0 is the Slater determinant as defined in Section 3.6.1. The electron correlation is added by
using the correction term

(65) V =
n∑
i


n∑

j>i

1

rij
−

n∑
j

[
Jj(x1) − Kj(x1)

] .
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Now, the first-order correction yields the Hartree-Fock energy,

EMP1 = E(0) + E(1),(66)

= ⟨Φ0|Ĥ(0)|Φ0⟩ + ⟨Φ0|V |Φ0⟩ ,(67)

= ⟨Φ0|Ĥ(0) + V |Φ0⟩ ,(68)

= ⟨Φ0|Ĥ|Φ0⟩ ,(69)

= EHF .(70)

So far, no electron correlation has been added. This will be implemented from the second-order
correction onwards. This second-order correction is given by

(71) E(2) =
n∑

i=j+1

n−1∑
j=1

∞∑
a=n+1

∞∑
b=a+1

[
(ij|ab) − (ia|jb)

]2
ϵi + ϵj − ϵa − ϵb

,

where again, like for the CC approach, the indices i, j, · · · indicate occupied orbitals and the indices
a, b, · · · indicate virtual orbitals. Then, for MP210, EMP2 = E(0) + E(1) + E(2).

MP2 calculations are quite rapid and scale with N5. The MP2 method will not always lead to the
best results, as perturbations are supposed to be small, while the electron correlation effects can
become relatively large. Only once the fourth-order corrections are taken into account (MP4), does
the result become more accurate, however, MP4 already scales as N7, so it becomes computationally
heavy. Furthermore, convergence is not typically observed when increasing the order of perturbation
theory for MP, making it a less desirable method to use than, for instance, CC.

Similar to CC methods, MP methods are always size-extensive, and they are size-consistent as long
as it is based on a UHF method [49].

3.7. Vibrational correction. In this research, the calculations will be performed by assuming
that the distance between the two atoms of the molecule is equal to the equilibrium bond length11.
However, as mentioned in the introduction, molecules possess (among other degrees of freedom)
vibrational degrees of freedom. This is represented by vibrational energy levels in the potential
energy diagram shown in Figure 2. The value of these energy levels is given by

(72) Eν =

(
ν +

1

2

)
ω, ω =

√
kf
meff

, meff ≈ m1m2

m1 + m2
,

where ν is the vibrational quantum number, kf represents the stiffness of the bond between the
atoms and mi is the mass of atom i [58].

Now, the lowest vibrational energy level is not zero and therefore this level does not intersect the
electronic potential energy curve at the equilibrium bond length. This implies that in the ground
state, the molecules still include some freedom to vibrate, oscillating back and forth between the
two intersections with the electronic potential energy curve. The electronic potential energy curve
is not symmetric, but has an anharmonic component, as can be seen from Figure 2. So, the value
of the Wd factor at the equilibrium bond length will be slightly different from the average value in
the lowest vibrational energy level. This difference is the vibrational correction. In the figure, this
is the difference between the equilibrium bond length Re and the effective equilibrium bond length

Reff
e .

10MP2 is also occasionally mentioned as MBPT(2), denoting the general many-body perturbation theory [45].
11The terms equilibrium bond length, equilibrium bond distance and geometry are used interchangeably throughout

this thesis.
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Figure 2. The general molecular potential energy curve with vibrational levels. The minimum
of the potential curve determines the equilibrium bond length Re. The average bond length in

the lowest vibrational level determines the effective equilibrium bond length Reff
e .

3.8. Further considerations. Apart from all the considerations taken into account so far, there
are two more points to be considered. Particularly, the finite field approach and the equilibrium
bond distance. The finite field approach yields a method to extract Wd from multiple energy
calculations and will be further explained in Section 3.8.1. The equilibrium bond distance is the
distance between the nuclei of a molecule. The geometry has to be given as an input value for the
computations. This parameter will be discussed in Section 3.8.2.

3.8.1. Finite field approach. Generally, the result of a calculation will be a total energy. Since the
total energy is not the value that is searched for in this work, but rather the Wd and WS properties,
the finite field approximation is used. Using Equation 10 and Equation 11, combined with the fact
that the field strength λ has to be small, the eEDM enhancement factor can be approximated as

(73) Wd =
1

Ω
Eeff =

1

Ω

dEΩ

dλ

∣∣∣∣
λ=0

≈ 1

Ω

E(λ) − E(−λ)

2λ

and similarly, the S-PS interaction enhancement factor can be approximated as

(74) WS =
1

Ω

dEΩ

dλ

∣∣∣∣
λ=0

≈ 1

Ω

E(λ) − E(−λ)

2λ

These definitions of Wd and WS ensure that if there is a contribution from the λ2 term, it will
cancel out, since λ2 = (−λ)2. Any higher order terms will be negligible. Thus, the energy curve is
expected to be linear in the regime of the field strength.

The quality of this linear fit can be checked by comparing the total energies from the positive and
negative perturbations with the total energy without perturbation (λ = 0). To quantify the linearity
of the fit, the R2 value can be utilized. If this value is equal to one, that indicates that the linear
fit is a perfect fit for the given data points. A fit resembling a horizontal line at the average of
all the data points would yield R2 = 0 and worse fits give negative R2 values. The equation that
determines R2 is

(75) R2 = 1 −
∑m

i=1 (Xi − Yi)
2∑m

i=1

(
Y − Yi

)2 ,
where m is the amount of data points, Xi is the value predicted by the fit, Yi is the actual value of
data point i and Y is the average of the true values [59].
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In this work, the found energies are in atomic units, but the unit of Eeff is GV cm−1, the unit of

Wd is h Hz
e cm and the unit of WS is h kHz. The conversion between units is done in the following way.

First, for the effective electric field, 1 a.u. = 5.142 206 747 63 · 1011 V m−1 [60]. Then,

(76) Eeff [GV cm−1] = 5.14220674763 · E(λ) − E(−λ)

2λ
.

Next, for Wd the value of Planck’s constant is used, which is h = 4.135 667 696 · 10−15 Hz eV−1 [61].
Furthermore, to increase readability, a factor 1024 is generally taken into the unit, giving

(77) Wd

[
1024

h Hz

e cm

]
=

5.14220674763

4.135667696

1

Ω

E(λ) − E(−λ)

2λ
= 1.24338006 · 1

Ω

E(λ) − E(−λ)

2λ
.

Finally, for WS , some constants given in Equation 3 are not yet taken into account in the compu-
tation, so they have to be added along with the conversion to the right units. Furthermore, the
atomic number given in that equation will be the atomic number of ytterbium, since the valence
electron of the system belongs mostly to that atom. Using h = 6.626 070 15 · 10−34 J Hz−1 [62],
1 a.u. = 4.359 744 722 207 1 · 10−18 J [63], ZY b = 70 and GF = 2.2225 · 10−14 a.u., the conversion
becomes,

WS [h kHz] =
4.3597447222071 · 10−18

6.62607015 · 10−34
· 2.2225 · 10−14 · 70 · 1

1000
· 1

Ω

E(λ) − E(−λ)

2λ
,(78)

= 10.23634326 · 1

Ω

E(λ) − E(−λ)

2λ
.(79)

3.8.2. Equilibrium bond length. To compute the Wd and WS factors, the geometry of the
molecules in question needs to be known. The equilibrium bond distance will be used as an input
for the calculations. The values of these distances for YbCu, YbAg and YbAu were found in [24]
and are given by

(80) RY bCu
e = 2.910 Å, RY bAg

e = 3.063 Å, RY bAu
e = 2.939 Å.

These values were obtained by using the CCSD(T) method, a quintuple zeta basis set and a non-
relativistic Hamiltonian. Scalar relativistic effects were added afterwards by replacing the inner-shell
electrons with pseudopotentials [24]. This relativistic treatment is not sufficient for determining the
eEDM and S-PS enhancement factors, so the geometry will be optimized in Section 4.1.
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4. Results

All the results presented within this section were obtained using the DIRAC19 program on the
peregrine computer cluster located at the University of Groningen [64]. Most of this section will
be devoted to investigate how the value of the eEDM enhancement factor Wd changes when using
different computational methods. These results will be used to accurately determine the uncertainty
of the final found Wd values. Only a single calculation will be done for the S-PS interaction
enhancement factor WS to gauge its magnitude and compute the Wd to WS ratio. A full uncertainty
analysis of WS is out of the scope of this thesis.

4.1. Geometry optimization. For all the calculations that will be performed throughout the rest
of this section, the equilibrium bond lengths of YbCu, YbAg and YbAu are required.

The equilibrium bond distances were already given in Section 3.8.2, but only scalar relativistic
effects were incorporated into those calculations. This means that the values can be optimized to
include explicit relativistic effects.

The values of the equilibrium bond length for the three ytterbium-containing molecules given by
Tomza in [24] did not include the spin-orbit relativistic effects, while for the rest of the calculations
these will be taken into account. Furthermore, the quintuple zeta basis set that was used is not
feasible for the computation of the Wd parameter, as this will be too computationally expensive.

So, the geometry (equilibrium bond distance) was optimized through the DIRAC program. To
see what the effect of using different basis sets is, the optimization was performed using a v2z,
a v3z and a v4z basis set, where a single diffuse function was augmented to the v4z basis set.
Furthermore, the effect of using a relativistic Hamiltonian was tested by performing calculations
using a 1c Hamiltonian, a spin-free (SF) Hamiltonian and an X2c Hamiltonian. The spin-free
Hamiltonian removes the spin-orbit interaction from the 4c Hamiltonian. Moreover, a calculation
was done using the CCSD(T) method to observe the change compared to the CCSD result. All the
found geometries are listed in Table 1.

Table 1. The dependence of the optimal geometry of YbCu, YbAg and YbAu on the basis
set, the Hamiltonian and the method.

Method Basis set Hamiltonian YbCu Re [Å] YbAg Re [Å] YbAu Re [Å]

CCSD v2z X2c 2.7401 2.8989 2.7088

CCSD v3z X2c 2.7747 2.8821 2.7086

CCSD s-aug-v4z X2c 2.7543 2.8589 2.6524

CCSD v3z 1c 2.8612 3.0508 3.0576

CCSD v3z SF 2.7801 2.8822 2.7158

CCSD v3z X2c 2.7747 2.8821 2.7086

CCSD v2z SF 2.7457 2.9044 2.7250

CCSD(T) v2z SF 2.6834 2.8697 -1

1 The CCSD(T) computation of YbAu is not feasible with the current computational limitations.

Table 1 shows that when increasing the cardinality of the basis set, this generally decreases Re.
Thus, the computations with a smaller basis set are overestimated. Going from the SF Hamiltonian
to the X2c Hamiltonian only changes Re slightly. However, when going to the 1c Hamiltonian,
completely different behaviour is observed. All the Re values are significantly higher than with a
relativistic Hamiltonian, and Re now increases with increasing atomic number. Finally, adding some
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triple excitations to the CC method reduces Re, thus the CCSD method results are overestimated.
Even though the three systems are open-shell systems, the CCSD results are still deemed accurate.
The triple excitations added in the CCSD(T) method can be altered significantly by the system
not being closed-shell. Therefore, the CCSD(T) method is not used for the determination of the
optimal geometry.

All the results listed in Table 1, apart from the computations with the s-aug-v4z basis set, were
computed using a built-in optimization program. This program computes the energy at an initial
bond length and then uses algorithms to search for the geometry with a lower energy. This is
done until convergence is reached. For the s-aug-v4z basis set, using this program was not feasible
with the computational limits of DIRAC. So instead, multiple single-point energy calculations were
performed at various bond lengths. Then, a fourth-order polynomial curve was fit through the data
points to obtain a potential energy curve. This curve for the YbCu molecule can be seen in Figure
3 and the plots for the other two molecules can be found in Appendix A.1. In these plots, the
minimum of the polynomial fit gives the equilibrium bond distance.

Figure 3. The potential energy curve of YbCu. The fit shown is a fourth-order polynomial.
The minimum of this fit was chosen as the equilibrium bond distance Re. The single-point
energy calculations were performed using the CCSD method, an X2c Hamiltonian and the s-
aug-v4z basis set. For the computations, 38 core electrons were frozen and the virtual space
cut-off was set to 20 a.u..

Table 2. The optimized geometry computed using the built-in optimize program and derived
from the potential energy curve (PEC), calculated using DIRAC for the v3z basis set, CCSD
method and X2c Hamiltonian. 38, 46 and 64 core electrons were frozen for YbCu, YbAg and
YbAu, respectively, and the virtual space cut-off was set to 20 a.u..

Molecule Re [Å] from built-in program Re [Å] from PEC

YbCu 2.77471 2.77460 (-0.0040%)

YbAg 2.88210 2.88161 (-0.0170%)

YbAu 2.70855 2.70820 (-0.0129%)

To ensure that the results from fitting a function to single-point energy calculations are accurate,
this method was also applied to computations using the v3z basis set, CCSD method and X2c
Hamiltonian. The differences between using the built-in program and the potential energy curve
can be observed in Table 2. Since the difference in the optimal geometry is minute, it is assumed
that both methods give equally accurate results for the equilibrium bond distance.
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The values for the geometry that will be used for the rest of the computations were calculated
using the s-aug-v4z basis set, the X2c Hamiltonian and the CCSD method. Here, to speed up
the calculations, only virtual orbitals up to 20 a.u. and occupied orbitals up to −20 a.u. were
taken into account for YbCu. For the other two molecules, since they contain more electrons, the
active space cut-off was set to −10 a.u. and the virtual space cut-off to 10 a.u. This freezes 38
core electrons of YbCu, 64 core electrons of YbAg and 82 core electrons of YbAu, leaving 61, 53
and 67 valence electrons, respectively. Freezing the core orbitals is valid, since the geometry of
the molecule is mostly dependent on the correlation of the valence electrons [65]. This is also the
reason for augmenting diffuse Gaussians to the v4z basis set, since it improves the description of
the orbitals in the valence region.

Table 3. The geometry as given by Tomza, and the optimized geometry calculated in this
thesis using DIRAC for the s-aug-v4z basis set, CCSD method and X2c Hamiltonian. 38, 64
and 82 core electrons were frozen for YbCu, YbAg and YbAu, respectively, and the virtual
space cut-off was set to 20 a.u. for YbCu and 10 a.u. for YbAg and YbAu.

Molecule Re [Å] from [24] Optimized Re [Å]

YbCu 2.910 2.7543

YbAg 3.063 2.8589

YbAu 2.939 2.6524

In Table 3, the optimized geometries and the geometries given by Tomza can be found for the three
ytterbium-containing molecules studied in this work. The observed difference between the values
is significant for all three molecules. There are multiple differences in the method of computation
that could explain why the values do not correspond. First, Tomza [24] uses a quintuple zeta basis
set with augmented functions for the coinage metals and a [10s10p9d5f3g] basis set for ytterbium,
while in this work the s-aug-v4z basis set is utilized for both atoms. Second, in this work the
CCSD method is used, as opposed to the CCSD(T) method used by Tomza. Third, relativity
is treated differently in both works. The results in this thesis were obtained by employing the
X2c Hamiltonian, whilst Tomza incorporates scalar relativistic effect by applying pseudopotentials.
These distinctions in computational approaches contribute to the discrepancy between the found
optimal geometries. Finally, Tomza corrects for the basis set superposition error with the Boys-
Bernardi counterpoise correction, which is not done in this work. However, this correction is only
a minor contribution to the found value.

Figure 4. The optimal geometry against the atomic number of the diatomic molecules, com-
puted using five different approaches.
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In Figure 4, the results for the geometry optimization are plotted against the atomic numbers
of the three diatomic molecules discussed in this thesis. Here, it can be observed that relativity
becomes increasingly important for molecules with higher atomic numbers. For heavier molecules,
the difference between using relativity or not increases. Furthermore, the general trend seems to be
similar for both the X2c methods and Tomza’s method, although the actual values are not alike.

Now the optimal geometry of the molecules has been determined, calculations on the Wd parameter
can start. First, the optimal field strength will be determined for the molecules. Then, many of the
computational considerations discussed in Section 3 will be varied to observe the effect on Wd.

4.2. Field strength. It is important to optimize the value of the field strength, since it should
be small enough to suppress the higher order terms, but it should not be too small, as that will
increase the final uncertainty in Wd. This can be observed by looking at Equation 73. Furthermore,
if λ is smaller than the convergence threshold of the energy, the difference in positive and negative
perturbations cannot be observed.

To find the optimal value to use for the field strength, molecular energy calculations were performed
for various orders of magnitude of λ. For these calculations, the CCSD method was used with a
v2z basis set. Relativity was included through an X2c Hamiltonian. Virtual orbitals up to 20 a.u.
were taken into account and 38 core electrons were frozen for YbCu, 46 core electrons were frozen
for YbAg and 64 core electrons were frozen for YbAu. The full results for the YbCu molecule can
be seen in Figure 5. Similar graphs for YbAg and YbAu can be found in Appendix A.2.

Figure 5. The dependence of the molecular energy of YbCu on the used field strength, using
the optimized geometry, the v2z basis set, the CCSD method, a 4c Hamiltonian, a virtual space
cut-off at 20 a.u. and freezing 38 core electrons. The dashed line shown in the bottom two plots
represents a true linear relation.

The finite field strength approach detailed in Section 3.8.1 can only be employed if the positive
and negative perturbations form a mostly linear relation. From the graphs displayed in Figure 5
it already becomes quite clear that for large field strength, there is little linearity, but to quantify
this, the R2 value was computed for each field strength. The R2 values of the various field strengths
of the three molecules can be found in Table 4.
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Table 4. The R2 value of a variety of field strength magnitudes for YbCu, YbAg and YbAu.

Field strength λ YbCu R2 YbAg R2 YbAu R2

2 · 10−4 0.0655292 0.0549037 0.0002440

1 · 10−4 0.2191710 0.1886607 0.0009507

2 · 10−5 0.8752893 0.8532536 0.0230588

1 · 10−5 0.9656056 0.9587768 0.0862482

2 · 10−6 0.9985775 0.9982834 0.7023336

1 · 10−6 0.9996438 0.9995705 0.9042136

2 · 10−7 0.9999859 0.9999829 0.9957781

1 · 10−7 0.9999965 0.9999957 0.9989474

From the figure, and by checking the goodness of the linear fits, it was decided to use a field strength
of 10−6 for YbCu and YbAg, and a field strength of 10−7 for YbAu. These field strengths were
chosen since they yield a highly linear relation between the positive and negative perturbation.
Choosing a smaller field strength will only increase the error in Wd, which should be avoided.

4.3. Electron correlation. Now, using both the found geometry and field strength, the Wd pa-
rameter can be computed. In this section, the effect of electron correlation on Wd will be explored.
This is done by first freezing various occupied orbitals and observing the difference compared to
correlating all electrons. Second, the virtual space cut-off will be varied to see the effect of this
parameter on Wd.

4.3.1. Active occupied space. Coupled cluster methods can correlate all electrons in the system.
However, it is possible to freeze the core orbitals such that they are not taken into account for the
electron correlation. The calculations in this section were performed using the FSCCSD method,
a 4c Hamiltonian and a v2z basis set. The FSCCSD method is employed, since this method yields
more accurate results for the open-shell systems than a regular CCSD approach. The virtual space
cut-off for all of these computations was set to the same magnitude as the active space cut-off. So,
if for a calculation the active space cut-off was set to −100 a.u., then the virtual space cut-off was
set to 100 a.u..

Figure 6. The energy of the molecular orbitals of YbCu. The used active space cut-offs are
indicated with horizontal dashed lines. Wd is also plotted against the active orbitals.
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The relation between the different used active space cut-offs and the number of correlated electrons
for YbCu can be seen in Figure 6. Here, the molecular orbitals are split up into Cu orbitals and
Yb orbitals, depending on the linear coefficient CA, defined in equation 14. When CCu ≫ CYb,
the orbital is attributed to Cu, when CCu ≪ CYb, the orbital is attributed to Yb and when both
values are similar, the orbitals are split up between the two atoms. This is the case for the outer
s-orbitals. The Wd values found when freezing some active orbitals is also displayed in the figure.
Similar figures of YbAg and YbAu can be found in Appendix A.3.

In Table 5, the effect of electron correlation on Wd can be seen for YbCu. When freezing just over
12 percent of the total number of electrons, Wd already decreases by 2.27 percent. This shows that
the core orbitals have a significant effect on the eEDM enhancement factor. When freezing even
more orbitals, Wd reduces further.

Table 5. The eEDM enhancement factor of YbCu computed while freezing a different number
of orbitals. The Wd values were computed using the FSCCSD method, a 4c Hamiltonian and
a v2z basis set. N corr

elec is the number of correlated electrons and N total
elec is the total number

of electrons in the system. The final column gives the relative difference of Wd compared to
correlating all electrons.

Active(−)/virtual(+) N corr
elec

N total
elec

Frozen orbitals

space cut-off [a.u.] N corr
elec Yb Cu Wd

[
1024 h Hz

e cm

]
Difference [%]

±1 27 0.2727 [Xe] [Ar] 10.656 -16.77

±6 43 0.4343 [Kr]4d10 [Ne] 11.629 -9.16

±20 61 0.6162 [Ar]3d10 [Ne] 12.169 -4.95

±100 87 0.8788 [Ne] [He] 12.512 -2.27

±2500 99 1 - - 12.803 -

Table 6. The eEDM enhancement factor of YbAg computed while freezing a different number
of orbitals. The Wd values were computed using the FSCCSD method, a 4c Hamiltonian and
a v2z basis set. N corr

elec is the number of correlated electrons and N total
elec is the total number

of electrons in the system. The final column gives the relative difference of Wd compared to
correlating all electrons.

Active(−)/virtual(+) N corr
elec

N total
elec

Frozen orbitals

space cut-off [a.u.] N corr
elec Yb Ag Wd

[
1024 h Hz

e cm

]
Difference [%]

±0.8 27 0.2308 [Xe] [Kr] 9.153 -22.01

±10 53 0.4530 [Kr] [Ar]3d10 10.966 -6.57

±30 79 0.6752 [Ar]3d10 [Ne] 11.268 -3.99

±100 97 0.8291 [Ne] [Ne] 11.477 -2.21

±2500 117 1 - - 11.737 -

Similarly, the results of freezing orbitals of YbAg and YbAu can be found in Table 6 and Table
7, respectively. Again, for YbAg, it becomes apparent that even freezing a couple of core orbitals
reduces the accuracy of Wd significantly. This is way less so for YbAu, where freezing almost
20 percent of the core electrons only reduces Wd by 0.38 percent. Another difference that can
be observed for YbAu compared to the other two molecules is that Wd actually increases once
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when reducing the number of correlated electrons. When freezing 82 electrons, Wd is less than two
percent smaller than when correlating all electrons, while when freezing 56 electrons, Wd is around
six percent smaller. Since the computations are a lot less complex for the cut-off at ±10 a.u. and
the result is not too much affected, this cut-off will be used for the final calculation of Wd for YbAu.

Table 7. The eEDM enhancement factor of YbAu computed while freezing a different number
of orbitals. The Wd values were computed using the FSCCSD method, a 4c Hamiltonian and
a v2z basis set. N corr

elec is the number of correlated electrons and N total
elec is the total number

of electrons in the system. The final column gives the relative difference of Wd compared to
correlating all electrons.

Active(−)/virtual(+) N corr
elec

N total
elec

Frozen orbitals

space cut-off [a.u.] N corr
elec Yb Au Wd

[
1024 h Hz

e cm

]
Difference [%]

±2.68 35 0.2349 [Kr]4d10 [Xe]4f14 1.071 -34.18

±10 67 0.4527 [Kr] [Kr]4d10 1.595 -1.91

±40 93 0.6284 [Ar]3d10 [Ar]3d10 1.532 -5.81

±95 121 0.8176 [Ne] [Ne] 1.620 -0.38

±3000 149 1 - - 1.626 -

To better understand the similarities and differences between the three molecules regarding electron
correlation, Figure 7 shows how Wd varies with increasing amount of frozen orbitals for YbCu, YbAg
and YbAu. From this figure, it is obvious that the dependence of Wd on the amount of correlated
electrons is comparable for YbCu and YbAg. However, YbAu shows a different trend, since there,
freezing the core orbitals seems to leave Wd mostly invariant and Wd does not always increase
when correlating more orbitals. This discrepancy could be due to effects such as screening and is
dependent on the type of orbitals that are added.

Figure 7. The effect of freezing orbitals on Wd for YbCu, YbAg and YbAu. The vertical
axis represents the fraction of Wd compared to Wd computed with all electrons correlated. The
horizontal axis represents the fraction of correlated electrons.

4.3.2. Virtual space cut-off. While in the last subsection, the active space cut-off was varied to
observe the effects of freezing active orbitals, here the virtual space cut-off will be varied. This in turn
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means that the dependency of Wd on the amount of available virtual orbitals will be investigated.
For these computations, the FSCCSD method, a 4c Hamiltonian and a v2z basis set will be utilized,
and all electrons will be correlated. This means that the active space cut-off was set to −2500 a.u.
for YbCu and YbAg, and to −3000 a.u. for YbAu.

In Table 8, the results of varying the virtual space cut-off can be found for all three molecules.
Similarly to what was observed in the previous subsection, the trends for YbCu and YbAg are
comparable, while YbAu shows different behaviour.

For YbCu and YbAg, Wd increases as the number of virtual orbitals increases. However, for YbAu,
Wd does not always increase when increasing the number of virtual orbitals. This becomes especially
obvious when looking at the virtual space cut-off at 10 a.u.. There, the found Wd value is less than
half a percent lower than the value found with a virtual space cut-off at 6000 a.u., while this
difference can get up to six percent when including more virtual orbitals.

As the virtual space cut-off increases, the virtual orbitals are spread out more, which explains the
small differences between Wd for a virtual space cut-off of 3000 and 6000. Furthermore, this is the
reason for the results at a virtual space cut-off of 2500 and 3000 being equal. For both computations,
the same amount of virtual orbitals were used. This can be seen from the number of virtual orbitals,
NV , that is given in Table 8.

Table 8. The eEDM enhancement factor Wd

[
1024 h Hz

e cm

]
of YbCu, YbAg and YbAu computed

for a variety of virtual space cut-off values. The number of virtual orbitals, NV , is given for each
cut-off value. The computations were performed using the FSCCSD method, a 4c Hamiltonian,
a v2z basis set and by correlating all electrons. The relative difference of Wd compared to a
virtual space cut-off of 6000 is given for each molecule.

YbCu YbAg YbAu

Virtual space cut-off [a.u.] NV Wd % NV Wd % NV Wd %

10 200 12.029 -6.31 210 11.037 -6.22 214 1.631 -0.30

30 262 12.368 -3.67 274 11.338 -3.66 292 1.547 -5.47

100 310 12.517 -2.52 322 11.472 -2.52 354 1.538 -6.00

500 380 12.694 -1.13 392 11.637 -1.12 462 1.615 -1.29

1000 406 12.757 -0.64 428 11.696 -0.62 488 1.614 -1.37

2000 424 12.769 -0.55 446 11.704 -0.56 530 1.605 -1.90

2500 432 12.803 -0.29 464 11.737 -0.27 538 1.626 -0.61

3000 432 12.803 -0.29 464 11.737 -0.27 538 1.626 -0.61

6000 446 12.840 - 486 11.769 - 570 1.636 -

To better see the differences and similarities between the three molecules in terms of the virtual
space cut-off, Figure 8 is instructive. It becomes clear that the dependency of the virtual space
cut-off on Wd is almost identical for YbCu and YbAg. The different behaviour observed for YbAu
could be due to different types of virtual orbitals being included.
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Figure 8. The effect of the virtual space cut-off on Wd for YbCu, YbAg and YbAu. The
vertical axis represents the fraction of Wd compared to Wd computed at a virtual space cut-off
of 6000 a.u..

4.4. Basis set. Now the effects of electron correlation on Wd are known, those results can be used
to observe the effects of changing the used basis set. Computations with all electrons correlated are
not feasible for quadruple zeta basis sets. So instead, to investigate the effects of the basis set on
Wd, the active and virtual space cut-offs were set to ±20 a.u., ±10 a.u. and ±10 a.u. for YbCu,
YbAg and YbAu, respectively. From Table 5 and Table 6, it can be observed that this reduces the
accuracy of Wd by around five to six percent for YbCu and YbAg. The reduction should not affect
the computations with different basis sets, as it is assumed that the different computational aspects
are decoupled, since they are higher order terms. For the computations with different basis sets,
the FSCCSD method and a 4c Hamiltonian were used.

Table 9. The eEDM enhancement factor Wd of YbCu, YbAg and YbAu for valence, core-
valence and single augmented basis sets of second, third and fourth-order. Computations were
done with the FSCCSD method and a 4c Hamiltonian. The virtual and active space cut-offs
were set to ±20 a.u., ±10 a.u. and ±10 a.u., freezing 38, 64 and 82 electrons of YbCu, YbAg
and YbAu, respectively.

YbCu

Wd

[
1024 h Hz

e cm

]
X vXz cvXz s-aug-vXz

2 12.169 12.169 12.207

3 12.594 12.594 12.593

4 12.614 - -

YbAg

Wd

[
1024 h Hz

e cm

]
X vXz cvXz s-aug-vXz

2 10.966 10.967 10.947

3 11.158 11.159 11.153

4 11.193 - -

YbAu

Wd

[
1024 h Hz

e cm

]
X vXz cvXz s-aug-vXz

2 1.595 1.596 1.492

3 1.122 1.127 1.089

4 1.314 - -
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In Table 9, the results of the computations using various basis sets can be found for all three
molecules. Computations were done with basis sets with different cardinality, so the v2z, v3z and
v4z basis sets. Furthermore, diffuse and tight functions were added to the v2z and v3z basis set to
see the effects of adding functions to specific regions in the system.

The computations with added tight and diffuse functions were not performed on the quadruple zeta
level, since these computations were too computationally demanding. Furthermore, the triple zeta
results already are accurate enough to be used for uncertainty estimation.

Table 9 shows that, for YbCu and YbAg, Wd increases with increasing cardinality of basis set.
However, the increase does flatten and will reach the CBS limit. The cv3z results only differ slightly
from the v3z results, since these basis sets use the same functions for the ytterbium atom and only
add a single tight function for the Cu atom and three tight functions for the Ag atom. Augmenting
diffuse functions to the basis sets also does not change Wd significantly for both molecules. Although,
adding diffuse functions does alter the value more than adding tight functions. The behaviour is
different for YbAu, Wd first decreases when going to the v3z basis set, but then increases again when
going to the v4z basis set. Again, the amount by which the Wd results differ decreases for increasing
cardinality, showing the convergence to the CBS limit. The cv3z basis set yields a different result
for YbAu. This basis set adds 3 tight functions to the v3z basis set. Augmenting diffuse functions
has an even larger effect on Wd as can be seen from the s-aug-v3z result.

4.5. Method and relativity. Only from the fact that the three systems that are covered in this
thesis have an open shell, the FSCCSD method should describe the system the best. Still, it is
insightful to observe the results computed with different methods. In Section 3.6, the DHF, MP
and CC methods were introduced, and these methods were used to compute Wd along with FSCCSD.
For these computations, the v3z basis set was used and the virtual and active space cut-offs were
set to ±20 a.u., ±30 a.u. and ±10 a.u., freezing 38, 38 and 82 electrons of YbCu, YbAg and YbAu,
respectively. The results of these calculations can be found in Table 10.

Table 10. The eEDM enhancement factor Wd of YbCu, YbAg and YbAu computed with
the Dirac-Hartree-Fock method, Møller–Plesset perturbation theory and coupled cluster ap-
proaches. Computations were done with the v3z basis set and the virtual and active space
cut-offs were set to ±20 a.u., ±30 a.u. and ±10 a.u., freezing 38, 38 and 82 electrons of YbCu,
YbAg and YbAu, respectively.

YbCu YbAg YbAu

Method Wd

[
1024 h Hz

e cm

]
Wd

[
1024 h Hz

e cm

]
Wd

[
1024 h Hz

e cm

]
4c-DHF 9.763 9.502 7.379

4c-MP2 12.169 11.709 6.599

4c-CCSD 13.602 12.483 1.780

4c-CCSD + T 12.423 11.444 -1.062

4c-CCSD(T) 13.011 12.045 3.672

4c-CCSD−T 13.011 11.964 2.819

4c-FSCCSD 12.594 11.383 1.325

This table shows that, again, YbCu and YbAg behave similarly. The DHF results are under-
estimated, since electron correlation is not taken into account. Furthermore, the CC and MP2
results are all of similar magnitude. The extra fifth-order perturbation term that CCSD−T adds
to CCSD(T) does not seem to influence the result for the YbCu molecule, while it does change Wd
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for the other two molecules. The behaviour of YbAu is very sporadic. This could be due to YbAu
being a large system, gold being very electronegative, gold being the heavier atom in that molecule,
or a combination of these factors. Furthermore, these systems are open-shell systems and therefore,
the CC method will not always give accurate results, unlike the FSCCSD method. This could also
explain the behaviour that is observed for YbAu.

Apart from the method, the treatment of relativity can also be varied. The 4c Hamiltonian, used
so far, does not treat relativity completely. It is missing both the Breit term and the QED effects.
Currently, it is only possible to add the Gaunt term to the 4c Hamiltonian. Furthermore, this
functionality can, as of now, only be added to the DHF method and not to a CC method. So, to
observe the effect of the Gaunt term, computations were done with the DHF method, the v2z basis
set and the virtual and active space cut-offs at ±20 a.u., ±30 a.u. and ±10 a.u., freezing 38, 38
and 82 electrons of YbCu, YbAg and YbAu, respectively. The results can be found in Table 11.
The Gaunt term reduces the found Wd values for all three molecules when computed with the DHF
method. It is not possible to investigate other relativistic effects currently, so this will be taken into
account for the uncertainty as described in Section 4.7.

Table 11. The eEDM enhancement factor Wd of YbCu, YbAg and YbAu computed with
the four component Hamiltonian and with the Gaunt term added to the Dirac Hamiltonian.
Computations were done with the Dirac-Hartree-Fock method, the v2z basis set and the virtual
and active space cut-offs were set to ±20 a.u., ±30 a.u. and ±10 a.u., freezing 38, 38 and 82
electrons of YbCu, YbAg and YbAu, respectively.

YbCu YbAg YbAu

Method Wd

[
1024 h Hz

e cm

]
Wd

[
1024 h Hz

e cm

]
Wd

[
1024 h Hz

e cm

]
4c-DHF 9.562 9.350 7.233

4c-DHF + ∆Gaunt 9.389 9.179 7.096

4.6. Geometry. So far, all computations have been performed with the geometry that was found
in Section 4.1. However, it is not known how accurate these found values are. Usually, the computed
value is compared to a value found experimentally, but such a value has not been determined for the
three molecules covered in this thesis. Changing the geometry of the system will affect the found
value of Wd. So, the uncertainty in Re should be taken into account for the uncertainty in Wd as
detailed in Section 4.7. To circumvent the issue of not having an experimental optimal geometry,
the usual difference between computation and experiment will be used. Generally, this difference is
around 0.01 Å [66].

Table 12. The eEDM enhancement factor Wd of YbCu, YbAg and YbAu for three different
geometries computed with the FSCCSD method, a 4c Hamiltonian and the v3z basis set and
the virtual and active space cut-offs were set to ±20 a.u., ±30 a.u. and ±10 a.u., freezing 38,
38 and 82 electrons of YbCu, YbAg and YbAu, respectively. The |∆| columns give the absolute
difference with respect to Wd found with Re.

YbCu YbAg YbAu

Distance [Å] Wd

[
1024 h Hz

e cm

]
|∆| Wd

[
1024 h Hz

e cm

]
|∆| Wd

[
1024 h Hz

e cm

]
|∆|

-0.01 12.569 0.025 11.366 0.016 1.201 0.080

0.00 12.594 - 11.383 - 1.122 -

0.01 12.618 0.024 11.398 0.015 1.041 0.081
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Thus, computations of Wd were done for all three molecules, both adding and subtracting 0.01 Å
from the optimal geometries. For these computations, the FSCCSD method, a 4c Hamiltonian and
the v3z basis set were used. The virtual space cut-off was set to 20 a.u., 30 a.u. and 10 a.u. for
YbCu, YbAg and YbAu, respectively. 38 electrons were frozen for YbCu, 38 electrons were frozen
for YbAg and 82 electrons were frozen for YbAu. The results can be found in Table 12.

From the table, it becomes clear that changing the geometry slightly has a significant impact on
Wd. Especially for YbAu, where the relative difference is over seven percent. Furthermore, it can
be observed that Wd changes linearly with changing bond distance. So, the Wd uncertainty has
about the same magnitude for positive and negative geometry changes. The results of this table
will be used in the uncertainty analysis of Section 4.7.

4.6.1. Vibrational correction. Apart from the uncertainty in Re, another geometrical contribu-
tion has to be taken into account. Introduced in Section 3.7, the vibrational correction should be
added as an uncertainty. This correction comes from the fact that the electron’s potential energy
curve is anharmonic. So the averaged out Wd value will not be at the equilibrium bond length. By
determining Wd and the total molecular energy at various bond lengths, the vibrational correction
can be computed. This was done using a built-in program from DIRAC that computes the value of
Wd in the lowest vibrational state and gives the difference compared to the value found at Re. The
values used as input for the program can be found in Table 13.

Table 13. The eEDM enhancement factor Wd and molecular energy of YbCu, YbAg and
YbAu computed for various bond lengths. Computations were done with the FSCCSD method,
the v3z basis set and the virtual and active space cut-offs were set to ±20 a.u., ±30 a.u. and
±10 a.u., freezing 38, 38 and 82 electrons of YbCu, YbAg and YbAu, respectively.

YbCu

Bond length Energy [a.u.] Wd

[
1024 h Hz

e cm

]
2.6543 -15724.627782 12.820

2.7043 -15724.628247 12.712

2.7443 -15724.628390 12.619

2.7543 -15724.628397 12.594

2.7643 -15724.628393 12.569

2.8043 -15724.628277 12.466

2.8543 -15724.627926 12.327

YbAg

Bond length Energy [a.u.] Wd

[
1024 h Hz

e cm

]
2.7589 -19386.073785 11.515

2.8089 -19386.074365 11.455

2.8489 -19386.074578 11.398

2.8589 -19386.074601 11.383

2.8689 -19386.074611 11.366

2.9089 -19386.074545 11.296

2.9589 -19386.074243 11.197

YbAu

Bond length Energy [a.u.] Wd

[
1024 h Hz

e cm

]
2.5524 -33108.669491 0.228

2.6024 -33108.670891 0.700

2.6424 -33108.671462 1.041

2.6524 -33108.671537 1.122

2.6624 -33108.671587 1.201

2.7024 -33108.671549 1.497

2.7524 -33108.671031 1.824
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Table 13 shows that Wd decreases with increasing bond length for YbCu and YbAg, while it
increases with increasing bond length for YbAu. This means that, due to the anharmonicity of
the potential energy curve, Wd is shifted downward for YbCu and YbAg, and shifted upward for
YbAu. Furthermore, it can be observed that for YbAg and YbAu, the lowest energy does not occur
at the previously defined optimal geometry. This is due to the energy now being calculated using
the FSCCSD method and the v3z basis set instead of the CCSD method with the s-aug-v4z basis
set. For YbCu, the optimal geometries just happen to be equal when computed with both methods.

The found vibrational corrections are −0.0322 · 1024 h Hz
e cm , −0.0235 · 1024 h Hz

e cm and 0.0130 · 1024 h Hz
e cm

for YbCu, YbAg and YbAu, respectively. By making a linear fit for the Wd data points against
the bond length, the effective equilibrium bond distance can be found. This value was found to
be 2.7643 Å for YbCu, 2.8676 Å for YbAg and 2.6583 Å for YbAu. These averaged-out values are
plotted together with the relation between Wd and the bond length in Figure 9. This figure also
shows that a linear relation is not optimal, as there is a slight parabolic shape discernable in the
data points.

Figure 9. The effect of the bond distance on Wd for YbCu, YbAg and YbAu. A linear fit is
given, along with the equilibrium bond distance and the effective equilibrium bond distance,
given by the averaged out value in the vibrational ground state.

4.7. Uncertainty. Arguably more important than the absolute values of the results is the accuracy
of the results. So, in this section, possible sources of uncertainty will be investigated. These
uncertainties will be combined to yield the final uncertainty of Wd for YbCu, YbAg and YbAu.
The sources of uncertainty fall under one of the following four main categories: basis set, electron
correlation, relativity and geometry. Many of these topics have already been discussed in previous
sections.

The used reference values try to find the middle ground between the different computation consid-
erations. The calculations will be performed at the equilibrium bond distance that was optimized
in Section 4.1. The other computational consideration employed for the reference values can be
found in Table 14. A significant amount of orbitals was frozen for each molecule to reduce compu-
tational complexity. The cut-offs were set to ±10 for YbAu, since there the difference compared
to correlating all electrons was smaller than the results with larger cut-offs. Since the cut-offs were
smaller for YbAu, it was possible to perform a v4z calculation for Wd, while for the other two
molecules with the larger amount of correlated electrons, only a v3z basis set was feasible. All the
WS computations were performed with a v3z basis set due to time constraints.
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Table 14. The computational considerations used to determine the reference values of Wd and
WS for YbCu, YbAg and YbAu.

Wd

Molecule Method Hamiltonian Basis set Active space cut-off Virtual space cut-off

YbCu FSCCSD 4c v3z -100 a.u. 100 a.u.

YbAg FSCCSD 4c v3z -100 a.u. 100 a.u.

YbAu FSCCSD 4c v4z -10 a.u. 10 a.u.

WS

Molecule Method Hamiltonian Basis set Active space cut-off Virtual space cut-off

YbCu FSCCSD 4c v3z -100 a.u. 100 a.u.

YbAg FSCCSD 4c v3z -100 a.u. 100 a.u.

YbAu FSCCSD 4c v3z -10 a.u. 10 a.u.

First, the uncertainty in the chosen basis set. There are three sources of basis set uncertainty. The
best way to describe orbitals would be with an infinite number of Gaussians per orbital, giving the
complete basis set. For YbCu and YbAg, the general quality of the used basis set is determined by
the difference between the v4z basis set and the used v3z basis set, plus half of that difference for all
larger basis sets. Since for YbAu, the v4z basis set is used for the reference values, its uncertainty
in the general basis set quality is half the difference between the used v4z basis set and the v3z
basis set. Apart from general basis set quality, also the effect of adding tight and diffuse functions
was determined in Section 4.4. The uncertainty in tight functions will be given by the difference
between the cv3z result and the v3z result, and the uncertainty in diffuse functions will be given
by the difference between the s-aug-v3z result and the v3z result. Combining these three sources of
uncertainty yields the total basis set uncertainty.

Second, the uncertainty in the electron correlation. To reduce the computational costs of the calcu-
lation, some orbitals were frozen in the computation of Wd. The difference between Wd found with
freezing orbitals and Wd found with correlating all electrons gives this uncertainty. Furthermore, the
virtual space cut-off still affects Wd beyond the values that were used for correlating all electrons.
The uncertainty in the virtual space cut-off will be given by the difference in Wd found for a virtual
cut-off at 6000 a.u. and 2500 a.u. for YbCu and YbAg, or 3000 a.u. for YbAu. Combining these
factors yields a large uncertainty in the values regarding electron correlation. Moreover, higher ex-
citation should also be taken into account, since the performed calculations only account for single
and double excitations. Currently, there is no way to perform higher excitation calculations using
the Fock space method, this means that this error cannot be accurately determined. Instead, to
cover this source of error, twice the difference between the CCSD and the CCSD(T) result was taken
as the uncertainty in higher excitations. The factor of two is there, since not all triple excitations
are included in the CCSD(T) method.

Third, the uncertainty in the treatment of relativity. For the final computation, a 4c Hamiltonian
was used, which treats relativity fairly well. However, from Section 3.3, it is known that adding
the Breit term would increase accuracy, and for a full treatment, QED effects should also be taken
into account. So, the value that will be used for the uncertainty is two times the difference between
the 4c-DHF + ∆Gaunt and the 4c-DHF result. Where the factor two covers the Gaunt term, the
Gauge term and the QED interactions. It is assumed that the Gauge term and the QED effects are
smaller than the Gaunt contribution. This same scheme was used for the determination of relativity
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uncertainty for BaF [5]. Currently, the Gaunt term can only be incorporated in the computations
at the DHF level, which is why DHF results are used instead of FSCCSD results.

Finally, the uncertainty in the used geometry. In this thesis, the geometry of the molecules was
optimized. However, there is still an error in the optimal geometry. Thus, a separate calculation
was done with geometries R− δR and R+ δR in Section 4.6. Then the difference in found Wd gives
the uncertainty. Also, the vibrational effects treated in the previous section have to be accounted
for, so that uncertainty is added as well.

All the uncertainties mentioned so far have to be combined. This is done assuming that the errors
are independent, which they will most likely not be entirely. This assumption is still valid, since
most of the errors will be overestimated and all the mentioned effects are higher order effects. To
combine the individual errors, they will be squared and then summed. Afterwards, the square root
will be taken to find the full uncertainty. The results of the error analysis can be found in Table 15.

Table 15. The various sources of uncertainty for Wd of YbCu, YbAg and YbAu. The uncer-
tainties are assumed to be independent, and the total uncertainty is given accordingly.

Source of uncertainty Estimation scheme δWd

[
1024 h Hz

e cm

]
YbCu YbAg YbAu

Basis set

Basis set quality 3/2 · (v4z − v3z) ∨ (v4z − v3z)/2 0.030 0.053 0.097

Diffuse functions s-aug-v3z − v3z 0.002 0.005 0.033

Tight functions cv3z − v3z 0.0002 0.0014 0.0050

Electron correlation

Freezing orbitals Difference to all electron 0.291 0.260 0.032

Virtual space cut-off 6000 a.u. − 3000 a.u. 0.037 0.032 0.010

Higher excitations 2 · (CCSD(T) − CCSD) 1.183 0.877 0.124

Relativity

Breit term and QED 2 · (DHF − DHF+∆Gaunt) 0.347 0.342 0.274

Geometry

R uncertainty Re − (Re − δRe) 0.013 0.017 0.081

Vibrational correction Re − ν0 0.033 0.024 0.013

Total uncertainty

Absolute uncertainty
∑

i

√
δi 1.268 0.979 0.329

Relative uncertainty (%) 9.76 8.32 25.01

The uncertainty is also graphically displayed in Figure 10, where the individual contributions have
been grouped according to the earlier defined main sources of uncertainty. Here it is already obvious
that the uncertainty distribution varies for the three molecules. For YbCu and YbAg the uncertainty
is mainly due to the treatment of electron correlation and especially not including higher excitations.
Currently, adding higher excitations is not computationally possible with the FSCC method. For
YbAu, the main source of uncertainty comes from not including relativistic effects such as the Breit
term and QED effects. This uncertainty is also quite ill-defined, since only the influence of the
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Gaunt term is known and assumptions for the magnitude of the Gauge term and QED effects were
made to determine this uncertainty.

Figure 10. The relative uncertainty of Wd displayed as bar charts for YbCu, YbAg and YbAu.
The individual sources of uncertainty are given as nested bar charts.

While Figure 10 displays the relative uncertainties compared to the found Wd value, Figure 11
shows more accurately how much each individual source of error contributes to the total uncertainty.
The percentages are determined by dividing the square of the individual source of uncertainty by
the square of the total uncertainty. Since the square of the individual contributions is used for
determination of the uncertainty, sources that introduce slightly more uncertainty will contribute
significantly more to the total uncertainty. For YbCu, not including higher excitations makes up 87
percent of the total uncertainty, while relativity only makes up 7.5 percent of the total uncertainty,
even though the absolute uncertainty in relativity is only around three times smaller than that of
not including higher excitations, as can be seen from Table 15.

The pie charts in Figure 11 show that the uncertainty of Wd for YbCu and YbAg is completely
dominated by electron correlation and relativity treatment. While the uncertainty of Wd for YbAu
is divided up between the four main sources of uncertainty. This uncertainty distribution that is seen
for YbAu resembles similar uncertainty analyses from other papers [5, 67]. Thus, the uncertainty in
electron correlation is most likely overestimated for YbCu and YbAg. This will be further discussed
in Section 5.



38 J. D. Polet

Figure 11. The distribution of all sources of uncertainty, given as a percentage of the total
uncertainty of Wd for YbCu, YbAg and YbAu. The outer pie charts display the distribution of
the four main uncertainty categories, while the inner pie charts display the distribution of the
individual sources of uncertainty.

4.8. Final Values. In Table 16, the found values of Wd are given, along with the Eeff, the WS values
and the Wd to WS ratio for YbCu, YbAg and YbAu. Only one calculation was performed for WS

to give an idea of its magnitude. The listed Wd uncertainty was computed in the previous section.
The relative uncertainties found for Wd have been attributed to the WS results. The uncertainties
in Eeff and the Wd to WS ratio were determined with the usual error analysis formulae [68]. The
final Wd and WS values were obtained with the computational considerations described in Table
14. In Section 5 these values will be compared to previously found values for other molecules.

Table 16. The eEDM enhancement factor Wd, effective electric field Eeff, S-PS interaction
enhancement factor WS and Wd to WS ratio for YbCu, YbAg and YbAu. These values were
computed using the FSCCSD method and a 4c Hamiltonian. All the Wd and WS values were
computed with the v3z basis set, except for the Wd value of YbAu, which was computed with
the v4z basis set. The virtual and active space cut-offs were set to ±100 a.u., ±100 a.u. and
±10 a.u., freezing 12, 20 and 82 electrons of YbCu, YbAg and YbAu, respectively.

Molecule Wd

[
1024 h Hz

e cm

]
Eeff [GV cm−1] WS [kHz]

Wd

WS

[
1020 1

e cm

]
YbCu 12.98 ± 1.27 26.85 ± 2.63 67.0 ± 6.6 1.937 ± 0.268

YbAg 11.76 ± 0.98 24.31 ± 2.03 65.5 ± 5.5 1.794 ± 0.212

YbAu 1.31 ± 0.33 2.72 ± 0.68 63.3 ± 15.9 0.208 ± 0.074
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5. Discussion

The final results found in this thesis do not mean much if they are not compared to other molecules.
So, in Table 17 the found Wd and WS values for YbCu, YbAg and YbAu are compared to values
found for other molecules in other works. These other works use different computational consid-
erations to compute the enhancement factors. Details on the used methods can be found in the
sources listed in the table. The results for YbCu and YbAg are similar to the results found for
other ytterbium-containing molecules, such as YbCH3, YbF and YbOH. When switching out the
heavier of the two atoms, for example, YbAg to RaAg, Wd and WS change drastically. However,
the ratio between the values stays consistent. Here again, it can be seen that Wd of YbAu does not
seem to fit with results from other molecules, giving a quite unique Wd to WS ratio. This might be
of interest, since using a molecule with a different Wd to WS ratio helps to disentangle the effects
from the eEDM and S-PS interactions.

Apart from molecules that switch out one atom from the molecules investigated in this work, also
BaF and ThO are listed. Currently, BaF is being used for eEDM searches at the Van Swinderen
Institute in Groningen [9] and ThO was used to determine the current upper limit on the eEDM
at Harvard-Yale [16]. The enhancement factors of the YbCu and YbAg molecules are higher than
those of BaF, so in theory, they would be better candidates for eEDM searches, although practical
limitations should still be taken into account. All the values found in this work are lower than
the values found for ThO. This indicates that the molecules discussed in this work do not have
extraordinarily high enhancement factors.

Table 17. The eEDM enhancement factor Wd, effective electric field Eeff, S-PS interaction
enhancement factor WS and Wd to WS ratio for various molecules.

Molecule Source Wd

[
1024 h Hz

e cm

]
Eeff [GV cm−1] WS [h kHz]

Wd

WS

[
1020 1

e cm

]
YbCu This work 12.98 26.85 67.0 1.937

YbAg This work 11.76 24.31 65.5 1.794

YbAu This work 1.31 2.72 63.3 0.208

YbCH3 [67] 13.80 28.54 45.97 3.00

YbF [69] & [70] 11.64 24.07 41.2 2.83

YbOH [12] 11.30 23.37 - -

RaAg [13] 32.0 66.1 181.1 1.77

BaF [5] 3.13 6.47 8.29 3.78

ThO [71] 20 84 116 1.7

In the previous section, the results of the Wd computations were given with their uncertainties.
Throughout the process, many approximations had to be made to obtain the final results. To
improve the accuracy of the found values, the following action can be taken in a future research.
All of these possible improvements will assume more available computing power.

The most important aspect to include is full electron correlation. The amount of active orbitals
that were frozen to obtain the values, increases the uncertainty significantly. It is recommended
to perform these all electron computations with a symmetric virtual space cut-off, since Table 8
shows that Wd still has not converged for virtual space cut-offs below 2500 a.u.. Performing all
electron calculations is feasible if more computing time is available. From Figure 11, it becomes
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clear that correlation is the main contributor to the uncertainty of the Wd value. However, this large
contribution is mainly due to the uncertainty in higher excitations. In this work, the FSCC method
was chosen to compute the enhancement factors. This was done, since this method works better for
open-shell molecules. Currently, it is not possible to add triple excitations to the FSCC method. So,
to still get an idea of the uncertainty in higher excitations, the results from the regular CC method
were used. However, since the regular CC method does not describe open-shell molecules well, the
used uncertainty is not well based and most likely overestimated. Therefore, it is recommended to
either establish a more accurate method of determining the uncertainty in higher excitations, or
wait until triple excitations have been added to the FSCC method. One different approach used to
determine the uncertainty in higher excitations is to take the difference between the results in the
(0,1) sector and the (1,0) sector for FSCC [12].

The second-largest uncertainty in Wd comes from the treatment of relativity. In this thesis, a 4c
Hamiltonian is used, but full relativity also requires the Breit term and QED effects to be taken
into account. With the current version of DIRAC, it is not possible to add these terms to the FSCC
Hamiltonian, so this improvement can not be implemented in the near future. However, more
research could be done to investigate the relative sizes of these different relativistic contributions.
This would help in determining the uncertainty in relativity more accurately.

Furthermore, the results in this work were computed with a triple or quadruple zeta basis set. To
reduce the uncertainty in the general basis set quality, a higher order basis set could be utilized.
Furthermore, the CBS limit could be determined and used as the reference value. Then the un-
certainty would be due to the method used for CBS extrapolation. Apart from this improvement,
tight and diffuse functions could be added to the basis set to improve the description of the system
in those regions and reduce those errors as well. This will be of less importance than improving the
description of electron correlation and relativity, since the uncertainty in the basis set is significantly
smaller.

The final source of uncertainty comes from the geometry. The main point of contention is the
different equilibrium bond lengths found in this work compared to the values found by Tomza in
[24]. This discrepancy should be investigated further to understand which value to use for computing
Wd and WS .

Apart from more research to improve the accuracy of Wd, more time should be taken to perform a
full uncertainty analysis for the S-PS interaction enhancement factor WS . In this work, the relative
error in Wd is attributed to WS due to lack of time and resources. The uncertainty in WS should
be determined similarly to the uncertainty in Wd to produce more accurate results.

Another point of interest that has not been covered in this thesis is the large discrepancy between
the Wd results of YbAu and the other two molecules. For most of the results, YbAu has shown
different behaviour when changing the various computational parameters. Research should be done
to understand the reason for YbAu behaving the way it does. The main differences of this molecule
compared to the other two are that gold is more electronegative than both copper and silver.
Furthermore, the YbAu molecule is quite special, since both atoms in the molecule are of similar
mass. Moreover, since gold is a large atom, it also contains different orbitals. These differences
could contribute to the discrepancy in Wd.
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6. Conclusion

In this thesis, the eEDM enhancement factor Wd and the S-PS interaction enhancement factor WS

were calculated for the YbCu, YbAg and YbAu molecules. These values can be used to determine
if the molecules are suitable for eEDM searches in future experiments. The uncertainty of the found
Wd values was thoroughly investigated by identifying the possible sources of error, and the relative
uncertainty was attributed to the WS values.

To obtain the final results, the equilibrium bond length of the three ytterbium-containing molecules
was optimized. With an s-aug-v4z basis set, the CCSD method and an X2c Hamiltonian, it was
found that the optimal geometries are Re = 2.7543 Å for YbCu, Re = 2.8589 Å for YbAg and
Re = 2.6524 Å for YbAu.

The final results are: Wd = 12.98 ± 1.27 · 1024 h Hz
e cm and WS = 67.0 ± 6.6 h kHz for YbCu, Wd =

11.76 ± 0.98 · 1024 h Hz
e cm and WS = 65.5 ± 5.5 h kHz for YbAg, and Wd = 1.31 ± 0.33 · 1024 h Hz

e cm and
WS = 63.3 ± 15.9 h kHz for YbAu. All of these results were computed with the FSCCSD method,
a 4c hamiltonian and a v3z basis set, apart from Wd for YbAu, which was computed with the
FSCCSD method, a 4c hamiltonian and a v4z basis set. The virtual and active space cut-offs were
set to ±100 a.u., ±100 a.u. and ±10 a.u., freezing 12, 20 and 82 electrons of YbCu, YbAg and
YbAu, respectively. Further research can reduce the found uncertainties. This is especially true for
the WS values, since a full uncertainty analysis was not performed.

It is recommended to perform further computations with the three molecules covered in this work to
refine the results. Especially a thorough uncertainty analysis of WS would be beneficial. If practical
limitations allow it, one of these molecules could be used to search for the eEDM in the future.
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“Molecular enhancement factors for P, T-violating eEDM in BaCH3 and YbCH3 symmetric top
molecules” (2022). In preparation.

[68] R.J.H. Klein-Douwel. “Data and error analysis”. In: University of Groningen, 2019. Chap. 2.2, p. 15.
[69] Malaya K. Nayak and Rajat K. Chaudhuri. “Re-appraisal of the P,T-odd interaction constant Wd in

YbF: Relativistic configuration interaction approach”. In: Pramana 73 (Sept. 2009), pp. 581–586. doi:
10.1007/s12043-009-0110-z.

[70] Malaya K. Nayak, Rajat K. Chaudhuri, and B. P. Das. “Ab initio calculation of the electron-nucleus
scalar-pseudoscalar interaction constant WS in heavy polar molecules”. In: Physical Review A 75 (Feb.
2007). doi: 10.1103/physreva.75.022510.

[71] L. V. Skripnikov, A. N. Petrov, and A. V. Titov. “Communication: Theoretical study of ThO for
the electron electric dipole moment search”. In: The Journal of Chemical Physics 139 (Dec. 2013),
p. 221103. doi: 10.1063/1.4843955.

[72] Diewertje Doeglas. “Relativistic Coupled Cluster calculations of molecular properties of BaF and PbF
required in high-precision experiments”. MA thesis. University of Groningen, Jan. 2019.

http://www.diracprogram.org
https://doi.org/10.1016/j.ccr.2007.07.007
https://doi.org/10.1063/1.5098540
https://doi.org/10.1007/s12043-009-0110-z
https://doi.org/10.1103/physreva.75.022510
https://doi.org/10.1063/1.4843955


High Accuracy Calculations of the eEDM Enhancement Factor Wd in YbCu, YbAg & YbAu 47

Appendix A. Additional results

In this appendix, some tables and graphs can be found that support the results reported in Section
4. For the most part, these are results for YbAg and YbAu that are very similar to the results
found for YbCu.

A.1. Equilibrium bond length. To compute the equilibrium bond distances of YbAg and YbAu,
the potential energy curves from Figure 12 and Figure 13 were used. The data points were computed
using the CCSD method, an X2c Hamiltonian and the s-aug-v4z basis set. The virtual space cut-off
was set to 10 a.u., and 64 and 82 electrons were frozen for YbAg and YbAu, respectively. The
minimum of the fourth order polynomial that was fit to the data points was used as the optimal
geometry.

Figure 12. The potential energy curve of
YbAg. The fit shown is a fourth-order poly-
nomial. The minimum of this fit was chosen as
the equilibrium bond distance Re. The single-
point energy calculations were performed using
the CCSD method, an X2c Hamiltonian and
the s-aug-v4z basis set. For the computations,
64 core electrons were frozen and the virtual
space cut-off was set to 10 a.u..

Figure 13. The potential energy curve of
YbAu. The fit shown is a fourth-order poly-
nomial. The minimum of this fit was chosen as
the equilibrium bond distance Re. The single-
point energy calculations were performed using
the CCSD method, an X2c Hamiltonian and
the s-aug-v4z basis set. For the computations,
82 core electrons were frozen and the virtual
space cut-off was set to 10 a.u..

A.2. Field strength. To determine the optimal field strength values for YbAg and YbAu, graphs
similar to the ones displayed in Figure 5 were made for these two molecules. The graphs for YbAg
can be found in Figure 14 and the graphs for YbAu can be found in Figure 15. The field strength
computations were done using the CCSD method, a 4c Hamiltonian and the v2z basis set. The
virtual space cut-off was set to 20 a.u. and 46 and 64 electrons were frozen for YbAg and YbAu,
respectively. In the graphs for YbAu, it becomes clear that this molecule requires a lower field
strength to adhere to the linear relation required for the finite field approach.
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Figure 14. The dependence of the molecular energy of YbAg on the used field strength, using
the optimized geometry, the v2z basis set, the CCSD method, a 4c Hamiltonian, a virtual space
cut-off at 20 a.u. and freezing 46 core electrons. The dashed line shown in the bottom two plots
represents a true linear relation.

Figure 15. The dependence of the molecular energy of YbAu on the used field strength, using
the optimized geometry, the v2z basis set, the CCSD method, a 4c Hamiltonian, a virtual space
cut-off at 20 a.u. and freezing 64 core electrons. The dashed line shown in the bottom-right
plot represents a true linear relation.
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A.3. Electron correlation. Charts similar to Figure 6 for YbCu, can be seen in Figure 16 and
Figure 17 for YbAg and YbAu, respectively. These charts show the energy of the molecular orbitals
of the diatomic molecules, with the colour of the bars determined by the size of the linear coefficient
CA. The active space cut-offs that were used when investigating the effect of freezing orbitals on
Wd are indicated with horizontal dashed lines in both figures, along with the resulting Wd values.

Figure 16. The energy of the molecular orbitals of YbAg. The used active space cut-offs are
indicated with horizontal dashed lines.

Figure 17. The energy of the molecular orbitals of YbAu. The used active space cut-offs are
indicated with horizontal dashed lines.
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