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1 Introduction

Modern science, in the general sense of the word, is a self-correcting process [1]. Testing
hypotheses that would potentially adjust or completely alter older conventions are at the
core of the scientific method, which effectively ensures that scientific beliefs stay up to date,
and in line with current experimental results. One striking example of this phenomenon
in Physics is the Standard Model (SM). Developed in the second half of the 20th century,
and building on the recent advancements in the revolutionary Quantum Field theory, the
SM provided (and continues to do so) an extraordinarily robust theory of the elementary
constituents of our universe, and their interactions. The SM served to successfully predict
countless physical mechanisms that were subsequently experimentally confirmed. One of
the latest, most prominent results yielded by the SM is the correct prediction of the Higgs
boson, whose existence has been experimentally determined in 2012, when the theorized
Higgs boson has been discovered in the Large Hadron Collider (LHC) in CERN, Switzer-
land. Following this breakthrough in the world of particle physics, the SM has been adjusted
accordingly and incorporated the Higgs boson and its interactions. As powerful as the SM
is, it still too has many considerable drawbacks that keep the particle and theoretical physi-
cists busy: the lack of gravitational force in the model and its inability to incorporate dark
matter and dark energy, to name a few. These limitations result in the fact that the SM
accounts for only 5% (!) of the energy-matter content of the universe [2]. It is therefore
only logical that there is immense focus on exploiting those cracks in the SM, to provide
more accurate descriptions of the universe. As Bifani et. al. puts it: ”A more global theory
that extends the SM at higher energies and shorter distances could provide an answer to
some of these questions, which are at the core of modern particle physics.” [3]. This project
will propose a technique that will improve the reconstruction of electron momentum in the
LHCb experiment by answering the question

To what extent does the use of machine learning improve the electron momen-
tum reconstruction performance of the LHCb?

1.1 Physics of the Standard Model

The current version of the SM provides a description of the elementary particles and their
interactions in the language of Quantum Field theory. In this framework, particles are the
results of excitations of fields. Those particles are called fermions and have 1/2 spin, a visual
classification is shown in figure 1. The model also includes 3 elementary forces, the strong
force, mediated by the massless gluon gauge boson, the electromagnetic force, mediated
by the massless photon, and the weak force which is mediated by the charged massive
W± and neutral massive Z bosons. Notice that gravity is omitted, sometimes postulated
by a hypothetical force mediator called the graviton. Fermions can be further divided
into 6 quarks and 6 leptons, both consisting of 3 families (generations) with increasing
mass. Quarks interact via the strong force and constitute hadronic matter, such as protons
neutrons or the B-meson that will become more important later in this paper. All fermions
interact via the weak force, which in the case of quarks leads to the allowed violation of
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flavour [4].

Figure 1: Categorization of elementary sub-atomic particles according to the SM [5]

1.2 Lepton Universality

According to the SM, the 3 leptonic doublets are identical, apart from their differing mass,
increasing from left to right in figure 1. Their interaction with other particles by means
of the electroweak forces referred to as coupling to the W± and Z bosons in the language
of quantum field theory, is therefore supposedly also identical. Any deviation from this
accidental property, called Lepton Universality (LU or LFU for Lepton Flavour Universality)
inherent to the SM, would imply new physics beyond the SM. Hence, it is the perfect testing
ground for many recent experiments, the LHCb among others. [3]. Testing LU has proven
to be in accordance with SM predictions for electroweak decays of the W± and Z bosons
for the first two lepton generations. However, the branching fraction ratio of the W-boson
decaying into 3rd generation leptons and 1st or 2nd generation leptons shows tension with
SM predictions at the level of 2.6 σ [3].
Proton-proton collisions provided by the LHC provide an unprecedented source of B-mesons
(containing the b quark such as B+ (ub̄) or B0 (db)), whose rare decays are used to test the
LU. Even though the more clinical creation of bb̄ quark pairs in other experimental setups,
called b-factories, yield less noise, courtesy of the orders of magnitude higher yield of bb̄
pairs in the LHCb it provides a great setting to examine the rare decays, provided effective
noise suppression [4]. The quark transitions of the beauty quark used to probe LU in the
LHCb can be divided into two categories:

b→ cℓ−ν̄ℓ (1)

and the much rarer
b→ sℓ−ℓ+ (2)
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where ℓ± represents any of the 3 flavours of (anti)leptons and ν̄ℓ its corresponding antineu-
trino. In the rest of the thesis, we will focus exclusively on the latter transition, which
emerges in the rare decay mode of the dataset studied in section 3, namely

B+ → K+J/ψ(→ e+e−). (3)

This decay channel via Flavour Changing Neutral Current (FCNC) above is forbidden at
tree level in the SM, which leads to a high suppression of the channel. This is ideal for the
study of LU violation, as the events are not drowned in signal [6].
The branching fraction ratio of the above channel with the branching involving muons
RK+ is then used to determine the deviation of the results from the LU predicted by the
standard model. Although other observables can be analysed, such as the difference in
angular properties between the two channels, this method is more accurate because the
ratio cancels out the so-called ”hadronic uncertainties” shared by both branching fractions,
yielding the result more accurate [3].
The resulting ratio of branching fractions in the above decay mode measured by the LHCb
is presented in figure 2.

Figure 2: Results of the ratio RK of branching fractions B+ → K+µ+µ− and B+ →
K+e+e− in the LHCb [7] compared to other experiments (BaBar [8], Belle [9])

Note that to cancel out experimental uncertainties, a double-ratio is used, normalising the
non-resonating mode (excluding the intermediate J/ψ particle) to the mode in eqn. (3).
The resulting ratio RK is 0.745+0.090

−0.074 ± 0.036 where the first uncertainty corresponds to
statistical and the second to experimental errors. The measurement is taken over a range
of q2 s.t. 1 < q2 < 6 GeV 2/c4, which corresponds to the difference between the momentum
of the B+ and K+, the invariant mass squared of the di-lepton pair [7]. The results show a
deviation below the predicted value by the SM by 2.6 σ. Other decay channels containing
e.g. the transition in eqn. 1 and their respective ratios of branching fractions show even more
significant results, deviating up to 4 σ from the SM predicted value. None of these results
is, however, significant enough to provide clear evidence of New Physics, as a threshold of
5σ is generally required in particle physics [4].
To achieve the deviation of 5 σ, and consequently confirm unambiguous evidence of New
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Figure 3: Schematic cross-section of the LHCb arm along the y-z plane [10]

Physics, more data has to be analyzed and the resolution of the detectors has to be improved.
The rest of the paper will be devoted to improving the detection resolution by employing
Machine Learning computational methods in the reconstruction of electron momentum in
the LHCb detector.

2 LHCb

The Large Hadron Collider beauty (LHCb) is one of the 4 main experiments conducted in
the complex of the Large Hadron Collider (LHC) in CERN, Geneva. It utilizes a single-arm
spectrometer design with angular coverage from 10 mrad to 300 mrad and 250 mrad in the
horizontal bending and vertical non-bending plane, respectively.

Besides the decay channels mentioned in section 1.2, the LHCb probes also other decay
channels to prove LU violation, as well as a range of other research topics such as lepton
flavour violation, CP violations, etc., that point toward the discovery of new physics be-
yond the SM. All of these experiments require accurate detection, path reconstruction and
identification of the secondary particles resulting from the pp collision. This is why the
LHCb employs a range of sub-detectors along the particle path. Only the sub-detectors
relevant for this project are discussed here. A detailed description of all of the hardware
components, as well as the software employed for data collection and processing, can be
found in [10] and [11], respectively.

The LHCb detector employs a range of various sub-detectors, each providing measurements
of different parameters of the incoming particles. The physical location of each detector
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can be seen in Figure 3. Note that the bending plane of the magnet is horizontal (x-
z). The detectors can be categorized depending on their relative location to the magnet.
Those sub-detectors that the particle encounters prior to the interaction with the magnetic
field of the magnet are called the ’upstream’ detectors, while those encountered after the
magnet are called ’downstream’ detectors. This distinction is important, as it distinguishes
between energy losses that are furthermore affected by the magnet and those that do not
get deflected.

2.1 Vertex Locator (VELO)

The first detector is located in the immediate vicinity of the interaction region. It is therefore
used to precisely measure the coordinates of the particles close to the interaction region. It
consists of a series of silicon layers with alternating segmentation to provide r and ϕ [10]
measurements. The choice of the polar coordinates is justified by its computational efficiency
over its Euclidian counterpart [6]. The VELO measures the position of secondary vertices, a
characteristic behaviour of the b and c- hadron decay [12]. The VELO detector is retractable
to protect it from harmful radiation. It operates in its vacuum, separated from the rest of
the detector by a thin aluminium sheet. This aluminium sheet is an important source of
upstream energy loss by means of Bremsstrahlung.

2.2 Trackers

The Tracker Turicensis (TT) is a silicon tracker used to locate the travelling particle in the
x-y plane with a resolution of approximately 50 µm [10]. The Inner Tracker (IT) is similar
to the TT, but is located downstream of the magnet and spans a smaller area.
The Outer Tracker located downstream of the magnet consists of 3 tracker stations, each
comprising several straw-tube modules, and serves to track charged particles and measure
their momenta with relative momentum resolution of ∆p

p ≈ 0.4 [10]. This allows for very
precise reconstruction of the B-hadron invariant mass. All trackers are locations of high
Bremsstrahlung momentum losses, however, only the TT is located upstream, and is relevant
for this research.

2.3 Calorimeter setup

The Scintillator Pad Detector (SPD) is a scintillator placed in front of the calorimeters.
Using photomultiplier tubes, it serves to distinguish between charged and neutral particles.
Photons and electrons will interact with the lead slab placed further downstream between
the SPD and Pre Shower detector (PS), and initiate an electromagnetic shower. The latter
is then detected using the PS scintillator. The secondary particles then interact further
downstream with either the Electromagnetic CALorimeter or the Hadronic CALorimeter.
Data from this set of sub-detectors are mostly used for particle identification, by probing
their signature showers.

2.4 Magnet

In the centre of the LHCb detector is located the dipole magnet with a highly non-
homogenous magnetic field of approximately 4 Tm. It is used to deflect charged particles
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and based on their curvature measure their momentum.

2.5 Electron in LHCb

The electron serves as a valuable secondary particle and by analyzing its properties such as
momentum and transverse energy, one can infer the properties of the system in question.
As mentioned above in section 1.2, the identification and momenta of the electron-positron
pair in B+ → K+J/ψ(→ e+e−) are used in the determination of the branching fraction
ratio. Due to its low mass, however, the electron interacts heavily with matter that it
is exposed to. This behaviour is unfavourable as these interactions alter the otherwise
straight path of the electron (besides the intentional and controlled magnet bending), but
more importantly, the electron loses its energy. The most dominant mechanism of electron
energy loss is Bremsstrahlung, which occurs when a charged particle travels through the
electric field of the nucleus of a medium.
In the LHCb, such energy loss can occur either upstream or downstream of the magnet.
In the latter case, the photon carrying the energy lost by the electron continues in the
approximately same direction as its parent electron. In the former case, however, the
electron is deflected by the magnet in the bending plane, but the Bremsstrahlung photon
carries on in the same direction unaffected by the magnet. The photon and electron will
therefore arrive at the calorimeter at radically different positions, posing a challenge for
the reconstruction of the initial electron energy. This behaviour is illustrated in figure
4. The LHCb employs a clustering algorithm that attempts to link energy deposits in

Figure 4: Schematic of a charged particle detection in the ECAL, bending in the magnet
after upstream energy loss via Bremsstrahlung photon emission. Figure from [6]

the calorimeter that could correspond to Bremsstrahlung energy losses to their respective
electrons.
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Figure 5: Photon origin z-coordinates. Blue: generated brem. photons, red: generated
brem. photons with transverse momentum greater than 75 MeV, green: generated brem.
photons which are reconstructed. Figure from [14]

2.6 Bremsstrahlung

As mentioned above, the main energy loss of a relativistic electron happens through Bremsstrahlung
(abbreviated as Brem in figures and labels). This process happens when a charged particle
is accelerated in the electric field of a nucleus of the medium it travels through, and as a
result of this acceleration, a photon is emitted. For relativistic charged particles (E0 > mc2)
the cross-section, σbrem, of this interaction can be approximated by

σbrem ≈ αZ2(
e

mc2
)2 (4)

where α is a proportionality factor, Z the nuclear charge andm the rest mass of the incoming
particle. From eqn. 4 it is apparent that due to the inverse squared mass-dependence,
the electron, the lightest charged lepton, is affected more by Bremsstrahlung than other
particles [13].

In figure 5 we can see the locations at which most of the Bremsstrahlung occurs. Note that
there are multiple threshold conditions that have to be met for the reconstruction algorithm
to even consider the photon for reconstruction. Namely, the photons have to have total
momentum p > 100 MeV, and transverse momentum pT > 75 MeV. From figure 5 we can
see that about 50% of photons with p > 100 MeV have pT > 75 MeV. Of these, again about
50 % are successfully reconstructed. This leads to a relatively low amount of data available
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for momentum reconstruction. This will be further elaborated on in Section 3.4. Note that
none of the photons emitted after the magnet is reconstructed. This is because, as mentioned
earlier, if the Bremsstrahlung energy loss occurs in layers downstream of the magnet, the
emitted photons are detected in the same place as their parent electron. [14] Photons yielding
from such high-energy electrons keep the same direction as the electron.

3 Electron Energy Reconstruction

As was introduced in section 1.2, improving the electron detection resolution can contribute
to a more accurate determination of the branching fractions of decay channels involving
e+e− pairs. The goal of this section is to propose a more accurate way of reconstructing
energy lost by the electron while travelling through the detector using a supervised Machine
Learning technique. In this section, the dataset, the theory behind the chosen ML algorithm
as well as the algorithm performance are discussed.

3.1 Simulated data

For this research project, we consider the simulated data of the B+ → K+J/ψ(→ e+e−)
resonating decay channel. There are two separate applications that serve to simulate the
LHCb data, called Gauss and Boole. Gauss is used for particle generation and the physical
behaviour of the particles in all of the subdetector layers of the spectrometer. Boole is an
emulation of the detector response and the digitization process. Once the data is digitized,
it follows the same path as real raw data acquired by the detector for processing. This
method is a very reliable way of generating data with known values as well as reflecting
the behaviour and various resolution limitations of both the software and hardware em-
ployed [15].
The provided dataset includes about 19 × 106 events with 42 parameters. These include
unprocessed data, such as the various Bremsstrahlung correction variables, as well as pro-
cessed variables, such as the particle identification or its momentum.

For the purpose of electron momentum reconstruction we are mostly interested in the fol-
lowing variables: ptrue, which denotes the original momentum of the electron (provdied
by the simulations), pe− the electron’s measured momentum by the detector excluding
Bremsstrahlung momentum reconstruction of any kind, pbrem the sum of all Bremsstrahlung
photon momenta recovered by the detector, corresponding to a given cluster linked to an
electron detection event, and finally, precon which represents the reconstructed momentum
of the electron, based on the given reconstruction method. To filter (mask) relevant data
corresponding to electrons in the required energy range, particle identification values are
used as well as parameters describing the electron track behaviour in the detector such as its
presence in the ECAL. The distribution of pe− , pbrem and ptrue is plotted in figure 6.

The dataset has been filtered using bitwise masking in Python, to select events that corre-
spond to electrons (’Track_MC_electron_signal’==1), and tracks that travel through the
entirety of the detector and are detected in the Ecal (’Track_Type’==3 and
’Track_InEcal’==1, respectively). Furthermore, a momentum threshold has been set at 1
GeV/c, due to poor reconstruction capabilities below this threshold.
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Figure 6: Momentum distribution of electrons in B+ → K+J/ψ(→ e+e−) in LHCb (log
y-scale, bin=48)

3.2 Minimisation of precon−ptrue residual using supervised Machine Learn-
ing

Because the dataset is a result of a simulation, we can exploit the fact that the true value
of any parameter is known, as well as its measured counterpart. It is therefore possible
to employ a supervised machine learning algorithm that uses the true data points to learn
the regression to fit and predict data points based on measurements of their parameters.
A supervised machine learning (ML) algorithm uses a sub-sample of the dataset, called the
training set, to fit the data points and the rest of the dataset to test the quality of the fit.
The dataset usually contains multiple independent variables (features in the language of
ML) and can contain multiple dependent variables that the algorithm aims to predict. The
training sample is usually about 3/4 of the whole dataset, however, this can be altered for
specific needs of a given algorithm–some algorithms are more prone to the so-called ”data
overfitting”, in which case the algorithm fits the training set too tightly, taking into account
the outliers rather than the general trend of the training dataset. This results in poor
performance when making predictions on the testing set. To determine the performance
of the fit, a scoring method can be employed on the testing sample. The number of total
events in our dataset (after masking and the lower energy bound) is approximately 884000,
which after train/test -splitting yields 707154 training samples and 176789 testing samples.
The choice of algorithms has been made by inspecting their out-of-the-box performance.
This approach has been taken to allow analysis and fine-tuning of the performance of two
algorithms, rather than comparing the whole range of available ML methods. This point
will be further elaborated on in the discussion section.

3.2.1 Polynomial regression

The polynomial regression (PR) algorithm is based on the least-squares fitting algorithm.
The least-squares algorithm fits a vector w⃗ such that the residual sum of squares between
the weighted data points and the true value is minimized. In mathematical terms, this
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corresponds to approximating the overdetermined system

min
w⃗

||Xw⃗ − y⃗|| (5)

where the matrixX represents the dataset, w⃗ the weight vector and y⃗ the target variable [16].
to achieve a polynomial regression, one can make use of the least-squares algorithm by pre-
processing the dataset. By cross-multiplying features, polynomial terms up to desired order
r will be achieved. In order to allow for lower powers of a given feature than r, a unity
feature is added. In practice, if a dataset contains n = 3 features x1,x2 and x3, and an order
2 polynomial in the regression is required, the feature set is transformed to 1× 1, x1 × 1 ,
x1 × x2, ... , x

2
3. Note that the first trivial feature corresponds to the intercept–a constant

term of the regression. The number of features is now given by the binomial coefficient
(n+r−1)Cr, where n is the original number of features, and r is the desired order of the
polynomial.
The goal of this project is to improve on the current method used by the LHCb, which can
be thought of as a 0th order regression—addition of the recovered photons momentum pbrem
to the measured pe− momentum with a coefficient 1. Besides its default performance, this
algorithm has been chosen due to its simplicity of interpretation of the results. The vector w⃗
provides a clear weighting coefficient for each feature, which directly reflects its importance
in the regression. This advantage is, however, reduced with the introduction of higher
order terms. Additionally, this method is remarkably fast, albeit the cross multiplication
of features to obtain polynomial terms consumes exponentially more time with each higher
order.
The polynomial order r has been chosen by hand to maximise the score of the algorithm
upon testing to be 2.

3.2.2 Decision Tree Algorithm

The second supervised machine learning algorithm of choice is the decision tree (DT). The
decision tree process can be described as follows: given a learning sample, the algorithm
divides the data points according to a condition. This condition is chosen to minimize stan-
dard deviation within the given categories (a measure of impurity). This process is repeated,
each time branching the given category into two until the required tree depth (maximum
number of branches) is met. Note that the algorithm can be used for both discrete catego-
rization problems, as well as for continuous distribution problems. In both cases, however,
the resulting fit is a categorization with an arbitrary number of categories. The number of
categories is given by the leaves (endings of branches that do not divide any further) and
is directly related to the tree depth. The prediction of the desired value is based on an
average of data points within the category it. In certain situations this algorithm can be
prone to overfitting the data to the training sample, making it non-optimal for the testing
sample. In that case, one can additionally use a threshold for a minimum number of data
points at each leaf. This is another condition that can terminate the branching of the tree.
Similarly to the polynomial regression, the choice of the decision tree to reconstruct the
electron momentum has two arguments, in addition to its default performance. Firstly, it is
much faster to process than other algorithms, such as a neural network, where the latter on
some occasions took over 10 times as long for the same dataset. Furthermore, the decisions

12



that the algorithm makes to fit the training data are easier to interpret and visualise, and
the weight of each parameter in the algorithm can be inferred by examining its relative
frequency in the decision-making, and its corresponding impurity. Additionally, the design
of the algorithm is radically different to the least-squares method. Comparing them can
provide interesting insight into their behaviour and success in fitting the same set of data.

To adapt the algorithm to the needs of the reconstruction task and to prevent overfitting,
the min_samples_leaf parameter has been set to 100, meaning that each leaf must contain
at least 100 data points. The max_depth of the tree has been set to 13. These parameters
have been set by hand, by monitoring the performance of the algorithm while varying
them.

3.3 Results

Figure 7a shows the residual sum of the measured and true momenta precon − ptrue for the
predictions made by the Decision Tree regression, polynomial least-squares regression, and
the simple Bremsstrahlung addition given by precon = pe− + pbrem. A statistical analysis of
the distributions is given in Table 1, along with various parameters describing the algorithm
performance per reconstruction method. Figure 7b shows the same plot on a logarithmic
y-scale, and -10× zoomed-out x-scale to illustrate the behaviour of the distributions at their
tails.

Regression Mean µ SD MAE Score W99.8 W95 W50 Median

Nobrem -4532.2 13841.2 5157.2 - 192893.7 39605.9 3602.2 -894.5
BremAdd -746.5 11435.7 3679.4 - 196739.7 30557.9 1362.8 -237.3
Poly Regr 3.4 10303.3 3709.3 0.8312 177878.4 26495.5 2549.5 808.4

DT -3.3 10410.0 3548.5 0.8277 182254.6 25994.7 2490.8 369.4

Table 1: Decision tree performance analysis. All columns are in [MeV] units, except score
which is a fraction

For both the Polynomial regression and the decision tree, the distribution average has
shifted from µ = 746.5 MeV towards 3.4 Mev and -3.3 MeV, respectively. This behaviour is
expected, as the algorithms aim to minimize the standard deviation (average of the residual
sum of squares), which corresponds to the mean at 0, physically representing an average
momentum reconstruction close to the true value.
Figure 8 shows quantile lines. A quantile represents the value below which a fraction of the
data points lies. The windows W50, W95 and W99.8 are then simply the inter-quantile range
for 0.25 and 0.75, 0.975 and 0.025 and 0.999 and 0.001, respectively.
The polynomial regression yields approximately a 10% decrease in SD and about a 1%
increase in Mean Average error over the simple Bremsstrahlung addition. The window
W95(Poly) containing 95% of the data has decreased by 13% and the window W50(Poly)
containing 50% of the data has almost doubled.
On the other hand, the DT yields approximately a 9% decrease in SD and about 3.5%
decrease in Mean Average error over the simple Bremsstrahlung addition. The window
W95(DT ) containing 95% of the data has decreased by 15% and the window W50(DT ) con-

13



−6000 −4000 −2000 0 2000 4000 6000
precon − ptrue [MeV ]

0

10000

20000

30000

40000
C

ou
nt

pe− w/o Brem

Decision Tree

Polynomial LS

Brem addition

(a)

−60000 −40000 −20000 0 20000 40000 60000
precon − ptrue [MeV ]

100

101

102

103

104

105

C
ou

nt

pe− w/o Brem

Decision Tree

Polynomial LS

Brem addition

(b)

Figure 7: Distribution of the residual sum of measured (reconstructed) and simulated elec-
tron momentum precon − ptrue [MeV] using DT and PR, 0th order regression and raw pe−
data without Bremsstrahlung added. Vertical lines represent average values of distribution
by colour, (zoomed in for clarity, bin=5000 over full range) (a), logarithmic y-scale, in-
creased range (bin=500 over full range) (b)
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Figure 8: Quantile lines W95 (dashed) and W50 (solid), log y-axis scaled to fit distribution.
PR (a), DT (b), precon = pe− + pbrem (c)

taining 50% of the data has increased by 80%.
For both regression methods, this implies that the tails of the distribution have narrowed
down, but the central part of the distribution has been spread out by the fit. This is in
accordance with the values of the Mean Average error and the Standard deviation. The for-
mer considers residual sums to the 1st power, whilst the latter uses squared errors—outliers
(data points lying on the tails of the distribution) which are more severely penalised in the
SD than the central data points. Although the MAE stays approximately constant for both
fitting methods, the SD decreases.
In terms of differences between the two algorithms, the most noticeable is the peak shift.
According to Figure 7a, the peaks of the two distributions do not align with the mean. Both
peaks are shifted in the positive x-direction, but the Polynomial regression is far more offset
than the DT. Although the mean of the distribution is counter-balanced by the outliers on
the opposite tail and coincides with µ ≈ 0, those peaks represent the bins with the highest
counts, hence the most frequent estimations are offset by about 250 MeV for the decision
tree, and about 1000 MeV for the Polynomial regression. From Figure 7b it can be seen
that away from the origin both tails (red and blue) behave very similarly.

3.4 Masking pbrem = 0 events

As mentioned in 2.6, only a very small portion of Bremsstrahlung photons do get recovered
and associated with the parent electron by clustering. In fact, for the dataset used in
this research, there are almost 884 000 events corresponding to electron detection of which
about 582 000 (66%) have pbrem = 0. This clearly cannot reflect the underlying physics
correctly, as we have shown that for electrons the Bremsstrahlung cross-section is very large
due to its inverse mass-squared proportionality. The probability of an electron-emitting 0
Bremsstrahlung photons is therefore extremely unlikely. A solution to this is filtering the
dataset such that only events with pbrem ̸= 0 are considered. Note that this decreases the
sample size by 66%. The results of the filtered data are shown in Figures 9a and 9b.
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Figure 9: Distribution of the residual sum of measured (reconstructed) and simulated elec-
tron momentum precon − ptrue [MeV] using DT and PR, 0th order regression and raw pe−
data without Bremsstrahlung added. Data points with pbrem = 0 filtered out. Vertical lines
represent average values of distribution by colour, (zoomed in for clarity, bin=3000 over full
range) (a), logarithmic y-scale, increased range (bin=300 over full range) (b)
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Figure 10: Quantile lines W95 (dashed) and W50 (solid), log y-axis scaled to fit the distri-
bution. Data points with pbrem = 0 filtered out. PR (a), DT (b), precon = pe− + pbrem (c)

The SD of the distribution has now decreased by almost 15% from 11637 MeV for the
Bremsstrahlung addition to 9925 and 10020 MeV for PR and DT, respectively. Also, the
scoring of both algorithms is 0.88 (PR) and 0.87 (DT), which is almost a 6% increase over
the unfiltered dataset in Section 3.3. A very important difference with this filtered dataset
is that the distribution of the residual sum precon − ptrue is now skewed to the positive
direction, i.e. the average value of the residual sum is 2320 MeV, as opposed to the -746
MeV for the unfiltered dataset. This is a very surprising result, which will be discussed in
the following section.
In terms of the % windows, the behaviour is comparable to the dataset in Section 3.3. The
action of decreasing the SD does decrease the size of the 95% window, but widens the 50%

16



window, as shown in Figure 10.

4 Discussion

4.1 Low Bremsstrahlung photons recovery rate

Probably the most important point of discussion is the lack of Bremsstrahlung photons in
general. After masking of the data, as described in section 3.1, about 884 000 data points
are corresponding to electron deposit events. From these, however, 582 000 do not have
any Bremsstrahlung energy associated. That means that almost 66% of the electron detec-
tions are not paired with any Bremsstrahlung photon cluster. A solution to this issue is
to simply only consider events in which some Bremsstrahlung photons are detected. This,
however, reduces the dataset by 66%. It remains for future research to determine whether
this percentage of 0 clustered Bremsstrahlung photons per electron detection is specific to
the dataset in question, or inherent to all measurements taken at LHCb. To prevent the
drastic decrease in the sample size, one could mark those events where pbrem ̸= 0, and treat
them separately: use it as a training set for the supervised ML. On the other hand, events
for which pbrem = 0 do not need to be included in the reconstruction process, as they do not
have any data to reconstruct from, other than a constant term that would shift the mean
of precon − ptrue distribution towards 0.
When this suggested filtering has been applied in Section 3.4, and data points (events)
where Bremsstrahlung photons with momentum pbrem = 0 are excluded, besides indeed im-
proving the performance of both ML algorithms, another interesting and surprising change
takes place. The distribution of precon − ptrue using the Bremsstrahlung addition now has
an average above zero. This means, that on average, this method tends to over-estimate
the true momentum of the electron. This is very surprising, as it shows that the unreason-
ably large number of events with pbrem = 0 in the unfiltered dataset compensates for the
”over-clustering” tendencies of the algorithm that determines pbrem. In other words, when
pbrem ̸= 0, it significantly over-estimates the actual momentum of the electron, presumably
by including background noise into the cluster corresponding to the given electron. This
behaviour should be further examined, and an explanation for the excessive momentum
estimation should be provided. One possible explanation is the lack of final-state radiation
in the value of ptrue. This, however, is not likely to be responsible for the shift of the whole
spectrum. Also note that if a constant value corresponding to the final state radiation would
be added to ptrue, this would shift the whole distribution toward the negative side together
with the peak, which is now correctly positioned at 0.

4.2 Sharpness-compactness trade-off

Another observation worth emphasizing is that there seems to be a general trade-off between
the sharpness of the data distribution in the central region of the distribution, versus its
compactness at the ends, as illustrated in Figure 11.

This can be quantitatively demonstrated in two ways: Firstly, from Table 1, when the 0th
order regression is used for the momentum reconstruction, the standard deviation of the
distribution of the residual sum precon = pe− + pbrem is higher than for either supervised
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Figure 11: Qualitative demonstration of sharpness-compactness trade-off. Decrease in SD
from left to right

ML learning methods. This narrowing of the distribution at its tails (decreasing the SD
due to its aforementioned higher sensitivity to outliers) is counteracted by an expansion of
the distribution in the central region. This can be seen by examining the change in W95

and W50. While the former decreases, the latter increases. A similar behaviour, although
much less pronounced, can be seen between the two ML algorithms. Whilst the PR is an
improvement in SD over the DT, one has to consider 99.8% of the data to notice the lower
spread (W99.8(DT ) > W99.8(PR)). All other central windows (W95 and W50) yield higher
results for the PR than the DT. This implies that although in the general, the distribution
as a whole is more compact for the PR than DT (lower SD), this is only thanks to the 0.2%
of data lying on the extremities of the distributions. One can conclude that the higher the
decrease in SD by means of a reconstruction technique, the higher the spread out in the
central region.

4.3 Choice of algorithms and their performance

Furthermore, the justification for the choice of reconstruction algorithm will be discussed.
As mentioned in section 3.2, the DT and PR algorithms were chosen a) by inspection of
their out-of-the-box (using default settings) performance, such as scoring, standard devia-
tion and mean shift. The reasoning behind this choice is that optimising a large number
of algorithms with a wide range of parameters is very time-consuming (computationally
challenging), and the emphasis in this research project is therefore on the optimisation of
two such algorithms. Evidently, including more algorithms in the selection could yield bet-
ter results, however, the scores differences are marginal (disregarding the elapsed time, and
hence computational efficiency). This points toward the question, of whether there exists a
limit to the performance of all supervised ML techniques for a given dataset. If so, it may
be useful to introduce another scoring system which would reflect not the absolute perfor-
mance of the regression on the test dataset, but relative to this limit that can be achieved.
The existence of such a limit is logical, as fitting perfectly the training data results in over-
fitting and poor performance on the testing data, but a loose fit on the testing data may
neglect the more subtle behaviour of the studied dataset. The performance limit should
be found therefore somewhere between these two cases. It has been pointed out, that the
Neyman Pearson lemma treats this idea, it is however out of my abilities to present any of
the encompassing theories.
Another suggestion for improvement of the fitting abilities of all supervised ML algorithms
is simply more training data. This can be achieved by training on datasets including
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electrons corresponding to different decay channels, rather than just B+ → K+J/ψ(→
e+e−). Although the marginal gain in performance decreases with the number of samples—
convergence to stable performance, the choice of 1/4 testing/training ratio has been made
in section 3.2, because with higher testing/training ratios (tested for 3/7) the performance
degraded. This effectively means that increasing the training sample size (from 70% to 80%
of the full dataset) has improved the score, hence the stable performance point of neither
of the algorithms has been reached. This implies that a further increase in training data
could improve the performance [17].
From figure 5 it is clear that the portion of correctly clustered Bremsstrahlung photons
is low compared to their true emitted amount. Some of them simply leave the detector,
some of them do not comply with the thresholds set by the detector and some of them
convert to e− e+ upstream of the magnet, and are subsequently bent away in the magnet.
These are then not correctly clustered to their parent electron. Improving the clustering,
and hence increasing the number of detected Bremsstrahlung photons would improve the
reconstruction ability of the algorithms.
The SciKit documentation [18] claims that features of a dataset fitted by (polynomial) re-
gression should not contain dependent variables: ”When [...] the columns of the design
matrix X [dataset] have an approximately linear dependence, the design matrix becomes
close to singular and as a result, the least-squares estimate becomes highly sensitive to ran-
dom errors in the observed target, producing a large variance.” [18]. In this research project,
mostly linearly independent features were used. However, the feature Track_BremEnergy

is calculated using the other independent variables. One could argue that it may not be
linearly dependent on the other features, however, the data pre-processing that introduces
polynomial terms up to order r implies that the column in the dataset matrix corresponding
to Track_BremEnergy should not be dependent on powers of features xi up to order r, nor
their cross-multiplication (xj × xk...). Yet, the performance of the algorithm benefits from
the inclusion of the Track_BremEnergy feature. An explanation for this surprising result
may be given by examining the calculation of Track_BremEnergy.

4.4 Distribution irregularities

The ideal shape of the non-reconstructed residual sum of momenta precon−ptrue is expected
to exponentially increase from −∞ to 0, and then drop to 0, where it remains constant until
+∞. On the other hand, using the 0th order reconstruction precon = pe−+pbrem should yield
a more gradual decrease after x = 0, as now n may be more than the true value. Finally, the
reconstruction using ML algorithms is expected to create a symmetric distribution around
x = 0, with an exponential decrease on both ends. There are several discrepancies with
the actual results in section 3.3. Firstly, the distribution of the non-reconstructed residual
sum of momenta does drop to 0 on the positive side of the x-axis, however, there is an
increase again at around precon = pe− + pbrem = 3000 MeV, which signifies that precon is
over-estimating the true value. This can be seen in Figures 7a and 7b. Furthermore, both
reconstruction algorithms have ”bumps” that cause them to be asymmetrical in the y-axis.
The peak of the polynomial regression is furthermore shifted to the right.
to explain (and correct) this unexpected behaviour, one can investigate the specific data
points in the affected regions, and provide a physical explanation or in case the data points
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correspond to non-relevant outliers, filter these points out.
Note that this behaviour does not occur when applying the filtering of pbrem = 0 events, as
described in Section 3.4. It can therefore be concluded that at least partially responsible for
the irregularities in the distributions in Section 3.3 are the events in which Bremsstrahlung
is not accounted for.

5 Conclusion

The results of this research provide the following answer to the question ”To what extent
does the use of machine learning improve the electron momentum reconstruction perfor-
mance of the LHCb?”

In general, both algorithms do improve the reconstruction capabilities of data points that
lie on the extremities of the precon−ptrue distribution, which is indicated by the decrease in
σ by 10% for the full dataset and 15% for the dataset with filtered 0 Bremsstrahlung events.
Both ML algorithms also bring the average of the precon − ptrue distribution to zero, which
implies that precon = ptrue on average. In other words, the observed under-estimation has
been compensated by the ML algorithms.
On the other hand, we can see that the central part of the distribution is effectively spread
out by both regression algorithms. In other words, for windows containing larger fractions
of the data points, the Polynomial regression is favourable, whilst for small windows centred
around x=0, the 0th order Bremsstrahlung addition offers a lower standard deviation.
The Polynomial Regression, however, offers a marginally lower standard deviation, whilst
the DT has a lower MAE. There is a similar trade-off as with 0th order reconstruction and
ML in the sense that Polynomial regression offers a lower standard deviation, hence is less
spread out on the tails, but DT is more compact in the central region. Note that these
differences are very marginal. Only when considering 99.8% of the data does the DT regres-
sion window W99.8(DT ) surpass the size of the polynomial regression window W99.8(Poly).
Due to the sensitivity of SD to the outliers, the 0.2 remaining 0.2% of the data on the very
ends of the distribution is enough to contribute to the increased standard deviation of the
DT over the polynomial regression.
It would therefore be beneficial to apply the ML algorithm only to data lying on the ex-
tremities of the distribution. The feasibility of this, however, is questionable as it is only
with simulated data with known ptrue where a plot of the residual precon − ptrue, such as
Figure 7a, can be made. If one could predict how far from ptrue the value of precon, he could
simply use that knowledge to ”fix” the reconstruction in the first place.
Furthermore, since the computationally lengthiest part of supervised machine learning is
the training, which only has to be done once, there should be no negative implications with
employing supervised ML in the LHCb.
An improvement in e− momentum reconstruction method over the current method leads to
a better resolution, and lower uncertainty, which together with advancement in other areas
of the LHCb detector may lead to the unambiguous proof of new physics behind the lepton
universality violation.
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