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Abstract

This thesis introduces a conceptually simple method for the calculation of the anisotropy power spectrum of the
cosmic microwave background using a two-fluid approximation. Evaluating the set of coupled fluid equations
at recombination for both small and large scales regimes and free-streaming the solutions until today gives the
CMB anisotropies. The model successfully reproduces the physical processes involved in the creation of these
fluctuations to great accuracy, therefore making it a suitable approach for a better understanding of the physics
behind the temperature anisotropies. Moreover, the toy model being considered is sensitive to a high degree
to most of the critical parameters usually considered in different cosmological models, which can be used to
comprehend the behaviour of the peaks. The code was developed in Python and is simple enough to be modified
easily, both for the variation of the cosmological parameters and the possible implementation of more precise
effects or approximations.
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1 Introduction

The Cosmic Microwave Background (CMB) is certainly one of the strongest pieces of evidence and data to
analyze. It can be used to comprehend multiple aspects of our Universe such as the matter/radiation content
or a test for cosmological models. Thanks to improved satellite experiments, anisotropies can be observed on
the temperature map of the CMB.

Figure 1: Cosmic Microwave Background temperature map (image created from the Planck spacecraft data [5])

For a full understanding of how these temperature anisotropies were created and how they have evolved due to
the accelerating expansion of the Universe, many aspects have to be taken into account, such as inflation in the
early Universe to resolve Big Bang cosmology complications, cosmological perturbation theory and structure
formation in later epochs.

Inflation is a mechanism that produces the exponential expansion of space and explains the observed homoge-
neous and isotropic Universe [3]. Due to the nature of the inflaton field associated with the inflation mechanism
quantum fluctuations occurred, which then translated into fluctuations in the spacetime metric. The early
Universe fluid containing all matter and energy, influenced by these perturbations, produced density inhomo-
geneities which then caused the observable temperature anisotropies in the CMB.

The description of the development and progression of the CMB anisotropies is obtained from solving the cou-
pled equations of the different particle species, these being the Euler, Continuity and Boltzmann equations.
A full CMB analysis is complex since this set of coupled differential equations is somewhat intricate. This
is the reason why the approach presented uses a simplified toy-model describing how the CMB temperature
anisotropies depend on cosmological parameters.

In this thesis, the derived approach makes use of a two fluid approximation using gauge invariant perturbation
theory to reproduce the CMB power spectrum. The toy-model will be examined in order to see how well it
resembles the full calculation of the temperature anisotropies when cosmological parameters are varied. As it
will be shown, even though the use of a two fluid approximation is made, the formation of the temperature
anisotropies is complicated. The physical background needed for the understanding of these fluctuations will
be provided.

The toy-model is able to create a power spectrum which matches to great accuracy the obtained by more
complex models, therefore making it useful for the understanding of this topic in cosmology.
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2 Background Literature

There is plenty of observational evidence that the Universe is driven by an accelerating expansion since the Big
Bang. Thanks to the investigation of this expansion, the history of the Universe, also known as the Thermal
History, can be studied and divided into different epochs depending on the significant events happening such as
the temperature/energy or decoupling of the multiple particle species from the plasma. Some of these concepts
will be explored in this section as an introduction for a better comprehension of this thesis.

2.1 The CMB Temperature Map

Based on the Big Bang theory, the cosmological principle should be held, meaning that on large scales the
Universe should be homogeneous and isotropic. As mentioned in the introduction, the CMB temperature
map presents an almost perfectly isotropic and homogeneous distribution, with an average temperature of
T = 2.7548 ± 0.00057K [4]. However, as it can be observed from Figure 1, the temperature map exhibits
inhomogeneities.

If the Universe were to be homogeneous and isotropic, the CMB temperature map would also have the same
properties, thus, the temperature map would have the same average temperature over all space. In other words,
Figure 1 would have the same color at every single point. The fact that the temperature map still presents
such uniformity sustains the theory of the Big Bang and the ΛCMD model, which is a parameterized Big Bang
model which will be explained in the following subsection.

The fact that the observed temperature map is in accordance with the cosmological principle means that the
early Universe would have been in thermal equilibrium. However, for a system to be in thermal equilibrium,
the particles must have enough time for anisotropies to vanish. This presents a problem. Since the expansion
of the Universe is so rapid, the contents of it would not have had enough time to reach thermal equilibrium due
to the patches of space moving faster than the speed of light, thus, the regions would have never been in causal
contact. This problem is fixed with inflation, which sets the well known homogenous and isotropic Universe
and introduces quantum fluctuations which cause spacetime metric perturbations that become the temperature
anisotropies observed in the CMB.

A point has to be made here, inflation is a mechanism that solves multiple problems such as the one introduced
above, however, it has not been experimentally proven but it is one of the few theories of the early Universe
that produces these characteristics. As will be shown later in this thesis, fluctuations on scales larger than the
horizon at recombination are coherent [3]. This coherence is either achieved by inflation, other mechanisms or
requires unnatural fine-tunning to have this feature.

2.2 Our Universe

2.2.1 Main Components

Figure 2: Interactions between the cosmological components (figure adapted from [1])
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The parameterization of the Big Bang model can be done in multiple ways, however, one of the most famous
models is the aforementioned ΛCMD model. This particular cosmological model implements radiation, although
its value is usually low compared to the other cosmological parameters at today conformal time.In the past it
was the dominant source of density. This model can be expanded with dark energy associated with the cos-
mological constant Λ, cold dark matter (CDM) which is a type of dark matter that moves slow compared to
the speed of light, and ordinary matter. This model successes to explain various properties of the Universe
while being relatively simple, is perhaps the reason of its popularity. In Figure 2, the parametrization of the
cosmological quantities is expanded into the commonly known particle species.

In the very early stages of the Universe, a unique fluid containing all the radiation, matter, CDM and dark
energy governed the physics. However, as shown in Figure 2, each particle species interacts differently with the
other contributors of the fluid, some of them coupling to each other, some only affecting the rest indirectly. It
will be studied in detail that all the different cosmological quantities modify the spacetime metric and viceversa.

This is fact is key since it can be used to relate the metric perturbations due to inflation to the density fluctuations
that later cause the temperature anisotropies. Nevertheless, the set of differential coupled equations that model
the physics behind the species in the fluid is complicated and a two fluid approximation will be introduced.

2.2.2 Thermal History

From the hot dense fluid containing all in the early Universe, the different particle species started to decouple
while spacetime expanded. Due to the expansion of the Universe, the overall temperature, and therefore the
energy of the plasma, reduced eventually allowing the decoupling of photons to happen.

Figure 3: Thermal history of the Universe (figure adapted from [2])

As shown in Figure 3, the Universe underwent a series of eras, each marking a key point in the evolution. For
the purpose of this thesis, not all of the above eras have to be studied in detail. Therefore, only the most
important epochs influencing the physics described by the equations later derived will be explained. Since the
CMB is the temperature map from the photons that last decoupled, there will be two key eras describing where
those photons come from.
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The first period of interest is recombination which is the time at which neutral hydrogen is formed through
the reaction of an electron and a proton giving a hydrogen atom and energy released associated with a photon
e− + p+ → H + γ. Neutral hydrogen could have already formed in the Big Bang nucleosynthesis era but the
temperature is still not low enough and the reverse process could still occur. However, during recombination,
the temperature is low enough that the reverse reaction cannot happen. This would cause the free electron
density to decrease greatly and the mean free path of the photons increased longer than the horizon. These are
the photons observed in the CMB.

Photon decoupling follows the recombination era. These two eras are strongly related since they both occur
when the Universe is 380.000 years old. Although photon decoupling happens in recombination, the reaction
in this era only involved the decoupling of photons from electrons e− + γ ↔ e− + γ. As aforementioned, the
electron density drops during recombination and therefore, the interaction rate between electrons and photons
decreases. When the interaction rate is approximately equal to the horizon scale, the photons and electrons
decoupled.
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3 Evolution of Cosmological Perturbations

As mentioned in the Introduction, modeling the evolution of cosmological perturbation can be acquired by
solving the coupled equations, those being the Boltzmann, Euler and continuity equations depending on the
particle species. The state of the universe and its content varies while expands and freezes out, forcing species
to decouple from the hot dense plasma.

Considering homogeneous fluids which account for all the content of the early Universe and introducing first
order perturbations is sufficient to describe the temperature fluctuations observed in the CMB. The evolution
of these anisotropies can be studied using cosmological perturbation theory. However, finding all the evolution
equations can be complex and, as it will be shown, not required since only considering a photon-baryon fluid
and a cold dark matter (CDM) fluid is an acceptable approximation.

Figure 4: Two fluid approximation illustration (figure adapted from [3])

The photon-baryon fluid is one fluid before recombination thanks to the so called tight coupling limit, which
assumes rapid Thomson scattering between photons and baryons. The tight coupling limit breaks down after
recombination when photons decouple from the plasma, which will be further explained. It is common in this
area of cosmology to refer to baryons as protons and electrons even though electrons are not part of that family
of particles. Protons and electrons are coupled/interact via Coulomb interaction but it is so rapid that they
can be considered to be together as a unique entity/species.

The need for the tight coupling limit comes from the fact that considering a hydrodynamic approach for the
early universe plasma, that being treating it as a fluid, reduces the complexity of the equations, making them
only dependent on the density, flow velocity and shear. When considering a kinetic approach, this corresponds
to monopole, dipole and quadrupole moments respectively. As it will be presented later on, higher multipole
moments are not considered as they are suppressed.

As previously mentioned, the CDM is not being considered in the same photon-baryon fluid and it will be
considered in a separate fluid thus leading to a two fluid approximation.

3.1 Coupled Fluid Equations

The two fluids being considered couple to each other only gravitationally and therefore, their energy-momentum
tensors are conserved separately, from which it is possible to obtain their equations of motion. Since the focus
of this thesis is to study the temperature anisotropies observed in the CMB, only scalar perturbations are taken
into account. These scalar perturbations can be defined in the density as,

ρ = ρ̄+ δρ̄ = ρ̄(1 + δ) where δ =
δρ

ρ̄
(1)

The evolution of the scalar perturbations of an uncoupled fluid is described by the continuity equation for
density fluctuations δ and the Euler equation for the divergence of the velocity field θ of the fluid,
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δ′ = −(1 + w) (θ − 3Φ′)− 3H
(
c2s − w

)
δ ,

θ′ = −H(1− 3w)θ − w′

1 + w
θ +

c2s
1 + w

k2δ + k2Φ where θ = ∇⃗ · v⃗ .
(2)

These equations are dependent on the equation of state w = p/ρ, sound speed c2s = δp/δρ, Fourier wavemode k,
Hubble parameter H = a′/a, and Φ which is essentially the metric perturbation although it will be sometimes
referred to as gravitational potential. These relationships change depending on the fluid being considered as
their properties differ.

For CDM, the fluid equations (denoted with c as a subscript) are constrained by its pressureless nature, implying
w = c2s = 0 and therefore,

δ′c = −kvc + 3Φ′, v′c = −Hvc + kΦ (3)

For the photon-baryon fluid, w and c2s are non-zero since photons exert a pressure pγ = 1
3ργ . By defining a

ratio R between the unperturbed overall baryon and photon density (the unperturbed quantity is denoted with
an overhat), one can express the equation of state and sound speed in the following way,

w =
1

3 + 4R
, c2s =

1

3(1 +R)
, (4)

where

R =
3

4

ρ̄b
ρ̄γ

. (5)

In order to derive the coupled equations for the photon-baryon fluid, the tight coupling approximation has to be
used. This suppresses the multipole moments higher than l ≥ 2, when translated from the kinetic approach to
the hydrodynamic view, only density and flow velocity needs to be considered [1]. This approximation implies,

δb =
3

4
δγ , ve = vb = vγ = −Θ1 (6)

The equations describing the evolution of the photon-baryon fluid (denoted by γ as a subscript) are,

δ′γ = −4

3
kvγ + 4Φ′, v′γ = − R

1 +R
vγ +

1

4(1 +R)
kδγ + kΦ (7)

Every coupled equation describing the evolution of both the CDM and the photon-baryon fluid has to be supplied
with a set of equations directly derived from General Relativity, which are the linearized Einstein equation for
the potential Φ and the Friedmann equation1 for the background given below,

k (Φ′ +HΦ) = 4πGa2
∑
i

(ρ̄i + p̄i) vi (8)

H2 =

(
a′

a

)2

=
8πGa2

3

∑
i

ρ̄i (9)

These equations directly involves General Relativity, which determines the evolution of space-time parameters
to solve the coupled equations of both fluids. The analytical solution of Eq. (9) gives two important parameters,
a, which is the expansion factor and τ being conformal time defined as,

y ≡ a

aeq
= (αx)2 + 2αx, x ≡ τ

τr
, α2 ≡ arec

aeq
. (10)

Here the equation is rescaled in conformal time over the conformal time τr given by,

τr ≡
(

4arec
ΩmH2

0

)1/2

. (11)

and the scale factor at recombination arec is rescaled over aeq both taking the following values a−1
rec ≈ 1100, a−1

eq ≈
2.4× 104Ωmh2.

1Both of the sums involved in the equations above are over both fluids.
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Rescaled time x was introduced for numerical convenience and for the same reason, momentum is treated as
κ ≡ kτr and the Hubble parameter is scaled as shown below,

η = τrH ≡ a′

a
=

1

a

da

dx
=

2α(αx+ 1)

(αx)2 + 2αx
(12)

where the derivative in the scale factor is, as shown, over the new rescaled conformal time. The above equation
was obtained by calculating the derivative w.r.t. x of the the scale factor a from Eq. (10) and using the usual
definition of H. In a similar way these rescaled parameters influence the derivatives, and the coupled equations
take the following form,

δ′c = −κvc + 3Φ′

v′c = −ηvc + κΦ,

δ′γ = −4

3
κvγ + 4Φ′

v′γ =

(
1 +

3

4
yb

)−1 (
−3

4
ybηvγ +

1

4
κδγ

)
+ κΦ

(13)

Φ′ = −ηΦ+
3η2

2κ

vγ
(
4
3 + y − yc

)
+ vcyc

1 + y
. (14)

with yb,c ≡ y
Ωb,c

Ωm
. This is now the complete set of equations that describes the behaviour of the two fluids up

to recombination, where the tight coupling approximation breaks down. The next step is obtaining the CMB
fluctuations from the inhomogeneities at recombination which can be computed using the above formalism.

3.2 The Power Spectrum

So far, only the description of these fluids has been asserted. It will now be explained how the temperature
anisotropies are obtained from the inhomogeneities. It is important to understand that the anisotropies observed
in the temperature map of the CMB have been free-streaming since the time of recombination τrec until today
at τ0. By defining the location of the observed temperature perturbation at x0 ≡ 0⃗ and implementing the
directional dependence on the sky with n̂ gives the following expression,

Θ̃(n̂) ≡ δT

T
(n̂) = Θ (τ0,x0, p̂ = −n̂) (15)

which can be Fourier transformed into,

Θ̃(n̂) =

∫
d3k

(2π)3/2
eik·x0Θ(τ0,k, n̂) (16)

Note that here the Fourier components k have been introduced, representing the wavenumber which is essentially
the spatial frequency of the components of the temperature field. It is convenient to preform a multipole
expansion2 using Θ(τ, µ) = Σ(−i)lΘl(τ)Pl(µ),

Θ̃(n̂) =

∫
d3k

(2π)3/2
eik·x0

∑
l

(−i)lΘl (τ0,k)Pl(k̂ · n̂) (17)

where the Pl(k̂ · n̂) is the Legendre polynomial. This expression can be further expanded in terms of a transfer
function,

Θ̃(n̂) =

∫
d3k

(2π)3/2
eik·x0

∑
l

(−i)lΘl(k)R(k)Pl(k̂ · n̂) (18)

where Θl(k) ≡ Θl(τ0,k)
R(k) is the transfer function aforementioned, and R(k) is the primordial curvature pertur-

bation. This expression relates the transfer function to the primordial fluctuations generated during inflation.
For the introduction of the power spectrum itself, an extra step on this derivation is required as well as some
physical understanding of what is really being computed.

2The explicit k dependence of this equation has been removed for simplicity. This might also be done in further derivations but
it will be recovered when it is necessary for a complete understanding of the physics.
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When looking at the temperature map of the CMB, one can correlate the temperature fluctuations from two
different directions n̂ and n̂′. Assuming that inflation lead to an statistically isotropic initial conditions, the
only dependence that the correlation can have is the orientation. Thus, the two-point correlation between the
temperature inhomogeneities from two different directions is found by using Eq. (18) as shown below,

〈
Θ̃(n̂)Θ̃ (n̂′)

〉
=

∫
d3k

(2π)3/2
d3k′

(2π)3/2
ei(k+k′)·x0

∑
l

∑
l′

(−i)l+l′Θl(k)Θl′ (k
′)× ⟨R(k)R (k′)⟩Pl(k̂ · n̂)Pl(k̂

′ · n̂′)

(19)
After some manipulation which will be introduced later on, the expression takes the following form,〈

Θ̃(n̂)Θ̃ (n̂′)
〉
=

∑
l

2l + 1

4π

[
4π

(2l + 1)2

∫
d ln k Θ2

l (k)∆
2
R(k)

]
Pl (n̂ · n̂′) =

∑
l

2l + 1

4π
ClPl (n̂ · n̂′) (20)

Here, the term Cl, called angular power spectrum, is defined as,

Cl =
4π

(2l + 1)2

∫
d ln k Θ2

l (k)∆
2
R(k) (21)

where Θ2
l (k) is the transfer function introduced previously on this section and ∆2

R(k) is known as the primordial
power spectrum and it takes the following form,

∆2
R(k) = As

(
k

kpivot

)ns−1

, (22)

New key parameters are introduced in the above equation. The first one, As, is the normalization parameter
which just shifts the CMB power spectrum on the y-axis, therefore fixing the amplitude of the initial condi-
tions. The parameter ns regulates the tilt of the power spectrum, if ns = 1 the spectrum would have equal
power on all scales. The last parameter that appears is kpivot which is just a value of the k-spectrum over
which the primordial power spectrum is normalized. The values for these parameters will be given later. Note
that all the last equations derived after the coupled equations are dependent on k not on the rescaled variable κ.

It would seem straightforward to now compute Cl from Eq. (21) for all the desired values of l but an expression
for the transfer function has not been explicitly given. In order to find the transfer function, it is necessary to
make a short deviation and recover the Boltzmann equation.

3.3 The Transfer Function

The photon-baryon plasma is tightly coupled by Compton scattering before recombination,. Thus, the Boltz-
mann equation implementing Compton scattering will describe the evolution of the temperature perturbations.
For scalar fluctuations3, the Boltzmann equation in Fourier space becomes [[1]],

Θ̇ + ikγΘ = Φ̇− ikγΨ− Γ [Θ−Θ0 − iγve] (23)

The time derivatives are over conformal time, as before. Two perturbation terms appear here, Ψ which is the
gauge-invariant metric perturbation, and Φ, which is the potential describing the density perturbations account-
ing for all particle species. Both of these potentials become equal to each other if anisotropic stress is neglected
[12], thus Ψ ≈ Φ4. The expression kγ is the dot product between the ki mode in the Fourier expansion and γi is
the direction cosines5 of the photon momentum. Another relevant variable which has not been introduced yet
is the differential cross section to Thomson scattering Γ, and it is important later on when the recombination
epoch is reached, as the equation that describes this parameter differs from earlier epochs. The term −iγve
accounts for the amplitude of the baryon velocity.

3For the simplistic approach that is being taken in this study, only scalar fluctuations are being considered.
4This is the reason why Φ was described in Eq. (2) as the metric perturbation, although Ψ is really the parameter describing

that exact physical effect
5The direction cosines are the cosines of the angles between the vector being considered and the three positive coordinate axes,

following γ ≡ k⃗ · p⃗
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Some of these terms have already appeared in past equations. To refresh what those terms are, here below are
the relationships between the first multipole moments and δγ and vγ ,

Θ0 =
1

4
δγ , Θ1 = −vγ (24)

Getting back to the coupled equations (13), it is easy to see how these multipoles in the Boltzmann equations
are related to the density perturbations. Many physical insights can be extracted, such as the gravitational
potentials, referring to Φ and Ψ, which produce adiabatic growth and gravitational redshift on the temperature
fluctuations. The most important aspect to note down from these formulas, is that the Newtonian potential Φ
contributes directly to the velocity, as it can be seen in the Euler equation for both fluids, therefore causing an
adiabatic growth of the perturbations. The physical interpretation is that inside the gravitational potential the
fluid is compressed, but the pressure exerted by the photons restraints the increase in the density perturbations,
thus forcing the gravitational potential to decay.

The gravitational redshift introduced on the temperature fluctuations is due to the gradient of the potential
Ψ. This topic is explored in detail in [10]. The temperature perturbation after the photons have escaped the
potential well Ψ at recombination is described by Θ+Ψ or by Θ+Φ since Θ0 describes the intrinsic temperature
fluctuation and Ψ the change due to the photons climbing out of the potential well, which will be explained
later on. The term Θ could already be used to describe the fluctuations, but not taking into account Ψ does not
reflect the full effective perturbation. The gravitational potentials can evolve in time. The effect of this time
dependence during the evolution of the universe until today is known as the integrated Sachs-Wolfe (ISW) effect
and it referred to further in the thesis. The explanation of the physical insights involved in these equations is
critical for the correct understanding of the following derivation.

In order to compute the observed CMB power spectrum, it is necessary to evolve the anisotropies at the surface
of last-scattering forward in time until now, a process known as free-streaming. This can be done by integrating
the Boltzmann equation along the line-of-sight. The line-of-sight can be referred to as the surface at a certain
point in time from which light is received by the observer. In the case of the CMB, this is the surface from
which photons last scattered from the plasma during recombination. The following derivation will show how to
derive the free-streaming solution along the line of sight.

3.3.1 Last-scattering and Free-Streaming

For a better understanding of the formulas, two new concepts will be introduced, these being relevant both in
the derivation below and for a future understanding of the power spectrum.

• Optical depth (µ): From a physical perspective, it describes how opaque the universe is at a given time
seen from today at τ0,

µ(τ) ≡
∫ τ0

τ

Γ (τ ′) dτ ′. (25)

It is important to note that this is a relevant factor since it establishes the probability of a photon not
being scattered from τ until today, this being e−µ. This equation also implies that Γ(τ) = −dµ/dτ = −µ̇
as it will be used later on.

• Visibility function (g): This function expresses the probability of a photon to last scatter at time τ as
defined below,

g = −µ̇e−µ. (26)

The explicit conformal time dependence is not specified in the visibility function as it will be also presented
as g in the next steps of the derivation, but it is fully dependent on τ due to µ.

Now that these two concepts have been introduced, the derivation of the line-of-sight solution begins. The
Boltzmann equation (23) can also be expressed as,

dΘ

dτ
=

d ln ϵ

dτ
− Γ [Θ−Θ0 − n̂ · ve] . (27)

Most of the terms in the above formula have already been introduced. The only term that is left to explain is

d ln ϵ

dτ
= −dΨ

dτ
+ (Ψ̇ + Φ̇), (28)
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which describes how the comoving energy ϵ evolves when metric perturbations are involved in the photon path.
It is directly derived from General Relativity and sets the evolution of the photons 4-momemtum.

The factor e−µ can be used as an integrative factor in the Boltzmann equation (27),

e−µ dΘ

dτ
= e−µ d ln ϵ

dτ
+ µ̇e−µ [Θ−Θ0 − n̂ · ve] . (29)

By moving the factor Θ from the right hand side of the equation to the left,

e−µ dΘ

dτ
− µ̇e−µΘ = e−µ d ln ϵ

dτ
− µ̇e−µ [Θ0 + n̂ · ve] . (30)

Working with the left hand side of the equation, the next total derivative can be used,

d

dτ

(
e−µΘ

)
= e−µ dΘ

dτ
− µ̇e−µΘ. (31)

Therefore simplifying Eq. (30) to,

d

dτ

(
e−µΘ

)
= e−µ d ln ϵ

dτ
− µ̇e−µ [Θ0 + n̂ · ve] . (32)

Eq. (28) is now multiplied by the probabilistic factor, which can be used to introduce another total derivative
in the following way,

e−µ d ln ϵ

dτ
= −e−µ dΨ

dτ
+ e−µ(Φ̇ + Ψ̇) = − d

dτ

(
e−µΨ

)
− µ̇e−µΨ+ e−µ(Φ̇ + Ψ̇), (33)

since,
d

dτ

(
e−µΨ

)
= e−µ dΨ

dτ
− µ̇e−µΨ. (34)

Therefore, the Boltzmann equation for scalar fluctuations can be expressed as,

d

dτ

[
e−µ(Θ + Ψ)

]
= g [Θ0 +Ψ+ n̂ · ve] + e−τ (Φ̇ + Ψ̇), (35)

or expressed with a source function Ŝ for convenience later on,

d

dτ

[
e−µ(Θ + Ψ)

]
= Ŝ, where Ŝ = g [Θ0 +Ψ+ n̂ · ve] + e−τ (Φ̇ + Ψ̇). (36)

3.3.2 Line-of-Sight Solution

Relating the temperature anisotropies at x0 in an arbitrary direction n̂ at τ0 to the perturbation at recombi-
nation (spatially located at x∗ = x0 + (τ0 − τ∗) n̂) can be done by solving the Boltzmann equation along the
line-of-sight, i.e. integrating Eq. (36) from τ = 0 until today τ0,∫ τ0

0

dτ
d

dτ

[
e−µ(Θ + Ψ)

]
=

∫ τ0

0

dτŜ (τ, x⃗0 + (τ0 − τ) n̂, n̂) , (37)

which can be expanded in the following way,

e−µ(τ0) [Θ (τ0, x⃗0) + Ψ (τ0, x⃗0)]− e−µ(0) [Θ (0, 0) + Ψ (0, 0)] =

∫ τ0

0

dτŜ (τ, x⃗0 + (τ0 − τ) n̂, n̂) , (38)

from which the first exponential is 1 since µ(τ0) = 0 and the second one vanishes due to µ(0) = ∞. This
would leave two terms on the left hand side of the equality but the gravitational potential contribution from
the monopole today does not directly contribute since it is not observable [8], therefore giving the simplified
equation below,

Θ (τ0, x̂0, n̂) =

∫ τ0

0

dτŜ (τ,, x⃗0 + (τ0 − τ) n̂, n̂) . (39)
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3.3.3 Projection

In order to find the transfer function Θl(k) (recall it is needed for the computation of the power spectrum as
shown in Eq. (21) a mapping from momentum space to harmonic space is needed. This can be done by taking
the line-of-sight solution, performing a Fourier transform to move to k-space, and using a plane-wave expansion
so that the momentum plane waves are expressed as a linear combination of spherical waves.

The derivation will start from the line-of-sight solution in Eq. (39) and working separately with the right and
the left hand side (RHS and LHS respectively) for the sake of neatness. Starting with a Fourier transform on
the RHS,

RHS : Ŝ (τ,, x⃗0 + (τ0 − τ) n̂, n̂) =

∫
d3k⃗

(2π)3
Ŝ(τ, k⃗, n̂)ei(τ0−τ)k⃗·n̂eik⃗·x⃗0 . (40)

Since the velocity v⃗e is Fourier transformed as v⃗e(k⃗) = −ivek̂, the source term from Eq. (36) neglecting
anisotropic stress (Φ = Ψ) is,

Ŝ(τ, k⃗, n̂)ei(τ0−τ)k⃗·n̂ =
[
g(τ)

(
Θ0(k⃗, τ) + Φ(k⃗, τ)− ik̂ · n̂ve(k⃗, τ)

)
+ 2e−µΦ̇(k⃗, τ)

]
eixk⃗·n̂. (41)

The next step would be to introduce a plane wave expansion which takes the following general form,

eik·r =

∞∑
ℓ=0

(2ℓ+ 1)(−i)ℓjℓ(kr)Pℓ(k̂ · r̂), (42)

where i is the imaginary unit, k and r are the wave and position vector respectively, jl is the spherical Bessel
function and Pl is the Legendre polynomial. In this scenario the equation is,

ei(τ0−τ)k⃗·n̂ =

∞∑
ℓ=0

(2ℓ+ 1)(−i)ℓjℓ(k(τ0 − τ))Pℓ(k̂ · n̂). (43)

A useful expression is related to the derivative of this expansion,

d

d(τ0 − τ)k
ei(τ0−τ)k⃗·n̂ =

∞∑
ℓ=0

(2ℓ+ 1)(−i)ℓj′ℓ(k(τ0 − τ))Pℓ(k̂ · n̂), (44)

where the prime in the spherical Bessel function denotes the derivative with respect to (τ0 − τ)k. Introducing

χ = τ0 − τ and using k⃗ = kk̂, the RHS after implementing the plane wave transformation is found as shown
below, ∫

d3k⃗

(2π)3

∫ τ0

0

dτŜ(τ, k⃗, n̂)eiχk⃗·n̂eik⃗·x⃗0 =

=

∫
d3k⃗

(2π)3
eik⃗·x⃗0

∞∑
ℓ=0

(2ℓ+ 1)(−i)ℓPℓ(k̂ · n̂)
∫ τ0

0

dτ
[
g(τ) [(Θ0 +Φ)jl(kχ)− vej

′
l(kχ)] + 2e−µΦ̇jl(kχ)

]
,

For the approach being taken in this paper, instantaneous recombination at τ∗ is assumed and therefore, the
factor e−µ and the visibility function g can be approximated using a delta function and a Heaviside function
H,

e−µ = H(τ − τ∗), g(τ) = δD(τ − τ∗), (45)

the following solution is obtained,

=

∫
d3k⃗

(2π)3
eik⃗·x⃗0

∞∑
ℓ=0

(2ℓ+ 1)(−i)ℓPℓ(k̂ · n̂)
[
(Θ0 +Φ)jl(kχ∗)− vej

′
l(kχ∗) + 2

∫ τ0

τ∗

Φ̇jl(kχ)dτ

]
,

where (Θ0 +Φ) and ve are evaluated at (τ∗, k⃗) but it has been suppressed for neatness and χ∗ = τ0 − τ∗.

The RHS of Eq. (39) has now been expanded and, the same transformations should be applied to the LHS so
that the equality holds. However, showing the explicit transformations on the LHS is not necessary since it
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has been previously shown in Eq. (18) for the derivation of the power spectrum formula. Extracting R(k) and
comparing both terms leads to the following expression,

Θl(k) = (2l + 1)

[
(Θ0 +Φ)jl(kχ∗)− vej

′
l(kχ∗) + 2

∫ τ0

τ∗

Φ̇jl(kχ)dτ

]
. (46)

This is the first expression of this thesis that relates the solution to the coupled equations to the transfer
function. The first term is the Sachs-Wolfe (SW) term which describes the temperature perturbation including
the gravitational redshift aforementioned. The second term is known as Doppler term and accounts for the
energy created by the moving electrons when scattering occurs6. The last term is the previously mentioned
ISW contribution which accounts for the time evolution of the potentials and, since this approach works on
an always matter-dominated universe, the potentials do not vary over time and therefore the ISW effect does
not contribute to the transfer function. Here is where another approximation is introduced, this being the
matter-dominated universe. Due to this reason, ISW term will be removed from further derivations. Therefore,
the final equation for the transfer function needed for the computation of the power spectrum is,

Θl(k) = (2l + 1)
[
[Θ0 +Φ] (τ∗, k⃗)jl(kχ∗)− ve(τ∗, k⃗)j

′
l(kχ∗)

]
, (47)

where the explicit (τ∗, k⃗) dependence has been recovered. This calculation of the transfer function is com-
monly known as free-streaming which, in this context, refers to the fact the adiabatic perturbations right from
recombination are almost non-changing and stream to the present. This is of course of great relevance since
this perturbations will appear as anisotropies in the CMB, which is in agreement with the observational evidence.

3.4 Damping Scale

In the derivation above, multiple approximations have been taken into account for a more simplified approach.
In the tight coupling limit, the mean free path for scattering Γ is assumed to be zero, referred to as perfect tight
coupling. Together with the instantaneous recombination condition earlier introduced, the solutions would not
be sufficiently accurate since these two approximations have great influence on the power spectrum peaks.

If recombination occurs during a certain finite time period and the mean free path accurately describes the real
behaviour of photons, a damping on the small scale fluctuations appears when considering the recombination
epoch. For this reason, an approximate damping scale, known as Silk damping [7], is introduced with the
following exponential form,

D(k) = e−(k/kD)2 , (48)

with
κ−2
D = 2x2

s + σ2x2
rec where xs ≡ 0.6(Ωmh2)1/4(Ωbh

2)−1/2a3/4rec and σ ≈ 0.03 (49)

3.5 Summary of Approximations

A list with the approximations used in this thesis is presented below.

• Two fluid approach for the description of the fluctuations.

• Neglection of Anisotropic stress.

• Simplification of the Thomson scattering effects via the tight coupling limit.

• Only scalar fluctuations are considered.

6This term does not greatly influence the transfer function but it is of relevance for polarization effects [3].
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4 Perturbation Analysis

4.1 Anisotropy Spectrum

When the coupled set of fluid equations shown in Eq. (13) is solved, the Sachs-Wolfe and Doppler terms that
are necessary for the transfer function Θl in Eq. (47) and therefore also for the power spectrum Cl are found.

Figure 5: Sachs-Wolfe and Doppler terms evaluated at recombination conformal time τ∗ for spectrum k

In Figure 5, the aforementioned terms are evaluated for a range of wavemodes k. The wavemode k is inversely
proportional to physical scales/distance, therefore, when referring to large scales, it corresponds to small k
wavemodes, and small scales to large k wavemodes. Both terms have oscillatory behavior on the small scales,
differing slightly by a phase shift. To understand the meaning of these oscillations and the position of these
peaks it is necessary to explicitely derive the oscillator equation that describes them.

The Boltzmann expression for the photon-baryon plasma from Eq. (23) can be separated into a set of two
equations,

Θ̇0 = −1

3
kΘ1 + Φ̇, (50)

Θ̇1 = kΘ0 − kΨ− Γ (Θ1 + vγ) . (51)

These equations supplemented with the coupled fluid equations will lead to the desired oscillator equation.
Rewriting the photon equations (13) in terms of multipole moments using Eq. (24) give the following formulas,

δ̇γ = −kvγ + 3Φ̇, (52)

v̇γ = −Hvγ − kΨ− Γ

R
(Θ1 + vγ) . (53)

Applying the tight coupling limit, (vγ = −Θ1), we find, after rearranging terms,

vb ≈ −Θ1 +
R

Γ

[
Θ̇,1 +HΘ1 − kΨ

]
, (54)

which we substitute in Eq. (51) to obtain,

Θ̇1 = −H R

1 +R
Θ1 +

k

1 +R
Θ0 − kΨ. (55)
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Rearranging Eq. (50), Θ1 can be obtained with a dependence only on Θ0 and Φ terms,

Θ1 =
−3

k

[
Θ̇0 − Φ̇

]
. (56)

Substituting into Eq. (55),

Θ̇1 = −H R

1 +R

−3

k

[
Θ̇0 − Φ̇

]
+

k

1 +R
Θ0 − kΨ. (57)

Taking a time derivative of Eq. (51), we find an expression for Θ̇1,

Θ̇1 =
−3

k

[
Θ̈0 − Φ̈

]
. (58)

Comparing Eqs. (57) and (58), the following oscillator equation can be obtained,

Θ̈0 +H R

1 +R
Θ̇0 + c2sk

2Θ0 = −1

3
k2Ψ+ Φ̈ +H R

1 +R
Φ̇, (59)

where cs is the sound speed of the coupled photon-baryon fluid,

c2s ≡ 1

3(1 +R)
. (60)

The oscillatory equation (59) relates the physical effects occurring on the CMB to the temperature monopole.
The solutions to this equation will be dependent on the scales, in other words, the temperature perturbations
have different behaviour on the physical distance being considered. The solutions to equation produces acoustic
oscillations, already presented in Figure 5. A derivation of the analytical solutions and the explanation of the
physics behind will be described in the next subsection.

4.2 Acoustic Oscillations

The acoustic oscillator equation can be reduced to a simple harmonic oscillator from which analytical solutions
can be obtained. The transformation from Eq. (59) to its simplified form is achieved by assuming that the rate
of change of the potential Φ and of R over time is minimal compared to the oscillation frequency ω = csk, if it
were to be expressed as a simple harmonic oscillator. These assumptions lead to the following equation,

Θ̈0 + c2sk
2Θ0 = −k2

3
Ψ. (61)

The term c2sk
2Θ0 can be interpreted as the photon pressure since it is directly dependent on Θ0 and the −k2

3 Ψ
term as a gravitational forcing term. The solution to this equation, using the adiabatic initial condition that
Θ̇0(0,k) = 0, is

Θ0(τ,k) = [Θ0(0,k) + (1 +R)Ψ(k)] cos (krs)− (1 +R)Ψ(k), (62)

where the sound horizon has been introduced using,

rs =

∫ τ

0

cs dτ ′. ≈ csτ. (63)

In the limit R −→ 0, which would correspond to a time where photons dominated, the solution would be the
expression of a harmonic oscillator with a shift due to the gravitational potential Ψ,

Θ0(τ,k) = [Θ0(0,k) + Ψ(k)] cos (krs)−Ψ(k). (64)

The redshift and blueshift effects related to the gravitational potential mentioned earlier in Section 3.3 appear
in this solution. If −Ψ(k) > 0, the density of photons described by Θ0 would increase inside the potential
well as well as introducing a blueshift effect on the photons, therefore raising their temperature. Nevertheless,
the pressure exerted by the compressed fluid inside the well causes this potential barrier to flatten. While this
process is occurring, photons decouple from the fluid and loose energy on exit, which can be referred to as a
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redshift. This essentially cancels the blueshift due to −Ψ(k), therefore, the observed temperature fluctuation
takes the following form,

Θ0(τ,k) + Ψ(k) = [Θ0(0,k) + Ψ(k)] cos (krs) . (65)

From this, it is obvious that all the Fourier modes will have a the same phase when recombination conformal
time τ∗ is reached, in other words, the fluctuations are temporally coherent [13]. This is really when a mechanism
that produces fluctuations with the same phase and have supposedly never been in causal contact is needed.
This mechanism is inflation, producing coherent fluctuations. There will be a selected set of wavemodes that
produce maximum and minimum temperature contributions at decoupling, these being,

kn =
nπ

rs
. (66)

The extrema produced by these specific modes of oscillation correspond to the peaks observed in the power
spectrum. In this last derivation, the effects of the baryons have not been considered in the fluid. The temper-
ature anisotropies would be influenced by the effects introduced by this particle species, since the sound speed
cs would change, and so would the behaviour between pressure and the gravitational forcing. The introduction
of baryons in the acoustic oscillations is known as baryon loading. The fluid would be more compressed in the
potential wells and therefore implementing a shift from its zero-point oscillation,

Θ0(τ,k) + Ψ(k) = [Θ0(0,k) + Ψ(k)] cos (krs)−RΨ(k). (67)

This gravitational term can be interpreted as an increase in the fluctuation due to the load of baryons. This
compresses the fluid in the potential well while peaks with reduced density, these being the potential hills, will
not be enhanced. This effect is not of great relevance in this approach, since R −→ 0 at early times.

From Eq. (50) for the photon-baryon fluid, the solution to the dipole term is,

Θ1(τ,k) = −3 [Θ0(0,k) + (1 +R)Ψ(k)] cs sin (krs) . (68)

Notice the cs factor involved. This expression can be rearranged, this being the reason why it is common to
plot the dipole term over a factor of

√
3. Now that the acoustic oscillator equation has been analyzed in detail,

the recombination spectrum shown in Figure 5 is easier to comprehend.

In the low scale regime, corresponding to large values of k, the observed perturbation is highly oscillating,
which corresponds with the potential wells and hills earlier described. Notice that for every maximum peak
on (Θ0 + Ψ), which would correspond to a high density area in the fluid, its velocity described by Θ1 is in
range close to 0, thus implying that the fluid is not moving or escaping the potential well. The same analysis
can be done on the zero-point of (Θ0 +Ψ) at which Θ1 is maximum due to the photons decoupling exiting the
perturbations. Looking at the small k regime, both terms acquire a constant value. This is due to the extremely
large scales being considered, usually known as super-Hubble modes, at which the perturbations have not been
able to propagate yet.

Even though the approximation of matter-dominated Universe is being considered in Section 3.3.3, it is only
used in the free-streaming derivation. To clarify this, it has to be understood that the Universe underwent a
series of eras in which the different contributors to the metric dominated. The early Universe first went through
the radiation era, in other words, the electromagnetic radiation dominated over the matter density. Afterwards,
it transitioned to the matter dominated era, mentioned earlier in this thesis by the introduction of aeq, which is
the expansion factor at equality defined as the time where this transition occurred and both the radiation and
matter density had equal contributions. Then, it transitioned into the dark energy era, being the current state
of the Universe. When it is said that the matter-dominated approximation is being used, it is assumed that the
Universe did not transition into the dark energy era so that the ISW effect in Eq. 46 can be neglected.

Nevertheless, the matter-dominated approximation is only applied to the ISW term in the transfer function but
not in the evolution of the coupled equations or in the acoustic oscillation description. In the radiation era, the
gravitational potentials vary inside the horizon [1] as shown in Figure 6.
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Figure 6: Solutions for the linear evolution of the gravitational potential (figure adapted from [1])

The decay of the potential after sound horizon crossing is due to radiation itself. The gravitational potential is
created by the radiation itself since it is the dominant density, this relationship is given by relativistic form of
the Poisson equation,

∇2Φ− 3H(Φ̇ +HΨ) = 4πGa2δρ, (69)

where δρ is the total density perturbation given by δρ ≡
∑

a δρa and G is Newton’s gravitational constant. For
this derivation, modes inside the Hubble radius are considered, which expressed in Fourier space correspond to
k ≫ H, leading to the following equation,

∇2Φ ≈ 4πGa2δρ. (70)

Pressure impedes the radiation from compression in the potential well, constraining the density fluctuation
to acquire a constant value, thus, from Eq. (70), the potential decays. Since the decay occurs in the fully
compressed stated, the fluid is allowed to oscillate with no resistance from the any gravitational potential,
making the amplitude of the oscillations grow large. This effect is known as radiation driving and its physical
implications on the power spectrum will be later addressed.
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5 Cosmological Boltzmann Code

The treatment given to the formulas and derivation previously explained is fully analytical. The adaptation of
the analytical equations into a Python code requires specification of integration methods, limits and modifica-
tions needed for computational purposes. The code can be found in a GitHub repository [9].

5.1 Approach

The code has been written such that variation of the different parameters is possible, with that determining
other initial variables. Changes in the variables and the calculation of the other initial quantities is done through
the function init params after inputting the desired conditions.

The computation of the power spectrum is done through the function power spectrum which takes as input a
list containing the range of l values and returns a list containing the values of l(l + 1)Cl. This function solves
the coupled equations presented in Eq. (13) therefore getting the monopole and dipole solutions show in Eq.
(24) for all the k-spectrum evaluated at recombination.

Once the equations of motion are solved, using these solutions into the the transfer function from Eq. (47),
implementing the damping and the primordial power spectrum from Eqs. (48) and (22) respectively, and inte-
grating as shown in Eq. (21) gives the desired final result. If the goal of the computation is to obtain a graph
of the power spectrum for different values of a certain parameter, init params should be executed before the
power spectrum is calculated for every value of the varying parameter since the change of one density affects
all the other initial parameters involved in the equations. A more detailed overview of the methods used can
be found in the next section.

5.2 Parameter Definition

The code is functional when provided with a set of initial conditions, those being the densities for the different
contributors, these being:

• The matter density Ωm, dependent on both the baryonic density Ωb and on the CDM density Ωc as,

Ωm = Ωb +Ωc. (71)

• The curvature density Ωk, which describes the curvature of the cosmological model being considered (For
a flat universe, Ωk = 0).

• The dark energy density Ωde, associated with the dark energy or cosmological parameter Λ.

• The radiation density Ωr which has the following equation,

Ωr = fνΩγ , (72)

where fν is the neutrino fraction and Ωγ is the photon density.

All of these densities much satisfy that their sum has to be equal to a total density Ω0 which is set to be 1,

Ω0 =
∑
i

Ωi = Ωm +Ωr +Ωk +Ωde = 1 (73)

With these relations one can vary the desired parameter with ease. The only other parameter that can be varied
from the code through init params is is h, the reduced Hubble parameter. If desired, any other initial condition
contained in init params can be varied with a simple modification to the code.

Conformal time τ is of relevance for the computations and it can be calculated using the following relationship,

τ(a) =

∫ a

0

da′
1

a′2H0

√
Ωr(a′)−4 +Ωm(a′)−3 +Ωk(a′)−2 +Ωde

. (74)

As shown above, it can be described using a dependence on the cosmological densities, therefore changing when
these parameters are varied. The conformal time at recombination τ∗ is usually needed for the computation of
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other equations and it can be found by substituting the upper bound of the integral by the desired expansion
factor a∗. The conformal time today τ0 can therefore be found by using a0 = 1.

It is common to use the redshift z to refer to the scale factor a or to conformal time τ . A simple formula that
relates these variables,

a(z) =
1

1 + z
. (75)

Since the redshift at recombination z∗ is known, the scale factor a∗ can be easily calculated.

5.3 Initial Conditions

The values for the cosmological variables do not have to exactly match the ΛCMD model since the purpose of
this paper is to study the variation of the power spectrum for the changes on these parameters. The values
used are presented in this subsection.

5.3.1 Cosmological Parameters

The values chosen as initial conditions for a better representation of the perturbation graphs and for the power
spectrum computation are,

Symbol Value

Densities

Ωb 0.053

Ωm 0.229

Ωk 0

Ωde 0.7709

Ωγ 5.04× 10−5

Other

Parameters

h 0.7

fν 1.68

z∗ 1100

kpivot 0.05

As 2.2× 10−9

ns 0.967

Table 1: Parameter values assigned for the computation of the power spectrum.

5.3.2 Coupled Fluid Equations Revisited

The coupled equations of motion have to be supplied with initial conditions for them to be solvable, these are:

δγ = −2Φ,

δc =
3

4
δγ ,

vγ = −1

4

κ

η
δγ ,

vc = vγ .

(76)

Notice the dependence of all the parameters on the initial gravitational potential Φ. The choice of this parameter
may vary depending on the approach being considered. For the approach being treated in this paper, Φ = 1,
due to the fact that this setting allows the extraction of the primordial curvature perturbation R(k) from the
transfer function.

5.4 Adaptation of Equations and Integration Methods

5.4.1 Multipole Computation

The computation of the power spectrum requires the integration of the transfer function, in other words, the
solution to the fluid equations at recombination for all the k-spectrum is needed. Since the integration would



Chapter 5 COSMOLOGICAL BOLTZMANN CODE 23

take too much computational time if it were to solve the fluid equations for each k-value, the fluid equations
are first solved and then interpolated.

The goal of this multipole computation is to evolve the fluid equations till recombination for all the k-space.
To solve Eq. (13) with scipy.integrate.odeint, a specification of a time range and a κ range is necessary. These
functions have been rescaled as in the coupled equations shown in Eq. (13), therefore using κ instead of k or
l. The range of values for the rescaled wavemodes is chosen to be 10−2 < κ < 103 in logspace, which can be
associated with k approximately going from 10−4 < k < 1 Mpc−1. The rescaled time x range is chosen to be
10−6 < x < x∗, with x∗ being the rescaled conformal time at recombination calculated using Eq. (74) with a∗
and rescaling with τr.

With the above defined limits, the fluid equations are solved for the full k-space being considered. The only
contributors that are of interest for the computation of the transfer function, as shown in Eq. (47), are the SW
term and the Doppler term, these being [Θ0 +Φ] and Θ1. Expressed with the fluid equations notation, these
terms are

[
1
4δγ +Φ

]
and −vγ . These solutions are separated and interpolated over the κ range, for a faster but

accurate computation of the transfer function Θl.

5.4.2 The Transfer Function and Power Spectrum Revisited

The power spectrum calculation requires the square of the transfer function inside of the integral as shown Eq.
(21). The transfer function from Eq. (47) has two terms after neglecting the contribution from the ISW term,
therefore, squaring it would lead to an expression with 3 terms, one of them being the product of the SW and
Doppler term. This cross term can also be neglected since its contribution is minimal compared to the square
of the monopole and dipole terms in Θl [3]. Therefore, the transfer function squared would take the following
form,

Θl(k)
2 ≈ (2l + 1)2

[
[Θ0 +Φ]

2
(τ∗, k⃗)j

2
l (kχ∗) + v2e(τ∗, k⃗)j

′2
l (kχ∗)

]
. (77)

Substituting this into the power spectrum expression from Eq. (21) and simplifying,

Cl = 4π

∫
d ln k

[
[Θ0 +Φ]

2
(τ∗, k⃗)j

2
l (kχ∗) + v2e(τ∗, k⃗)j

′2
l (kχ∗)

]
∆2

R(k). (78)

Note that the power spectrum is given by Cl, and the expression on the RHS is k and τ dependent. Therefore,
it would be of convenience to modify this integral so that it is an expression dependent on rescaled time x and
on l. Recall l ≈ (k∗ [τ0 − τ∗]), using k = xk∗, two expressions can be obtained, one for κ which is involved in
the monopole and dipole terms, and for k∗ [τ0 − τ∗] involved in the spherical Bessel functions,

κ = kτr = xk∗τr = xl
τr

τ0 − τ∗
,

and

k∗ [τ0 − τ∗] = x
l

τ0 − τ∗
(τ0 − τ∗) = xl,

Therefore, the power spectrum takes the following form in the code,

Cl = 4π

∫
dx

x

[
[Θ0 +Φ]

2

(
xl

τr
τ0 − τ∗

)
j2l (xl) + v2e

(
xl

τr
τ0 − τ∗

)
j′2l (xl)

]
∆2

R

(
xl

τ0 − τ∗

)
D

(
xl

τ0 − τ∗

)
. (79)

Note that the differential is changed and it is now x dependent, which is desired to take into account the free-
streaming of the perturbations till today. Also note the addition of the damping scale previously introduced in
Eq. (48) and its change of variable.

All the equations earlier derived referring to the monopole and dipole terms have been given k dependence
instead of κ. The change represented in this last equation takes into account that the monopole and dipole
take κ as an argument, which is the treatment given in the code since the solutions to the fluid equations are
rescaled.
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5.4.3 Spherical Bessel Functions

The mapping between the wavemodes k in Fourier space to the multipole moment l of the spherical harmonics
is possible only thanks to the Bessel functions in its spherical form. This is only approximately true, since the
mapping is done correctly at l ≈ (k∗ [τ0 − τ∗]) where the Bessel function peaks.

In the equations used, the spherical Bessel function is always involved in its squared form which has the following
behaviour,

Figure 7: Spherical Bessel function plotted for two values of l and using the approximation for large x and xl

In Figure 7, the highly oscillating behaviour of the Bessel functions is plotted. The equation for the spherical
Bessel function,

jl(x) =

√
π

2x
Jl+1/2(x), (80)

where Jl is the ordinary Bessel function. To understand this oscillating pattern in the limit where both x and xl
are large, a modification of Jl(x) is required since it contains both variables. For the large limit being considered
in this scenario, it is possible to express the ordinary Bessel function from the dominant term in the Meissel
series expansion [6],

Jν(x) ≃
√

2
π
√
x2−v2

cos
(
Qν(x)− 1

4π
)

with Qν(x) =
√
x2 − v2 − 1

2vπ + v arcsin(v/x). (81)

Substituting this back into the spherical Bessel function with xl as the argument of the function gives,

jl(xl) ≃
√

π

2xl

√√√√ 2

π

√
x2l2 −

(
l + 1

2

)2 cos

(
Ql+1/2(xl)−

1

4
π

)
. (82)

Since the spherical Bessel function present in the equations is squared and multiplied by a factor of l2, after
simplifying the following expression is obtained,

l2j2l (lx) ≃
1

x

√
x2 −

(
2l+1
2l

)2 cos2
(
Ql+1/2(xl)−

1

4
π

)
. (83)

From this final equation, a rather simple but useful approximation can be done. By approximating the cosine

term by its average, 1/2, and approximating
(
2l+1
2l

)2 ≃ 1 in the large l regime, the complete approximation for
the spherical Bessel function is,
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l2j2l (xl) =
1

2x
√
x2 − 1

, (84)

with its derivative being,

l2j′2l (xl) =
1

2x
√
x2 − 1

x2 − 1

x2
. (85)

These two equations are used in the code for the computation of the integrals required for the power spectrum.
As it can be seen from Figure 7, the approximation does well averaging the peaks and it can be integrated with
ease compared to the original high oscillating spherical Bessel functions.

5.4.4 Polishing The Power Spectrum

The implementation of the spherical Bessel functions approximations into the power spectrum requires Eq.
(79) to be multiplied by a factor of l2, so that the Bessel functions also pick up this term. Before introducing
this factor, it is easy to notice from Figure 5 that the SW term remains constant in super-Hubble modes at
recombination while the Doppler term vanishes. This leads to an equation of the power spectrum which is only
dependent on the monopole term,

Cl ≈ CSW
l = 4π

∫
dx

x

[
[Θ0 +Φ]

2

(
xl

τr
τ0 − τ∗

)
j2l (xl)

]
∆2

R

(
xl

τ0 − τ∗

)
, (86)

where the damping scale has not been added to the equation since it does not affect the perturbations at super-
Hubble modes. With a scale-invariant expectation value of the primordial curvature perturbations ∆2

R = As,
the above equation takes the following form,

Cl −→
4π

25
As

∫
d lnxj2l (xl) . (87)

When using the integral shown below, ∫ ∞

0

d lnxj2l (x) =
1

2l(l + 1)
, (88)

gives the power spectrum Cl constant value,

l(l + 1)Cl =
4π

25
As. (89)

This is of great relevance since it implies that the low-l regime of the spectrum being considered Cl will have a
constant value, therefore allowing for an estimation of As and most importantly, the determination of the full
expression of ∆2

R.

This is the reason why the power spectrum is commonly plotted as l(l + 1)Cl, so that it provides information
about the nature of the primordial curvature perturbation. For the purpose of this derivation and for the
approximations of the spherical Bessel function considered in this paper, the factor l(l+1) can be approximated
to l2, allowing the use of the approximations aforementioned. To conclude, the full equation that computes the
power spectrum in the code is,

l2Cl = 4π

∫
dx

x

[
[Θ0 +Φ]

2

(
xl

τr
τ0 − τ∗

)
l2j2l (xl) + v2e

(
xl

τr
τ0 − τ∗

)
l2j′2l (xl)

]
∆2

R

(
xl

τ0 − τ∗

)
D

(
xl

τ0 − τ∗

)
.

(90)

5.5 Capability

The code used for the calculation of the power spectrum uses the equations derived in this thesis. Computation
of the spectrum using power spectrum for a set of given initial parameters calculated with init params takes
approximately 1 minute. The variation of the parameters presented in the following section requires different
init params functions in certain cases as the other densities had to be calculated using the relationships shown
in Section 5.2. The code is simple enough to be manipulated to add new contributions if a more accurate
approach is desired.
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6 Heights of the Peaks

The dependence of the power spectrum on the multiple cosmological parameters is somewhat intricate, therefore,
a brief explanation of the various peaks is developed below. As shown in Section 3.3, the spatial inhomogeneities
at recombination conformal time τ∗ are mapped to angular anisotropies, thus, when inspecting the power
spectrum, one is directly observing the fluctuations from inflation itself. Briefly discussed in Section 4.2, the
extrema of the acoustic oscillations are represented as peaks in the CMB power spectrum, all part of a harmonic
series that manifests the physical processes the early universe plasma underwent. The power spectrum for the
initial conditions set in Section 5.3.1 is presented in Figure 8.

Figure 8: Power spectrum for fixed initial conditions

A useful way to understand the meaning of these
peaks and their angular location is to think
about the photons travelling towards the ob-
server after decoupling. The first photons that
arrive would be the ones leaving the gravita-
tional potential first and, as time progresses,
more photons would reach the observer, all
of them leaving at a later time the perturba-
tions and therefore undergoing multiple com-
pressions and rarefications in the plasma. Thus,
the first peak corresponds to the mode that
was compressed once, the second peak to the
mode that was compressed and then rarefied,
etc. Exploiting this concept, a correlation be-
tween the angular location l of the peaks and
the curvature of the universe can be made
since it would determine how much distance
the photons had to travel to reach the ob-
server. The first peak is located at l ∼ 200
which corresponds to a spatially flat universe
[15]

The baryon loading concept introduced in Section 4.2 shall be recovered here, as it is useful to comprehend
the behaviour of the first and next peaks. Baryons add pressure to the plasma trapped in the potential wells
and thus, when photons decouple, they exit the potential with greater energy than if the baryons were not
present in the fluid. The height of the first peak, which as explained above represents the mode that has been
compressed only once, is directly influenced by the amount of baryons in the fluid. This can be generalized
to all the odd peaks in the power spectrum since they are associated with the compression of the fluid. The
matter density also influences the height of this first peak since matter accounts for both baryonic and cold dark
matter. The height of the higher peaks is therefore influenced by these two parameters. These two densities are
the main source of modification of the power spectrum when manipulated. Other parameters have influence in
the formation of the peaks but the shape is mostly maintained.

The almost flat regime of the power spectrum, located in the lower angular scale l, represents the plateau
described in Section 5.4.4, which essentially corresponds to the almost constant behaviour of the SW and
Doppler terms in the recombination spectrum shown in Figure 5.

6.1 Parameter Variation

Various cosmological parameters will now be varied in order to see their effects on the power spectrum. This
allows a better understanding of the physical events and how the power spectrum would be modified depending
on the cosmological model being considered. As shown in the figures presented below, the CMB angular power
spectrum is sensitive to changes in its parameters. The peaks exhibit similar behavior to variations of distinct
parameters, which is known as parameter degeneracy.
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6.1.1 Hubble Parameter

The reduced Hubble parameter h, which obviously refers to the expansion of the universe, sets the height of
the peaks since it constrains the distance photons have to travel to reach the observer after decoupling. This
parameter is varied in the Figure below.

Figure 9: Power spectrum for multiple values of the reduced Hubble parameter h

The higher h is, the faster the universe expands, thus forcing the photons to travel more distance and loosing
more energy on the process, lowering the temperature anisotropies. The same reasoning is applied to the lower
range of h values being considered, therefore expecting higher temperature fluctuations.

6.1.2 Dark Energy Density

Figure 10: Power spectrum for multiple values of the dark energy density Ωde

The dark matter energy density is only explicitly involved in Eq. (74), thus, when this parameter is changed,
only the conformal time at recombination τ∗ varies. The larger Ωde is, the earlier recombination occurs therefore
shifting all the power spectrum to the right since the photons reach the observer earlier.

6.1.3 Baryon Density

Considering multiple baryon density Ωb values, Figure 11 is obtained. The change of the first peak height is
noticeable for the range of values being considered. This is essentially the extra pressure on the potential well
due to the additional baryons, thus, an increase in height is expected for increasing baryon density.
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Figure 11: Power spectrum for multiple values of baryonic density Ωb

The reduction in the second peak while maintaining the height of the third peak is due to the almost constant
rarefication of the fluid despite the additional baryonic matter.

6.1.4 Matter Density

The physics behind the third peak of the power spectrum can be studied by varying the matter density Ωm as
shown in Figure 12. In the model being used, the baryon density Ωb is fixed to the initial condition shown in
Table 1, which implies from Eq. (71) that the CDM density Ωc is the variable being changed. The behaviour
of the peaks is almost contrary to the variation of the baryon density as the overall power spectrum is rescaled
down when the matter density is increased.

Figure 12: Power spectrum for multiple values of matter density Ωm

A reduction on the second peak can be observed for high values of matter density, similiar effect to the observed
in the baryon density variation. However, for low values of matter density, an overall increase of the peaks
occurs, contrary to the amplification of only the odd peaks seen in Figure 11. The behavior of the peaks can
be explained by looking at the matter-radiation equality defined in Section 3.1 as zeq = a−1

eq ≈ 2.4× 104Ωmh2.
From this, it can be inferred that for lower values of Ωm, zeq will decrease, meaning that the matter-radiation
equality will be shifted to later times, closer to recombination. This fact implies that the radiation era lasted
longer and, due to the oscillations in the radiation era introduced in Section 4.2, the amplified oscillations due
to radiation driving would be the observed peaks of Figure 12.

For greater values of Ωm, the CDM density increases due to the baryon density being fixed. With the thought
process above discussed, the matter radiation equality would be shifted to earlier times and therefore the driving
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effect disappears, thus reducing the amplitudes. The additional dark matter contributes to the rarefication in
the same way as baryons do, thus the second peak is reduced. However, a reduction of the first peak is observed,
contrary to the rise found with baryon loading. Since the amount a baryons is not increased, there are not so
many photons decoupling, also lowering the height of the first peak.

6.1.5 Curvature

As explained in the beginning of this section, the angular position of the peaks can be used to determine the
curvature of the universe. Therefore, varying the curvature density Ωk should shift the power spectrum to
higher or lower values of l.

Figure 13: Power spectrum for multiple values of curvature density Ωk

The higher the value of Ωk, the more to the right the power spectrum is shifted. This effect is due to the greater
distance that the photons would have to travel for higher curvature density.
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7 Conclusion

7.1 Accuracy

The two fluid approach being considered in this thesis, as well as other approximations implemented, produce
an angular power spectrum which correlates with the acoustic oscillations and the physical processes that the
universe underwent.

Figure 14: Power spectrum varied for multiple cosmological parameters (figure adapted from [14])

Comparing the figure above, which represents the analytical solution, to the graphs developed with the two
fluid approximation, clearly shows that the toy-model being considered reproduces to great accuracy the power
spectrum. The curvature density graph differs in the large scale limit from Figure 13. This is due to the
ISW effect not being considered in the approach of this thesis. However, the shift of the power spectrum over
the angular scale matches with great precision Figure 14. The dark energy variation of the power spectrum
is matches to great precision Figure 14 except for large scale solutions. This is again due to the ISW being
neglected in the approach taken. The figures representing the variation of the baryon density show an identical
power spectrum. The matter density alteration produces a power spectrum which also matches the graph from
Figure 14 although with small differences, but overall very much alike.

7.2 Summary of Main Contributions

Although there are small differences in the power spectrum when considering parameter variation, the two fluid
approach considered successfully reproduces the evolution of the inhomogeneities and therefore, temperature
anisotropies are described to great accuracy. This thesis not only provides the reader with the physical back-
ground required for the complete understanding of the formation of the power spectrum, but also presents the
full equation derivation in addition to a simple, yet powerful Python code.

7.3 Future Work

A detailed analysis of the peak behavior of the power spectrum could determine to great accuracy the various
cosmological parameters in the two fluid approximation. This could be compared to other models so that
better approximations or extra modifications can be implemented, therefore reaching an even more accurate
computation and understanding of the physics behind the CMB temperature map.
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