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Abstract

During photosynthesis, photon energy is absorbed by chromophore molecules, causing
electronic excitations. The excitation energy is then transported across molecules to
the reaction center. Photosynthetic organisms accomplish this extremely efficiently,
exceeding 90%. The prospect of better solar cell efficiency has driven the development
of artificial light-harvesting systems. The excitation energy transport (EET) is quan-
tum mechanical in nature and arises from the complex interplay of the chromophores
and their environment. Current theories can explain EET in the weak and strong
system-environment coupling regimes quite well, however in the intermediate regime
the EET is much less understood. This research investigates the effect of white and
colored noise environments on the excitation diffusion by simulating linear 1D ag-
gregates using the white noise Haken-Strobl-Reineker (HSR) model and the colored
noise Numerical integration of the Schrödinger equation (NISE) model. While the two
models produce similar results in some parameter regimes, in general the difference
is significant. Due to the colored noise, the NISE model has an extra parameter that
causes rich behavior compared to the HSR model. The results therefore show that
the addition of colored noise is crucial. Thus, even though NISE method is computa-
tionally more expensive than the HSR model it is worth investigating further.
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Chapter 1

Introduction

Charge- or energy transfer in or across materials is an important topic in modern
material science. A full understanding of the matter requires a multidisciplinary
approach, combining chemistry, atomic and molecular physics, quantum mechanics,
statistical mechanics, and thermodynamics. This research will focus on the quantum
mechanical description of energy transfer as a result of the diffusion of excited energy
states across a material. In particular, I will model the excitation energy diffusion in
three different ways and compare them.

In order for a system to exhibit this kind of diffusion, there must be multiple
coupled ’sites’ present that are physically separated, between which excitation energy
can be transferred. This configuration can be found in a range of systems, for example
in large complex molecules or in chains of molecules. These systems can be found in
nature and have also been created synthetically.

In nature, excitation energy transfer (EET) plays a crucial role in the photosynthe-
sis process. During photosynthesis, chromophore molecules absorb light, causing ex-
citations that are then transported across molecules towards a reaction center. Take,
for instance, the PC 645 chromophore found in cryptophyte algae. The excitation
transfer dynamics of PC 645 have been studied using a model containing 8 sites [1–4].
Other well known examples are the bacterial complexes LH1 [5] and LH2 [6].

By taking inspiration from nature, artificial light harvesting systems have been
synthesized in the lab. These materials can be used for a wide range of applications,
such as organic solar cells [7]. An example of synthetic light harvesting systems are
C8S3-based nanotubes which have been studied extensively [8–10] and have been
used to probe the relation between structural hierarchy and exciton diffusion [11]. A
better understanding of exciton diffusion will allow us to construct more efficient light
harvesting systems.

To improve our understanding of the EET process, experiments have measured
optical properties of polymer aggregates. The experiments include single-molecule
spectroscopy, coherent two-dimensional (2D) spectroscopy, and single-molecule coher-
ent spectroscopy [7]. It is very hard to measure the diffusion directly due to the
short energy transfer time scales (≤ 1 ps) and the short diffusion lengths (≤ 100
nm) involved, requiring simultaneous high spacial and temporal resolution. However,
ultrafast transient absorption microscopy has been used to directly image exciton
transport in synthetic meso-tetra(4-sulfona- tophenyl) porphyrin (TPPS4) molecules
[12]. These experiments are important since they give information about the relevant
electronic states that play a role in the diffusion. This information is used to verify
and improve the theoretical models.

There are various approaches to modeling the diffusion. In every model, the sys-
tem is coupled to a heat bath environment and the interaction between these two is
what causes the EET behavior. Most methods involve simplifying assumptions and
approximations to cut down on computation time at the cost of reduced accuracy
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in the regimes where the approximations are not valid. There are too many models
to mention here, so I will name only some prominent and relevant ones. The most
important model is the Hierarchical Equations of Motion (HEOM) model. While it is
very computationally expensive, it is also the most general method and, more impor-
tantly, numerically exact [13]. It scales poorly to large systems, but for small systems
it is the ’gold standard’ against which other methods can be compared. Another well
known model is Redfield theory [14], which can model the population dynamics when
the system is weakly coupled to a white noise bath. Then there is the Numerical
integration of the Schrödinger equation (NISE) method, a very simple yet effective
method which propagates the wave function to simulate the evolution of an exciton.
NISE is not limited to white noise and scales reasonably well, but it is only valid in
the high temperature limit. Finally, there is the Haken-Strobl-Reineker (HSR) model
[15], which solves a stochastic Schrödinger equation for white noise heat baths. The
HSR model is simple and scales excellently with system size.

The goal of this thesis is to investigate the effect of colored noise on diffusion. For
simplicity, a linear 1D chain will be used as a model system. Both the HSR model
and NISE model are simple to implement and they will be used in this research. The
HSR model has excellent scaling, but is limited to white noise. While NISE does
not have this limitation, its scaling is worse. To find a middle ground, the idea is to
remove the white noise approximation from the HSR model and combine this with
NISE. This should yield a more realistic model at the expense of computation time.
The models will be compared over a range of parameters. Properties like accuracy
and convergence rate will be of particular interest to evaluate the feasibility of the
new method. The central research question of this thesis therefore

What effect does colored noise have on electronic
energy diffusion and how do the models used to

simulate this compare?
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Chapter 2

Methods

2.1 System and model

2.1.1 Aggregate description

The system investigated in this thesis is a general linear 1D aggregate. The aggregate
contains a number of coupled sites that can be described as two-level systems each
with an electronic ground state and an excited state. In practice, the aggregate can
be anything from a single chromophore molecule containing a number of sites to a
polymer where each sub unit has one site [16, 17].

When an electron gets excited at one of the sites a "hole" is left behind in the
ground state and the electron now occupies the excited state. The result is an exciton.
Because of the coupling between sites, the electron and hole can move around on the
aggregate. I will focus on the case where the electron and hole are on the same site,
i.e. Frenkel excitons. This assumption is accurate when the overlap of the electronic
charge densities of neighboring sites is sufficiently small [18]. This is often the case
for organic molecules of interest [19].

The coupling between sites arises from quantum mechanical transition dipole in-
teractions. The Hamiltonian term for the interaction between two dipoles is given as
[20]

Ĵdip =
1

4πϵ0

(
µ̂1 · µ̂2 − 3(µ̂1 · n)(µ̂2 · n)

R3

)
. (2.1)

The strength of the dipole interaction depends on the relative orientation of the
dipoles, the distance between them and the magnitude of the dipoles themselves.
I will take all the dipoles to be identical and parallel. Depending on the angle be-
tween the dipoles and the chain direction, the coupling can be positive or negative.
Angles smaller than ≈54.7◦, when the dipoles are in a head-to-tail orientation, result
in a negative coupling. Such systems are referred to as J-aggregates [21]. Conversely,
systems with positive coupling are referred to as H-aggregates. The difference in the
sign of the coupling manifests in the spectroscopic differences between J-aggregates
and H-aggregates.

••• 

R

Figure 2.1: The arrangement of identical parallel dipoles in the
chain. The case β ≈ 54.7◦ is shown.
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To describe the system quantum mechanically, a basis set of states needs to be
decided on. The goal is to describe the diffusive behavior of a single exciton on a chain,
ignoring any decay or excitation effects. In the absence of any interactions between
sites, the state of the system is fully described by the states of the sites. Every site
can either be in the ground state |g⟩ or the excited state |e⟩. The ground state would
be given by |G⟩ = |g, g, g, ..., g⟩. This research will investigate systems where only
one exciton is present at a time, which simplifies the basis greatly. Such systems can
be studied experimentally by using a low powered laser to excite the system to avoid
multiple excitation.

The single exciton states will be labeled so |n⟩ represents an exciton localized at
site n, for example |2⟩ = |g, e, g, g, ..., g⟩. Every one of these states is associated with
an energy ϵn which corresponds to the excitation energy of that site. The coupling
between sites as a consequence of Eq. is reflected in the off-diagonal terms of the
Hamiltonian. This Hamiltonian takes the form

Ĥ0 =

N∑
i=1

ϵi |i⟩ ⟨i|+
N∑
i ̸=j

Jij |i⟩ ⟨j| . (2.2)

|1〉 |2〉 |3〉 |N〉
•••

R

|G〉

J

Figure 2.2: |G⟩ is the electronic ground state and |n⟩ describes an electronic
excitation localized at site n. R is the separation distance between sites. J is the

coupling constant connecting neighboring excitation states [22].

For simplicity, only sites directly adjacent to each other will interact (nearest
neighbor approximation). The long range dipole-dipole resonant interactions do not
change the results significantly and can therefore be neglected. An advantage of
this approximation is that it will be easier to diagonalize this tridiagonal Hamiltonian
which will be made use of during the calculations. The coupling constant now becomes

Jij = (δi,j+1 + δi,j−1)J . (2.3)

The strength of the coupling is taken to be a constant J . Because the models that
are used are only valid for the high temperature case, the sign of J is unimportant
[23] and can therefore be taken as positive. The Hamiltonian of the model system so
far is then

Ĥ0 =

N∑
i=1

ϵi |i⟩ ⟨i|+
N−1∑
j=1

J
(
|j⟩ ⟨j + 1|+ |j + 1⟩ ⟨j|

)
. (2.4)

If the chain is homogeneous, all the site energies are equal. The energies can
then be re-scaled so that the first sum in Eq. (2.4) equals 0. However, in practice the
transition energies will show a Gaussian spread with variance σ2s around the average.
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This static disorder causes excitons to become localized on finite regions of the chain
which affects the transport properties. Both cases will be investigated in this thesis.

The above Hamiltonian is valid for an isolated, static system. In real systems,
the system interacts with an environment, which adds a time-dependent fluctuating
component to the site energies as will be discussed in the next section.

2.1.2 Thermal bath

For excitation energy transfer to take place, it is crucial for the system to be subject
to thermal noise. In the absence of such noise, excitons are completely delocalized
over the entire chain, meaning the exciton wave functions are and will remain coherent
over the whole chain. For transport phenomena, dephasing of coherences is crucial.
The coherences are described by the density matrix which is defined as

ρ̂ = |ψ⟩ ⟨ψ| (2.5)

where ⟨ψ| is the wave function describing the system. This is valid when looking at
one chain, i.e. the state is pure and not some ensemble. The matrix elements are
given by

ρkl = ⟨k| ρ̂ |l⟩ = c∗k(t)cl(t) (2.6)

where |k⟩ and |l⟩ are the energy eigenstates with energies Ek and El. The coherences
of this state are the off-diagonal elements of this matrix. For an isolated system, the
Hamiltonian equals H0 and does not depend on time. The time-dependence of the
coefficients is then trivial and follows from the time-independent Schrödinger equation,
ck(t) = e−iEkt/h̄ck(0). The coherences in this case oscillate like ρkl = c∗k(0)cl(0)e

−iωklt.
Thus, without dephasing an exciton state will oscillate back and forth between the
same states indefinitely.

For open quantum systems, coupling to the environment causes dissipation much
like the dissipation due to air resistance in a pendulum system. Dissipation arises due
to the coupling of the system to additional degrees of freedom such that energy can
be transferred to them irreversibly. In practice, it is impossible to model or observe
all these environmental degrees of freedom. However, it is possible to model the net
effect of the unknown degrees of freedom.

A suitable model that is simple and limits the degrees of freedom is the over-
damped Brownian oscillator model [24]. It can be proven that such an environment
gives rise to dissipation [25–27]. In this model, the system is bilinearly coupled to a
bath consisting of a continuous distribution of independent harmonic oscillators. The
coupling strength of each oscillator is dependent on the frequency of the harmonic
mode. The bath coupling leads to dephasing of exciton coherences because of those
states being coupled to a continuum of states associated with the harmonic modes.

The Hamiltonian of the oscillator model consists of three parts:

H = HS +HB +HSB . (2.7)

HS is the Hamiltonian of the isolated system, HB describes the bath and HSB the
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coupling between the system and the bath. For a particle coupled to a discrete dis-
tribution of harmonic normal modes, the Hamiltonians are [28]

HS =
p̂2

2M
+ V (q) (2.8a)

HB =
∑
j

(
p̂2j
2mj

+
1

2
mjω

2
j x̂

2
j

)
(2.8b)

HSB = −q̂
∑
j

cjxj + q̂2
∑
j

c2j
2mjωj

. (2.8c)

Here p̂ is the system momentum and q̂ its conjugate coordinate, p̂j and x̂j are those
of the bath. The bilinear coupling in the first term of HSB has a strength of cj . The
second term in HSB is a renormalization term that does not depend on the system
coordinates.

In the limit of an infinite amount of oscillators, the bath is described by a density of
states W (ω) and a frequency-dependent coupling strength c(ω). The spectral density
D(ω) is proportional to the product of W (ω) and c(ω) and it is often used to specify
which model is used. For the underdamped Brownian oscillator model, the spectral
density is that of the Drude model [24]

D(ω) = 2λ
ωΛ

ω2 + Λ2
. (2.9)

λ is the reorganization energy that reflects the overall coupling strength of bath to
system. This spectral density is Ohmic (linear) for low frequencies with a cut-off for
high frequencies. As will become apparent, Λ is the inverse timescale of the dynamics.
Note that this is the model for a colored noise bath.

To incorporate this model into the simulation for the thesis, the Brownian oscillator
model can be formulated as a stochastic model. The effect of the oscillator bath is
to randomly push the system, giving rise to a fluctuation of the site energies. These
fluctuations are characterized by the time auto-correlation function of the site energies.
For the spectral density of Eq. (2.9) the correlation function decays exponentially with
rate Λ and there is no inter-site correlation [29]:

⟨δϵk(t)δϵl(0)⟩ = δklσ
2 exp(−Λt) . (2.10)

ϵk denotes the energy of site k and its fluctuations around the mean are δϵk = ϵk −
⟨ϵk⟩. σ2 is the variance of the fluctuations and Λ = 1

τc
characterizes the speed of

the dynamics, i.e. the ’memory’ of the fluctuations. δkl is the Kronecker delta.
The subscript will be dropped to focus on the case of a single site. To generate
realizations of fluctuations, an incremental expression can be formulated [30] such
that the correlation function obeys Eq. (2.10). First, postulate that the form of the
equation is

δϵ(t+∆t) = aδϵ(t) + bG(σ) . (2.11)

G(σ) is a random number from a Gaussian distribution with width σ. It is apparent
that δϵ(t) is not fully Markovian, with a memory determined by a. By substituting
Eq. (2.11) into Eq. (2.10) the coefficients can be determined and the trajectory is given
by

δϵ(t+∆t) = δϵ(t) exp(−Λ∆t) +
√

1− exp(−2Λ∆t)G(σ) . (2.12)
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The full Hamiltonian of the system coupled to a thermal bath is then

H(t) = H0 + V (t) =
N∑
i=1

(ϵi + δϵi(t)) |i⟩ ⟨i|+
N−1∑
j=1

J
(
|j⟩ ⟨j + 1|+ |j + 1⟩ ⟨j|

)
. (2.13)

HSR limit

The Haken-Strobl-Reineker model is a limiting case of the model described above. In
the limit of very fast bath dynamics (Λ−1 → 0), the spectral density becomes

D(ω) = 2λ
ω

Λ
(2.14)

This linear form is often called white noise. Infinitely fast dynamics also imply that
the site energy fluctuations become fully Markovian and all memory is lost. Since
the spectral density of the bath is broad compared to the bandwidth of the excitons,
the system tends to an equilibrium where every eigenstate of H0 is equally populated.
This is equivalent to the high temperature limit. Hence, the two main limitations to
the model are that it is only valid when kBT ≫ h̄Λ and kBT ≫ ∆W where ∆W is
the exciton bandwidth.

The correlation function in the HSR model becomes a delta function:

⟨δϵi(t)δϵj(0)⟩ = δij
σ2

Λ
δ(t) . (2.15)

It becomes evident that the fluctuations are fully described by the quantity

Γ ≡ σ2

h̄2Λ
. (2.16)

Γ is equal to the dephasing (relaxation) rate of the coherences between sites (ρkl). It
is also equal to twice relaxation rate of a single-molecule transition, also known as the
homogeneous line width.

For convenience, one can define the dimensionless parameter κ to characterize the
speed of the bath dynamics

κ ≡ h̄Λ

σ
. (2.17)

Since the model assumes fast bath dynamics, it is constrained to the fast modulation
limit where the bath dynamics are fast compared to the bath coupling strength, i.e.
κ≫ 1.

2.2 Quantum mechanical evolution operator

The fundamental idea of this thesis is rooted in (non-relativistic) quantum mechanics.
To start, the basic concepts are reiterated here. At the basis lies the time-dependent
Schrödinger equation:

ih̄
∂

∂t
|ψ(r⃗, t)⟩ = Ĥ(t) |ψ(r⃗, t)⟩ . (2.18)

The evolution of the quantum wave function ψ is determined by the effect of the
Hamiltonian operator, Ĥ, on the wave function. Here the Dirac notation is used such
that ⟨ψ|ψ⟩ =

∫
ψ∗ψ d3r⃗.
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2.2.1 Time-independent Hamiltonian

If the Hamiltonian does not depend explicitly on time, one can build the solutions to
the Schrödinger equation with wave functions of the form ψ(r⃗, t) = χ(r⃗)φ(t), which
results in the energy basis wave functions:

|ψn(r⃗, t)⟩ = e−iEnt/h̄ |ψn(r⃗, 0)⟩ . (2.19)

ψn is the wave function for the state with constant energy En. The time dependence
of the wave function is trivial in this case and fully contained in the phase factor. Any
wave function can be expressed in this basis as

|ψ(r⃗, t)⟩ =
∑
k

ck(t) |ψk(r⃗, 0)⟩ (2.20)

where ck(t) = exp(−iEkt/h̄)ck(0). Eq. (2.19) suggests that there is an operator that
evolves the wave function in time. It can be derived by considering an operator Û =

e−iĤt/h̄ which commutes with the Hamiltonian. From Hermiticity of the Hamiltonian,
Û † = eiĤt/h̄ = Û−1. Multiplying the Schrödinger equation from the left with Û−1

results in

eiĤt/h̄ih̄
∂

∂t
|ψ(r⃗, t)⟩ = eiĤt/h̄Ĥ |ψ(r⃗, t)⟩

∂

∂t

[
eiĤt/h̄ |ψ(r⃗, t)⟩

]
= 0 .

(2.21)

After integration from t0 to t one ends up with

|ψ(r⃗, t)⟩ = e−iĤ(t−t0)/h̄ |ψ(r⃗, t0)⟩ = Û(t, t0) |ψ(r⃗, t0)⟩ . (2.22)

So, for a Hamiltonian without an explicit time dependence the time evolution operator
is

Û(t, t0) = e−iĤ(t−t0)/h̄

which has the properties that it commutes with the Hamiltonian and is unitary. Since
Û(t, t0) = Û †(t0, t), Û † is often called the time reversal operator.

2.2.2 Time-dependent Hamiltonian

For a Hamiltonian that contains an explicit time dependence, the evolution oper-
ator is harder to derive. There still exists a time evolution operator such that
|ψ(r⃗, t)⟩ = U(t, t0) |ψ(r⃗, t0)⟩ because the Schrödinger equation is a linear partial dif-
ferential equation in time. A general solution for Û can be found by substituting
Eq. (2.22) into Eq. (2.18) and dividing out the constant |ψ(r⃗, t0)⟩. The result is

ih̄
∂

∂t
Û(t, t0) = Ĥ(t)Û(t, t0) . (2.23)
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This expression can be directly integrated in time and repeatedly substituted into
itself, yielding the result [31]:

Û(t, t0) = 1 +

(−i
h̄

)∫ t

t0

dτĤ(τ)

+

(−i
h̄

)2 ∫ t

t0

dτ

∫ τ

t0

dτ ′Ĥ(τ)Ĥ(τ ′)

+

(−i
h̄

)3 ∫ t

t0

dτ

∫ τ

t0

dτ ′
∫ τ ′

t0

dτ ′′Ĥ(τ)Ĥ(τ ′)Ĥ(τ ′′)

+ . . .

(2.24)

Û(t, t0) ≡ exp+

[−i
h̄

∫ t

t0

Ĥ(τ)dτ

]
. (2.25)

2.3 Numerical integration of the Schrödinger equation

In practice, Eq. (2.25) is not easy to solve. The exponential usually cannot be trun-
cated because convergence is slow. In this thesis I will opt for an alternative approach
based on Eq. (2.22) where the wave function evolution is calculated by direct numerical
integration of the Schrödinger equation (NISE) [32].

The wave function can be written in terms of some choice of basis states, which
is described by Eq. (2.20). This can be substituted into the Schrödinger equation and
the constant ket |ψi(r⃗, 0)⟩ can be divided out to obtain a differential equation for the
wave function coefficients. In matrix form:

∂

∂t
c⃗(t) = − i

h̄
H(t)c⃗(t) . (2.26)

This equation can be directly integrated if the Hamiltonian is constant in time. This
is approximately true for small enough time intervals. The integration result for one
time interval of length ∆t is

c⃗(t+∆t) = exp

(
− i

h̄
H(t)∆t

)
c⃗(t) . (2.27)

The time evolution operator is then

U(t+∆t, t) = exp

(
− i

h̄
H(t)∆t

)
. (2.28)

and the full evolution of the system over N total time steps is obtained by consec-
utive multiplication for single time step operators:

U(t, 0) =

N−1∏
j=0

U((j + 1)∆t, j∆t) . (2.29)

Here t = N∆t. The time evolution operator can also be used to calculate how other
operators evolve in time as is the case in the Heisenberg picture:

A(t) = U †(t, 0)A(0)U(t, 0) . (2.30)

This is useful later on when doing calculations on the system.
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It is important to mention the drawbacks of using this method. Like the HSR
model, the NISE method is also constrained to the high temperature case (kBT ≫ h̄Λ
and kBT ≫ ∆W ) since the system will tend to the same uniformly populated equi-
librium due to the classical treatment of the bath [32]. However, it is not constrained
to the fast modulation limit like the HSR model is. Furthermore, due to the ma-
trix exponentiation and multiplication required the time complexity is O(N3) causing
calculations for large chains to quickly become unfeasible.

2.3.1 Matrix exponential

The time evolution operator is obtained from the matrix exponential in Eq. (2.28).
Calculating a matrix exponential is generally not computationally cheap. It is worth
taking a closer look to see how this can be done more efficiently. At a glance, one
could use a general purpose algorithm like the scaling-and-squaring method combined
with Padé approximants [33, 34] to calculate the exponential. However, the Hamil-
tonian that is used for these simulations has some properties that allow for a faster
calculation.

The Hamiltonian is Hermitian, since H = H†. The spectral theorem for Hermitian
matrices states that for an Hermitian matrix H there exists an orthonormal basis
consisting of its eigenvectors, which implies that such matrices are diagonalizable.
The diagonalization can be expressed as

H = V ΛV −1 (2.31)

where V is the matrix with the (orthonormal) eigenvectors of H as its columns and Λ
is the diagonal matrix with the eigenvalues of H on its diagonal. Hence V is unitary,
meaning V V † = I. Now multiply Eq. (2.31) by − i

h̄∆t and then exponentiate, using
Taylor series definition of the exponential. It follows that

exp

(
− i

h̄
H∆t

)
= V exp

(
− i

h̄
Λ∆t

)
V † . (2.32)

Since Λ is a diagonal matrix, the diagonal values can simply be exponentiated in place
to obtain the matrix exponential.

One can then use an eigensolver algorithm that specializes in Hermitian matrices
followed by two matrix multiplications, resulting in an overall faster procedure than if
using a general purpose exponentiating algorithm. Additionally, since the Hamiltonian
of the model is a tridiagonal matrix, calculating the eigenvalues can be made more
efficient by using an algorithm that works specifically on tridiagonal matrices.

2.4 Diffusion calculation

There are two different ways in which exciton diffusion is calculated in this research.
The first approach is a quantum analogue of classical diffusion. The second method
uses the quantum probability flux operator. Both methods are explained below.

2.4.1 Mean-square displacement

In classical physics, the rate at which the particle spreads out around its starting
position is related to the diffusion constant. For a classical particle undergoing Brow-
nian motion in one dimension, the mean-square displacement (MSD) is related to the
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diffusion coefficient by
lim
t→∞

⟨(x− x0)
2⟩ = 2Dt . (2.33)

The quantum exciton diffusion can be calculated by extending this principle to the
excitonic wave function. In the site basis, an exciton can be seen as a quasi-particle
with a quantum probability density for its position. To study the diffusion, one can
start with a fully localized exciton at position x0 in the middle of the aggregate.
The evolution of the wave function can then be simulated using the NISE method to
propagate the starting wave function using Eq. (2.28). For every time step, the MSD
can then be calculated. Just like a particle undergoing Brownian motion, the exciton
will diffuse over the sites of the aggregate.

For a system with no static disorder, the MSD typically starts out quadratically,
signifying ballistic motion, and then rises linearly on longer timescales. The diffusion
constant can be calculated by fitting a linear function to the tail of the MSD evolution.

t

(x
x
0
)2

Figure 2.3: MSD over time, aver-
aged over many trajectories of the

Hamiltonian.

The simulation model is stochastic and the Hamiltonian therefore incorporates
random noise. The MSD values need to be averaged to account for this. To achieve
this, the system is evolved from the start for many realizations of random numbers
and the MSD is then averaged over these realizations.

To calculate the MSD for a single evolution, it is necessary to calculate the ex-
pectation value of the operator (x̂ − x0)

2. x0 is chosen such that it is in the middle
of the chain. If there are N total sites (and N is odd) and the first site is at x = R,
the middle is x0 = N+1

2 R where R is the inter-site distance. Here x is the position
operator with the following eigenvalues: x̂ |n⟩ = nR |n⟩. Using this we can work out
the MSD operator. Its matrix elements are

(x̂− x0)
2
ij = ⟨i| (x̂− x0)

2 |j⟩ =
(
(iR)2 − 2iRx0) + x20

)
δij . (2.34)

As expected, the MSD is 0 for the state where the exciton is localized at x0.
To get a value for the diffusion, ⟨(x−x0)

2⟩ = 2Dt is fitted to the linear tail of the
simulation data. It is only possible to get a good fit if the evolution is long enough for
the linear tail to become well defined. The simulation time step is constrained by the
correlation time: ∆t≪ Λ−1 = τc. If the diffusion is too slow, it will take a long time
to simulate the evolution until the MSD becomes linear. Furthermore the noisiness



Chapter 2. Methods 12

(and therefore the fit) of the MSD depends on the amount of realizations that are
averaged over. This is a trade-off between speed and accuracy.

Edge effects

For small chains or long times, the exciton diffusion will reach the edge of the chain.
When this happens, the wave function will have no more new sites to spread to and
the MSD will begin to level off.

0 t 

0

(
x

x
0
)2

Figure 2.4: Saturation is reached
after diffusion over large time scales.

The asymptotic maximum value of the MSD is reached when the exciton diffuses
uniformly across all sites and equilibrium is reached, so the wave function coefficients
will be

lim
t→∞

|cm(t)|2 = lim
t→∞

|cn(t)|2 = constant (2.35)

and since
∑N

k=1 |ck(t)|2 = 1, we have

lim
t→∞

|cm(t)|2 = 1

N
. (2.36)

The wave function is then

|ψeq⟩ =
N∑
k=1

e−iϕk

√
N

|k⟩ (2.37)

where e−iϕk is an unknown phase factor.
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The asymptotic MSD value can now be calculated using x0 = N+1
2 :

lim
t→∞

⟨(x̂− x0)
2⟩ = ⟨ψeq| (x̂− x0)

2 |ψeq⟩ =
N∑

k,l=1

⟨k| e
iϕk

√
N

(x̂− x0)
2 e

−iϕl

√
N

|l⟩

=
1

N

N∑
l=1

(
(lR)2 − 2x0lR+ x20

)
=
R2

N

(
N(N + 1)(2N + 1)

6
− 2

(
N + 1

2

)(
N(N + 1)

2

)
+N

(
N + 1

2

)2
)

=
N2 − 1

12
R2 .

(2.38)

This is also confirmed by the simulations. It is possible to make a rough estimate
on when the edge effects start to become significant. In parallel to diffusion for a
classical particle, the MSD can be equated to the variance of a Gaussian distribution
signifying the position spread of the exciton. It is reasonable to assume edge effects
start to come into play when the 3σ tails reach the chain edges: 3σt ≈ N

2 R. Therefore
the MSD will start transitioning around

⟨(x̂− x0)
2⟩t =

N2

36
R2 . (2.39)

To ensure this limit is not crossed, the chain length can be increased or the evolution
time decreased.

2.4.2 Quantum Green-Kubo expression

Instead of calculating the diffusion using the MSD, it can be calculated in an al-
ternative fashion using an expression derived from the Green-Kubo formula. For a
one-dimensional classical system, this equation connects the integral two-time velocity
auto-correlation function to the diffusion constant [35]:

D =

∫ ∞

0
⟨v(t)v(0)⟩dt . (2.40)

For a quantum system like the one in this thesis, the Green-Kubo relation involves
the quantum flux operator which serves as the quantum analogue of velocity. The
flux operator is defined as the time derivative of the exciton position operator [23]:

ĵ(u) =
i

h̄

∑
n,m

(u · rnm) Jnm |m⟩ ⟨n| . (2.41)

u is the unit vector along which the diffusion will be calculated and rnm the vector
connecting sites n and m. In the quantum case, the correlation function takes a trace
of the product of operators, combined with a thermal average [36]. The Green-Kubo
relation for the exciton diffusion is then [15]

D(u) =
1

Zs

∫ ∞

0
dt Tr[e−βĤs ĵ(u, t)ĵ(u)] . (2.42)
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Here Zs is the statistical mechanical partition function of the system, Zs =
∑

i e
−βEi ,

β = 1
kBT and Hs the system Hamiltonian. For the calculation, the high temperature

limit is taken in accordance with the HSR model. This implies that the partition
function Zs = N and β = 0. It is important to note that the integral will need to
be performed for disorder realizations of the Hamiltonian and then averaged, just like
with the MSD.

The method of obtaining the integrand of the Green-Kubo relation is similar to
the previous section. NISE is used to calculate the evolution of the flux operator
according to Eq. (2.30):

ĵ(u, t) = Û †(t, 0)ĵ(u, 0)Û(t, 0) . (2.43)

The time evolution operator is calculated with ∆t≪ Λ−1.
To be able to numerically evaluate the improper integral, the integrand must be

well behaved. For typical parameters, the integrand tends to zero nicely for large
values of t. This allows for the approximation where the integral is truncated for high
values of t where the integrand vanishes.

0 t 

0

T
r(
j(
u
,t

)j
(u

))

Figure 2.5: The integrand of the
Green-Kubo relation, Eq. (2.42), av-
eraged over many trajectories of the

Hamiltonian.

2.4.3 HSR Model analytic solution

The MSD and Green-Kubo relation calculations are compared to the HSR model dif-
fusion. Under the assumptions of this model it is possible to derive an analytical ex-
pression for the diffusion starting from the Green-Kubo relation defined in Eq. (2.42).
The evolution of the flux operator is described by the Heisenberg equation of motion
combined with an exponential relaxation with rate Γ [15]:

ĵ(u, t) = e
i
h̄
Ĥ0tĵ(u, 0)e−

i
h̄
Ĥ0te−Γt (2.44)

where Ĥ0 is the unperturbed Hamiltonian containing (if present) the static disorder.
When combined with Eq. (2.42) and transforming to the eigenbasis of Ĥ0 the analytical
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expression for the diffusion becomes

D(u) =
1

N

N∑
µ,ν=1

Γ

Γ2 + (Eµν/h̄)2

∣∣∣ĵµν(u)∣∣∣2 . (2.45)

Here Eµν = Eµ −Eν is the energy difference between eigenstates µ and ν, and ĵµν is
the flux operator in the energy eigenbasis, calculated by

ĵµν(u) = V̂
†
ĵmn(u)V̂ (2.46)

where V̂ is the matrix with the eigenvectors of Ĥ0 as its columns (the matrix that
diagonalizes Ĥ0). It is important to note that if there is static disorder, the diffusion
needs to be averaged over many realizations of static disorder. The power of Eq. (2.45)
lies in the fact that it is not necessary to explicitly evolve the Hamiltonian with its
dynamic disorder. The dynamic disorder is captured in a single parameter, Γ. Because
of this, only one matrix diagonalization is needed to calculate D whereas for the MSD,
Eq. (2.33), and Green-Kubo integral, Eq. (2.42), this needs to be done many times,
one for every time step. It is therefore feasible to simulate much larger chains with
the HSR model.

In the limit of an infinite homogeneous chain (no static disorder) with only nearest-
neighbor interactions the diffusion can be derived [23] as

Dhom =
2R2J2

h̄2Γ
. (2.47)

This expression is expected to hold for finite chains as long as 2πJ/N ≪ h̄Γ, further
simplifying calculations in this regime.
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Chapter 3

Results

In this section, the diffusion is calculated using three different methods as a function
of the bath parameters σ and Λ. Eqs. (2.33) and (2.42) are compared to the HSR
model, Eq. (2.45). The main focus is on homogeneous chains, i.e. the static disorder
σs equals zero. One choice of static disorder will be considered after.

In order to test the NISE-derived methods for calculating the exciton diffusion,
the parameter range to simulate has to be carefully selected. This must be done such
that the model can be compared with the HSR model. As stated in Section 2, the
HSR model assumes a white noise heat bath. In the context of the tested model, this
effectively means that Λ−1 → 0 and κ ≫ 1. It is therefore expected that the NISE
diffusion calculations agree with the HSR model for these parameter regimes.

The diffusion calculations for the MSD and Green-Kubo methods were done using a
parallelized program written in C++, utilizing the Eigen [37] library for linear algebra
operations. The program was parallelized so multiple trajectories can be calculated
simultaneously. The calculations were performed by the Peregrine HPC cluster of the
University of Groningen.

The chain length for each set of parameters was chosen to provide a balance
between performance and accuracy. The diffusion constant is independent of N as
long as both methods are well behaved for that particular choice of N . Furthermore,
for every calculation the value J = 300 cm−1 was used and every other parameter was
defined relative to J.

3.1 Homogeneous chain

In figure 3.1 the diffusion constant D as a function of Γ was numerically calculated
and plotted in log-log. The value of κ was fixed to 1 and so the parameters vary from
h̄Γ = σ = h̄Λ = 0.1J to h̄Γ = σ = h̄Λ = 10J . The choice of κ = 1 corresponds to the
intermediate modulation regime. Fixing κ allows one to see the potential shortcomings
of the white noise HSR model compared to the colored noise models.

The general features of all models match well, with a monotonic decrease as Γ
increases. The HSR model follows a straight line, corresponding with -1 exponent of
Γ in Eq. (2.47). This is expected since the condition 2πJ/N ≪ h̄Γ was true for every
point. Note that the MSD and Green-Kubo methods agree with each other well on
this range of parameters. The difference between the two at low Γ is caused by edge
effects and convergence problems if the dynamics are slow and the dynamic disorder
is small.

Looking at the behavior at low Γ it becomes evident that the HSR model under-
estimates the diffusion in this regime. This signifies that a colored noise bath is more
effective at inducing diffusion than white noise at low Γ/Λ/σ.

Finally, note that while the independent variable used was Γ, due to the fixing
of κ it is the same as Λ or σ/h̄. This explains why the models converge for high Γ;
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As Γ increases, so does Λ and the white noise limit is approached so that the HSR
model becomes valid again. It is an encouraging result that the MSD and Green-Kubo
formulae agree with the HSR model in this limit, showing that indeed the colored noise
models reduce to the white noise model for Λ−1 → 0.

100 101

h̄Γ/J

10−2

10−1

100

D
/R

2
(f

s−
1 )

MSD
Green-Kubo
HSR

Figure 3.1: Diffusion constant for κ = 1. As a result, Γ = Λ =
σ/h̄.

Next, using the three models, the diffusion constant was calculated for a single
value of Γ while varying σ and Λ and plotted log-log in figure 3.2. This way of varying
the parameters has the same effect as varying the modulation strength κ, illustrated
by the conversion table 3.1. Note that since Γ is fixed the HSR model yields the same
value for every choice of σ and Λ. The effect of colored noise can now be seen for each
modulation regime.

In the slow modulation limit, the HSR model gives a lower value for the diffusion,
with the difference increasing as κ goes lower. This is expected since the HSR is
only valid in the fast modulation limit. The colored bath diffusion models decrease
monotonically over the sampled range and appear to converge to a constant value for
high κ. Note that the HSR model follows a straight line with slope -1 as expected
from Eq. (2.47).

One would expect that the three methods converge for κ ≫ 1 and although both
seem to yield a constant diffusion in the limit, the MSD and Green-Kubo methods
converge to a lower value. A possible explanation is the way Γ is calculated from σ
and Λ to be able to relate to the HSR method. In the MSD and Green-Kubo methods,
σ and Λ determine the speed and strength of the fluctuations in the site energies and
which are then related to Γ. However, because Γ in the HSR model represents the
dephasing rate of the elements ρkl in the eigenbasis, it relates to the fluctuations in
the eigen energies and not the site energies. Thus, there could be some ’effective’
dephasing rate, Γeff , that differs from the quantity Γ = σ/h̄2Λ. This effective value
should then be used to calculate the equivalent HSR diffusion. In this case, since the
diffusion constant decreases with Γ, one expects to find that Γeff > Γ.
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κ σ/J h̄Λ/J

0.316 0.316 0.1
0.447 0.447 0.2
0.707 0.707 0.5

1 1 1
1.414 1.414 2
2.236 2.236 5
3.162 3.162 10

Table 3.1: Conversion key for the parameter values in figures 3.2 and
3.3.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
κ

10−1

100

D
/R

2
(f

s−
1 )

MSD
Green-Kubo
HSR

Figure 3.2: Diffusion constant for h̄Γ = J . σ varies with Λ as
σ/J =

√
h̄Λ/J

3.2 Static disorder

Finally, the diffusion constant was calculated for a chain containing static disorder.
The static disorder was taken to be of intermediate strength: σs = J . The same
calculation as done for figure 3.2 was done here but this time the calculations were
also averaged over realizations of static disorder. The result is plotted in log-log in
figure 3.3.

One immediately observes that calculated diffusion values are much lower than for
the homogeneous case. The explanation is simple: the difference in energy of adjacent
sites acts like an obstacle for the diffusion. Locally, there will be some site pairs where
the energy difference is large compared to the dynamic fluctuations. It then takes time
for an exciton to diffuse across such a barrier. Another observation is that there is
an optimum for the diffusion now. The optimum appears around κ = σ/J = 1. This
coincides with σs = σ. In this regime, the fluctuations are strong enough to overcome
the barriers of the static disorder, but not too large to hamper the diffusion. After
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the optimum is reached, the same decreasing behavior as in the homogeneous case is
seen.

Like in figure 3.2 one expects the three methods to agree in the limit of large κ.
Again, the HSR model yields a larger value for the diffusion in this limit. This has
been commented on in the previous section.

Finally, note that the MSD and Green-Kubo methods do not agree as well for
small κ in this plot. The more accurate method is the MSD. This will be explained
in the next section.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
κ
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Figure 3.3: Diffusion constant for h̄Γ = J , with a static disorder
σs = J . σ and Λ are varied such that σ/J =

√
h̄Λ/J .

3.3 Comparison between colored-noise methods

While the two colored-noise models use the same underpinning propagation method
(NISE), they calculate the diffusion in two different ways. The convergence rate and
accuracy differ depending on the parameter values. Each method’s strengths and
weaknesses will be discussed in this section.

3.3.1 MSD method

The accuracy of the MSD method is dependent on how long the diffusion process is
run. The diffusion is calculated by fitting a straight line to the tail of the MSD and
thus, the longer the diffusion, the better the fit will be and the better the accuracy.
The key factor is how long it takes for the MSD to become fully diffusive. In extreme
cases where the diffusion starts out slowly, it is possible to run into edge effects before
there is enough data for a proper fit. This happens if the fluctuations are small
and the dynamics slow. In this case the chain length has to be increased, severely
slowing the calculation. For homogeneous chains, there is a saving grace. The MSD
in homogeneous chains starts out quadratically in time, corresponding to a ballistic
diffusion regime [38]. The functional form for the MSD in absence of edge effects
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becomes
⟨(x(t)− x0)

2⟩ = ab

(
t− a

[
1− exp

(
− t

a

)])
. (3.1)

The entire range can then be fitted to improve accuracy, reducing the need for larger
chain sizes.

Another factor is the statistical averaging that has to be performed for the dynamic
and static disorder. The fluctuations in the MSD trajectory increase when σ and σs
are large. To maintain the same level of accuracy, the amount of realizations has
to be increased. When both static and dynamic disorder are present the effect is
compounded. However, the averaging nature of fitting the slope means that this
effect can also be dealt with by increasing the amount of time steps.

3.3.2 Green-Kubo method

The Green-Kubo method can be evaluated by looking at how the integrand of Eq.
(2.42) behaves. In the ideal case, the integrand decays to zero quickly so that the
integral can be calculated without needing to simulate until large t.

The decay rate of the integrand increases with dynamic disorder, so the required
simulation time decreases as σ increases. Interestingly, the speed of the dynamics,
Λ, has almost no effect on the integrand decay rate. This is explained by noting
that the decay of the integrand is determined by Eq. (2.44). In the eigenbasis, the
equation takes the same form. If one thinks about a simple isolated two site system,
it is evident that the time evolution will oscillate back and forth. Adding disorder
causes dephasing, such that the autocorrelation will go to zero. The rate at which
this happens is dependent on the distribution width of the eigenstates, the larger the
width the faster the integrand will decay. The width only depends on the dynamic
disorder, σ. Only when Λ is very large it could have an effect on the decay since
motional narrowing will narrow the eigen energy distributions [39]. Finally, adding
static disorder causes the integrand decay rate to further increase.

For a homogeneous chain, the Green-Kubo method is less well behaved when
σ ≪ J . Besides a long simulation time, the integrand also overshoots zero and then
finally converges to zero from below. This wide trough gets less deep and eventually
disappears when the chain size N is increased, although it makes the simulation much
more computationally expensive since this method has a time complexity of O(N3).

When static disorder is introduced, the trough problem is more severe. For σ < σs
it becomes unfeasible time-wise to increase the chain size enough to mitigate the
problem, resulting in loss of accuracy. It is better to use the MSD in this range.

Finally, this method also experiences more statistical fluctuations for large σ,
especially in the tail of the integrand. This is easily mitigated by running more
realizations.

3.3.3 Direct comparison

The fact that both methods give close to the same value for the diffusion constant is
an encouraging result. However, it raises the question: which one is best to use?

In terms of computation the Green-Kubo method is slower since it performs matrix
multiplications while the MSD method performs matrix-vector multiplications. In the
regime where both methods work well, the performance is similar. However, in the
breakdown regime for a homogeneous chain, σ ≪ J , the MSD is the better choice.
By fitting the ballistic part of the MSD the simulation time is kept short. The Green-
Kubo method in this case needs to go to much higher t and N to obtain the same
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accuracy, making it slower. For a chain containing static disorder, the Green-Kubo
method struggles for σ < σs, needing a much higher N than the MSD method which
does not have this problem.

The calculations in this thesis were all done for the high temperature limit. The
MSD method is based on NISE and there finite temperature effects are not encoded
in it. In contrast, the Green-Kubo integral, Eq. (2.42) has a factor to correct for these
effects. For calculations incorporating the temperature dependence, the Green-Kubo
method then becomes the method of choice.
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Chapter 4

Conclusions

4.1 Results and interpretation

In this thesis, the excitation energy diffusion was studied for linear 1D aggregates
coupled to a heat bath environment. The sites in the aggregates are coupled in nearest
neighbor fashion with coupling strength J , which was kept constant with value J =
300 cm−1. The interaction of the heat bath with the system gives rise to a net energy
transport when a site is excited. The bath is modeled by a continuous distribution of
harmonic oscillators, characterized by a spectral density function. The spectral density
shape, also referred to as color, is determined by Λ, the inverse timescale of the bath
dynamics. The main goal of this thesis is to investigate and compare the effect of
colored noise on diffusion as opposed to white noise. The diffusion was calculated and
compared between models for various combinations of the static disorder, σs, dynamic
disorder, σ and dynamics timescale Λ−1.

The diffusion was modeled using two colored noise models and compared to the
white noise based Haken-Strobl-Reineker (HSR) model. Both colored noise models
used Numerical Integration of the Schrödinger Equation (NISE) to calculate the time
evolution of the system. The first model calculated the mean-square displacement
(MSD) of a single exciton by evolving the exciton wave function using NISE. The
second model used NISE to calculate the auto-correlation of the quantum flux oper-
ator, which was then integrated in a quantum Green-Kubo expression. Note that the
Green-Kubo method is the more general version of the HSR model.

The simulations were performed by a specially written parallelized computer pro-
gram that was run on the Peregrine HPC cluster of the University of Groningen. The
parameter space was sampled according to three different setups.

For a homogeneous chain, the ratio between dynamic disorder and bath dynamics
time scale was kept constant. The MSD and Green-Kubo calculations were plotted
along with the HSR calculation. The results showed that the colored noise models
agree well with each other. For large Λ the colored and white noise models all agreed
as expected. Elsewhere the diffusion was underestimated by the HSR model. The
behaviour of the diffusion constant for the three methods is roughly the same: the
diffusion monotonically decreases for this parameter range.

To see the effect of decoupling the HSR dephasing rate into disorder strength
and inverse dynamics timescale, the dephasing rate was kept constant for the second
setup. This resulted in the HSR model giving the same value for the diffusion for
every σ/Λ pair chosen this way. On the sampled parameter range, the colored noise
models again agreed well. The diffusion decreased with increasing σ and Λ, seemingly
converging to a constant value in the white noise limit. Surprisingly, the HSR value
did not coincide with the colored noise limiting value. This is possibly explained by
the difference between the way Γ is calculated from the site energy fluctuations, while
in the HSR model Γ represents the dynamics in the eigenbasis.
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In the third scenario, a chain containing static disorder was simulated for a fixed
value of Γ. The static disorder was set at σs = J . The diffusion was overall lower
than for a homogeneous chain, which is explained by the fact that the static disorder
acts like a barrier that an exciton has to overcome to hop to the next site, slowing
the diffusion. The diffusion showed an optimum around σ = σs. Around this point,
the dynamic disorder becomes large enough to overcome the static disorder but not
too large to reduce diffusion. The scaling for large σ and Λ is the same as for the
homogeneous case. The same argument as for the homogeneous case applies to explain
the difference between the convergence value of the colored models versus the HSR
model.

A key takeaway from these calculations is the fact that colored noise makes a
significant difference for the parameters tested here. The diffusion seems to be signifi-
cantly underestimated by the HSR model. Therefore, when calculating diffusion away
from the white noise limit (Λ → ∞) it is important to use a method that incorporates
a more general, colored, bath spectral density.

4.2 Outlook

Due to time constraints, only a select few parameters were sampled in this research.
Two slices of the parameter space were taken, Γ = σ2

h̄2Λ
= J and κ = Λ

σ = 1. Other
possible interesting slices could be those at constant σ or Λ, to fully untangle the effects
of those two parameters. More extreme parameters regimes could also be explored to
give insight into other regimes potentially relevant for light harvesting systems.

The emphasis of this thesis was on homogeneous chains. Only a single value of
static disorder was used. It might therefore be worth investigating how the methods
scale and compare with a range of values of static disorder present. Additionally,
it may be possible to calculate an effective Γ that explains the difference between
the colored noise results and the HSR model. This could be done by looking at the
eigenstates as they evolve. Finally, using the Green-Kubo integral the temperature
dependence of the diffusion can be studied.
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