
Creating a reduced order Digital Twin
through balanced truncation

Bachelor Integration Project

Industrial Engineering & Management

Authors:
J.J.G.B. Giesen, s3154831

First supervisors:
prof. dr. ir. J.M.A. Scherpen
MSc. Arijit Sarkar

Second supervisor :
dr. ir. M. Taheri

June 17th, 2022

”Handeln ist leicht, denken schwer;
nach dem Gedanken handeln unbequem.“

JOHANN WOLFGANG VON GOETHE

Acknowledgements
For all the continuous helpful support, I want to thank MSc. Arijit Sarkar.

2

Abstract
To mitigate increasingly complex systems in the field of engineering the Digital Twin is created.
A one-one virtual representation of a physical system that is fed with past or real-time data.
Digital Twins are used to provide real-time monitoring, predictive maintenance, and many
more applications that are still being researched.

The dynamics of the physical system are described by the differential equations put in matrix
form that is called the state-space model. Large-scale systems are computationally expensive,
therefore model order reduction is performed. The number of states in the model is reduced
which enables faster simulations and reduces the complexity of the system. This should be
done in such a way that it still approximates the original model accurately enough.

To perform model reduction, two balanced truncation methods are considered in the scope
of this research: generalized balancing and extended balancing. This research provides an
comparative overview of the two balanced truncation methods and uses them to perform
model reduction on a mass-spring-damper system with the aim of structure preservation.

A literature study is performed to create the theoretical framework that provides the re-
quirements for the MATLAB model. This model is used to compare the outputs of the two
balancing methods in the time and frequency domain and to see if structure preservation is
possible for the mass-spring-damper system.

Generalized and extended balancing proved to be very similar in their outputs for all sizes
of the reduced-order models. Furthermore, extended balancing does provide more benefits,
such as a less conservative error bound and more degrees of freedom. Preservation of the
Port-Hamiltonian structure proved possible in the literature, but preserving the structure of
the physical system is still an open problem. In this research, the Port-Hamiltonian and the
physical structure of the mass-spring-damper system could not be preserved using the created
MATLAB model.

This research provides an in-depth comparison of generalized and extended balancing and sets
up model requirements for creating a MATLAB model that aims for structure preservation.

3

Contents

1 Introduction 7
1.1 Problem Statement . 8
1.2 Research Objective . 8
1.3 Research Questions . 8
1.4 System Analysis . 9
1.5 Methods . 9

1.5.1 Literature review . 9
1.5.2 MATLAB modelling . 9

2 Theoretical Framework 10
2.1 Model reduction methods . 10

2.1.1 Dynamic Mode Decomposition . 10
2.1.2 Reduced Basis method . 10
2.1.3 Balanced truncation . 11

2.2 Generalized Balancing (GB) . 11
2.3 Extended Balancing (EB) . 12
2.4 Model Order Reduction . 14

2.4.1 Error bound . 14

3 Model Description 15
3.1 Port-Hamiltonian structure . 15
3.2 Derive a state space model . 15

3.2.1 Deriving equations . 15
3.2.2 Large Mass-Spring-Damper system . 16

3.3 MATLAB code . 17
3.3.1 Generalized Balancing . 17
3.3.2 Extended Balancing . 17
3.3.3 SeDuMi Solver . 18

4 Generalized vs Extended Balancing 19
4.1 Optimal values for Γo and Γc . 19
4.2 Comparison of GB and EB . 20

4.2.1 Hankel Singular Values . 20
4.2.2 Error bound . 20

5 Original vs Reduced Order Models 22
5.1 Output comparison . 22

5.1.1 Output plots . 22
5.1.2 Simulation times . 24
5.1.3 H∞-norm . 25

5.2 Bode plots . 25

4

6 Structure Preservation 28
6.1 Preservation of an electrical network . 28
6.2 Preservation of the Mass-Spring-Damper structure 29

7 Discussion 30

8 Conclusion 31

Bibliography 32

A MATLAB code 34

5

Acronyms
CTLTI continuous-time linear time-invariant. 15

DMD Dynamic Mode Decomposition. 4, 8, 10

EB Extended Balancing. 4, 12, 14, 15, 17–21, 23–25, 27–31

GB Generalized Balancing. 4, 11, 14, 15, 17, 19–21, 23–25, 30, 31

LMI Linear Matrix Inequality. 9, 12, 17, 18, 30

MOR Model Order Reduction. 4, 8–11, 14, 24, 28

NPRA Norwegian Public Roads Administration. 7

PH Port-Hamiltonian. 15, 28–31

RB Reduced Basis. 4, 10

ROM Reduced Order Model. 8, 9, 11, 14, 15, 17, 20–29, 31

SVD Singular Value Decompostion. 10, 12

6

1 Introduction
In the last decades, advances in computing, communication, and technology have led to
increasingly complex systems [Grieves, 2019]. A method created to mitigate this complexity is
a Digital Twin model, a one-on-one virtual representation of the physical system it represents,
called its Physical Twin [Grieves, 2019]. The virtual representation allows the user to simulate
changes that could be made to the physical system before actually implementing them or see
changes that occur in the physical system in real-time. This helps the user to quickly identify
failures or improvements in large and complex systems, like bridges and turbines.

Two types of Digital Twins can be defined: the Digital Twin prototype, which is used in the
design and manufacturing of products by using simulations, and the Digital Twin Instance,
which is used to gather information about the product during its life cycle [Grieves, 2019].
They are theoretical models that link to the physical system by using measurement data flows
from the physical to the virtual system, and information and process flows from the virtual
to the physical system [Jones et al., 2020]. Due to the versatile character of the technology,
there are many different applications throughout the life cycle of systems. Figure 1.1 shows
different applications already in use in different phases in the life cycle.

Figure 1.1: Possible applications of a digital twin for industry usage [Bilberg and Malik, 2019]

An example of the Digital Twin application can be found in Norway. The Norwegian Public
Roads Administration (NPRA) has created Digital Twins for many of the country’s 5800
bridges. With just a couple of sensors that are tactically placed on the bridge, the NPRA can
create a complete real-time dynamical model showing all the forces and stresses acting upon
the bridge. The models help the NPRA detect possible failures at an early stage by constantly
monitoring the data sent to the cloud so that they can close the bridge before failure occurs.
Furthermore, it reduces the costs of repairs and allows for the implementation of preventive
maintenance as even small changes to the dynamics of the bridge are monitored.

A Digital Twin model requires quick simulations and iterations to enable real-time modeling

7

and iterative optimization. Therefore, techniques are required to transform and reduce large
state-space systems, which are computationally heavy and therefore have long simulation
times, into smaller ones. The leading technique to perform this job is Model Order Reduction
(MOR) [Hartmann et al., 2020]. MOR reduces the system’s complexity, reduces simulation
times, and enables digital services by reducing the number of states in the system, thus the
number of dynamical equations to be solved. Unfortunately, MOR decreases the accuracy of
the Reduced Order Model (ROM) compared to the original system [Hartmann et al., 2020].
Consequentially, techniques exist, such as Dynamic Mode Decomposition DMD and Balanced
Truncation [Benner et al., 2015], to analyze the system such that the reduced-order model
represents the original input/output behavior as accurately as possible.

This research analyses and compares two techniques: generalized balanced truncation and
extended balanced truncation [Borja et al., 2021]. After that, extended balanced truncation is
used to create a Digital Twin prototype model of a physical system. A mass-spring-damper
system is used for model reduction, which is widely used as a basis to represent other
mechanical systems [Yamanaka et al., 2018].

1.1 Problem Statement
Model Order Reduction using balanced truncation cannot always ensure the preservation of
the original structure of a physical system.

1.2 Research Objective
A clear and SMART research objective is defined from the problem statement, and it embeds
the goal of the research and the final deliverables.

This research aims to compare generalized and extended balanced truncation through a
literature study and with the use of a MATLAB model, to create and validate a Digital Twin
model that can preserve the original structure of a physical system in MATLAB.

1.3 Research Questions
The problem analysis and research objective are translated into the following research question:

What is required to create a Digital Twin model of a physical system in MATLAB by using
balanced truncation that preserves the original structure of the system?

To answer this central question, three subquestions are defined:

SQ1: What are the differences between generalized balanced truncation and extended balanced
truncation?

SQ2: Which model requirements facilitate the design of a reduced order Digital Twin model
in MATLAB?

SQ3: What is required to preserve the physical structure of the system using balanced
truncation?

8

1.4 System Analysis
A simplified system of creating a Digital Twin of a physical system is shown in figure 1.2. The
boxes with solid lines follow the scope of this research. This research focuses on creating a
state-space system from a mass-spring-damper system and uses the two mentioned balancing
techniques, whereafter MOR can be applied to derive a ROM. This ROM can then be used to
create a Digital Twin of a physical system that will be defined during the research. Two other
MOR techniques will be highlighted shortly to give an overview of existing techniques, but
these will not be used for further research.

Figure 1.2: System description of the creation of a Digital Twin

1.5 Methods
1.5.1 Literature review
To gain more knowledge on generalized and extended balancing a literature study is performed.
The literature study is used as the basis for the comparison between the two balancing
methods and to find the requirements to design a Digital Twin of the mass-spring-damper
system in MATLAB. After that, a list of requirements and steps to be taken is created that
enables the creation of a MATLAB model to validate the findings.

1.5.2 MATLAB modelling
MATLAB is used to create a balanced ROM that allows for simulations with changing variables.
Therefore, it is possible to compare the ROM’s to each other and the original model for different
sizes of the state-space system. In MATLAB the solver ”SeDuMi” is used to solve the Linear
Matrix Inequality’s (LMI) which will be further elaborated on in section 3.2.3.

9

2 Theoretical Framework
In the field of MOR many different techniques are used. As too many exist to fit into the
scope of this research, next to balanced truncation, two other techniques will be highlighted in
this section. Thereafter, an explanation is given on why balanced truncation is the technique
that is used in this research.

2.1 Model reduction methods
2.1.1 Dynamic Mode Decomposition
DMD is a data-driven technique that does not require any knowledge of the equations of
motion of the system. This method only requires measurement data that is acquired from
numerical simulations or laboratory experiments [Schmid, 2010]. DMD attempts find the most
important dynamical characteristics of the system which are: resonance, spectral properties,
and unstable growth modes [Proctor et al., 2016]. This is done by performing the following
steps:

1. Data is collected of the state of the system by taking a snapshot of the state at each
point in time during a certain time span. This results in a large number of data points
per time unit.

2. The gathered data points are then organized into two matrices X and X’. Each column
in the X matrix represents a snapshot of the measurement where every entry is a data
point. The X’ matrix is almost identical to the X matrix except for the fact the first
column is not the point x1 but x2.

3. To find the matrix A that we represents the underlying system the following equation is
used:

A = X ′X (2.1)

Since A is usually too big and computationally heavy to compute, A is approximated by
taking the Singular Value Decompostion (SVD) of X:

X = UΣV T (2.2)

A can then be approximated in the following way:

A ≈ X ′V Σ−1UT (2.3)

The dimensions of the matrices can then be reduced by eliminating states with low singular
values.

2.1.2 Reduced Basis method
The Reduced Basis (RB) approach has two main goals: real-time modelling for purposes such as
estimation and control, and simulation and statiscal analysis for design [Boyaval et al., 2010].
Fundamentally RB is a method of discretization that aims to approximate an accurate output.
There are two main steps in the RB method:

10

1. Offline step: This is the most computationally heavy step of the process. A large sample
of parameters is used to learn what number of N parameter values can be used in the
next step. The algorithm approximates once for all how many parameters are required
to make an accurate approximation of the original system in the next step.

2. Online step: In this step iterative approximations are made for the values of the
parameters. Since the computationally heavy part is done in the offline step, this step
can be iterated many times at high speeds.

This method uses a posteriori error bounds which means that the error bound is computed
with the use of the computed solution and not the exact one. This provides an error between
the reduced and the original system which is used to check the accuracy of the solution
[Haasdonk and Ohlberger, 2008].

2.1.3 Balanced truncation
Balanced truncation is widely chosen as a method for model reduction as it preserves the
model’s stability and has a priori error bounds [Gugercin and Antoulas, 2004] which means
that the bound depends on the exact solution and is already set beforehand. Consequently,
this allows for a wide choice of the state space dimension and makes it suitable for large-scale
systems [Mehrmann and Stykel, 2005]. It is based on the observability and controllability
Gramians of the system, which are matrices that contain information about the controllability
and observability of each state [Sandberg, 2008]. The Gramians are basic in standard balancing
and get more extensive in generalized and extended balancing. The more extensive Gramians
allow for more degrees of freedom that can be used to improve the error bound and possibly
impose a certain structure to the ROM [Borja et al., 2021] as will be further elaborated on in
chapters 4 and 6, respectively. Thus, balanced truncation is used as the method for model
reduction as it preserves the system’s stability and has a priori error bounds.

This paper will focus on generalized and extended balancing, thus to get a better understanding
of the two balancing techniques a literature review is performed. In the following sections
the steps taken in generalized balancing, extended balancing and MOR are explained. The
following state-space system is considered:

G :
{

ẋ = Ax + Bu

y = Cx

2.2 Generalized Balancing (GB)
This technique aims to give a weighting value to each state according to their controllability
and observability. The highest value means that the corresponding state captures the most
input-output information [Brunton and Kutz, 2019]. This can be achieved by equalizing the
controllability (Wc) and observability (Wo) Gramians [Scherpen, 2005]. The Gramians are
defined as follows:

Wc =
∫ ∞

0
eAtBBT eAT tdt (2.4)

Wo =
∫ ∞

0
eAT tCT CeAtdt (2.5)

11

To best way to calculate the Gramians is by solving the Lyapunov inequalities
[Scherpen and Fujimoto, 2018]:

AWc + WcA
T + BBT ≤ 0 (2.6)

AT Wo + WoA + CT C ≤ 0 (2.7)

These Gramians should be equalized such that the balancing coordinate transformation T
makes them equal, diagonal, and with eigenvalues σ2 on its diagonal [Brunton and Kutz, 2019]
:

T −1WcWoT = Σ2 (2.8)

Ŵc = Ŵo = Σ (2.9)

The matrix Σ2 can be found by taking the SVD of the matrix multiplication WoWc. The values
on the diagonal of Σ are called the Hankel singular values, which express the importance of a
state in capturing input to output information [Scherpen, 2005]. High values correspond to
states that capture much information, and low values to states that do not and thus can be
truncated. After that, the matrix T can be found by solving equation 2.8.

Ŵc and Ŵo are the balanced Gramians and are defined as follows:

Ŵc = T −1WcT
−T (2.10)

Ŵo = T T WoT (2.11)

This information can then be used to start truncating states which will be further explained
in section 2.4

2.3 Extended Balancing (EB)
EB uses the generalized balanced Gramians and extends them with two main advantages: the
error bound can be reduced and it results in extra degrees of freedom that allows to impose a
specific structure on the [Borja et al., 2021]. The extended controllability and observability
LMI can respectively be defined as follows:

(
−WoA − AT Wo − CT C Wo − αS − AT S

Wo − αST − ST A S + ST

)
≥ 0 (2.12)

 −PA − AT P −P + βR + AT R −2PB
−P + βRT + RT A R + RT 2RT B

−2BT P 2BT R 4I

 ≥ 0 (2.13)

Where the extended observability Gramian consists of Wo, S, and α and the extended
controllability Gramian of P, R, and β. P is the inverse of the generalized controllability
Gramian (P = W −1

c). As these LMI’s are difficult to solve, we try to solve the following
simpler LMI’s:

2αWo + 2Γo − Θo ≥ 0 (2.14)

12

2βWc + 2Γc − BBT − Θc ≥ 0 (2.15)

where α and β > 0 are constants such that βWc + Γc > 0 and αWo + Γo > 0. Furthermore,
Θo and Θc are defined as follows:

Θo = (Γo − WoA)X−1
o (Γo − AT Wo) (2.16)

Θc = (−ΓcP + A + BBT P)X−1
c (−PΓc + AT + PBBT) (2.17)

with
Xo = −WoA − AT Wo − CT C (2.18)

Xc = −PA − AT P − PBBT P (2.19)

Γc and Γo are symmetric matrices defined as follows:

Γo = ϵoWo (2.20)

Γc = −ϵcWc (2.21)

The matrices Γo and Γc can be chosen as desired by changing the values of ϵo and ϵc, where
ϵo > 0 and 0 < ϵc < α. The selection of these matrices is important as this can improve the
error bound or help preserve the system’s physical structure after model reduction. With
more degrees of freedom (more variables and matrices) in the extended Gramians, the chance
and options are greater to find the right structure [Sandberg, 2010]. How a change of the Γ
matrices affects the system will be further tested and discussed in chapter 3.

After computing the values for all these different variables it is then possible to compute the
extended Gramians with equations 2.22 and 2.23

S = Q(αQ + Γo)−1Q (2.22)

W = (βP + Γc)−1 (2.23)

Contrary to equation 2.9, a system is extended balanced if the extended observability Gramian
is equal to the inverse of the extended controllability Gramian [Borja et al., 2021]. These are
then both equal to the diagonal matrix Λ:

S = W −1 = Λ (2.24)

Again, a transformation matrix We can be found such that its inverse balances the state and
equals both Gramians:

W −1
e W −1SWe = Λ2 (2.25)

This transformation matrix can be found with the use of MATLAB or another computing
algorithm. The values on the diagonal of the matrix Λ are again ranked in order from highest
to lowest.

13

2.4 Model Order Reduction
After using either GB or EB it is possible to reduce the number of states in the system. This
can be done by eliminating the states that are ranked the lowest in the Σ and Λ matrix which
corresponds to the lower rows. We can define the balanced model as follows [Borja et al., 2021]:

ẋ = Ax + Bu

y = Cx
(2.26)

Where A, B, C are the new transformed matrices which are defined in equation 2.27 and x
represents the transformed states given by x = W −1

e x. Below T is used as the transformation
matrix but for EB this would be the transformation We.

A = T −1AT, B = T −1B, C = CT (2.27)

These can then be split up as follows:

A =
[
A11 A12
A21 A22

]
B =

[
B1
B2

]
C =

[
C1C2

]
x =

[
x1
x2

]
(2.28)

As mentioned before only the most controllable and observable states will remain in the ROM.
x1 represents the number of k states that are to be preserved in the model. This results in the
final reduced order model:

Ĝ :
{ ˙̂x = Âx̂ + B̂u

ŷ = Ĉx

where
x̂ = x1, Â = A11, B̂ = B1, Ĉ = C1 (2.29)

2.4.1 Error bound
One of the benefits of balanced truncation is that it has an a priori error bound
[Gugercin and Antoulas, 2004]. This is defined in section 2.1.3 as an error bound that depends
on the exact solution an is already set beforehand. Equation 2.30 displays that the error bound
depends on the size of the Hankel singular values of the states that are not included in the
ROM. Therefore, the error bound can be determined if the Hankel singular values and the
desired size of the ROM are known. If the states that are truncated from the system correspond
to small Hankel singular values, the error bound will be small. Thus it can be concluded that
the ROM is a good approximation of the original model [Scherpen, 2011]. Furthermore, the
error bound only provides the upper bound for the error. Its exact value is determined by
calculating the H∞-norm over that space. The error bound is defined below:

||G − Ĝ||∞ ≤ 2
n∑

j=k+1
σj (2.30)

Where in the left half of the equation ||G− Ĝ||∞ is the H∞-norm that represents the maximum
singular value over that space [Wang et al., 1999]. In the right half of the equation, the bound
is represented by the sum of the truncated Hankel singular values [Borja et al., 2021].

As EB will provide a less conservative error bound and extra degrees of freedom, this technique
is the best to use for structure preservation.

14

3 Model Description
With the use of the theoretical framework in chapter 2, a MATLAB model is created. This
model is used to gather more data about balanced truncation, compare GB and EB, and
test different values and sizes of the ROM. The state-space model that is used is in the
Port-Hamiltonian (PH) framework. First, an explanation will be given of this framework, and
after that, the state-space model will be explained.

3.1 Port-Hamiltonian structure
The data set that will later be used does not just provide the A,B,C, and D matrices to the
system. The A matrix still has to be compiled from the F and H matrices in the PH framework.
The Hamiltonian, in equation 3.1, is just as the well known Lagrangian, in equation 3.2, a
framework to represent the total energy in the system. It is comprised of the kinetic energy
(T) and the potential energy (V), where the Hamiltonian is the sum and the Lagrangian the
difference of these energy’s.

H = T + V (3.1)

L = T − V (3.2)

The F matrix, the first matrix after the equal sign in equation 3.3, exists out of a zeros block,
two identity blocks (I) and one block with the damping coefficients (D). The H matrix, right
of the F matrix, exists out of two zeros blocks, one block with the spring constants K, and
one block with the inversed masses (M). The A matrix can be found by multiplying the F and
H matrices. The B matrix is all zeros except for the 101st entry where G represents a vector
with all zeros and one 1 entry.

[
q̇
ṗ

]
=
[

0 I100
−I100 −D

] [
K 0
0 M−1

] [
q
p

]
+
[

0
G

]
u (3.3)

3.2 Derive a state space model
3.2.1 Deriving equations
As input to the model, a state-space system is used, which first needs to be created. In this
research we study a continuous-time linear time-invariant (CTLTI) system. If a system is
linear time-invariant, the output of the system will stay the same if the input is applied T
seconds later. The only difference then will be that there is a time delay in the system of
T seconds. To start of, the equations of motion are derived from a 4 mass-spring-damper
system, shown in figure 3.1, that results in a state-space system with 8 state variables. This
system provides the basis for the larger state-space system that is defined in section 3.2.2.
The system, the forces, and the equations of motion can be found in figure 3.2. It is assumed
that no friction or other forces is acting on the system.

15

Figure 3.1: Mass-Spring-Damper system with 4 masses

Figure 3.2: Equations of motion of the 4 Mass-Spring-Damper system

The equations of motion can then be rewritten into state space form. The state space matrices
can be found in equations 3.4 and 3.5

A =

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1‘ 0
0 0 0 0 0 0 0 1

−k1
m1

k1
m1

0 0 −c1
m1

c1
m1

0 0
k1
m1

−k2−k1
m2

k2
m2

0 c1
m2

−c2−c1
m2

c2
m2

0
0 k2

m3
−k2−k2

m3
k3
m3

0 c2
m3

−c2
m3

0
0 0 k3

m4
−k4−k3

m4
0 0 0 −c4

m4

(3.4)

B =

0
0
0
0
1
0
0
0

C =

[
1 1 1 1 0 0 0 0

]
D = 0 (3.5)

3.2.2 Large Mass-Spring-Damper system
For this small system, with only 8 states, it is impossible to truncate any states as they are
all required to describe the system’s dynamics. Therefore, a larger data set is loaded into
MATLAB to simulate a higher dimensional system. This system is described by figure 3.3, and
the state-space model is derived similarly to the smaller system above. This system consists of
200 masses, resulting in 400 states. As this system is very large and expensive to simulate in
MATLAB, the system will be reduced to 100 masses and 200 states. All further simulations

16

are based upon this reduced-order system, called the original system, in the continuation of
this report. The stability of the system is assessed by evaluating the eigenvalues. If all the
eigenvalues have negative real parts, the system is stable, which can easily be checked in
MATLAB with the command ”eig”. Consequently, it is concluded that this system is stable.
As balanced truncation preserves the system’s stability, which is presented in section 2.1.3, it
follows that the ROM is also stable.

Figure 3.3: Mass-Spring-Damper system with 200 masses [Borja et al., 2021]

3.3 MATLAB code
3.3.1 Generalized Balancing
The MATLAB code is constructed using the theoretical framework as presented in Chapter 2.
There are six main steps taken in the code:

1. Importing and creating state space matrices

2. Solving the Lyapunov equations for the controllability and observability Gramians

3. Finding the transformation matrix T

4. Creating the balanced state space system

5. Create ROM

6. Find the error bound for GB

The complete MATLAB code for GB can be found in Appendix A. The code until line 77 is
for GB.

3.3.2 Extended Balancing
As stated in chapter 2, EB is an extension on the generalized Gramians which are used to
calculate the extended Gramians. Therefore, the GB part of the code is required for EB. The
code is extended with the following steps:

1. New constants and matrices are defined

2. The variables α and β are found by solving the LMI’s

3. Solve to find the extended Gramians

4. Finding the transformation matrix We

5. Creating the balanced state space system

6. Create ROM

7. Find the error bound for EB

17

The complete MATLAB code can be found in Appendix A. The additional code for EB starts
at line 78.

3.3.3 SeDuMi Solver
A solver is required to solve the LMI’s to find the generalized Gramians and the values for α
and β. Therefore, the YALMIP toolbox is installed as an add-on to MATLAB. This toolbox
includes multiple programs and solvers that can solve and model optimization problems
[Lofberg, 2004]. SeDuMi is the solver used from the toolbox in this research [Sturm, 1999],
a semidefinite programming solver. This solver is used as it can solve for semidefiniteness
constraints and large scale optimization problems. The solver is used in the MATLAB code in
the following way:

1. Define the solver, SeDuMi, to be used

2. Define number of ”sdpvar” decision variables

3. Define the constraints

(a) The matrix/variable should be positive semidefinite

(b) The LMI to be solved

4. Optimize the constraints and, for the matrices, the values on the diagonal of the matrix

5. Return the numerical value of the decision variables

18

4 Generalized vs Extended Balancing
In this section GB and EB are compared by looking at their Hankel singular values and the
error bound. Before this is done, changes in the values of Γo and Γc are studied since these
matrices influence the outcome of the system.

4.1 Optimal values for Γo and Γc
The decision for Γo and Γc influences the value of α and β as can be seen in equations
2.20 and 2.21. Consequently, these values change both the extended Gramians, as seen in
equations 2.22 and 2.23. The possibility to tweak the values of these matrices and variables
provides extra degrees of freedom that can be used to impose a specific structure on the system
[Borja et al., 2021]. To see the influence of the Γ matrices on the error bound, several runs
are done with different values for ϵo and ϵc, as these decide the values of the Γ matrices, as
can be seen in equations 2.20 and 2.21. For these simulations, the system is reduced from 200
to 100 states.

Table 4.1 shows the error bound for some of the values of ϵo and ϵc that were used. Firstly, it
can be seen that for values between the order of 1e-4 and 8e3, there is no solution available.
This is because the resulting observability Gramian is not positive definite, which means it is
not larger than or equal to zero. Thereafter, the Cholesky factorization cannot be performed
in line 127 of the MATLAB code in Appendix A, which results in an error. Secondly, the error
bound seems to be the smallest for the values of ϵo and ϵc that is the smallest order with a
feasible solution. The error bound increases and seems to stabilize with really high orders
of magnitude, like 1e10, and the low orders, like 1e-10. This idea is confirmed by looking at
increasingly higher and lower orders, where the value of the error bound is 2.4688e-04 at values
1e20 and 1e-20 for ϵo and ϵc . Finally, the lowest error bound is found for a value of 9000 for
ϵo and ϵc.

ϵo ϵc Error bound EB
1e-10 1e-10 2.4680e-04
1e-6 1e-6 2.3727e-04
1e-5 1e-5 1.2236e-04

1e-4-8e3 1e-4-8e3 NaN
9e3 9e-3 3.3702e-05
1e4 1e4 6.5844e-05
1e6 1e6 2.4461e-04
1e10 1e10 2.4683e-04

Table 4.1: Error bound for different values of ϵo and ϵc

After determining the order of magnitude that provides the lowest error bound, some more
values around 9e3 are tested. As a result, it is found that a value of 9000 for ϵo and 9300
for ϵc gives the lowest error bound of 1.1805e-05, resulting in a value of 9346 for α and β.
Consequently, these values are used for EB in the continuation of this report.

19

4.2 Comparison of GB and EB
To see the differences between GB and EB, the Hankel singular values and error bound with
different numbers of truncated states are compared. This gives an indication of the difference
in the accuracy of the approximation of the ROM’s. As mentioned in chapter 3, the system is
run for 100 masses which results in 200 states of the system. For the rest of the simulations
in this report the input to the system will be u = 2sin(2t) from time 0 to 50 seconds. The
sinusoidal equation is chosen as input to the system because of the oscillations that it infers.
These oscillations are the natural behaviour a mass-spring-damper system will have when a
force acts upon the system.

4.2.1 Hankel Singular Values
In figure 4.1 the Hankel singular values of GB and EB can be found. The values that correspond
to the first couple of states are around 10 to 20 times smaller for EB than for GB. From
equation 2.30, it is seen that the error bound is smaller if the Hankel singular values are
smaller. Consequently, it follows that the error bound will be smaller for EB as will be shown
in the following section.

(a) Hankel singular values of generalized balancing with
200 states

(b) Hankel singular values of extended balancing with 200
states

Figure 4.1: Hankel singular values of generalized and extended balancing with 200 states

4.2.2 Error bound
The theoretical framework states that the error bound for EB is less conservative than that of
GB. This does not imply that the actual error will be smaller for EB but just that it can be
predicted less conservatively than for GB. To validate this for the mass-spring-damper system,
multiple simulations are done with different sizes of the ROM.

20

Size ROM Error bound GB Error bound EB
150 1.1599e-04 5.5484e-06
100 2.4677e-04 1.1805e-05
50 3.7882e-04 1.8122e-05
30 4.3236e-04 2.0683e-05
15 0.0077 3.7045e-04
10 0.4421 0.0211
5 8.4509 0.4043

Table 4.2: Error bound of the ROM’s of GB and EB

The results in table 4.2 show that it is indeed true in this case that the error bound is smaller
for EB than GB for all sizes of the ROM.

21

5 Original vs Reduced Order Models
To evaluate if the ROM’s approximate the original model well, their outputs will be compared.
Furthermore, the bode plots will be analyzed to see and compare the changes in phase and gain.

5.1 Output comparison
5.1.1 Output plots
In figure 5.1 the overall output of the three systems can be seen. This represents the response
of the systems to the sinusoidal input. Only one of the lines is visible in this figure as their
outputs are very close to each other. This was to be expected as the error bound that was
found was already of a small order of magnitude because of the small Hankel singular values.
To visualize the differences in the outputs, close-ups are made of the output plots, which are
shown in figure 5.2 for ROM’s of 150, 100, 50, 25, 10, and 5 states.

Figure 5.1: Plot of the output of the original system and both ROM’s with 100 states

When looking at figure 5.2, multiple observations can be made. Firstly, both ROM’s approx-
imate the original system very accurately. This was expected as both error bounds proved
to be small, as seen in table 4.2. On the contrary, how smaller the ROM gets, the larger the
deviation is from the original model. Since there are fewer states to describe the model, there
are fewer dynamics to describe the system. Thus, the accuracy of the approximation decreases.
Furthermore, what is remarkable is that a small system, with only 5 of the original 200 states
left, can still provide such a close approximation. This shows that balanced truncation allows
for the creation of accurate ROM’s.

22

(a) ROM of 150 states (b) ROM of 100 states

(c) ROM of 50 states (d) ROM of 25 states

(e) ROM of 10 states (f) ROM of 5 states

Figure 5.2: Output comparison between the original, generalized reduced and extended reduced
system

Secondly, what stands out when comparing the GB and EB outputs, is that the output of
the generalized ROM is closer to the original system than that of the extended ROM. In the
previous chapter is was shown that the error bound for EB is significantly smaller than that of
GB. Figure 5.2 shows that this does not directly imply that the actual error will then also be
smaller. The error bound for EB is said to be less conservative than that of GB. This means
that the range wherein the actual error will be is smaller.

23

Finally, the output line of both ROM’s are close to identical for all the different numbers
of states. Therefore, it is observed that the generalized and extended ROM will provide an
evenly accurate approximation of the original model. Furthermore, the smaller the ROM’s get,
the closer the two output lines come together.

5.1.2 Simulation times
To visualize the influence of MOR the simulation times of the sections that produce the
individual output graphs are compared. This is done by creating separate sections in the
MATLAB code that produce the same graph as figure 5.1 but then for each of the systems
individually. The function ”tic-toc” is used in MATLAB to measure the simulation time of
each section. This can be found from line 197 to 235 in Appendix A. As the simulation time
is different each run, the average time over 10 runs is taken as the final value. The original
model has a simulation time of 0.439 seconds on average, the values for GB and EB can be
found in table 5.1.

Size ROM Simulation time GB [s] Simulation time EB [s]
150 0.278 0.264
100 0.116 0.115
50 0.0808 0.0722
25 0.0711 0.0724
10 0.0705 0.0624

Table 5.1: Simulation times for the output graph of the ROM’s in seconds

Figure 5.3 displays the trend that can be seen in the progression of the running times. The
purple trend line shows seemingly exponential behavior. Therefore, removing the first 100
states has a bigger influence on running time than the states after that. This finding can
influence the choice for the size of the ROM to be used. As the reduction from 50 to 25
states has a relatively small impact on the running time, a further reduction was not deemed
useful. Furthermore, a system described by 50 states captures more information than 25 states.
Moreover, the reduction of simulation time with a reduction of the number of states underlines
the importance of MOR as a tool to create Digital Twins (e.g. for real-time monitoring).

Figure 5.3: Running times for the output graph of the ROM’s for multiple states

24

5.1.3 H∞-norm
The error of the system is given by the H∞-norm that can be found in equation 2.30. This
norm can be calculated with the add-on function ”hinfnorm” in MATLAB. The H∞-norm for
GB and EB for 4 sizes of the ROM can be found in table 5.2.

Size ROM H∞-norm GB H∞-norm EB
100 7.691894764580693e-07 7.500652422388620e-07
50 7.868965942337915e-07 7.844768447115839e-07
25 9.429077738116799e-06 9.429146955797937e-06
10 0.191472902205917 0.191472901928204

Table 5.2: H∞-norm for GB and EB

Table 5.2 shows that the H∞-norm is almost identical for GB and EB. This result is in line
with the results found in section 5.1, as a small error results in the outputs being almost
similar. All the values that are found for the H∞-norm are well within the error bounds
that are displayed in table 4.2. The error is slightly smaller for EB for the ROM sizes 100,
50, and 10 and for GB for 25. Thus, overall EB approximates the original system slightly better.

5.2 Bode plots
After evaluating the outputs in the time domain, it is also relevant to evaluate the response of
the three systems in the frequency domain. Analysis in the frequency domain shows signal
characteristics, such as magnitude and phase, over a spectrum of frequencies, thus providing
more information about it than the behavior over a time period. Therefore, bode plots are
used, which consist of two graphs: the magnitude plot and the phase plot. The magnitude
plot, which is on a logarithmic scale in decibels, displays the amplitude of the system at a
range of frequencies. The phase plot, on a linear scale in degrees, displays the phase/argument
at a range of frequencies. This is interpreted as the angle between the real and imaginary axis
in the complex plane.

Figures 5.4, 5.5, and 5.6 show the Bode plots of the original, generalized reduced, and extended
reduced system respectively. It is immediately possible to conclude that all systems are stable
as none of them cross the phase angle below -180 degrees.

25

Figure 5.4: Bode plot of the original system with 200 states

Figure 5.5: Bode plot of the generalized ROM with 50 states

Figure 5.6: Bode plot of the extended ROM with 50 states

26

Comparing the three bode plots, it can be seen that they are all close to similar. Therefore, in
figure 5.7 the three bode plots are plotted in one figure. In figure 5.7a, it is still not possible
to make a clear distinction between the three systems. Therefore, a close-up is made of the
plot in figure 5.7b. This plot shows that the line of the extended ROM is just slightly closer to
that of the original model than the generalized ROM. Thus, the EB response in the frequency
domain is slightly more accurate.

(a) Bode plot of the original, generalized reduced and
extended reduced system

(b) Close-up of the bode plot of the original, generalized
reduced and extended reduced system

Figure 5.7: Bode plot and close-up of the original, generalized reduced and extended reduced
system

27

6 Structure Preservation
One of the open problems in the field of MOR is structure preservation. In this research, two
types of structure preservation are relevant: preservation of the PH/Lagrangian structure and
of the physical interpretation of the structure (e.g. mass-spring-damper system).

Preservation of the PH or Lagrangian structure has been a topic in the field of MOR since
the start [Werner, 2021] and Borja et al. mention one of the requirements to preserve the PH
structure. If the transformation matrix is block diagonal, the Hamiltonian matrix, which is
a diagonal matrix, will remain diagonal after balanced truncation [Borja et al., 2021]. The
Hamiltonian, in equation 3.1, and Lagrangian, in equation 3.2, represent the internal energy of
the system in terms of its kinetic (T) and potential (V) energy [Chaturantabut et al., 2016].

The preservation of the system’s physical structure is a newer and more open field of research.
When the physical structure is preserved, the ROM can be interpreted in the same physical
form as the original model. Thus, if the original model is a mass-spring-damper system
with 200 states and 100 masses, the ROM with 100 states can then still be interpreted as a
mass-spring-damper system but with 50 masses. This form of structure preservation can be
used for various systems like electrical networks, communication networks, and mechanical
systems. In section 6.1, one case is presented where the system’s physical structure was
preserved for an electrical network. After that, in section 6.2, the mass-spring-damper system
used in this research will be analyzed to see if the structure can be preserved as well.

6.1 Preservation of an electrical network
Borja et al. managed to preserve the structure of an RLC circuit using EB. The electrical
network is reduced from 10 states, in figure 6.1a, to 6 states in figure 6.1b.

(a) Original RLC circuit

(b) Reduced RLC circuit

Figure 6.1: Structure preservation of an RLC circuit [Borja et al., 2021]

28

Three observations were made in preserving the RLC circuit structure [Borja et al., 2021]:

1. The transformation matrix should be a block diagonal matrix

2. States are not truncated individually but in pairs. For every truncated inductor there is
also a capacitor truncated.

3. Setting the Γ matrices as nonzero implies that the entries of the balanced matrix Σ are
different. Therefore, the smallest entries of Σ can be truncated

6.2 Preservation of the Mass-Spring-Damper structure
The requirements for structure preservation defined in section 6.1, can then be used to evaluate
the ROM of the mass-spring-damper system.

Firstly, the transformation matrix Te is checked if it is a block diagonal matrix. The 200 x
200 matrix is too large to display on paper but in the MATLAB code it can be seen that
the transformation matrix Te is not diagonal nor block diagonal. Consequentially, from the
matrix structure in equation 3.3 it can be derived that the A matrix of the system will have
the following structure:

[
0 M−1

−K −DM−1

]
(6.1)

The A matrix after the balanced transformation does not show this block structure and every
entry in the matrix has a value. So through the use of EB the physical as well as the PH
structure is not preserved for the mass-spring-damper system.

The extra degrees of freedom gained from the Γ matrices can be altered to try and adjust
the structure of the balanced models. Furthermore, additional constraints could be added to
impose a more specific structure on the transformation matrix.

29

7 Discussion
This research focused on providing a comparative overview of GB and EB. This was done by
creating an extensive theoretical framework that was used to create a MATLAB model with
the aim of simulating an accurate approximation and possible structure preservation.

For the creation of the state-space model from the data set, the first 100 x 100 entries were
taken from the D, K, and M matrices resulting in a model with 100 masses. As this data
set describes the dynamics of a system with 200 masses, just taking the first 100 entries will
already influence the system’s structure. Mass 100 in the system is connected to mass 101,
which is not considered in the system used in this research.

The complete system, with 200 masses, from the data set, could not be used because the
SeDuMi solver would have an unexplained crash. The reason for this crash is unknown, and
this problem could not be solved. Using another solver or optimizing the code could be a
possible solution to this problem.

Furthermore, the complete MATLAB code has a long simulation time of around 2 days. This
is primarily due to solving the LMI’s for the generalized Gramians. Altering the solver settings
or the code might improve the simulation time. For example, the solver could be stopped some
iterations earlier if the solution is already within a certain predetermined bound.

As the PH and physical structure of the system could not be preserved, additional constraints
could be added to impose a specific structure on the transformation matrix, thus the balanced
state-space system. The requirements for structure preservation, as mentioned in chapter 6,
could be used for this.

30

8 Conclusion
This research aimed to provide an overview of the differences between GB and EB and the
requirements to create a MATLAB model that can preserve the system’s structure. A literature
study was performed, and a MATLAB code was created to obtain this goal.

The differences between GB and EB proved small in this research as the outputs in both the
time and the frequency domain were almost similar. Furthermore, their H∞-norm was also
almost identical. Therefore, it can be concluded that for this mass-spring-damper system,
there is not much difference in the output of GB and EB. On the other hand, EB is a more
adjustable technique that provides a smaller error bound and extra degrees of freedom. These
features make EB a technique that is better suited for structure preservation and flexibility.

As found in the literature and with the use of the MATLAB code, the extra degrees of freedom
can be exploited by tweaking the. constants ϵo and ϵc. The values of ϵo and ϵc influence the
Γ matrices and the values of α and β, such that the desired balanced system is created. A
value of 9000 for ϵo and 9300 ϵc, resulting in a value of 9346 for α and β, were chosen as these
provided the lowest singular values, thus the lowest error bound.

From the literature, specific requirements were found for the preservation of the PH and the
physical structure of a system. Moreover, these requirements are used to check if, in the current
state, the created MATLAB model preserves these structures of the mass-spring-damper
system. The transformation matrix is not block diagonal, as required, and the A matrix of
the ROM does not have the same structure as the original A matrix. Therefore, it can be
concluded that the PH and the mass-spring-damper structure of the system could not be
preserved in this research.

Overall, it can be concluded that GB and EB provide very similar outputs, but EB provides
extra benefits as a reduced error bound and extra degrees of freedom. Furthermore, the
requirements for structure preservation were presented, and it was shown that structure
preservation is possible for an electrical network. For the mass-spring-damper system in this
research, the PH and mass-spring-damper structure could not be preserved, but possible
solutions were presented.

31

Bibliography
[Benner et al., 2015] Benner, P., Gugercin, S., and Willcox, K. (2015). A survey of projection-

based model reduction methods for parametric dynamical systems. SIAM review, 57(4):483–
531.

[Bilberg and Malik, 2019] Bilberg, A. and Malik, A. A. (2019). Digital twin driven human–
robot collaborative assembly. CIRP annals, 68(1):499–502.

[Borja et al., 2021] Borja, P., Scherpen, J. M., and Fujimoto, K. (2021). Extended balancing
of continuous lti systems: a structure-preserving approach. IEEE Transactions on Automatic
Control.

[Boyaval et al., 2010] Boyaval, S., Le Bris, C., Lelievre, T., Maday, Y., Nguyen, N. C., and
Patera, A. T. (2010). Reduced basis techniques for stochastic problems. Archives of
Computational methods in Engineering, 17(4):435–454.

[Brunton and Kutz, 2019] Brunton, S. L. and Kutz, J. N. (2019). Balanced Models for Control,
page 321–344. Cambridge University Press.

[Chaturantabut et al., 2016] Chaturantabut, S., Beattie, C., and Gugercin, S. (2016).
Structure-preserving model reduction for nonlinear port-hamiltonian systems. SIAM Journal
on Scientific Computing, 38(5):B837–B865.

[Grieves, 2019] Grieves, M. W. (2019). Virtually intelligent product systems: digital and
physical twins.

[Gugercin and Antoulas, 2004] Gugercin, S. and Antoulas, A. C. (2004). A survey of model
reduction by balanced truncation and some new results. International Journal of Control,
77(8):748–766.

[Haasdonk and Ohlberger, 2008] Haasdonk, B. and Ohlberger, M. (2008). Reduced basis
method for finite volume approximations of parametrized linear evolution equations. ESAIM:
Mathematical Modelling and Numerical Analysis, 42(2):277–302.

[Hartmann et al., 2020] Hartmann, D., Herz, M., Paffrath, M., Rommes, J., Tamarozzi, T.,
Van der Auweraer, H., and Wever, U. (2020). 12 model order reduction and digital twins.
Citation for published version (APA): Benner, P., Grivet-Talocia, S., Quarteroni, A., Rozza,
G., Schilders, WHA, & Silveira, LM (Eds.)(2020). Applications.(Model Order Reduction;
Vol. 3). Walter de Gruyter GmbH. https://doi. org/10.1515/9783110499001, page 379.

[Jones et al., 2020] Jones, D., Snider, C., Nassehi, A., Yon, J., and Hicks, B. (2020). Charac-
terising the digital twin: A systematic literature review. CIRP Journal of Manufacturing
Science and Technology, 29:36–52.

[Lofberg, 2004] Lofberg, J. (2004). Yalmip: A toolbox for modeling and optimization in
matlab. In 2004 IEEE international conference on robotics and automation (IEEE Cat. No.
04CH37508), pages 284–289. IEEE.

32

[Mehrmann and Stykel, 2005] Mehrmann, V. and Stykel, T. (2005). Balanced truncation
model reduction for large-scale systems in descriptor form. In Dimension Reduction of
Large-Scale Systems, pages 83–115. Springer.

[Proctor et al., 2016] Proctor, J. L., Brunton, S. L., and Kutz, J. N. (2016). Dynamic mode
decomposition with control. SIAM Journal on Applied Dynamical Systems, 15(1):142–161.

[Sandberg, 2008] Sandberg, H. (2008). Model reduction of linear systems using extended
balanced truncation. In 2008 American Control Conference, pages 4654–4659. IEEE.

[Sandberg, 2010] Sandberg, H. (2010). An extension to balanced truncation with application
to structured model reduction. IEEE Transactions on Automatic Control, 55(4):1038–1043.

[Scherpen, 2005] Scherpen, J. (2005). Model reduction for nonlinear control systems. DISC
model reduction coure notes.

[Scherpen, 2011] Scherpen, J. M. (2011). Balanced realizations, model order reduction, and
the hankel operator. In The Control Handbook. Control System Advanced Methods, pages
4–1.

[Scherpen and Fujimoto, 2018] Scherpen, J. M. and Fujimoto, K. (2018). Extended balanced
truncation for continuous time lti systems. In 2018 European Control Conference (ECC),
pages 2611–2615. IEEE.

[Schmid, 2010] Schmid, P. J. (2010). Dynamic mode decomposition of numerical and experi-
mental data. Journal of fluid mechanics, 656:5–28.

[Sturm, 1999] Sturm, J. F. (1999). Using sedumi 1.02, a matlab toolbox for optimization over
symmetric cones. Optimization methods and software, 11(1-4):625–653.

[Wang et al., 1999] Wang, G., Sreeram, V., and Liu, W. (1999). A new frequency-weighted
balanced truncation method and an error bound. IEEE Transactions on Automatic Control,
44(9):1734–1737.

[Werner, 2021] Werner, S. W. (2021). Structure-Preserving Model Reduction for Mechanical
Systems. PhD thesis, Otto-von-Guericke Universität Magdeburg.

[Yamanaka et al., 2018] Yamanaka, Y., Yaguchi, T., Nakajima, K., and Hauser, H. (2018).
Mass-spring damper array as a mechanical medium for computation. In International
Conference on Artificial Neural Networks, pages 781–794. Springer.

33

A MATLAB code

1 clear
2 clc
3

4 %% Import data set
5 Dataset = importdata('mechanical example data.mat');
6 Dt = Dataset.D; % Import Damping costants matrix
7 Kt = Dataset.K; % Import Spring constants matrix
8 Mt = Dataset.M; % Import Mass matrix
9 Bt = Dataset.B; % Import B matrix

10 Ct = Dataset.C; % Import C matrix
11 N = 50; % Number of masses to be used
12

13 Damp = Dt(1:N,1:N); % Select a part of the D matrix
14 K = Kt(1:N,1:N); % Select a part of the K matrix
15 M = Mt(1:N,1:N); % Select a part of the M matrix
16

17 F = [zeros(N) eye(N); -eye(N) -Damp]; % Creates the F matrix
18 H = [K zeros(N); zeros(N) inv(M)]; % Creates the H matrix
19 A = F*H; % Calculates the A matrix
20 B = [zeros([N 1]); Bt(201:200+N)]; % Creates the B matrix
21 C = [zeros([1 N]) Ct(201:200+N)]; % Creates the C matrix
22 D = 0; % Sets D to zero
23 original system = ss(A,B,C,D); % Creates a state space system
24

25 n = 100; % Define number of states to be used
26

27 %% Solve Lyapunov equation for controllability Gramian
28 sdpsettings('solver','sedumi'); % Selects the sedumi solver
29 P 1 = sdpvar(n,n); % n by n matrix with decision variables
30 F = [P 1 ≥ 10ˆ(-10)*eye(n), (A*P 1)+(P 1*A')+(B*B') ≤ 0]; % Constraints
31 optimize(F,trace(P 1)); % Optimizes the constraints and sum of the ...

diagonal of P
32 P = value(P 1); % Presents the value of the variables in P
33

34 %% Solve Lyapunov equation for observability Gramian
35 sdpsettings('solver','sedumi'); % Selects the sedumi solver
36 Q 1 = sdpvar(n,n); % n by n matrix with decision variables
37 L = [Q 1 ≥ 10ˆ(-10)*eye(n), A'*Q 1+Q 1*A+C'*C ≤ 0]; % Constraints
38 optimize(L,trace(Q 1)); % Optimizes the constraints and sum of the ...

diagonal of Q
39 Q = value(Q 1); % Presents the value of the variables in Q
40

41 %% Find transformation matrix T for generalized balancing
42 PhP=chol(P); % Finds a matrix R such that P = R'*R by cholesky ...

factorization
43 [UPQ,Q2PQ]=svd(PhP*Q*PhP'); % Finds the singular value decomposition
44 QPQ=sqrt(Q2PQ); % Sigma
45 Tg=PhP'*UPQ*sqrt(inv(QPQ)); % Finds the transformation matrix T
46

47

48 %% Put the state space in generalized balanced form

34

49 Ag = value(inv(Tg)*A*Tg); % Balances the original A matrix
50 Bg = value(inv(Tg)*B); % Balances the original B matrix
51 Cg = value(C*Tg); % Balances the original C matrix
52 Dg = 0; % Balances the original D matrix
53

54 generalized systems = ss(Ag,Bg,Cg,Dg); % Creates a state-space system
55

56 %% Find the reduced order system
57 keep = 10; % Defines the number of states in the ROM
58

59 Agr = Ag(1:keep,1:keep); % Reduces the A matrix
60 Bgr = Bg(1:keep); % Reduces the B matrix
61 Cgr = Cg(1:keep); % Reduces the C matrix
62 Dgr = 0; % D is still zero
63

64 generalized reduced = ss(Agr,Bgr,Cgr,Dgr); % Creates the generalized ROM
65

66 %% Find error bound of generalized balancing
67 q = diag(QPQ); % Creates vector d of all the singular values of Sigma
68 General TRUNC = q(keep+1:n); % Creates vector of all truncated singular ...

values
69 general error bound = 2*sum(General TRUNC) % Provides the error bound
70

71 %% Visualize Hankel singular values of generalized balancing
72 plot(q,'--*') % Plots the hankel singular values
73 grid on
74 title('Hankel singular values Generalized Balancing')
75 xlabel('State number')
76 ylabel('Value')
77

78 %% Defining new constants and matrices
79 P 2 = inv(P); % Defines a new variable as the inverse of P
80

81 eo = 9000; % Epsilon o 9000
82 ec = 9300; % Epsilon c < alpha 9300
83

84 Go = eo*Q; % Creates a new matrix Gamma o
85 Gc = -ec*P; % Creates a new matrix Gamma c
86

87 Xo = -Q*A - A'*Q - C'*C; % Creates a new matrix Xo
88 Xc = -P 2*A - A'*P 2 - P 2*B*B'*P 2; % Creates a new matrix Xc
89

90 Thetao = (Go - Q*A)*(inv(Xo))*(Go - A'*Q); % Creates a new matrix Thetao
91 Thetac = (-Gc*P 2 + A + B*B'*P 2)*(inv(Xc))*(-P 2*Gc + A' + P 2*B*B'); % ...

Creates a new matrix Thetac
92

93

94 %% Solve for beta
95 sdpsettings('solver','sedumi'); % Selects the sedumi solver
96 beta 1 = sdpvar(1); % Decision variable for beta
97 M = [beta 1 ≥ 10ˆ(-10)*eye(n), 2*beta 1*P + 2*Gc - B*B' - Thetac ≥ 0]; % ...

Constraints
98 optimize(M,[]); % Optimizes the constraints
99 beta = value(beta 1); % Presents the value of beta

100

101 %% Solve for alpha
102 sdpsettings('solver','sedumi'); % Selects the sedumi solver

35

103 alpha 1 = sdpvar(1); % Decision variable for beta
104 U = [alpha 1 ≥ 10ˆ(-10)*eye(n), 2*alpha 1*Q + 2*Go - Thetao ≥ 0]; % ...

Constraints
105 optimize(U,[]); % Optimizes the constraints
106 alpha = value(alpha 1); % Presents the value of alpha
107

108 zeta = max(alpha,beta); % Maximum value of alpha or beta
109

110 %% Find the Extended controllability and observability Gramians
111 W = (inv(zeta*P + Gc)); % Computes the extended controllability Gramian
112 S = Q*(inv(zeta*Q + Go))*Q; % Computes the extended observability Gramian
113

114

115 %% Find transformation matrix T
116 WhW=chol(inv(W)); % Finds a matrix R such that P = R'*R by cholesky ...

factorization
117 [UWS,S2WS]=svd(WhW*S*WhW'); % Finds the singular value decomposition
118 SWS=sqrt(S2WS); % Sigma
119 Te=WhW'*UWS*sqrt(inv(SWS)); % Finds the transformation matrix T
120

121

122 %% Put the state space in extended balanced form
123 Ae = value(inv(Te)*A*Te); % Balances the original A matrix
124 Be = value(inv(Te)*B); % Balances the original B matrix
125 Ce = value(C*Te); % Balances the original C matrix
126 De = 0; % Balances the original D matrix
127

128 extended system = ss(Ae,Be,Ce,De); % Creates a state-space system
129

130 %% Create reduced order model
131 Aer = Ae(1:keep,1:keep); % Reduced A matrix
132 Ber = Be(1:keep); % Reduced B matrix
133 Cer = Ce(1:keep); % Reduced C matrix
134 Der = De; % Reduced D matrix
135 Sigma Re = SWS(1:keep); % Reduced Sigma matrix
136

137 extended reduced = ss(Aer,Ber,Cer,Der); % Reduced state space system
138

139 %% Find error bound of extended balancing
140 d = diag(SWS); % Creates vector d of all the singular values of Sigma
141 extended TRUNC = d(keep+1:n); % Creates vector of all truncated ...

singular values
142 extended error bound = 2*sum(extended TRUNC) % Provides the error bound
143

144 %% Visualize Hankel singular values of extended balancing
145 plot(d,'--*'); % Plots the hankel singular values
146 grid on
147 title('Hankel singular values Extended Balancing')
148 xlabel('State number')
149 ylabel('Value')
150

151 %% Plot Original vs Reduced
152 t = 0:0.001:50; % Defines the time span for the plot
153 u = 2*sin(2*t); % Input to the state space systems
154 y = lsim(original system,u,t); % Creates a vector of the output of the ...

original system

36

155 z = lsim(generalized reduced,u,t); % Creates a vector of the output of the ...
generalized reduced system

156 p = lsim(extended reduced,u,t); % Creates a vector of the output of the ...
extended reduced system

157

158 figure(1)
159 plot(t,y) % Plots the output of the original system
160 hold on
161 plot(t,z) % Plots the output of the generalized reduced system
162 hold on
163 plot(t,p) % Plots the output of the extended reduced system
164 title('Output comparison sinusoidal input')
165 legend('Original Model','Generalized Reduced Order Model','Extended ...

Reduced Order Model')
166 xlabel('Time [s]')
167 ylabel('Velocity [m/s]')
168

169 %% Bode plot Original system
170 bode(original system) % Plots the bode diagram of the original system
171 grid on
172

173 %% Bode plot Generalized ROM
174 bode(generalized reduced) % Plots the bode diagram of the generalized ...

reduced system
175 grid on
176

177 %% Bode plot Extended ROM
178 bode(extended reduced) % Plots the bode diagram of the extended reduced system
179 grid on
180

181 %% Combined Bode plots
182 figure(2)
183 bode(original system) % Plots the bode diagram of the original system
184 hold on
185 bode(generalized reduced) % Plots the bode diagram of the generalized ...

reduced system
186 hold on
187 bode(extended reduced) % Plots the bode diagram of the extended reduced system
188 legend('Original Model','Generalized Reduced Order Model','Extended ...

Reduced Order Model')
189

190 %% H-infinity norm
191 Diff gb = original system - generalized reduced; % Difference between ...

original and generalized reduced system
192 Diff eb = original system - extended reduced; % Difference between ...

original and extended reduced system
193

194 hinfnorm(Diff gb) % H-infinity norm of the generalized reduced system
195 hinfnorm(Diff eb) % H-infinity norm of the extended reduced system
196

197 %% Running time output original system
198 for i = 1:10
199 tic
200 y = lsim(original system,u,t); % Creates a vector of the output
201 plot(t,y);
202 title('Output comparison sinusoidal input')
203 legend('Original Model')

37

204 xlabel('Time [s]')
205 ylabel('Velocity [m/s]')
206 time original(i) = toc; % Creates a vector of the results
207 end
208 average original = mean(time original) % Takes the average of the vector
209

210 %% Running time output generalized reduced system
211 for i = 1:10
212 tic
213 z = lsim(generalized reduced,u,t); % Creates a vector of the output
214 plot(t,z);
215 title('Output comparison sinusoidal input')
216 legend('Generalized Reduced Order Model')
217 xlabel('Time [s]')
218 ylabel('Velocity [m/s]')
219 time generalized(i) = toc; % Creates a vector of the results
220 end
221 average generalized = mean(time generalized) % Takes the average of the vector
222

223 %% Running time output extended reduced system
224 for i = 1:10
225 tic
226 p = lsim(extended reduced,u,t); % Creates a vector of the output
227 plot(t,p);
228 title('Output comparison sinusoidal input')
229 legend('Extended Reduced Order Model')
230 xlabel('Time [s]')
231 ylabel('Velocity [m/s]')
232 time extended(i) = toc; % Creates a vector of the results
233 end
234 average extended = mean(time extended) % Takes the average of the vector
235

236 %% Plot running times
237 states = [10 25 50 75 100 125 150 175]
238 time gb = [0.0705 0.0711 0.0808 0.106 0.116 0.248 0.278 0.336]
239 time eb = [0.0624 0.0724 0.0722 0.104 0.115 0.237 0.264 0.320]
240 plot(states,time gb,'--*')
241 hold on
242 plot(states,time eb,'--o')
243 title('Running times output graph')
244 legend('Generalized Reduced Order Model','Extended Reduced Order Model')
245 xlabel('States')
246 ylabel('Running time [s]')

38

