



BACHELOR INTEGRATION PROJECT

# Centrality-based Control Policies for Early Epidemics in Structured Community Networks

Author

C.R. de Bruijn | S3499197

Supervisors

Dr. N. Monshizadeh Naini Dr. G.K.H. Larsen V.S.P. Malladi

June 17, 2022

## Contents

| 1  | Introduction         1.1       Contribution                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>1</b><br>1                                                                           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 2  | Problem Analysis         2.1       Problem Description         2.2       Spectral Radius         2.3       Centrality Types         2.3.1       Degree Centrality         2.3.2       Closeness Centrality         2.3.3       Betweenness Centrality         2.3.4       Eigenvector Centrality         2.4       Network Topology Types         2.4.1       Erdos-Renyi Graph         2.4.2       Nearly-isolated Communities Graph         2.4.3       Community-affiliation Graph | $\begin{array}{c} 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \end{array}$ |
| 3  | Research Objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                       |
| 4  | Research Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                       |
| 5  | Methodology         5.1       Controlled SIQS Model         5.2       Cost Function         5.3       Intervention Strategies         5.3.1       Dynamic Removal         5.3.2       Static Removal         5.4       Simulated Parameters         5.4.1       Epidemic Parameters         5.4.2       Graph Parameters                                                                                                                                                              | 9<br>11<br>11<br>12<br>13<br>13                                                         |
| 6  | Results       1         6.1       Spectral Radius Reduction utilizing Static Removal                                                                                                                                                                                                                                                                                                                                                                                                  | . <b>5</b><br>15<br>16<br>17<br>18<br>20                                                |
| 7  | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21                                                                                      |
| 8  | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                                                                                      |
| 9  | Validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23                                                                                      |
| Re | eferences 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25                                                                                      |
| 10 | Appendix       2         10.1 Effect of Erdos-Renyi η-value on Centrality Performance       2         10.2 Cost Divisions       2         10.3 Output Tables       2                                                                                                                                                                                                                                                                                                                  | 26<br>26<br>27<br>28                                                                    |

## 1 Introduction

New and highly infectious epidemics such as COVID-19 have the ability to cause sudden largescale societal disruptions, influencing not only the physical health of those infected, but also the dynamics of society as a whole. Global economics, mental health and many other factors are negatively affected, leading to a desire to control these epidemics [21] [8]. One troubling characteristic of new virus strains is the lack of immunity and vaccination availability. In the Netherlands, the COVID-19 vaccination campaign only started in January 2021, while March 2020 marked the first (partial) lockdown of the country [1]. This property of new epidemics calls for intervention policy that reduces the number of contacts between people.

However, isolation comes with a cost. Sudden reductions in work force capacity, detrimental economic effects and psychological ramifications are problematic and can derail normal processes in society [21]. If isolation is seen as a form of control to prevent further spreading, then these economic and societal impacts can be viewed as a control cost [17].

Mathematical modeling of epidemics is commonplace when creating policy recommendations, with the SIS (susceptible-infected-susceptible) compartmental model and its extensions forming the basis for many of these studies [31]. Adding isolation as a third compartment leads to the SIQS (susceptible-infected-quarantined) model, useful for modeling new epidemics as described above [29].

While isolation policy is often defined and applied equally for a population, certain portions of populations are more likely to spread a disease, leading to targeted interventions. For instance, closure of schools due to their densely-connected nature during the COVID-19 pandemic [4]. Given a certain network, more effective isolation policy can thus be created based on the centrality of the nodes contained within.

## 1.1 Contribution

This research proposes a novel centrality-based isolation policy that aims to control epidemic spreading by isolating only a set percentage of the most central nodes when infected. A discrete-time stochastic SIQS model is used that allows for isolation interventions. Specific contributions are highlighted as follows:

- (i) Network topology versus centrality measures. Node selection for the proposed isolation policy is centrality-based and dynamic. Therefore, the performance of four commonly-used centrality measures, namely degree-, eigenvector-, closeness-, and betweenness centrality is compared for three different topology types in a dynamic, temporal network. Erdos-Renyi-, nearly-isolated community-, and community-affiliation graphs are considered. The performance of centrality measures is evaluated based on the spectral radius reduction per centrality type, as well as their effect on total costs.
- (ii) Centrality-based intervention policy for early epidemics. The proposed isolation policy is designed so that only the most central nodes of a given network are to be isolated. Additionally, it is designed to work with limited information, with only infection rate  $\beta$ , recovery rate  $\delta$ , community membership and basic community density information required. This enables usage in early epidemics where no vaccination strategy is possible. Total costs are minimized by balancing intervention costs and costs of infection, leading to a policy that limits the adverse effects of an epidemic. It is demonstrated that implementation of this targeted implementation strategy leads to similar cost reduction when compared to isolating all nodes, but at a much lower percentage of isolatable nodes.

(iii) **Individual policy recommendations with respect to epidemic severity.** To ensure that policy recommendations stemming from this research are as robust as possible, three epidemic cases of varying degrees of severity are considered. It is demonstrated that different epidemic severities require different policies to effectively control them, resulting in individual policies for each combination of network topology and epidemic case.

## 2 Problem Analysis

#### 2.1 Problem Description

This research utilizes a controlled SIQS (susceptible-infected-quarantimed) model (see figure 1), where  $\gamma_i$  and  $u_i$  are controlled using the proposed centrality-based isolation policy. This model considers the effect of epidemic severity, network topology, and choice of centrality measure to formulate a novel dynamic isolation strategy. A complete overview of the mathematics of the model can be found in section 5. A cost-minimization problem is formed that aims to minimize the combined costs related to infection and isolation. The formulation of the cost function and simulated parameters can also be found in section 5, with additional validation in section 9. This section instead focuses on extensive descriptions of the problem at hand, and the system that arises from it.



Figure 1: Susceptible-infected-quarantimed (SIQS) model. This model consists of three compartments, infected (I), susceptible (S), and quarantimed (Q). Parameters  $\beta$ ,  $\delta$ ,  $\gamma_i$ ,  $\epsilon_i$  and  $u_i$  determine the transitions between compartments, with  $\gamma_i$ ,  $\epsilon_i$  and  $u_i$  being controlled using the dynamic intervention strategy.

#### 2.2 Spectral Radius

The most basic way to assess epidemic spread is by using the basic reproduction number  $R_0$ , which is the average number of contagions that a single infected person will cause in a susceptible population. In unstructured SIS models, this  $R_0$  is simply defined by infection rate  $\beta$  and recovery rate  $\delta$  in  $\frac{\beta}{\delta}$ . A network with  $R_0 < 1$  tends to a completely susceptible situation without infected nodes. However, due to the heterogeneous nature of structured network, there is no simple formula that analytically determines this  $R_0$  value [31] [28]. As a result, existing research has used alternative heuristics to asses the potency of epidemics. Chief among them is the spectral radius  $\rho$  of a graph, defined as the largest eigenvalue of the adjacency matrix. The smaller the value of  $\rho$ , the harder it is for an epidemic to spread, even ensuring sub-linear expected extinction time for epidemics below a certain spectral radius threshold [20] [26]. The mathematical formulation for the spectral radius is as follows:

$$\rho(A) = max\{|\lambda_1|, \dots, |\lambda_n|\}$$
(1)

Where A is the adjacency matrix of the graph, and  $\lambda_k$  are the eigenvalues of this adjacency matrix. Spectral minimization problems can also be formulated directly but are NP-hard to solve, which is why centrality heuristics are used instead in this research [2].

Key nodes and edges are important to determine in order to create the maximum effectiveness per isolation [11]. To find these driver nodes and edges, centrality heuristics are utilised. These heuristics score each node in a network according to different mathematical criteria, and aim to find the most 'central' nodes. By basing isolation policy on these scores and comparing the resulting reduction in spectral radius, the performance of each individual centrality measure can be determined. Several different measures are considered, as the effectiveness of centrality measures is heavily influenced by the graph topography [6].

#### 2.3 Centrality Types

In order to maximize the effectiveness per intervention, it is paramount to determine which nodes to target for intervention. Despite wide research into the field, centrality type research for dynamic networks is still quite shallow, being mostly focused on how to efficiently calculate centrality scores in dynamic graphs as is the case in [25] and [24]. Currently, systematic research comparing the efficacy of centrality types in dynamic graphs for epidemics has not been have performed [7]. Consequently, this research will analyze four of the most common centrality types and apply them to different network topographies to analyze their efficacy.

#### 2.3.1 Degree Centrality

Degree centrality  $C_D(i)$  is the most basic type of centrality, being defined for each node as the number of neighbouring nodes that it shares an edge with. A high-degree node has many direct neighbours and can easily spread a virus locally. However, unless connected to other influential nodes, high-degree nodes do not easily spread epidemics globally [23] [5]. Degree centrality is described mathematically as follows:

$$C_D(i) = \sum_{k=1}^N A_{i,j} \tag{2}$$

Where N is the total number of nodes,  $A_{ij} = 1$  if and only if node pair  $A_{ij}$  of adjacency matrix A has an edge.

#### 2.3.2 Closeness Centrality

Closeness centrality  $C_C(i)$  is calculated by the average of the shortest distances between a node and every other node in the network. It is typically compared to the 'convenience' of a node, as information (in this case a virus) tends to travel through the shortest paths possible [23][5]. Closeness centrality is described mathematically as follows:

$$C_C(i) = \frac{1}{\sum_j d(i,j)} \tag{3}$$

Where d(i,j) represents the distance in number of edges between nodes i and j.

#### 2.3.3 Betweenness Centrality

Betweenness centrality  $C_B(i)$  concerns how many shortest paths between two nodes cross intermediary node s. If a node is located such that it lies on the shortest path between many nodes, it scores highly on betweenness. A node with a high betweenness centrality score is thus said to play a mediating role on a network, where many popular flows in a network tend to include it. Betweenness centrality is especially interesting for the system at hand due to its higher scoring when connecting disparate parts of a network. Nearly-isolated community graphs and community-affiliation graphs consist of clustered network sections with sparse connections, increasing the importance of identifying these connecting nodes [23][5]. Equation 4 shows the mathematical formulation:

$$C_B(i) = \sum_{i \neq s \neq j \in V} \frac{\sigma_{i,j}(s)}{\sigma_{i,j}} \tag{4}$$

Where  $\sigma_{i,j}$  is the number of shortest paths between *i* and *j*, and  $\sigma_{i,j}(s)$  the number of shortest paths that include intermediary node *s*.

#### 2.3.4 Eigenvector Centrality

Eigenvector centrality (or eigen centrality)  $C_E(i)$  is the final centrality type considered in this research. The score of eigenvector centrality is based both on the number of neighbours, as well as the quality of said neighbour. This quality is determined by the number of neighbours that each neighbour has themselves. Eigenvector-based centrality measures place heavy emphasis on the most central nodes, with large differences in scoring between more and less central nodes. The often-used PageRank and Katz centrality measures are variants of the same basic eigenvector centrality concept [15]. Equation 5 shows the mathematical formulation.

$$C_E(i) = \frac{1}{\lambda} \sum_{b=1}^{n} A_{ij} C_{Ej}$$
  
Which can be rewritten as  
$$\lambda x = Ax$$
(5)

Where  $\lambda$  is the largest eigenvalue of the adjacency matrix, and  $\boldsymbol{x}$  is a vector consisting of the values of  $C_E$  of all nodes.

#### 2.4 Network Topology Types

Epidemic spreading behaviour in structured networks is heavily dependent on the topology of individual networks. As highlighted before in subsection 2.3, information flows tends to flow according to shortest paths. Topology greatly influences these shortest paths, introducing choke points, hubs and other features that force analysis using different centrality types [13]. The three social network types that are considered in this research consist of Erdos-Renyi-, communityaffiliation-, and nearly-isolated community graphs. Erdos-Renyi simulation results serve as a baseline to compare other results to. Nearly-isolated community, with sparse connections between communities. These graphs can be created with limited data regarding which communities nodes belong to. Community-affiliation networks are based on the notion that one node can belong to several communities, and generates a graph with edges based on the shared communities of these nodes [27]. Similarly to nearly-isolated community graphs, these graphs can be constructed with only the knowledge of which nodes belong to which communities.

#### 2.4.1 Erdos-Renyi Graph

Erdos-Renyi graphs are the most basic type of generative graph, and have been studied often in the past. Erdos-Renyi graphs consider the presence and absence of edges, with edge pair  $a_{ij} = 1$  generating with probability  $\eta$  and  $a_{ij} = 0$  with probability 1 -  $\eta$  [22]. Erdos-Renyi graphs were

generated using these dynamics, as well as the nearly-isolated community graphs. The general dynamics are then as follows:

$$P(A|\eta) = \prod_{i,j} \eta^{a_{ij}} (1-\eta)^{(1-a_{ij})}$$
(6)

Generally, Erdos-Renyi are considered to have limited accuracy in modeling social network structures due to their low tendency for clustering [19]. Therefore, this research also considers community graphs that tend to cluster.



Figure 2: Generated Erdos-Renyi graph. This figure shows an Erdos-Renyi graph that was generated using the generation parameters as described in section 5.4.2.

#### 2.4.2 Nearly-isolated Communities Graph

Nearly-isolated community networks are defined in this research as a variation on the previously described Erdos-Renyi networks. They consist of densely-connected Erdos-Renyi communities with sparse connections between them. This generation structure not only aims to replicate real-world social networks of communities with sparse connections, but additionally aims to highlight the strengths and weaknesses of different centrality types due to the bridge structures that arise in graphs similar to this [3].

Let  $C_k$  be a set of communities consisting of nodes belonging to the total node set  $\mathcal{N}$ , where  $C_k \cap C_m = \emptyset$  and  $\cup C_k = \mathcal{N}$ . As a result, every node can belong to one and only one community. The generation is described by:

$$P(A|\eta_k, \eta_\epsilon) = \prod_{i,j} f(i,j)$$
(7)

$$f(i,j) = \begin{cases} (\eta_k + \eta_\epsilon)^{a_{ij}} (1 - \eta_k - \eta_\epsilon)^{1 - a_{ij}}, & i, j \in C_k \\ (\eta_\epsilon)^{a_{ij}} (1 - \eta_\epsilon)^{1 - a_{ij}}, & i \in \mathcal{C}_k \& j \in \mathcal{C}_m \& k \neq m \end{cases}$$
(8)

Where  $\eta_k$  is the base generation probability of edge pair  $a_{ij}$  within a community, and  $\eta_{\epsilon}$  is the additional cross-community edge pair probability. Each edge pair  $a_{ij}$  has a probability of  $\eta_k + \eta_{\epsilon}$  of being formed within a specific community, while outside of the community, the edge generation probability is only  $\eta_{\epsilon}$ . Probability  $\eta_k$  is set to be relatively high, while  $\eta_{\epsilon}$  is set to be very low, introducing densely connected clusters within communities, and sparse connections outside of communities.



Figure 3: Generated nearly-isolated community graph. This figure shows a nearly-isolated community graph that was generated using the generation parameters as described in section 5.4.2.

#### 2.4.3 Community-affiliation Graph

Community-affiliation networks are generative networks, originating from bipartite graphs that link nodes and communities. The community-affiliation graph model was formulated within the last decade, and is thus a young but promising field. Usage of the model requires very limited information. If membership lists of several partially intersecting communities are known, as well as an estimate regarding the average density of those networks, the community-affiliation graph model provides a state-of-the-art generation algorithm that narrowly approximates real social networks as suggested in [27].

Crucially, nodes can belong to multiple communities, with increased edge pair generation probability for each community that two nodes share. Each community has its own edge generation probability  $p_c$  between nodes of that community, reflecting dynamics of real social networks where some communities are more densely connected than others. Finally, all nodes have a very small chance  $p_{\epsilon}$  of being connected regardless of their community. This is done by having *all* nodes belonging to a so-called  $\epsilon$ -community, regardless of their actual community affiliation [27]. Generation probability  $p_{\epsilon}$  is set to be very small, mirroring the cross-community probability as seen for nearly-isolated community graphs described in section 2.4.2. Figure 4 shows the described dynamics.



Figure 4: Community-affiliation model. Bipartite community affiliation network networks as visible in (a) are used as the basis for generatively creating a structured community-affiliation graph as seen in (b). Nodes can belong to multiple communities, with each community overlap with another node increasing the probability of edge pair creation.



(a) Bipartite community graph (b) Generated community-affiliation graph

Figure 5: Generated bipartite community- and community-affiliation graphs. This figure shows a bipartite community graph and a community-affiliation graph that were generated using the generation parameters as described in section 5.4.2.

Generation starts with any bipartite network  $B(\mathcal{V}, \mathcal{C}, \mathcal{M})$ , with  $\mathcal{V}$  indicating the set of nodes,  $\mathcal{C}$  indicating the set of communities  $\mathcal{C} = \{c_k, ..., c_n\}$ , and  $\mathcal{M}$  indicating an edge set. The community-affiliation graph model then generates graph G(V, E) by the creation of edge (i, j)between nodes  $i, j \in \mathcal{V}$  with p(i, j) [27]. The mathematical description of community-affiliation graph generation is as follows:

$$p(i,j) = 1 - \prod_{k \in \mathcal{C}_{ij}} (1 - p_k)$$
(9)

Where  $C_{ij} \subset C$  is a shared community between nodes i, j, and  $p_k$  is the community edge generation probability per community.

#### 2.5 Current System State

In the current system state, epidemic spreading is uncontrolled, meaning that no interventions take place to alter the spread. Intervention by way of vaccinations is not an option and limited information is available regarding the epidemic. As a result, substantial costs are incurred by society, not only in terms of physical health, but also socially and economically.



Figure 6: Current system state. Here, the spread of an epidemic in the base model is shown, in red indicating 'infected', and blue indicating 'susceptible'. In the third sub-figure, two nodes are also shown to move from the infected to the susceptible compartment.

#### 2.6 Desired System State

The desired system state consists of a controlled SIQS network, in which nodes can be temporarily isolated via a novel dynamic intervention strategy in order to reduce the spread of the epidemic. The key nodes of these graphs are determined according to the network topology type and the most suitable centrality measure, namely the centrality measure that minimizes the spectral radius and costs of the network once the identified nodes are isolated.

The system is designed to work in an early epidemic, with limited information availability and no developed vaccination strategy. Finally, an individualized policy recommendation is made based on the severity of the epidemic, providing the minimum-cost solution that balances infection costs and isolation costs.



Figure 7: Desired system state. Here, the spread of an epidemic in the desired controlled model is shown, with red indicating the infected state, and blue susceptible. The most central nodes (in this case defined by degree centrality) are highlighted in yellow. Crosses indicate edge removal and check-marks indicate edge reinsertion. Each time-step, the most central nodes are recalculated according to the new post-removal topology. At each time-step, only the most central nodes are isolated if they are infected.



Figure 8: Total system. This figure combines previously determined system inputs, control methods, objectives, and criteria in order to provide a holistic view of the system.

## 3 Research Objective

The research objective is to find the minimum-cost control solution in SIQS community networks modeled as a discrete-time Markov process. The centrality-based control policy should dynamically detect and isolate the nodes that result in minimized spectral radius in Erdos-Renyi-, nearly-isolated community-, and community-affiliation networks. Three epidemic cases of varying severities are to be considered, leading to individual isolation policy recommendations for each epidemic case.

## 4 Research Questions

By answering the two central research questions below, the key nodes can be found per network topology type, in turn leading to minimum-cost policy for early epidemic control. This coincides

with the research objective stated in section 3.

Central question 1: Which centrality measure (among degree-, closeness-, betweenness-, and eigen-centrality) most accurately determines the influential nodes in epidemic spreading per network topology type (among Erdos-Renyi, nearly-isolated community-, and community-affiliation graphs?

Network topology has been proven to have a significant effect on the spread of epidemics [6]. However, this has not been systematically connected to centrality measures for the specific network topologies considered in this research. Determining the most influential nodes is critical in maximizing the effectiveness of each isolation.

Sub question 1.1: Which centrality measure maximizes spectral radius reduction after isolation of the identified nodes?

Spectral graph theory states that a minimized spectral radius leads to reduced epidemiological spread and even extermination under a certain epidemic threshold [16] [30]. Answering this question should thus accurately identifies nodes and edges that influence the spread.

Sub question 1.2: Which centrality measure minimizes the total costs of an epidemic given a quadratic cost function?

As the final goal of the research is to give a minimum-cost policy recommendation, it is crucial that centrality measures and network topologies are compared to attain this minimum-cost solution.

Sub question 1.3: What is the influence of epidemic parameters on spectral radius reduction and cost minimization?

Answering this question validates whether drawn conclusions still hold in case of an ongoing epidemic, as previous research in the field has nearly exclusively operated under the assumption of an infinitesimally small infected starting population [14]. Additionally, the influence of different initial infection- and recovery rates are important to consider when deciding on the ideal isolation policy.

Central question 2: What is the optimal policy that minimizes total cost for each epidemic case and network topology type?

Combining the minimum-cost results of central question 1 allows for the formulation of an individualized policy for each epidemic case and network topology type.

## 5 Methodology

#### 5.1 Controlled SIQS Model

In research regarding epidemic spreading, the stochastic SIS model has traditionally been one of the most often used [17]. The stochastic SIS model consists of two compartments, 'infected' and 'susceptible', with nodes moving between compartments probabilistically at each time-step with infection probability  $\beta$ , and recovery probability  $\delta$ . The SIS model does not account for immunity, vaccinations, or recovery. Nevertheless, this research concerns epidemics for which little to no immunity has been formed and no vaccinations have been developed [31].

Described mathematically as in [17], the networked SIS model deals with N nodes that form an undirected, connected graph G = (V, E), where  $\mathcal{V}$  is the collection of all N nodes and  $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$  describes the edge set. The adjacency matrix  $A \in \mathbb{R}_{\geq 0}^{N \times N}$  has individual components  $a_{ij} = 1$  if an edge exists between node *i* and *j*, and else  $a_{ij} = 0$ . Recall that the spectral radius



Figure 9: Susceptible-infected-susceptible (SIS) model. This model consists of an 'infected' (I) and a 'susceptible' (S) compartment which contain the nodes of a population. Movement between compartments occurs with infection probability  $\beta$  and recovery probability  $\delta$  [31]

 $\rho$  equals the largest eigenvalue of the adjacency matrix  $\lambda_{max(A)}$ .

Modeling the spread of an epidemic in graph G is done by formulating the state transitions as a discrete-time Markov process. State variable  $X_i(t)$  denotes the state of node *i* at time *t*, with  $X_i(t) = 1$  denoting 'infected' at time *t*, and  $X_i(t) = 0$  indicating 'susceptible' at time *t*. Infection can spread to adjacent neighbours with infection probability  $\beta > 0$ , and infected nodes can recover with recovery probability  $\delta > 0$ . The state transition dynamics are described thusly:

$$\dot{S}(t) = \delta(I(t) - \beta S(t)I(t)) 
\dot{I}(t) = \beta S(t)I(t) - \delta I(t)$$
(10)

Which leads to the discrete-time Markov process:

$$X_i : 0 \to 1 \text{ with probability } \beta \Sigma_{j \in N_i} X_j,$$
  

$$X_i : 1 \to 0 \text{ with probability } \delta.$$
(11)

Utilizing isolation as the control method introduces a new state Q (quarantined), serving as an extension to the previously described SIS dynamics. With this addition, the system now follows susceptible-infected-quarantined (SIQS) dynamics [29]:

$$\dot{S}(t) = \delta I(t) + \epsilon_i Q(t) - \beta S(t) I(t)$$
  

$$\dot{I}(t) = \beta S(t) I(t) + (\gamma_i - u_i) Q(t) - \delta I(t)$$
  

$$\dot{Q}(t) = u_i I(t) - \gamma_i I(t) - \epsilon_i S(t)$$
  
(12)

Where  $\gamma_i$  denotes the transition probability from Q to I,  $u_i$  is the transition probability from I to Q, and  $\epsilon_i$  is the transition probability from Q to S. Note that an isolated node can move from to compartment Q to S due to the stochasticity of infection duration. The discrete-time Markov process of the SIQS model is then as follows:

$$X_{i}: 0 \to 1 \text{ with probability } \beta \Sigma_{j \in N_{i}} X_{j},$$

$$X_{i}: 1 \to 0 \text{ with probability } \delta.$$

$$X_{i}: 1 \to 2 \text{ with probability } u_{i}.$$

$$X_{i}: 2 \to 0 \text{ with probability } \epsilon_{i}.$$

$$X_{i}: 2 \to 1 \text{ with probability } \gamma_{i}.$$
(13)

It is important to mention that these dynamics only hold for random transitions  $u_i$ ,  $\gamma_i$  and  $\epsilon_i$ . The controlled system (as shown in figure 1) ensures that these transitions are not random, but instead controlled using the centrality-based isolation policy.

#### 5.2 Cost Function

To model the costs that arise from infections and isolations during an isolation, a quadratic cost function was chosen. This is due to its ability to closely estimate non-linear effects that emerge due to strict isolation policy on the one hand, and a large infected population on the other [10]. The cost function is formulated as follows:

$$J(u,a) = \sum_{t=0}^{T} \frac{1}{2}u_t^2 + \theta \frac{1}{2}a_t^2$$
(14)

Where J(u, a) is defined the total cost over the course of epidemic, t is the time instance, T is the total time in days until epidemic extinction,  $u_t$  are intervention costs,  $\theta$  is a cost coefficient, and  $I_t$  denotes infection costs. Intervention costs  $u_t$  are proportional to the square of the node degree, as the intervention in this model deals only with isolation. Infection costs  $a_t$  are proportional to the square of the infected population. Low values of  $\theta$  correspond to relatively higher intervention costs, incentivizing fewer isolations and thus a milder intervention strategy. Inversely, higher values of  $\theta$  place more emphasis on infection costs, stimulating stricter intervention strategy [10]. The value  $\theta$ =60 used throughout this research was determined heuristically by running simulations, ensuring that isolation costs and infection costs were given approximately equal weight, as shown in 21.

#### 5.3 Intervention Strategies

This research mainly utilizes dynamic node removal in order to control the spread of the epidemic. As a supplementary tool, static removal is used to analyze the effect of increased isolation on spectral radius radius reduction. In this section, both intervention strategies and their implementation are discussed.

#### 5.3.1 Dynamic Removal

The dynamic removal strategy that is proposed in this research is predicated on the goal of decreasing the necessary number of isolations while still maintaining effectiveness in reducing spectral radius and total system costs. To achieve this, the centrality of each node in graph Gis calculated at each time-instance. Subsequently, a selection of the most central nodes is made, based on the chosen centrality measure and the percentage of 'isolatable' nodes. That is to say, a set maximum percentage of nodes that can be isolated at each time-instance. This set of isolatable nodes  $\mathcal{H} \subset \mathcal{V}$  is then cross-referenced with state X. If a node is both (a) isolatable and (b) infected at a certain time-instance, then the node is moved to the quarantined compartment Q of the formulated SIQS model (see 5.1), with a certain isolation duration. The remaining duration of each node isolation is stored at each iteration. When this duration becomes 0 for any node, this node then moves to either the infected compartment I or the susceptible compartment S depending on whether the node recovered from its infection during its isolation. Note that isolation always occurs with a single time-instance delay due to the formulation of the Markov process, where state X(t+1) depends only on state X(t) [17]. An infected node thus always has a single time-instance opportunity to infect its neighbours. This delay mirrors epidemic dynamics where a node either is unaware of its infection or gets tested. The complete flowchart of this removal strategy can be found in figure 10. Additionally, figure 11 shows one time-instance of the model where the centrality of each node is calculated.

Finally, all simulations involving dynamic removal compared not only the performance of the four centrality measures considered in this research, but also random removal as a baseline. To model random removal, isolatable node set  $\mathcal{H}$  was populated with random nodes at each time-

instance. However, the size of set  $\mathcal{H}$  remains consistent with its counterpart in centrality-based removal simulations.



Figure 10: Flowchart for dynamic removal. This flowchart graphically displays the steps described in 5.3.2 that lead to the total dynamic removal strategy used. Isolatable node set  $\mathcal{H}$  is compared with their respective states. If a node is both isolatable and infected, it is isolated starting at the next system iteration. Furthermore, each iteration reduces the remaining isolation duration for all isolated nodes, sending them to the appropriate compartment S or I depending on their infection status.



(a) Erdos-Renyi base graph

(b) Erdos-Renyi graph, centrality heatmap

Figure 11: Erdos-Renyi graph with centrality heatmap. This figure shows the base Erdos-Renyi graph in (a) and the heatmap version that is used as the basis for isolation in (b).

#### 5.3.2 Static Removal

As the main proposed removal strategy is dynamic, it is difficult to draw independent conclusions regarding the effect of centrality measure choice on spectral radius reduction. Different isolations are performed for each simulation due to stochasticity. Therefore, a simple static removal strategy was formulated. Rather than recalculating node centrality scores at each time instance during the epidemic simulation, isolations are performed before epidemic simulations begins. Instead of an 'isolatable' node percentage, the number of isolations in the static case is directly determined by the isolation percentage  $\zeta$  and total node number N. At each iteration preceding the epidemic simulation, centrality scores for all nodes in the network are calculated, after which the node with the largest centrality score is (preemptively) put into indefinite isolation. This is repeated for the number of nodes that are to be removed, isolating the new most central node each iteration. The steps of this static removal algorithm are displayed in figure 12.



Figure 12: Flowchart for static removal. This flowchart graphically displays the steps described in 5.3.2 that lead to the total static removal strategy used. The centrality of each node in  $\mathcal{V}$  is calculated, after which the node with the highest centrality score is isolated. This is repeated until the number of iterations equals the product of isolation percentage  $\zeta$  and total node number N.

#### 5.4 Simulated Parameters

#### 5.4.1 Epidemic Parameters

Three different simulated epidemic parameter sets were used for different purposes throughout this research. The first set named "COVID-19" is based on  $\delta$  as found in [18] and  $\beta$  as found in [12]. This is the most aggressive case. Important to note is that during the real COVID-19 epidemic, very strict control measures were taken to control the epidemic. Isolation was used in addition to  $\beta$ -lowering measures such as social distancing, face masks, and group size restrictions [9]. The second parameter set named "epidemic" simulates an epidemic that is approximately twice as weak as COVID-19, and the final parameter set "weak epidemic" is set to be four times as weak as COVID-19. Setting the parameters in this fashion effectively simulates harsh, middling, and mild epidemics, for which individual policy recommendations can be made.

Table 1: Simulated parameters for the three considered epidemic cases. COVID-19 is the most aggressive epidemic, with  $\delta$  determined via [18] and  $\beta$  via [12]. 'Epidemic' is the middle case and 'Weak epidemic' is the mildest case.

|   | COVID-19      | Epidemic | Weak epidemic |
|---|---------------|----------|---------------|
| β | $0.22 \ [12]$ | 0.1      | 0.05          |
| δ | $0.1 \ [18]$  | 0.1      | 0.1           |

#### 5.4.2 Graph Parameters

In order to make the results of the proposed model as generally applicable as possible, every simulation was run using newly generated graphs. Therefore, this section does not include the exact networks used, but rather their generation parameters. Early simulation results showed that lower edge generation probabilities lead to larger differences between centrality type performances, ostensibly due to the reduced homogeneity within network structure. Erdos-Renyi generation probability was thus set to  $\eta=0.15$  in line with findings as shown in appendix 10.1. Furthermore, the number of nodes per simulation N was set to 50 in order to keep simulation

Table 2: Graph generation parameters. In this table, the parameters used for the generation of Erdos-Renyi-, community-affiliation-, and nearly-isolation community graphs are denoted, including justification where necessary.

| General               |                            |  |  |  |  |  |  |  |
|-----------------------|----------------------------|--|--|--|--|--|--|--|
| Parameter             | Value                      |  |  |  |  |  |  |  |
| Ν                     | 50                         |  |  |  |  |  |  |  |
| Erdos-Renyi           |                            |  |  |  |  |  |  |  |
| Parameter             | Value                      |  |  |  |  |  |  |  |
| η                     | 0.15 (see section $10.1$ ) |  |  |  |  |  |  |  |
| Community-affiliation |                            |  |  |  |  |  |  |  |
| Parameter             | Value                      |  |  |  |  |  |  |  |
| Communities           | 3                          |  |  |  |  |  |  |  |
| $p_c$                 | $[0.1 \ 0.1 \ 0.2]$        |  |  |  |  |  |  |  |
| $p_{\epsilon}$        | 0.002 [27]                 |  |  |  |  |  |  |  |
| Nearly-iso            | lated community            |  |  |  |  |  |  |  |
| Parameter             | Value                      |  |  |  |  |  |  |  |
| Communities           | 5                          |  |  |  |  |  |  |  |
| Community size        | 10                         |  |  |  |  |  |  |  |
| $\eta_k$              | 0.5                        |  |  |  |  |  |  |  |
| $\eta_{\epsilon}$     | 0.02                       |  |  |  |  |  |  |  |

times manageable while still having the ability to generate distinct communities of adequate size. Nearly-isolated community graphs in which nodes belong to one and only one community were set to have 5 communities of 10 nodes each, with a dense  $\eta_k=0.5$  edge generation probability within communities, and a sparse  $\eta_{\epsilon}=0.02$  inter-community edge generation probability. Finally, community-affiliation graphs where nodes potentially belong to multiple communities were set slightly lower to have 3 communities, with edge generation probability per community  $p_c = [0.1 \ 0.1 \ 0.2]$  and  $\epsilon$ -community probability of  $p_{\epsilon}=0.002$ .

## 6 Results

In this section, simulation results are detailed pertaining to the model described in section 5.

First, the centrality-based static removal method from section 5.3.2 was used to compare the spectral radius reduction performance of degree-, eigen-, closeness-, and betweenness centrality, as well as random removal, for Erdos-Renyi-, nearly-isolated community-, and community affiliation networks. These results pertain solely to reduction in spectral radius, without considering epidemic spreading (see 6.1). The effect of Erdos-Renyi generation probability  $\eta$  was investigated before running final simulations and can be found in appendix 10.1.

Secondly, the dynamic centrality-based and random removal algorithms described in section 5.3.1 are applied to epidemic simulations, once again comparing spectral radius reduction performance of the four previously mentioned centrality measures and random dynamic removal (see 6.2). Harsh, middling, and mild epidemic cases are considered, named "COVID-19", "Epidemic", and "Weak Epidemic", respectively, as described in section 5.4.1.

Thirdly, these same dynamic simulation settings are then utilized to measure centrality measure performance in reducing simulated extinction time (see 6.3), and subsequently employed in combination with the cost function (14) in order to calculate the total costs per epidemic case and topology type (see 6.4). Exhaustive tables regarding cost outputs can be found in section 10.3, Section 10.2 contains graphs concerning the ratio of isolation- and infection costs for each simulation.

Finally, results from cost simulations are merged into two tables, containing the nearminimum-cost solutions related to 102% and 105% of minimum-cost. These tables contain individual intervention strategies per case and topology type (see 6.4.1).

#### 6.1 Spectral Radius Reduction utilizing Static Removal

From fig. 13, the following can be concluded:

(i) For all three topology types, static isolation based on betweenness- and degree centrality tends to provide the largest spectral radius reduction at each removal percentage, closeness centrality generally performs worse, and eigen-centrality tends to yield the lowest spectral radius reduction. There are two notable exceptions to these observations. First, betweenness centrality loses efficacy at higher removal percentages in nearly-isolated community graphs, being overtaken by closeness centrality and eigen centrality at 76% and 84% removal, respectively. Secondly, despite betweenness centrality performing the best out of all four centrality measures after 42% removal in community-affiliation graphs, it is outperformed by degree-, eigen-, and closeness centrality before 30% removal.

(ii) Random removal leads to roughly linear spectral radius reduction for all three network topology types, performing worse at all isolation percentages for Erdos-Renyi and community-affiliation graphs. For nearly-isolated community graphs, random removal performs better than closeness- and eigen centrality for nearly all isolation percentage values, as well as outperforming betweenness centrality after 58% removal.

(iii) Differences between the spectral radius reduction values for the best- and worst performing centrality measures vary greatly between topology types. For Erdos-Renyi graphs, all centrality measures perform relatively similarly throughout, with the maximum difference between the best- and worst performing centrality measures amounting to roughly 10% of the starting spectral radius  $\rho$ . For nearly-isolated community graphs, the maximum difference is roughly 25% of the starting  $\rho$ , and for community-affiliation graphs this difference is approximately 20%.



Figure 13: Mean spectral radius versus the percentage of isolated nodes for static removal. Static removal (as described in 5.3.2) was used to remove a set percentage of the most central nodes before calculating the spectral radius. This percentage ranged from 2% to 100% of nodes removed in 2% intervals. Centrality-based isolation was performed using degree-, eigen-, closeness-, and betweenness- centralities, as well as randomly-selected removal. Simulations were performed for Erdos-Renyi graphs (a), nearly-isolated community graphs (b) and community-affiliation graphs (c).

#### 6.2 Spectral Radius Reduction utilizing Dynamic Removal

From fig. 14, the following can be concluded:

(i) For all network topology types, the severity of the epidemic has three notable influences. First, the amplitude of spectral radius reduction is increased proportionally to the epidemic severity. Second, lower epidemic severity causes the system to move towards an asymptotic value more quickly. Finally, the differences between spectral radius reduction performance of centrality measures are larger for more severe epidemics.

(ii) In general, random removal results in higher spectral radius values for low removal percentages (approximately 0-25%), but results in lower spectral radius values for higher removal percentages.

(iii) Generally speaking, centrality measures that performed well in static spectral radius reduction cause a lower minimum spectral radius for low removal percentages, but a higher mean spectral radius at higher removal percentages. Nevertheless, note that performance amongst the four chosen centrality measures is more homogeneous than in the case of static removal.



Figure 14: Mean spectral radius versus the percentage of isolatable nodes utilizing dynamic isolation for Erdos-Renyi- (row 1), nearly-isolated community (row 2), and community-affiliation (row 3) graphs with generation parameters according to 5.4.2. Centrality-based dynamic isolation and randomly-selected dynamic removal were both utilized (as described in 5.3.1) for isolatable node percentage ranging from 2% to 100% of nodes, removed in 2% intervals. Centrality-based isolation was performed using degree-, eigen-, closeness-, and betweennesscentralities. Simulations were performed for three parameter sets (detailed in 5.4.1), "COVID-19" (a), "Epidemic" (b) and "Weak Epidemic" (c).

#### 6.3 Extinction Time

From fig. 15, the following can be concluded:

(i) Epidemic severity has three main influences on extinction time across all network topologies. First, higher epidemic severity generally leads to longer extinction times. As a consequence, the more severe the epidemic, the higher the isolation percentage required to observe epidemic extinction. Secondly, similar to findings in 6.1 and 14, increased epidemic severity amplifies the differences between the performance of centrality measures. Finally, the efficacy of random removal is directly tied to epidemic severity. The more severe the epidemic, the worse random removal performs. However, in the weak epidemic set, it performs similarly to centrality-based removal, even outperforming all centrality types for nearly-isolated community graphs.

(ii) Betweenness- and degree centrality provide the best performance in terms of extinction time reduction for Erdos-Renyi-, and community-affiliation graphs, while eigen-centrality performs the worst in for all network topology types. A notable exception is betweenness centrality in Erdos-Renyi graphs when simulating COVID-19 parameters. Here, similarly to findings in figure 13, closeness- and eigen centrality surpass betweenness centrality at 70% and 84%, respectively.

(iii) All simulations tend towards an asymptotic extinction time of 40 days.



Figure 15: Mean simulated extinction time versus the percentage of isolatable nodes utilizing dynamic isolation for Erdos-Renyi- (row 1), nearly-isolated community (row 2), and community-affiliation (row 3) graphs with generation parameters according to 5.4.2. Centrality-based dynamic isolation and randomly-selected dynamic removal were both utilized (as described in 5.3.1) for isolatable node percentage ranging from 2% to 100% of nodes, removed in 2% intervals. Centrality-based isolation was performed using degree-, eigen-, closeness-, and betweenness- centralities. Simulations were performed for three parameter sets (detailed in 5.4.1), "COVID-19" (a), "Epidemic" (b) and "Weak Epidemic" (c).

#### 6.4 Total Costs

From fig. 16, the following can be concluded:

(i) Similar to previous results, betweenness- and degree centrality provide the lowest costs across the board, with eigen centrality performing worst. Random removal leads to highest costs, with an exception of outperforming eigen-centrality for the middling and mild epidemic cases in Erdos-Renyi graphs.

(ii) For the COVID-19 parameter set, low isolation percentages lead to higher costs than those incurred by the uncontrolled system.

(iii) An asymptotic cost value is observed, corresponding to a situation of approximately equal isolation- and infection costs as observable in 10.2. Important to note is that the minimum-cost solution is thus always reached when the isolatable node percentage equals 100%,  $\mathcal{H} = \mathcal{V}$ .

Fig. 17 shows the results of simulations with the same parameters as fig. 16 (row 2, column 3), but with N=200 instead of N=50. Here, it is observable that betweenness centrality performs better, and degree centrality performs worse relative to the base N=50 case.



Figure 16: Mean total costs versus the percentage of isolatable nodes utilizing dynamic isolation for Erdos-Renyi-(row 1), nearly-isolated community (row 2), and community-affiliation (row 3) graphs with generation parameters according to 5.4.2. Costs are calculated using cost function 14. Centrality-based dynamic isolation and randomlyselected dynamic removal were both utilized (as described in 5.3.1) for isolatable node percentage ranging from 2% to 100% of nodes, removed in 2% intervals. Centrality-based isolation was performed using degree-, eigen-, closeness-, and betweenness- centralities. Simulations were performed for three parameter sets (detailed in 5.4.1), "COVID-19" (a), "Epidemic" (b) and "Weak Epidemic" (c).



Figure 17: Mean total costs versus the percentage of isolatable nodes for an N=200 nearly-isolated community graph, using the "Weak Epidemic" parameter set.

#### 6.4.1 Policy Recommendations

As shown in 16, the minimum-cost solution is always reached when the isolatable node percentage equals 100%,  $\mathcal{H} = \mathcal{V}$ . At this percentage, all non-random removal strategies approach the asymptotic minimum-cost solution. When every node is subject to intervention, the strategy is no longer targeted. Therefore, this section describes which strategies lead to the 102%- and 105% of minimum-cost solutions with the lowest percentage of isolatable nodes. These strategies approach the minimum-cost solution but reduce the required intervention severity.

It follows from tables 3 and 4 that epidemic severity plays a large role in the recommended policy. For the "COVID-19" parameter set, nearly all nodes still need to be isolatable in order to approach the minimum-cost solution. This is especially the case for the simulated Erdos-Renyi, and nearly-isolated community networks. However, the required percentage of isolatable nodes to approach the minimum-cost decreases significantly when considering less severe epidemics. This is demonstrated best by the "Weak Epidemic" parameter set, where only 60%, 68%, and 48% of nodes have to be isolatable in order to achieve 105% of the minimum-cost solution for Erdos-Renyi-, Nearly-isolated community-, and community-affiliation graphs, respectively. It should be noted that with one exception, dynamic removal based on degree- and closeness centralities constitute the best-performing strategy for all topology types and epidemic cases.

Table 3: Sub-102% of minimum-cost solution intervention strategies with the lowest isolatable percentage. This table compares Erdos-Renyi-, Nearly-isolated community-, and community-affiliation networks using parameter sets "COVID-19", "Epidemic", and "Weak Epidemic".

|                           | COVID-19        | Epidemic          | Weak Epidemic  |
|---------------------------|-----------------|-------------------|----------------|
| Erdos-Renyi               | Closeness, 0.92 | Degree, 0.8       | Degree, 0.64   |
| Nearly-isolated community | Closeness, 0.92 | Degree, 0.8       | Degree, 0.68   |
| Community-affiliation     | Degree, 0.76    | Betweenness, 0.62 | Closeness, 0.5 |

Table 4: Sub-105% of minimum-cost solution intervention strategies with the lowest isolatable percentage. This table compares Erdos-Renyi-, Nearly-isolated community-, and community-affiliation networks using parameter sets "COVID-19", "Epidemic", and "Weak Epidemic".

|                           | COVID-19        | Epidemic        | Weak Epidemic  |
|---------------------------|-----------------|-----------------|----------------|
| Erdos-Renyi               | Degree, 0.88    | Closeness, 0.78 | Degree, 0.6    |
| Nearly-isolated community | Closeness, 0.92 | Degree, 0.8     | Degree, 0.68   |
| Community-affiliation     | Closeness, 0.74 | Degree, 0.56    | Closeness 0.48 |

## 7 Discussion

It follows from the presented results that spectral radius reduction is indeed an accurate performance measurement when aiming to control the spread of epidemics. Results from sections 5.3.2, 14, 6.3, and 6.4 consistently show that two centrality measures which performed best in static spectral radius reduction overall, degree- and betweenness centrality, also showed the best performance in extinction time and cost minimization. Additionally, closeness centrality performs very similarly to, if not better, than betweenness centrality at high isolatable node percentages, as reflected in the final results of 6.4.1.

As shown in figure 17, the excellent performance of degree centrality may be a product of of the low node number used in simulations. This figure suggests that betweenness centrality performs better than degree- and closeness centrality in a medium isolatable node percentage range (34-80%) for higher node numbers. At higher isolatable node percentage values, however, closeness centrality still approaches the minimum-cost solution more quickly. These findings are in line with [23] and [5], where it is described that degree centrality is very effective for minimizing local spreading, but less effective at global spreading reduction. However, the effect of network size would have to be more systematically analyzed to draw substantiated conclusions from.

Results suggest that the ideal policy for controlling epidemics is one where the size of the infected population is reduced rapidly using aggressive isolation policy, after which small infected population remains that does not greatly increase costs due to the low number of infections and required isolations. In keeping with this conclusion, low isolation percentages are shown to increase total costs, rather than decrease them. Results regarding the ratio between infection costs and isolation costs, combined with those concerning the extinction time (fig. 21 and 15) suggest that this is due to the fact that isolation costs are high, while intervention efforts are not enough to drive the system to extinction. Therefore, large isolation costs are incurred throughout, while infection costs are never lowered to approach the asymptotic value.

Finally, two of the most impactful limitations of the used model will be discussed. First, despite the wide-spread usage of SIQS models, current research often considers models that introduce additional states which model phenomena that are essential to epidemic spreading, including recovery, vaccination, detection, and deaths [17]. Results obtained from this research might thus be generalized and not robust enough to support actionable policy. Secondly, this research assumes that network centrality is measured at every time-step, and that the isolation strategy adapts accordingly. However, realistically only a limited number of policy changes are possible within a given time frame. This is further explored in [10].

## 8 Conclusion

This research aimed to determine which centrality measure (among degree-, closeness-, betweenness-, and eigen centrality) most accurately determines the influential nodes in epidemic spreading per topology type (among Erdos-Renyi, nearly-isolated community-, and community-affiliation graphs), keeping in mind the influence of epidemic severity. Then, policy recommendations were to be given for the control of early epidemics with no developed vaccination strategy and limited information regarding the involved communities and the epidemic itself.

A novel dynamic centrality-based isolation strategy was proposed, in which only a set percentage of the most central nodes is isolatable at each time-instance. It was shown that spectral radius reduction is an effective performance indicator for centrality-based intervention strategies, with cost minimization and simulated extinction time mirroring the results found for spectral radius reduction utilizing static- and dynamic removal. Isolation based on betweenness-, and degree centrality were demonstrated to lead to the greatest reductions in spectral radius, extinction time, and costs overall, with closeness centrality performing well for high isolatable node percentages.

Finally, policy recommendations for minimum-cost solutions were given, as well as recommendations for policy allowing more node freedom, while only being 2-5% more costly than the minimum-cost solution. For these policy recommendations, three epidemic cases were considered, one simulating COVID-19 epidemic parameters, one with 50% of COVID-19's infection strength, and finally one with 25% of its infection strength. In the end, individual policies were provided for Erdos-Renyi-, nearly-isolated community-, and community-affiliation networks pertaining to each epidemic case.

## 9 Validation

In order to validate the research at hand, justifications for chosen equations and parameters were given throughout, most prevalent in sections 5.4.2 and 5.4.1. Obtained results are internally consistent, and are in line with theory regarding centrality and epidemic spreading that were used throughout, most notably [17] and [31]. Finally, the lower-bound condition for SIS models was tested to further validate model outputs.

For the SIS model, a threshold condition has been determined in [6] that leads to a sufficient condition for sub-linear expected extinction time by utilising infection strength  $\tau = \frac{\beta}{\delta}$ . This lower-bound was tested for parameters satisfying the condition, with an output example visible in fig. 18.

if:  

$$\tau < \frac{1}{\lambda_{max}(A)}$$
then:
$$E[T] \le \frac{\log N + 1}{\delta - \beta \lambda_{max}(A)}$$
for any initial condition X(0).
(15)

Where  $\tau$  is the infection strength,  $\lambda_{max}(A)$  is the spectral radius, and E[T] is the lower-bound for expected extinction time.



Figure 18: Sub-linear expected extinction time model test. A nearly-isolated community graph was tested with  $\beta$ =0.03 and  $\delta$ =0.33. The initial bound for expected extinction time is shown in green, and the average bound keeping in mind dynamic removal is indicated in red.

## References

- [1] coronadashboard.rijksoverheid.nl. https://coronadashboard.rijksoverheid.nl/ landelijk/vaccinaties, 2022. Accessed:2022-06-14.
- [2] A. N. Bishop and I. Shames. Link operations for slowing the spread of disease in complex networks. *EPL (Europhysics Letters)*, 95(1):18005, jun 2011.
- [3] G. Chartrand. Introductory graph theory. Courier Corporation, 1977.
- [4] S. Flaxman, S. Mishra, A. Gandy, H. J. T. Unwin, T. A. Mellan, H. Coupland, C. Whittaker, H. Zhu, T. Berah, J. W. Eaton, et al. Estimating the effects of non-pharmaceutical interventions on covid-19 in europe. *Nature*, 584(7820):257–261, 2020.
- [5] L. C. Freeman. Centrality in social networks conceptual clarification. Social networks, 1(3):215-239, 1978.
- [6] A. Ganesh, L. Massoulié, and D. Towsley. The effect of network topology on the spread of epidemics. volume 2, pages 1455–1466, 01 2005.
- [7] M. Ghanem, C. Magnien, and F. Tarissan. Centrality metrics in dynamic networks: a comparison study. *IEEE Transactions on Network Science and Engineering*, 6(4):940–951, 2018.
- [8] I. Goldstein, R. S. J. Koijen, and H. M. Mueller. COVID-19 and Its Impact on Financial Markets and the Real Economy. *The Review of Financial Studies*, 34(11):5135–5148, 08 2021.
- [9] E. Han, M. M. J. Tan, E. Turk, D. Sridhar, G. M. Leung, K. Shibuya, N. Asgari, J. Oh, A. L. García-Basteiro, J. Hanefeld, et al. Lessons learnt from easing covid-19 restrictions: an analysis of countries and regions in asia pacific and europe. *The Lancet*, 396(10261):1525– 1534, 2020.
- [10] A. Kasis, S. Timotheou, N. Monshizadeh, and M. Polycarpou. Optimal intervention strategies to mitigate the covid-19 pandemic effects. *Scientific reports*, 12(1):1–13, 2022.
- [11] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási. Controllability of complex networks. nature, 473(7346):167–173, 2011.
- [12] I. Locatelli, B. Trächsel, and V. Rousson. Estimating the basic reproduction number for covid-19 in western europe. *Plos one*, 16(3):e0248731, 2021.
- [13] T. Martin, X. Zhang, and M. E. Newman. Localization and centrality in networks. *Physical review E*, 90(5):052808, 2014.
- [14] J. Miller. Epidemics on networks with large initial conditions or changing structure. PLoS ONE, 9, 08 2012.
- [15] M. E. Newman. The mathematics of networks. *The new palgrave encyclopedia of economics*, 2(2008):1–12, 2008.
- [16] B. Nica. A Brief Introduction to Spectral Graph Theory. European Mathematical Society Publishing House, May 2018.
- [17] C. Nowzari, V. M. Preciado, and G. J. Pappas. Analysis and control of epidemics: A survey of spreading processes on complex networks. *IEEE Control Systems Magazine*, 36(1):26–46, 2016.

- [18] R. W. Peeling, D. L. Heymann, Y.-Y. Teo, and P. J. Garcia. Diagnostics for covid-19: moving from pandemic response to control. *The Lancet*, 2021.
- [19] A. A. Saberi. Recent advances in percolation theory and its applications. *Physics Reports*, 578:1–32, 2015.
- [20] S. Saha, A. Adiga, B. Prakash, and A. Vullikanti. Approximation algorithms for reducing the spectral radius to control epidemic spread. 01 2015.
- [21] V. Saladino, D. Algeri, and V. Auriemma. The psychological and social impact of covid-19: new perspectives of well-being. *Frontiers in psychology*, page 2550, 2020.
- [22] M. Salter-Townshend, A. White, I. Gollini, and T. B. Murphy. Review of statistical network analysis: models, algorithms, and software. *Statistical Analysis and Data Mining*, 5(4):243– 264, 2012.
- [23] A. Saxena and S. Iyengar. Centrality measures in complex networks: A survey. arXiv preprint arXiv:2011.07190, 2020.
- [24] S. Uddin, A. Khan, and M. Piraveenan. A set of measures to quantify the dynamicity of longitudinal social networks. *Complexity*, 21(6):309–320, 2016.
- [25] S. Uddin, M. Piraveenan, K. S. K. Chung, and L. Hossain. Topological analysis of longitudinal networks. In 2013 46th Hawaii International Conference on System Sciences, pages 3931–3940. IEEE, 2013.
- [26] P. Van Mieghemy, F. D. Sahnehz, and C. Scoglioz. An upper bound for the epidemic threshold in exact markovian sir and sis epidemics on networks. In 53rd IEEE Conference on Decision and Control, pages 6228–6233, 2014.
- [27] J. Yang and J. Leskovec. Community-affiliation graph model for overlapping network community detection. In 2012 IEEE 12th international conference on data mining, pages 1170– 1175. IEEE, 2012.
- [28] M. Zargham and V. Preciado. Worst-case scenarios for greedy, centrality-based network protection strategies. 2014 48th Annual Conference on Information Sciences and Systems, CISS 2014, 01 2014.
- [29] X.-B. Zhang, H.-F. Huo, H. Xiang, Q. Shi, and D. Li. The threshold of a stochastic siqs epidemic model. *Physica A: Statistical Mechanics and Its Applications*, 482:362–374, 2017.
- [30] Y.-Q. Zhang, X. Li, and A. V. Vasilakos. Spectral analysis of epidemic thresholds of temporal networks. *IEEE Transactions on Cybernetics*, 50(5):1965–1977, 2020.
- [31] L. Zino and M. Cao. Analysis, prediction, and control of epidemics: A survey from scalar to dynamic network models. *IEEE Circuits and Systems Magazine*, 21(4):4–23, 2021.

## 10 Appendix



### 10.1 Effect of Erdos-Renyi $\eta$ -value on Centrality Performance

Figure 19: Effect of Erdos-Renyi $\eta\text{-value}$  on centrality performance for spectral radius reduction. Erdos-Renyi,  $\eta{=}0.1$  and  $\eta{=}0.2$ 



Figure 20: Effect of Erdos-Renyi  $\eta$ -value on centrality performance for spectral radius reduction. Erdos-Renyi,  $\eta$ =0.3,  $\eta$ =0.4 and  $\eta$ =0.5.

### 10.2 Cost Divisions



Figure 21: Mean division of total costs versus isolatable nodes. In this figure, the division between mean isolation costs and mean infection costs is visualised for all simulations. Centralitybased dynamic isolation and randomly-selected dynamic removal were both utilized (as described in 5.3.1) for isolatable node percentage ranging from 2% to 100% of nodes, removed in 2% intervals. Centrality-based isolation was performed using degree-, eigen-, closeness-, and betweennesscentralities. Simulations were performed for three parameter sets (detailed in 5.4.1), "COVID-19" (a), "Epidemic" (b) and "Weak Epidemic" (c).

## 10.3 Output Tables

Table 5: Mean spectral radius  $\rho$  versus isolation percentage, static removal, Erdos-Renyi. Performance of removal based on degree-, eigen-, closeness-, and betweenness centrality are compared with each other and with the performance of random removal.

| iso% | Degree | Eigen | Close | Between | Random |
|------|--------|-------|-------|---------|--------|
| 0.00 | 7.50   | 7.49  | 7.50  | 7.50    | 7.52   |
| 0.02 | 7.22   | 7.21  | 7.22  | 7.22    | 7.37   |
| 0.04 | 6.97   | 6.96  | 6.97  | 6.98    | 7.23   |
| 0.06 | 6.73   | 6.73  | 6.74  | 6.74    | 7.08   |
| 0.08 | 6.49   | 6.51  | 6.52  | 6.52    | 6.93   |
| 0.10 | 6.27   | 6.31  | 6.31  | 6.30    | 6.79   |
| 0.12 | 6.06   | 6.11  | 6.10  | 6.08    | 6.66   |
| 0.14 | 5.86   | 5.92  | 5.90  | 5.88    | 6.53   |
| 0.16 | 5.66   | 5.74  | 5.70  | 5.67    | 6.39   |
| 0.18 | 5.46   | 5.56  | 5.51  | 5.48    | 6.26   |
| 0.20 | 5.26   | 5.39  | 5.33  | 5.28    | 6.15   |
| 0.22 | 5.07   | 5.22  | 5.15  | 5.09    | 6.03   |
| 0.24 | 4.89   | 5.05  | 4.97  | 4.90    | 5.90   |
| 0.26 | 4.72   | 4.89  | 4.80  | 4.72    | 5.78   |
| 0.28 | 4.53   | 4.73  | 4.64  | 4.53    | 5.66   |
| 0.30 | 4.36   | 4.57  | 4.47  | 4.35    | 5.56   |
| 0.32 | 4 19   | 4 42  | 4.31  | 4 17    | 5 44   |
| 0.34 | 4 01   | 4 27  | 4 15  | 3 99    | 5.34   |
| 0.36 | 3.85   | 4 12  | 4 00  | 3.82    | 5 24   |
| 0.38 | 3.68   | 3 97  | 3.84  | 3 64    | 5 11   |
| 0.40 | 3.52   | 3.83  | 3 69  | 3 48    | 5.03   |
| 0.40 | 3 36   | 3.69  | 3 54  | 3 31    | 4 93   |
| 0.44 | 3 21   | 3.54  | 3 39  | 3 16    | 4.84   |
| 0.46 | 3.07   | 3 30  | 3 25  | 2 99    | 4 71   |
| 0.48 | 2 92   | 3.26  | 3 10  | 2.84    | 4 64   |
| 0.40 | 2.52   | 3.12  | 2.96  | 2.69    | 4.53   |
| 0.52 | 2.63   | 2.98  | 2.81  | 2.54    | 4.00   |
| 0.54 | 2.49   | 2.85  | 2.67  | 2.40    | 4 36   |
| 0.56 | 2.36   | 2.72  | 2.53  | 2 25    | 4 27   |
| 0.58 | 2.23   | 2.58  | 2.40  | 2.09    | 4 16   |
| 0.60 | 2.08   | 2.44  | 2.26  | 1 94    | 4 08   |
| 0.62 | 1.95   | 2.31  | 2.13  | 1.80    | 4 04   |
| 0.64 | 1.81   | 2.17  | 2.01  | 1.65    | 3.92   |
| 0.66 | 1 69   | 2.04  | 1.87  | 1.52    | 3.87   |
| 0.68 | 1.56   | 1.90  | 1.75  | 1.40    | 3.77   |
| 0.70 | 1.43   | 1.77  | 1.61  | 1.28    | 3.73   |
| 0.72 | 1.32   | 1.64  | 1.50  | 1.18    | 3.63   |
| 0.74 | 1.23   | 1.53  | 1.37  | 1.09    | 3 54   |
| 0.76 | 1.15   | 1.40  | 1.26  | 1.01    | 3.47   |
| 0.78 | 1.06   | 1.28  | 1.17  | 0.95    | 3.42   |
| 0.80 | 0.98   | 1.19  | 1.07  | 0.89    | 3.36   |
| 0.82 | 0.91   | 1.08  | 0.97  | 0.83    | 3 30   |
| 0.84 | 0.83   | 0.99  | 0.89  | 0.77    | 3.24   |
| 0.86 | 0.76   | 0.88  | 0.81  | 0.72    | 3.14   |
| 0.88 | 0.68   | 0.77  | 0.72  | 0.63    | 3.09   |
| 0.90 | 0.59   | 0.67  | 0.61  | 0.57    | 3.02   |
| 0.92 | 0.50   | 0.55  | 0.51  | 0.49    | 2.97   |
| 0.94 | 0.39   | 0.44  | 0.41  | 0.40    | 2.90   |
| 0.96 | 0.28   | 0.32  | 0.28  | 0.30    | 2.82   |
| 0.98 | 0.16   | 0.15  | 0.14  | 0.17    | 2.79   |
| 1.00 | 0.00   | 0.00  | 0.00  | 0.04    | 2.71   |

| Tab   | le 6: Me | an spectral  | radius $\rho$ | versus isolati | on pe | ercentage, | $\operatorname{static}$ | removal   | , communit | y-affiliatio | n. Per | form  | ance |
|-------|----------|--------------|---------------|----------------|-------|------------|-------------------------|-----------|------------|--------------|--------|-------|------|
| of re | emoval b | ased on degr | ree-, eigen   | -, closeness-, | and h | betweenne  | ess cent                | rality ar | e compared | with each    | other  | and y | with |
| the   | performa | ance of rand | om remov      | val.           |       |            |                         |           |            |              |        |       |      |

| iso% | Degree | Eigen | Closeness | Betweenness | Random |
|------|--------|-------|-----------|-------------|--------|
| 0.00 | 7.26   | 7.26  | 7.31      | 7.32        | 7.35   |
| 0.02 | 6.62   | 6.57  | 6.69      | 6.81        | 7.21   |
| 0.04 | 6.09   | 6.06  | 6.20      | 6.39        | 7.07   |
| 0.06 | 5.64   | 5.65  | 5.78      | 6.02        | 6.95   |
| 0.08 | 5.24   | 5.31  | 5.42      | 5.69        | 6.82   |
| 0.10 | 4.89   | 5.00  | 5.09      | 5.37        | 6.71   |
| 0.12 | 4.55   | 4.71  | 4.79      | 5.08        | 6.57   |
| 0.14 | 4.26   | 4.46  | 4.50      | 4.80        | 6.44   |
| 0.16 | 3.98   | 4.25  | 4.25      | 4.54        | 6.34   |
| 0.18 | 3.74   | 4.05  | 4.01      | 4.30        | 6.19   |
| 0.20 | 3.51   | 3.85  | 3.78      | 4.06        | 6.13   |
| 0.22 | 3.30   | 3.67  | 3.57      | 3.84        | 5.99   |
| 0.24 | 3.12   | 3.51  | 3.38      | 3.64        | 5.87   |
| 0.26 | 2.94   | 3.37  | 3.21      | 3.45        | 5.77   |
| 0.28 | 2 79   | 3 22  | 3.03      | 3 25        | 5.69   |
| 0.30 | 2.63   | 3.08  | 2.88      | 3.05        | 5.57   |
| 0.32 | 2 50   | 2.96  | 2 74      | 2.86        | 5 49   |
| 0.34 | 2.37   | 2.84  | 2.62      | 2.66        | 5 40   |
| 0.36 | 2.26   | 2 74  | 2.51      | 2.47        | 5.26   |
| 0.38 | 2.14   | 2.65  | 2.40      | 2 29        | 5.19   |
| 0.00 | 2.14   | 2.58  | 2.40      | 2.23        | 5.10   |
| 0.40 | 1.03   | 2.50  | 2.20      | 1.96        | 4.94   |
| 0.42 | 1.83   | 2.54  | 2.10      | 1.50        | 4.34   |
| 0.44 | 1.00   | 2.52  | 1.97      | 1.66        | 4.85   |
| 0.48 | 1.63   | 2.00  | 1.80      | 1.00        | 4.71   |
| 0.50 | 1.55   | 2.40  | 1.81      | 1 36        | 4.63   |
| 0.52 | 1.00   | 2.40  | 1.72      | 1.00        | 4.52   |
| 0.54 | 1.40   | 2.40  | 1.64      | 1.08        | 4.48   |
| 0.54 | 1.01   | 2.33  | 1.55      | 0.94        | 4.43   |
| 0.58 | 1.18   | 2.04  | 1.00      | 0.79        | 4.28   |
| 0.60 | 1.10   | 2.27  | 1 38      | 0.66        | 4.20   |
| 0.60 | 0.97   | 2.13  | 1.30      | 0.53        | 4.24   |
| 0.64 | 0.86   | 2.10  | 1.00      | 0.42        | 4.06   |
| 0.66 | 0.00   | 1 02  | 1.11      | 0.33        | 4.00   |
| 0.00 | 0.75   | 1.92  | 1.11      | 0.33        | 3.04   |
| 0.08 | 0.03   | 1.73  | 0.89      | 0.18        | 3.89   |
| 0.72 | 0.41   | 1.64  | 0.77      | 0.14        | 3.81   |
| 0.74 | 0.31   | 1.54  | 0.63      | 0.12        | 3 73   |
| 0.74 | 0.31   | 1.04  | 0.05      | 0.12        | 3.67   |
| 0.78 | 0.15   | 1 35  | 0.01      | 0.10        | 3.68   |
| 0.10 | 0.10   | 1.00  | 0.40      | 0.10        | 3.53   |
| 0.80 | 0.05   | 1.13  | 0.30      | 0.09        | 3.49   |
| 0.84 | 0.03   | 1.10  | 0.21      | 0.05        | 2 40   |
| 0.84 | 0.03   | 0.85  | 0.14      | 0.09        | 3.40   |
| 0.88 | 0.02   | 0.35  | 0.03      | 0.09        | 3.00   |
| 0.00 | 0.01   | 0.52  | 0.04      | 0.03        | 3.23   |
| 0.90 | 0.00   | 0.32  | 0.02      | 0.09        | 3.20   |
| 0.92 | 0.00   | 0.37  | 0.01      | 0.09        | 3.41   |
| 0.94 | 0.00   | 0.22  | 0.00      | 0.09        | 3.15   |
| 0.08 | 0.00   | 0.00  | 0.00      | 0.03        | 3.04   |
| 1.00 | 0.00   | 0.00  | 0.00      | 0.09        | 2.04   |
| 1.00 | 0.00   | 0.00  | 0.00      | 0.09        | 2.90   |

| Table 7: Mean spectral radius $\rho$ versus isolation percentage, static removal, Nearly-isolated community. Perfor |
|---------------------------------------------------------------------------------------------------------------------|
| mance of removal based on degree-, eigen-, closeness-, and betweenness centrality are compared with each othe       |
| and with the performance of random removal.                                                                         |

| iso% | Degree | Eigen | Closeness | Betweenness | Random |
|------|--------|-------|-----------|-------------|--------|
| 0.00 | 10.09  | 10.12 | 10.09     | 10.08       | 10.11  |
| 0.02 | 9.88   | 9.73  | 9.90      | 9.94        | 10.00  |
| 0.04 | 9.68   | 9.64  | 9.74      | 9.79        | 9.89   |
| 0.06 | 9.45   | 9.59  | 9.61      | 9.64        | 9.79   |
| 0.08 | 9.24   | 9.56  | 9.49      | 9.46        | 9.65   |
| 0.10 | 9.05   | 9.53  | 9.37      | 9.27        | 9.52   |
| 0.12 | 8.83   | 9.52  | 9.26      | 9.08        | 9.39   |
| 0.14 | 8.59   | 9.50  | 9.14      | 8.89        | 9.27   |
| 0.16 | 8.36   | 9.48  | 9.02      | 8.71        | 9.16   |
| 0.18 | 8.11   | 9.45  | 8.91      | 8.52        | 9.04   |
| 0.20 | 7.91   | 9.42  | 8.80      | 8.34        | 8.90   |
| 0.22 | 7.69   | 9.17  | 8.69      | 8.15        | 8.75   |
| 0.24 | 7.46   | 9.06  | 8.58      | 7.99        | 8.64   |
| 0.26 | 7.24   | 8.98  | 8.46      | 7.83        | 8.54   |
| 0.28 | 7.03   | 8.91  | 8.35      | 7.68        | 8.41   |
| 0.30 | 6.83   | 8.85  | 8.22      | 7.50        | 8.31   |
| 0.32 | 6.62   | 8.81  | 8.10      | 7.33        | 8.13   |
| 0.34 | 6.47   | 8.77  | 7.95      | 7.16        | 8.03   |
| 0.36 | 6.31   | 8.73  | 7.82      | 6.99        | 7.93   |
| 0.38 | 6.15   | 8.68  | 7.68      | 6.82        | 7.80   |
| 0.40 | 6.00   | 8.60  | 7.52      | 6.67        | 7.75   |
| 0.42 | 5.87   | 8.29  | 7.36      | 6.52        | 7.59   |
| 0.44 | 5.75   | 8.08  | 7.22      | 6.38        | 7.48   |
| 0.46 | 5.63   | 7.94  | 7.08      | 6.21        | 7.37   |
| 0.48 | 5.50   | 7.82  | 6.91      | 6.08        | 7.24   |
| 0.50 | 5.38   | 7.68  | 6.76      | 5.97        | 7.17   |
| 0.52 | 5.28   | 7.56  | 6.61      | 5.83        | 7.05   |
| 0.54 | 5.16   | 7.45  | 6.47      | 5.73        | 7.00   |
| 0.56 | 5.06   | 7.33  | 6.33      | 5.61        | 6.81   |
| 0.58 | 4.95   | 7.23  | 6.19      | 5.52        | 6.74   |
| 0.60 | 4.84   | 7.10  | 6.04      | 5.45        | 6.66   |
| 0.62 | 4.73   | 6.79  | 5.91      | 5.38        | 6.54   |
| 0.64 | 4.61   | 6.46  | 5.75      | 5.29        | 6.49   |
| 0.66 | 4.47   | 6.16  | 5.62      | 5.21        | 6.37   |
| 0.68 | 4.33   | 5.92  | 5.46      | 5.13        | 6.27   |
| 0.70 | 4.19   | 5.69  | 5.30      | 5.04        | 6.23   |
| 0.72 | 4.00   | 5.48  | 5.12      | 4.95        | 6.05   |
| 0.74 | 3.83   | 5.27  | 4.92      | 4.84        | 6.00   |
| 0.76 | 3.62   | 5.07  | 4.71      | 4.72        | 5.88   |
| 0.78 | 3.39   | 4.85  | 4.48      | 4.58        | 5.79   |
| 0.80 | 3.17   | 4.63  | 4.20      | 4.42        | 5.74   |
| 0.82 | 2.93   | 4.32  | 3.89      | 4.24        | 5.65   |
| 0.84 | 2.64   | 3.95  | 3.53      | 4.03        | 5.57   |
| 0.86 | 2.38   | 3.55  | 3.15      | 3.76        | 5.51   |
| 0.88 | 2.10   | 3.13  | 2.74      | 3.40        | 5.41   |
| 0.90 | 1.78   | 2.65  | 2.37      | 3.00        | 5.32   |
| 0.92 | 1.48   | 2.16  | 1.98      | 2.57        | 5.28   |
| 0.94 | 1.17   | 1.65  | 1.57      | 2.17        | 5.18   |
| 0.96 | 0.84   | 1.11  | 1.14      | 1.87        | 5.06   |
| 0.98 | 0.51   | 0.50  | 0.61      | 1.71        | 5.04   |
| 1.00 | 0.00   | 0.00  | 0.01      | 1.50        | 4.97   |

Table 8: Mean spectral radius  $\rho$  versus isolation percentage, dynamic removal, Erdos-Renyi, COVID-19 parameter set. Performance of removal based on degree-, eigen-, closeness-, and betweenness centrality are compared with each other and with the performance of random dynamic removal.

| iso% | Degree | Eigen | Closeness | Betweenness | Random |
|------|--------|-------|-----------|-------------|--------|
| 0.00 | 8.61   | 8.42  | 8.12      | 8.26        | 8.75   |
| 0.02 | 6.95   | 7.02  | 6.99      | 7.34        | 7.70   |
| 0.04 | 6.27   | 6.37  | 6.15      | 6.37        | 7.04   |
| 0.06 | 5.20   | 5.35  | 5.48      | 5.52        | 6.85   |
| 0.08 | 5.08   | 5.12  | 4.75      | 5.25        | 6.47   |
| 0.10 | 4.33   | 4.50  | 4.45      | 4.39        | 6.30   |
| 0.12 | 4.18   | 4.18  | 4.22      | 4.22        | 5.88   |
| 0.14 | 3.95   | 3.94  | 4.01      | 3.90        | 5.45   |
| 0.16 | 3.89   | 3.88  | 3.95      | 3.94        | 5.29   |
| 0.18 | 3.71   | 3.79  | 3.87      | 3.86        | 5.16   |
| 0.20 | 3.90   | 3.91  | 3.76      | 3.81        | 5.10   |
| 0.22 | 3.93   | 3.83  | 3.66      | 3.77        | 4.74   |
| 0.24 | 3.86   | 3.83  | 3.71      | 4.12        | 4.63   |
| 0.26 | 4.00   | 3.94  | 3.85      | 3.91        | 4.54   |
| 0.28 | 4.05   | 3.84  | 3.86      | 3 99        | 4 63   |
| 0.30 | 4.24   | 4.11  | 4.15      | 4.02        | 4.38   |
| 0.32 | 4.28   | 4 17  | 4.33      | 4 29        | 4 29   |
| 0.34 | 4 48   | 4 33  | 4 23      | 4 29        | 4 18   |
| 0.36 | 4 66   | 4 22  | 4.36      | 4 28        | 4 19   |
| 0.38 | 4 70   | 4 07  | 4 61      | 4 45        | 4 09   |
| 0.40 | 4 75   | 4 36  | 4 73      | 4 48        | 4 16   |
| 0.42 | 4 65   | 4 27  | 4.85      | 4 70        | 4 14   |
| 0.44 | 4 90   | 4 51  | 5.02      | 5.06        | 3.97   |
| 0.44 | 5.09   | 4.34  | 4.98      | 4 84        | 4.02   |
| 0.48 | 4 95   | 4 61  | 5.22      | 5 29        | 3 93   |
| 0.50 | 5 30   | 4 47  | 5 38      | 5 25        | 3 91   |
| 0.52 | 5.28   | 4.61  | 5.65      | 5.62        | 3 93   |
| 0.54 | 5.65   | 4.80  | 5.43      | 5.59        | 4.01   |
| 0.56 | 5.45   | 4 73  | 5.57      | 5.60        | 3.97   |
| 0.58 | 5.69   | 4.71  | 5.86      | 5 72        | 3.95   |
| 0.60 | 5.53   | 5.00  | 5.82      | 6.12        | 4 10   |
| 0.62 | 5.52   | 4 73  | 6.10      | 5.67        | 4.17   |
| 0.64 | 6.16   | 5.19  | 6.02      | 5.92        | 3 00   |
| 0.66 | 5.85   | 5 29  | 6.20      | 6.22        | 4.04   |
| 0.68 | 6.15   | 5.20  | 6.20      | 5 76        | 4.04   |
| 0.00 | 6.23   | 5.25  | 6.64      | 5.82        | 4.05   |
| 0.72 | 6.55   | 5.28  | 6.53      | 6.26        | 4.00   |
| 0.74 | 6.30   | 5.54  | 6.23      | 6.26        | 4.54   |
| 0.74 | 6 30   | 5.47  | 6.64      | 6.34        | 4.54   |
| 0.78 | 6.23   | 5 75  | 6.54      | 6.15        | 4.00   |
| 0.80 | 6.17   | 5.96  | 6.48      | 6.08        | 4.47   |
| 0.80 | 6.65   | 6.04  | 6 78      | 6.27        | 4.77   |
| 0.84 | 6.49   | 6.20  | 6.62      | 6.21        | 4.70   |
| 0.84 | 6.49   | 6.13  | 6.42      | 6.83        | 4.86   |
| 0.88 | 6 78   | 6.20  | 6 71      | 6.45        | 5.10   |
| 0.88 | 6.66   | 6.30  | 6.65      | 6.50        | 5.10   |
| 0.90 | 6.00   | 6.56  | 6.90      | 6.74        | 5.04   |
| 0.92 | 6.92   | 6.37  | 6.01      | 6.02        | 5.11   |
| 0.94 | 6 74   | 6.67  | 6.44      | 6.73        | 5.40   |
| 0.90 | 6 55   | 6.47  | 6 70      | 6.84        | 5.49   |
| 1.00 | 6.91   | 6.77  | 6.96      | 6.44        | 5.27   |

| Tab                   | le 9: Mean spectra | l radius $\rho$ versus | s isolation | percent   | tage, dynai | mic rer | moval, Ere | dos-Renyi,   | Epidemic j | param  | eter |
|-----------------------|--------------------|------------------------|-------------|-----------|-------------|---------|------------|--------------|------------|--------|------|
| $\operatorname{set.}$ | Performance of re  | moval based on         | degree-, e  | eigen-, o | closeness-, | and be  | etweennes  | s centrality | are comp   | ared v | with |
| each                  | other and with th  | he performance of      | of random   | dynam     | nic removal |         |            |              |            |        |      |

| iso% | Degree | Eigen | Closeness | Betweenness | Random |
|------|--------|-------|-----------|-------------|--------|
| 0.00 | 8.39   | 8.54  | 8.35      | 8.31        | 8.34   |
| 0.02 | 6.93   | 6.99  | 7.10      | 7.24        | 7.86   |
| 0.04 | 6.28   | 6.31  | 6.54      | 6.38        | 7.45   |
| 0.06 | 5.62   | 5.70  | 5.71      | 6.05        | 7.08   |
| 0.08 | 5.20   | 5.20  | 5.25      | 5.42        | 6.70   |
| 0.10 | 4.88   | 4.93  | 5.17      | 5.09        | 6.46   |
| 0.12 | 4.80   | 4.95  | 4.80      | 4.82        | 6.14   |
| 0.14 | 4.83   | 4.85  | 4.75      | 4.83        | 5.92   |
| 0.16 | 4.64   | 4.85  | 4.77      | 4.80        | 5.88   |
| 0.18 | 4.76   | 4.75  | 4.81      | 4.95        | 5.51   |
| 0.20 | 4.84   | 4.75  | 5.03      | 4.88        | 5.42   |
| 0.22 | 4.94   | 4.95  | 4.97      | 5.20        | 5.31   |
| 0.24 | 5.07   | 4.89  | 5.10      | 5.06        | 5.24   |
| 0.26 | 5.08   | 5.24  | 5.15      | 5.32        | 5.29   |
| 0.28 | 5.30   | 5.19  | 5.38      | 5.43        | 5.25   |
| 0.30 | 5.26   | 5.43  | 5.24      | 5.49        | 5.26   |
| 0.32 | 5.55   | 5.41  | 5.38      | 5.52        | 5.07   |
| 0.34 | 5.51   | 5.45  | 5.48      | 5.49        | 5.15   |
| 0.36 | 5.60   | 5.40  | 5.56      | 5.86        | 5.12   |
| 0.38 | 5.89   | 5.34  | 5.78      | 5.68        | 5.40   |
| 0.40 | 6.05   | 5.61  | 5.96      | 5.68        | 5.28   |
| 0.42 | 5.91   | 5.67  | 5.80      | 6.12        | 5.23   |
| 0 44 | 6.14   | 5 73  | 5.98      | 5 92        | 5.15   |
| 0.46 | 5 94   | 5.64  | 5.98      | 6 19        | 5.31   |
| 0.48 | 6.26   | 5.62  | 6.15      | 6 23        | 5.35   |
| 0.50 | 6 1 9  | 5 54  | 6.22      | 6.09        | 5 21   |
| 0.52 | 6.34   | 5.57  | 6.30      | 6 23        | 5 41   |
| 0.54 | 6.11   | 5.64  | 6.23      | 6.16        | 5.59   |
| 0.56 | 6.31   | 5.81  | 6.22      | 6.33        | 5.42   |
| 0.58 | 6.48   | 5.68  | 6.36      | 6.40        | 5.84   |
| 0.60 | 6.32   | 5.94  | 6.37      | 6.58        | 5 72   |
| 0.62 | 6.38   | 6.04  | 6.59      | 6.35        | 6.02   |
| 0.64 | 6.24   | 5.98  | 6.35      | 6.41        | 5 76   |
| 0.66 | 6 70   | 5.88  | 6.37      | 6 70        | 5 72   |
| 0.68 | 6.64   | 6.13  | 6.45      | 6.60        | 6.17   |
| 0.70 | 6.53   | 6.30  | 6.36      | 6.58        | 5.97   |
| 0.72 | 6.46   | 6.06  | 6.61      | 6.34        | 6.08   |
| 0 74 | 6.66   | 6.30  | 6.56      | 6.66        | 6.18   |
| 0.76 | 6.46   | 6.36  | 6.34      | 6 71        | 5.80   |
| 0.78 | 6.55   | 6.47  | 6.62      | 6.67        | 6.18   |
| 0.80 | 6.56   | 6.29  | 6.73      | 6 79        | 5.96   |
| 0.82 | 6 74   | 6.29  | 6.55      | 6 45        | 6.18   |
| 0.84 | 6.97   | 6.43  | 6.80      | 6 59        | 6.24   |
| 0.86 | 6.78   | 6.29  | 6.81      | 6.59        | 6.27   |
| 0.88 | 6.79   | 6.61  | 6.90      | 6.55        | 6.42   |
| 0.90 | 6.58   | 6.53  | 6.68      | 6.64        | 6.25   |
| 0.92 | 6 44   | 6.68  | 6.60      | 6.85        | 6.26   |
| 0.94 | 6.91   | 6.72  | 6.82      | 6.49        | 6.56   |
| 0.96 | 6 76   | 6.61  | 6.76      | 6.66        | 6.30   |
| 0.98 | 6 72   | 6 73  | 6.63      | 6 79        | 6.21   |
| 1 00 | 6 40   | 6.58  | 6 71      | 6.65        | 6.38   |
| 1.00 | 0.40   | 0.00  | 0.11      | 0.00        | 0.00   |

| iso%  | Degree | Eigen                                   | Closeness | Betweenness | Random        |
|-------|--------|-----------------------------------------|-----------|-------------|---------------|
| 0.00  | 8.35   | 8.46                                    | 8.32      | 8.59        | 8.20          |
| 0.02  | 7.39   | 7.31                                    | 7.40 7.59 |             | 7.74          |
| 0.04  | 6.86   | 6.88                                    | 7.09 6.93 |             | 7.62          |
| 0.06  | 6.45   | 6.45                                    | 6.38      | 6.65        | 7.31          |
| 0.08  | 6.11   | 6.12                                    | 6.10      | 6.31        | 7.07          |
| 0.10  | 5.96   | 5.86                                    | 5.83      | 6.11        | 6.64          |
| 0.12  | 5.84   | 5.98                                    | 5.97      | 6.06        | 6.61          |
| 0.14  | 5.81   | 5.80                                    | 5.94      | 5.99        | 6.43          |
| 0.16  | 5.75   | 6.17                                    | 5.80      | 6.00        | 6.36          |
| 0.18  | 5.93   | 6.16                                    | 5.98      | 5.98        | 6.27          |
| 0.20  | 5.98   | 6.05                                    | 5.89      | 5.98        | 6.37          |
| 0.22  | 5.91   | 5.90                                    | 6.06      | 6.14        | 6.41          |
| 0.24  | 6.10   | 6.44                                    | 6.06      | 6.03        | 6.16          |
| 0.26  | 6.36   | 6.12                                    | 6.11      | 6.09        | 6.23          |
| 0.28  | 5.99   | 6.27                                    | 6.12      | 6.21        | 6.23          |
| 0.30  | 6.14   | 6.28                                    | 6.39      | 6.38        | 6.19          |
| 0.32  | 6.12   | 6.40                                    | 6.27      | 6.34        | 6.28          |
| 0.34  | 6.33   | 6.37                                    | 6.48      | 6.47        | 6.34          |
| 0.36  | 6.19   | 6.04                                    | 6.25      | 6.35        | 6.30          |
| 0.38  | 6.27   | 6.29                                    | 6.27      | 6.32        | 6.45          |
| 0.40  | 6.54   | 6.33                                    | 6.25      | 6.45        | 6.44          |
| 0.42  | 6.35   | 6.38                                    | 6.46      | 6.62        | 6.41          |
| 0.44  | 6.57   | 6.37                                    | 6.54      | 6.58        | 6.23          |
| 0.46  | 6.50   | 6.25                                    | 6.29      | 6.35        | 6.56          |
| 0.48  | 6.66   | 6.43                                    | 6.34      | 6.57        | 6.38          |
| 0.50  | 6.72   | 6.45                                    | 6.71      | 6.50        | 6.51          |
| 0.52  | 6.61   | 6.41                                    | 6.62      | 6.68        | 6.54          |
| 0.54  | 6.73   | 6.20                                    | 6.82      | 6.52        | 6.40          |
| 0.56  | 6.73   | 6.38                                    | 6.70      | 6.70        | 6.45          |
| 0.58  | 6.86   | 6.22                                    | 6.70      | 6.72        | 6.36          |
| 0.60  | 6.81   | 6.19                                    | 6.62      | 6.60        | 6.31          |
| 0.62  | 6.53   | 6.54                                    | 6.80      | 6.58        | 6.33          |
| 0.64  | 6.63   | 6.39                                    | 6.65      | 6.57        | 6 55          |
| 0.66  | 6 74   | 6.59                                    | 6.58      | 6.59        | 6 73          |
| 0.68  | 6.80   | 6.42                                    | 6.64      | 6 75        | 6.46          |
| 0.70  | 6.67   | 6.47                                    | 6.96      | 6.63        | 6.54          |
| 0.72  | 6.67   | 6.45                                    | 6.97      | 6 76        | 6.66          |
| 0.74  | 6.87   | 6.47                                    | 6.67      | 6.67        | 6 54          |
| 0.74  | 6.95   | 6.45                                    | 6.90      | 6.93        | 6 75          |
| 0.78  | 6 70   | 6.57                                    | 6.83      | 6.87        | 6.73          |
| 0.80  | 6.88   | 6.43                                    | 6.82      | 6.72        | 6.68          |
| 0.82  | 6.69   | 6.69                                    | 6.67      | 6.87        | 6.75          |
| 0.84  | 6.80   | 6.72                                    | 7 11      | 6.60        | 6.72          |
| 0.86  | 6.88   | 6.60                                    | 6.68      | 6.68        | 6.50          |
| 0.88  | 6.80   | 6.53                                    | 6.55      | 6.86        | 6.56          |
| 0.90  | 6.94   | 6.55                                    | 7 02      | 6.72        | 6.51          |
| 0.92  | 6.84   | 6.76                                    | 6.72      | 6.55        | 6.62          |
| 0.94  | 6.68   | 6.66                                    | 6.66      | 6.77        | 6.49          |
| 0.96  | 6.66   | 6.58                                    | 6.97      | 6.46        | 6.60          |
| 0.00  | 6.62   | 6.55                                    | 6.66      | 6.65        | 6.68          |
| 11 90 |        | × · · · · · · · · · · · · · · · · · · · |           |             | N # - N # N # |

Table 10: Mean spectral radius  $\rho$  versus isolation percentage, dynamic removal, Erdos-Renyi, Weak epidemic parameter set. Performance of removal based on degree-, eigen-, closeness-, and betweenness centrality are compared with each other and with the performance of random dynamic removal.

| iso% | Degree | Degree Eigen |       | Betweenness | Random |  |
|------|--------|--------------|-------|-------------|--------|--|
| 0.00 | 10.12  | 10.12        | 10.08 | 10.13       | 10.07  |  |
| 0.02 | 9.24   | 8.85         | 9.60  | 9.59        | 9.64   |  |
| 0.04 | 8.48   | 8.27         | 9.10  | 9.10        | 9.17   |  |
| 0.06 | 7.77   | 7.63         | 8.70  | 8.47        | 8.74   |  |
| 0.08 | 7.00   | 7.22         | 8.22  | 7.98        | 8.14   |  |
| 0.10 | 6.41   | 7.05         | 7.57  | 7.53        | 7.94   |  |
| 0.12 | 5.95   | 6.62         | 7.12  | 7 13        | 7 48   |  |
| 0.14 | 5.57   | 6.35         | 6.86  | 6.87        | 7.31   |  |
| 0.16 | 5.26   | 6.15         | 6.66  | 6.57        | 7 01   |  |
| 0.18 | 5.28   | 6.13         | 6.01  | 6.37        | 6.68   |  |
| 0.10 | 5.41   | 6.72         | 6.43  | 6.41        | 6.54   |  |
| 0.20 | 5.13   | 6.52         | 6.11  | 6.26        | 6.34   |  |
| 0.22 | 5.10   | 6.46         | 6.27  | 6.02        | 6.19   |  |
| 0.24 | 5.40   | 6.90         | 6.26  | 6.02        | 5.00   |  |
| 0.20 | 0.01   | 0.80         | 0.20  | 0.03        | 5.69   |  |
| 0.28 | 6.19   | 0.71         | 0.00  | 6.07        | 5.88   |  |
| 0.30 | 6.70   | 0.00         | 0.04  | 6.09        | 5.72   |  |
| 0.32 | 6.77   | 6.44         | 6.81  | 6.31        | 5.60   |  |
| 0.34 | 6.84   | 6.65         | 7.44  | 6.04        | 5.62   |  |
| 0.36 | 6.92   | 6.85         | 7.60  | 6.27        | 5.40   |  |
| 0.38 | 7.34   | 6.70         | 7.44  | 6.75        | 5.49   |  |
| 0.40 | 7.21   | 7.11         | 7.46  | 7.02        | 5.37   |  |
| 0.42 | 7.69   | 6.92         | 7.52  | 6.76        | 5.25   |  |
| 0.44 | 7.68   | 7.26         | 7.91  | 6.91        | 5.31   |  |
| 0.46 | 7.65   | 7.24         | 7.88  | 7.21        | 5.24   |  |
| 0.48 | 7.68   | 7.35         | 7.46  | 7.03        | 5.24   |  |
| 0.50 | 7.91   | 7.25         | 7.74  | 6.93        | 5.31   |  |
| 0.52 | 8.24   | 7.55         | 8.17  | 7.63        | 5.37   |  |
| 0.54 | 7.89   | 7.40         | 7.76  | 7.15        | 5.64   |  |
| 0.56 | 8.27   | 7.36         | 8.16  | 7.18        | 5.60   |  |
| 0.58 | 8.33   | 8.05         | 8.01  | 7.82        | 5.41   |  |
| 0.60 | 8.12   | 7 75         | 8.05  | 7.55        | 5.52   |  |
| 0.62 | 7 95   | 8.06         | 8 46  | 7 60        | 5.68   |  |
| 0.64 | 8.48   | 7.91         | 8 35  | 7 95        | 6.09   |  |
| 0.66 | 8 36   | 8 30         | 8 51  | 7.63        | 5.02   |  |
| 0.00 | 8.61   | 8.30         | 8 20  | 7.05        | 5.62   |  |
| 0.08 | 8.01   | 8.21         | 8.39  | 7.95        | 5.02   |  |
| 0.70 | 0.04   | 0.20         | 0.40  | 7.66        | 0.40   |  |
| 0.72 | 0.00   | 0.10         | 0.00  | 7.00        | 5.55   |  |
| 0.74 | 0.00   | 0.40         | 0.01  | 7.60        | 0.20   |  |
| 0.76 | 8.57   | 8.30         | 8.87  | (.88        | 6.46   |  |
| 0.78 | 8.38   | 8.42         | 8.53  | 8.17        | 6.26   |  |
| 0.80 | 8.73   | 8.40         | 8.35  | 8.09        | 6.39   |  |
| 0.82 | 8.47   | 8.47         | 8.79  | 8.28        | 6.74   |  |
| 0.84 | 8.81   | 8.42         | 8.57  | 8.28        | 6.70   |  |
| 0.86 | 8.78   | 8.45         | 8.37  | 8.17        | 6.75   |  |
| 0.88 | 8.58   | 8.50         | 8.44  | 8.32        | 7.06   |  |
| 0.90 | 8.56   | 8.50         | 8.55  | 8.32        | 6.66   |  |
| 0.92 | 8.71   | 8.57         | 8.64  | 8.39        | 7.09   |  |
| 0.94 | 8.52   | 8.53         | 8.80  | 8.42        | 7.17   |  |
| 0.96 | 8.43   | 8.65         | 8.70  | 8.20        | 6.94   |  |
| 0.98 | 8.54   | 8.44         | 8.29  | 8.35        | 7.35   |  |
| 1 00 | 0 57   | 9.46         | 9.45  | 8 34        | 7 20   |  |

Table 11: Mean spectral radius  $\rho$  versus isolation percentage, dynamic removal, nearly-isolated community, COVID-19 parameter set. Performance of removal based on degree-, eigen-, closeness-, and betweenness centrality are compared with each other and with the performance of random dynamic removal.

| Table 12: Mean spectral radius $\rho$ versus isolation percentage, dynamic removal, nearly-isolated community, | Epi- |
|----------------------------------------------------------------------------------------------------------------|------|
| demic parameter set. Performance of removal based on degree-, eigen-, closeness-, and betweenness centrality   | are  |
| compared with each other and with the performance of random dynamic removal.                                   |      |

| iso% | Degree       | Eigen | Closeness    | Betweenness | Random |
|------|--------------|-------|--------------|-------------|--------|
| 0.00 | 10.20        | 10.12 | 9.98         | 10.12       | 10.13  |
| 0.02 | 9.31         | 8.99  | 9.70         | 9.62        | 9.60   |
| 0.04 | 8.48         | 8.27  | 9.09         | 9.17        | 9.16   |
| 0.06 | 7.84         | 7.89  | 8.71         | 8.74        | 8.85   |
| 0.08 | 7.39         | 7.35  | 8.29         | 8.23        | 8.39   |
| 0.10 | 7.10         | 7.03  | 8.16         | 7.78        | 8.08   |
| 0.12 | 6.81         | 7.11  | 7.75         | 7.58        | 7.79   |
| 0.14 | 6.92         | 7.16  | 7.60         | 7.37        | 7.57   |
| 0.16 | 6.92         | 7.50  | 7.53         | 7.54        | 7.39   |
| 0.18 | 6.86         | 7.66  | 7.66         | 7.46        | 7.20   |
| 0.20 | 6.64         | 7.98  | 7.21         | 7.19        | 6.94   |
| 0.22 | 7.32         | 7.98  | 7.31         | 7.47        | 7.02   |
| 0.24 | 7.12         | 7.80  | 7.84         | 7.45        | 6.99   |
| 0.26 | 7.57         | 8.02  | 7.98         | 7.33        | 6.83   |
| 0.28 | 7.38         | 7.89  | 7.58         | 7.43        | 6.78   |
| 0.30 | 7.52         | 7.94  | 7.96         | 7.59        | 6.71   |
| 0.32 | 7.47         | 7.98  | 8.00         | 7.56        | 6.99   |
| 0.34 | 7 84         | 8 11  | 8.12         | 7 49        | 6.81   |
| 0.36 | 8 14         | 8 19  | 7.83         | 7.56        | 6.92   |
| 0.38 | 8.37         | 8 12  | 8.05         | 8.02        | 7.07   |
| 0.40 | 8.04         | 8 13  | 7 94         | 7 87        | 7 11   |
| 0.42 | 8 28         | 8.12  | 8 34         | 8 1 2       | 7 19   |
| 0.44 | 8.43         | 8.08  | 8 41         | 7 87        | 6.95   |
| 0.44 | 8 44         | 8 32  | 8 48         | 7.91        | 6.93   |
| 0.48 | 8 30         | 8.23  | 8 20         | 8 23        | 7.46   |
| 0.40 | 8.45         | 8 30  | 8.36         | 7 85        | 7.40   |
| 0.50 | 8.40         | 8.30  | 0.00         | 2.05        | 7.15   |
| 0.52 | 8 36         | 8.15  | 8 30         | 8.05        | 7 37   |
| 0.54 | 8.20         | 8 33  | 8.62         | 8.00        | 7.52   |
| 0.50 | 8.29         | 0.00  | 8.02         | 8.09        | 7.54   |
| 0.58 | 0.43<br>9 51 | 0.39  | 8.40<br>9.51 | 0.20        | 7.04   |
| 0.00 | 0.01         | 8.23  | 8.01         | 0.20        | 7.50   |
| 0.02 | 0.04         | 8.00  | 0.40         | 8.16        | 7.54   |
| 0.04 | 0.00         | 0.02  | 0.04         | 8.00        | 7.75   |
| 0.00 | 0.00         | 0.03  | 0.00         | 0.29        | 7.70   |
| 0.68 | 8.03         | 8.52  | 8.59         | 8.22        | 7.93   |
| 0.70 | 0.00         | 0.39  | 0.00         | 0.39        | 7.73   |
| 0.72 | 8.44         | 8.48  | 8.38         | 8.32        | 7.94   |
| 0.74 | 8.54         | 8.49  | 8.58         | 8.37        | 8.27   |
| 0.76 | 8.87         | 8.40  | 8.55         | 8.12        | 7.99   |
| 0.78 | 8.58         | 8.40  | 8.76         | 8.55        | 7.92   |
| 0.80 | 8.57         | 8.59  | 8.60         | 8.42        | 8.25   |
| 0.82 | 8.51         | 8.52  | 8.47         | 8.35        | 8.03   |
| 0.84 | 8.41         | 8.51  | 8.66         | 8.19        | 8.03   |
| 0.86 | 8.60         | 8.41  | 8.47         | 8.44        | 8.15   |
| 0.88 | 8.47         | 8.62  | 8.51         | 8.70        | 8.25   |
| 0.90 | 8.64         | 8.60  | 8.47         | 8.56        | 8.18   |
| 0.92 | 8.57         | 8.52  | 8.63         | 8.40        | 8.07   |
| 0.94 | 8.54         | 8.39  | 8.85         | 8.62        | 8.05   |
| 0.96 | 8.62         | 8.42  | 8.35         | 8.49        | 8.23   |
| 0.98 | 8.67         | 8.45  | 8.67         | 8.45        | 8.08   |
| 1.00 | 8.64         | 8.56  | 8.49         | 8.52        | 8.22   |

| Table 13: Mea | n spectral radius | s $\rho$ versus isolatior | n percentage, | dynamic remo <sup>,</sup> | val, nearly-isol | lated community | , Weak   |
|---------------|-------------------|---------------------------|---------------|---------------------------|------------------|-----------------|----------|
| epidemic para | meter set. Perfor | rmance of removal         | l based on de | gree-, eigen-, c          | loseness-, and   | betweenness ce  | ntrality |
| are compared  | with each other   | and with the perf         | ormance of ra | andom dynami              | c removal.       |                 |          |

| iso% | Degree       | Eigen        | Closeness | Betweenness | Random |
|------|--------------|--------------|-----------|-------------|--------|
| 0.00 | 10.07        | 10.17        | 10.16     | 10.10       | 10.17  |
| 0.02 | 9.44         | 9.26         | 9.75      | 9.80        | 9.64   |
| 0.04 | 9.02         | 8.56         | 9.27      | 9.28        | 9.39   |
| 0.06 | 8.62         | 8.44         | 9.33      | 9.02        | 9.10   |
| 0.08 | 8.25         | 8.16         | 8.75      | 8.79        | 8.94   |
| 0.10 | 8.01         | 8.07         | 8.85      | 8.60        | 8.64   |
| 0.12 | 8.07         | 8.07         | 8.58      | 8.56        | 8.51   |
| 0.14 | 8.10         | 8.38         | 8.62      | 8.48        | 8.46   |
| 0.16 | 7.81         | 8.34         | 8.56      | 8.51        | 8.05   |
| 0.18 | 7.85         | 8.32         | 8.47      | 8.15        | 8.13   |
| 0.20 | 8.15         | 8.61         | 8.72      | 8.45        | 8.08   |
| 0.22 | 8.42         | 8.42         | 8.46      | 8.32        | 8.25   |
| 0.24 | 8.12         | 8.34         | 8.39      | 8.28        | 8.12   |
| 0.26 | 8.46         | 8.38         | 8.57      | 8.29        | 8.24   |
| 0.28 | 8 14         | 8 43         | 8 43      | 8.57        | 8 24   |
| 0.30 | 8 48         | 8.57         | 8.56      | 8 63        | 8.07   |
| 0.32 | 8.53         | 8 78         | 8.61      | 8 60        | 8.28   |
| 0.34 | 8 47         | 8.42         | 8 72      | 8 23        | 8.17   |
| 0.36 | 8 50         | 8 50         | 8 77      | 8 3 3       | 8 20   |
| 0.38 | 8.43         | 8.43         | 8 54      | 8 44        | 8.22   |
| 0.40 | 8.51         | 8 50         | 8 72      | 8 40        | 8 30   |
| 0.40 | 8.57         | 8 53         | 8.87      | 8 40        | 8.23   |
| 0.42 | 8.60         | 8.45         | 8 53      | 8 4 4       | 8.20   |
| 0.44 | 8.50         | 8.45         | 8 51      | 8 56        | 8.17   |
| 0.40 | 8.50         | 8 34         | 8 51      | 8 36        | 8 18   |
| 0.48 | 0.01<br>0.42 | 0.34<br>9.45 | 8.51      | 8.50        | 8.10   |
| 0.50 | 0.43         | 0.40         | 0.09      | 8.00        | 0.00   |
| 0.52 | 8.05         | 8.33         | 8.54      | 8.50        | 0.30   |
| 0.54 | 0.47         | 8.40         | 0.19      | 0.00        | 8.15   |
| 0.50 | 0.03         | 8.02         | 0.00      | 8.08        | 0.00   |
| 0.58 | 0.52         | 8.01         | 8.80      | 0.75        | 0.40   |
| 0.00 | 0.70         | 0.44         | 0.70      | 0.09        | 0.30   |
| 0.02 | 0.03         | 0.40         | 0.70      | 0.40        | 0.20   |
| 0.04 | 0.11         | 0.40         | 0.00      | 0.30        | 0.29   |
| 0.00 | 0.07         | 0.07         | 0.02      | 8.40        | 0.30   |
| 0.68 | 8.62         | 8.03         | 8.70      | 8.50        | 8.18   |
| 0.70 | 0.00         | 8.00         | 0.12      | 0.00        | 0.41   |
| 0.72 | 8.00         | 8.20         | 8.07      | 8.00        | 8.18   |
| 0.74 | 8.58         | 8.45         | 8.82      | 8.54        | 8.51   |
| 0.76 | 8.56         | 8.58         | 8.56      | 8.57        | 8.41   |
| 0.78 | 8.71         | 8.00         | 8.70      | 8.70        | 8.73   |
| 0.80 | 8.49         | 8.54         | 8.43      | 8.64        | 8.45   |
| 0.82 | 8.51         | 8.38         | 8.71      | 8.56        | 8.39   |
| 0.84 | 8.59         | 8.34         | 8.58      | 8.56        | 8.43   |
| 0.86 | 8.58         | 8.57         | 8.87      | 8.54        | 8.65   |
| 0.88 | 8.93         | 8.46         | 8.55      | 8.60        | 8.25   |
| 0.90 | 8.55         | 8.60         | 8.54      | 8.59        | 8.39   |
| 0.92 | 8.71         | 8.47         | 8.64      | 8.48        | 8.42   |
| 0.94 | 8.44         | 8.36         | 8.68      | 8.36        | 8.69   |
| 0.96 | 8.43         | 8.62         | 8.42      | 8.45        | 8.53   |
| 0.98 | 8.28         | 8.55         | 8.53      | 8.20        | 8.65   |
| 1.00 | 8.49         | 8.47         | 8.58      | 8.36        | 8.50   |

| Table 14: Mean spectral radius $\rho$ versus isolation percentage, dynamic removal, community-affiliation, COVID- |
|-------------------------------------------------------------------------------------------------------------------|
| 19 parameter set. Performance of removal based on degree-, eigen-, closeness-, and betweenness centrality are     |
| compared with each other and with the performance of random dynamic removal.                                      |

| iso% | Degree | Eigen | Closeness | Betweenness | Random |
|------|--------|-------|-----------|-------------|--------|
| 0.00 | 7.31   | 7.67  | 7.08      | 7.48        | 7.10   |
| 0.02 | 5.62   | 5.00  | 6.03      | 5.92        | 6.67   |
| 0.04 | 4.47   | 4.29  | 4.57      | 4.71        | 6.20   |
| 0.06 | 3.96   | 3.90  | 4.16      | 4.11        | 5.70   |
| 0.08 | 3.48   | 3.69  | 3.64      | 3.87        | 5.41   |
| 0.10 | 3.33   | 3.41  | 3.63      | 3.44        | 5.41   |
| 0.12 | 3.33   | 3.28  | 3.37      | 3.41        | 4.90   |
| 0.14 | 3.40   | 3.39  | 3.18      | 3.26        | 4.87   |
| 0.16 | 3.39   | 3.39  | 3.39      | 3.30        | 4.71   |
| 0.18 | 3.60   | 3.42  | 3.50      | 3.30        | 4.40   |
| 0.20 | 3.58   | 3.54  | 3.52      | 3.40        | 4.30   |
| 0.22 | 3.74   | 3.55  | 3.61      | 3.57        | 4.24   |
| 0.24 | 3.71   | 3.83  | 3.77      | 3.70        | 3.89   |
| 0.26 | 3.61   | 3.83  | 3.87      | 3.68        | 4.11   |
| 0.28 | 4.02   | 3.76  | 3.88      | 4.03        | 3.74   |
| 0.30 | 4.22   | 4.02  | 4.26      | 4.16        | 3.82   |
| 0.32 | 4.34   | 4.06  | 4.47      | 4.15        | 3.75   |
| 0.34 | 4.45   | 4.02  | 4.57      | 4.30        | 3.77   |
| 0.36 | 4.68   | 4.15  | 4.58      | 4.43        | 3.55   |
| 0.38 | 4.79   | 3.93  | 4.72      | 4.33        | 3.70   |
| 0.40 | 4.91   | 4.17  | 4.76      | 4.52        | 3.53   |
| 0.42 | 4.84   | 4.22  | 5.11      | 4.73        | 3.56   |
| 0.44 | 5.01   | 4.04  | 4.99      | 4.96        | 3.55   |
| 0.46 | 5.18   | 4.10  | 5.12      | 5.00        | 3.48   |
| 0.48 | 5.12   | 4.11  | 5.20      | 5.04        | 3.51   |
| 0.50 | 5.43   | 4.02  | 5.28      | 5.05        | 3.71   |
| 0.52 | 5.36   | 4.40  | 5.49      | 4.87        | 3.54   |
| 0.54 | 5.54   | 4.40  | 5.66      | 5.06        | 3.58   |
| 0.56 | 5.67   | 4.13  | 5.64      | 5.26        | 3.58   |
| 0.58 | 5.54   | 4.45  | 5.60      | 5.08        | 3.70   |
| 0.60 | 5.68   | 4.41  | 5.90      | 5.08        | 3.89   |
| 0.62 | 5.46   | 4.43  | 5.84      | 5.38        | 3.78   |
| 0.64 | 5.76   | 4.36  | 5.89      | 5.50        | 3.74   |
| 0.66 | 5.96   | 4.48  | 5.88      | 5.68        | 3.77   |
| 0.68 | 5.59   | 4.53  | 5.59      | 5.18        | 3.75   |
| 0.70 | 5.65   | 4.64  | 5.66      | 5.46        | 3.87   |
| 0.72 | 5.88   | 5.04  | 5.78      | 5.23        | 3.97   |
| 0.74 | 5.66   | 4.88  | 5.62      | 5.46        | 4.00   |
| 0.76 | 5.70   | 5.12  | 5.94      | 5.87        | 3.86   |
| 0.78 | 5.83   | 5.02  | 5.74      | 5.59        | 4.35   |
| 0.80 | 6.08   | 5.54  | 5.52      | 5.54        | 4.32   |
| 0.82 | 5.41   | 5.34  | 5.85      | 5.72        | 4.25   |
| 0.84 | 5.64   | 5.41  | 5.48      | 6.09        | 4.51   |
| 0.86 | 5.90   | 5.51  | 5.84      | 5.84        | 4.28   |
| 0.88 | 5.96   | 5.42  | 5.57      | 5.52        | 4.39   |
| 0.90 | 5.66   | 5.74  | 5.88      | 5.89        | 4.57   |
| 0.92 | 5.75   | 5.90  | 5.71      | 5.54        | 4.68   |
| 0.94 | 6.08   | 5.75  | 5.64      | 5.63        | 4.68   |
| 0.96 | 5.99   | 5.74  | 6.00      | 5.83        | 4.46   |
| 0.98 | 5.96   | 5.75  | 5.71      | 5.72        | 4.77   |
| 1.00 | 5.65   | 5.54  | 5.37      | 5.82        | 4.83   |

| iso% Degree Eigen Closeness |      | Betweenness | Randon |      |      |
|-----------------------------|------|-------------|--------|------|------|
| 0.00                        | 7.15 | 7.08        | 7.05   | 7.28 | 7.30 |
| 0.02                        | 5.78 | 5.45        | 5.47   | 6.13 | 6.65 |
| 0.04                        | 4.82 | 4.81        | 4.68   | 5.22 | 6.67 |
| 0.06                        | 4.31 | 4.43        | 4.50   | 4.79 | 6.11 |
| 0.08                        | 4.09 | 4.30        | 4.20   | 4.36 | 5.88 |
| 0.10                        | 4.12 | 4.16        | 4.17   | 4.13 | 5.34 |
| 0.12                        | 4.32 | 4.13        | 4.25   | 4.23 | 5.09 |
| 0.14                        | 4.08 | 4.37        | 4.34   | 4.14 | 5.04 |
| 0.16                        | 4.68 | 4 41        | 4.31   | 4 41 | 4 94 |
| 0.18                        | 4 60 | 4 38        | 4 23   | 4 46 | 4 83 |
| 0.10                        | 4.50 | 4.30        | 4.50   | 4.65 | 4.80 |
| 0.20                        | 4.00 | 4.52        | 4.50   | 4.05 | 4.63 |
| 0.22                        | 4.60 | 4.00        | 4.77   | 4.00 | 4.01 |
| 0.24                        | 4.09 | 4.09        | 4.11   | 4.99 | 4.00 |
| 0.20                        | 4.05 | 4.95        | 4.75   | 5.00 | 4.45 |
| 0.28                        | 4.94 | 4.88        | 4.97   | 4.69 | 4.77 |
| 0.30                        | 5.19 | 4.92        | 4.96   | 4.94 | 4.34 |
| 0.32                        | 5.20 | 4.91        | 5.19   | 4.98 | 4.48 |
| 0.34                        | 5.23 | 4.99        | 5.28   | 5.39 | 4.37 |
| 0.36                        | 5.24 | 5.09        | 5.29   | 5.37 | 4.42 |
| 0.38                        | 5.36 | 5.08        | 5.20   | 5.47 | 4.58 |
| 0.40                        | 5.33 | 4.76        | 5.52   | 5.17 | 4.49 |
| 0.42                        | 5.58 | 4.99        | 5.55   | 5.29 | 5.00 |
| 0.44                        | 5.57 | 5.43        | 5.47   | 5.25 | 4.46 |
| 0.46                        | 5.74 | 5.06        | 5.48   | 5.51 | 4.64 |
| 0.48                        | 5.43 | 5.22        | 5.74   | 5.46 | 4.76 |
| 0.50                        | 5.75 | 4.90        | 5.44   | 5.27 | 5.01 |
| 0.52                        | 5.71 | 4.94        | 5.53   | 5.61 | 4.58 |
| 0.54                        | 5.80 | 5.03        | 5.77   | 5.47 | 4.58 |
| 0.56                        | 5.53 | 5.16        | 5.85   | 5.78 | 4.89 |
| 0.58                        | 5.70 | 5.41        | 6.03   | 5.73 | 5.11 |
| 0.60                        | 5.95 | 5.39        | 6.16   | 5.96 | 5.08 |
| 0.62                        | 5 76 | 4 92        | 5.86   | 5 75 | 4 94 |
| 0.64                        | 5.69 | 5 20        | 5.66   | 5.46 | 5 15 |
| 0.66                        | 5 71 | 5.04        | 5.46   | 5 41 | 5.08 |
| 0.00                        | 5.67 | 5.19        | 5.40   | 5.09 | 5.08 |
| 0.08                        | 5.69 | 5.10        | 5.60   | 5.36 | 5.47 |
| 0.70                        | 5.00 | 5.24        | 6.15   | 5.07 | 5.24 |
| 0.72                        | 5.74 | 5.24        | 0.15   | 5.97 | 5.24 |
| 0.74                        | 5.95 | 5.00        | 5.65   | 5.72 | 5.51 |
| 0.76                        | 5.92 | 5.24        | 5.75   | 5.89 | 5.22 |
| 0.78                        | 5.80 | 5.53        | 5.59   | 5.44 | 5.29 |
| 0.80                        | 5.87 | 5.62        | 5.62   | 5.75 | 4.96 |
| 0.82                        | 5.89 | 5.60        | 5.85   | 5.40 | 5.39 |
| 0.84                        | 5.89 | 5.63        | 5.41   | 5.65 | 5.31 |
| 0.86                        | 5.75 | 5.67        | 5.92   | 5.77 | 5.26 |
| 0.88                        | 5.93 | 5.65        | 5.78   | 5.93 | 5.17 |
| 0.90                        | 6.03 | 5.28        | 5.66   | 5.72 | 5.33 |
| 0.92                        | 5.70 | 5.80        | 5.84   | 5.80 | 5.22 |
| 0.94                        | 5.69 | 5.74        | 5.75   | 5.53 | 5.30 |
| 0.96                        | 5.48 | 5.58        | 5.79   | 5.66 | 5.20 |
| 0.98                        | 6.06 | 5.66        | 5.78   | 5.46 | 5.79 |
|                             |      | F 70        | F (0)  | E CO | F 44 |

Table 15: Mean spectral radius  $\rho$  versus isolation percentage, dynamic removal, community-affiliation, Epidemic parameter set. Performance of removal based on degree-, eigen-, closeness-, and betweenness centrality are compared with each other and with the performance of random dynamic removal.

| Table 16:  | Mean spectra   | al radius $\rho$ | versus isola | tion percer | ntage, dy | ynamic  | removal,   | community-   | affiliation | , Weak   |
|------------|----------------|------------------|--------------|-------------|-----------|---------|------------|--------------|-------------|----------|
| epidemic j | parameter set. | Performan        | ce of remova | al based on | degree-,  | eigen-, | closeness  | -, and betwe | eenness cei | ntrality |
| are compa  | red with each  | other and v      | with the per | formance of | f random  | n dynan | nic remova | al.          |             |          |

| iso% | Degree | Eigen | Closeness    | Betweenness  | Random |
|------|--------|-------|--------------|--------------|--------|
| 0.00 | 7.27   | 7.48  | 7.40         | 7.64         | 7.31   |
| 0.02 | 6.22   | 5.85  | 6.10         | 6.25         | 7.13   |
| 0.04 | 5.38   | 5.42  | 5.77         | 5.60         | 6.40   |
| 0.06 | 5.25   | 5.01  | 5.35         | 5.84         | 6.07   |
| 0.08 | 5.23   | 5.07  | 5.34         | 5.15         | 6.19   |
| 0.10 | 4.93   | 5.01  | 5.02         | 5.37         | 5.90   |
| 0.12 | 5.14   | 5.35  | 5.33         | 5.43         | 6.12   |
| 0.14 | 5.19   | 5.15  | 5.07         | 4.96         | 5.59   |
| 0.16 | 5.43   | 5.32  | 5.38         | 5.13         | 5.91   |
| 0.18 | 5.30   | 5.01  | 5.18         | 5.33         | 5.52   |
| 0.20 | 5.15   | 5.26  | 5.27         | 5.41         | 5.69   |
| 0.22 | 5.26   | 5.25  | 5.45         | 5.20         | 5.46   |
| 0.24 | 5.37   | 5.36  | 5.32         | 5.24         | 5.39   |
| 0.26 | 5.55   | 5.55  | 5.39         | 5.56         | 5.54   |
| 0.28 | 5.34   | 5.63  | 5.62         | 5 53         | 5.69   |
| 0.30 | 5.59   | 5.57  | 5.68         | 5.61         | 5.31   |
| 0.32 | 5.32   | 5 48  | 5.50         | 5.60         | 5.67   |
| 0.34 | 5.47   | 5.63  | 5.57         | 5 72         | 5 41   |
| 0.36 | 5.86   | 5.61  | 5.88         | 5.52         | 5.58   |
| 0.38 | 5.66   | 5.43  | 5.80         | 5 77         | 5.28   |
| 0.00 | 5.95   | 5 31  | 5.65         | 5.69         | 5.77   |
| 0.40 | 5.66   | 5 55  | 5.78         | 5.03         | 5.58   |
| 0.42 | 5.00   | 5.00  | 5.67         | 5.40         | 5.20   |
| 0.44 | 5.40   | 5.79  | 5.07         | 5.77         | 5.66   |
| 0.40 | 5.03   | 5.78  | 5.70         | 5.75         | 5.00   |
| 0.48 | 5.82   | 5.07  | 0.94<br>E OF | 5.07<br>6.05 | 5.42   |
| 0.50 | 0.94   | 5.42  | 5.65         | 6.05         | 5.75   |
| 0.52 | 5.21   | 5.52  | 5.09         | 0.09         | 5.90   |
| 0.54 | 0.90   | 0.32  | 0.00<br>E 77 | 5.80         | 5.05   |
| 0.50 | 5.00   | 0.01  | 5.77         | 5.07         | 5.40   |
| 0.58 | 5.70   | 5.50  | 5.70         | 6.07         | 5.37   |
| 0.60 | 5.64   | 5.57  | 5.62         | 0.08         | 5.85   |
| 0.62 | 5.80   | 5.85  | 6.02         | 5.64         | 5.72   |
| 0.64 | 6.24   | 5.76  | 0.10         | 5.45         | 5.01   |
| 0.66 | 5.93   | 5.35  | 5.61         | 6.00         | 5.63   |
| 0.68 | 5.62   | 5.43  | 5.66         | 5.85         | 5.46   |
| 0.70 | 6.17   | 5.91  | 6.01         | 5.64         | 5.68   |
| 0.72 | 6.12   | 5.62  | 6.31         | 5.97         | 5.91   |
| 0.74 | 5.88   | 5.82  | 5.70         | 5.88         | 6.09   |
| 0.76 | 5.83   | 5.53  | 5.84         | 5.90         | 5.74   |
| 0.78 | 5.87   | 5.34  | 5.75         | 5.92         | 5.77   |
| 0.80 | 5.81   | 5.25  | 5.83         | 5.94         | 5.53   |
| 0.82 | 5.60   | 5.75  | 5.83         | 5.74         | 5.60   |
| 0.84 | 5.34   | 5.79  | 5.75         | 5.76         | 5.75   |
| 0.86 | 5.85   | 5.75  | 5.77         | 5.77         | 6.13   |
| 0.88 | 5.96   | 5.88  | 5.71         | 5.76         | 5.61   |
| 0.90 | 5.55   | 5.60  | 5.94         | 5.71         | 5.53   |
| 0.92 | 5.75   | 5.66  | 5.79         | 5.70         | 5.87   |
| 0.94 | 5.74   | 6.06  | 6.02         | 6.14         | 5.45   |
| 0.96 | 5.96   | 5.80  | 5.73         | 5.61         | 5.93   |
| 0.98 | 5.75   | 5.70  | 5.88         | 5.76         | 5.53   |
| 1.00 | 5.44   | 5.38  | 5.78         | 5.71         | 5.69   |

| Tabl | e 17: | Mean   | extinction | on time v | $\operatorname{ersus}$ | isolation | percen  | tage, dyna | amic re | emoval, | Erdos  | -Renyi, C  | COVII | D-19 parai | meter |
|------|-------|--------|------------|-----------|------------------------|-----------|---------|------------|---------|---------|--------|------------|-------|------------|-------|
| set. | Perfe | ormano | e of rem   | oval base | ed on                  | degree-,  | eigen-, | closeness  | -, and  | betwee  | enness | centrality | y are | compared   | with  |
| each | othe  | r and  | with the   | performa  | ance c                 | of randoi | n dynai | mic remov  | val.    |         |        |            |       |            |       |

| iso% | Degree        | Eigen  | Closeness     | Betweenness | Random |  |  |
|------|---------------|--------|---------------|-------------|--------|--|--|
| 0    | 101           | 101    | 101           | 101         | 101    |  |  |
| 0.02 | 101           | 101    | 101           | 101         | 101    |  |  |
| 0.04 | 101           | 101    | 101           | 101         | 101    |  |  |
| 0.06 | 101           | 101    | 101           | 101         | 101    |  |  |
| 0.08 | 101           | 101    | 101           | 101         | 101    |  |  |
| 0.1  | 101           | 101    | 101           | 101         | 101    |  |  |
| 0.12 | 101           | 101    | 101           | 101         | 101    |  |  |
| 0.14 | 101           | 101    | 101           | 101         | 101    |  |  |
| 0.16 | 101           | 101    | 101           | 101         | 101    |  |  |
| 0.18 | 101           | 101    | 101           | 101         | 101    |  |  |
| 0.2  | 101           | 101    | 101           | 101         | 101    |  |  |
| 0.22 | 101           | 101    | 101           | 101         | 101    |  |  |
| 0.24 | 101           | 101    | 101           | 101         | 101    |  |  |
| 0.26 | 101           | 101    | 101           | 101         | 101    |  |  |
| 0.28 | 101           | 101    | 99.2          | 100.5       | 101    |  |  |
| 0.3  | 101           | 101    | 101           | 100.85      | 101    |  |  |
| 0.32 | 99.55         | 101    | 101           | 98.15       | 101    |  |  |
| 0.34 | 101           | 101    | 101           | 99.65       | 101    |  |  |
| 0.36 | 99.95         | 101    | 101           | 95.4        | 101    |  |  |
| 0.38 | 97.5          | 101    | 97.15         | 90.1        | 101    |  |  |
| 0.4  | 100.2         | 101    | 98.7          | 96.25       | 101    |  |  |
| 0.42 | 95.45         | 101    | 97.6          | 94.45       | 101    |  |  |
| 0.44 | 96.45         | 101    | 96.45         | 84.85       | 101    |  |  |
| 0.46 | 91.65         | 101    | 99.85         | 89.4        | 101    |  |  |
| 0.48 | 94.4          | 101    | 95.95         | 84.05       | 101    |  |  |
| 0.5  | 95.7          | 101    | 97.45         | 78          | 101    |  |  |
| 0.52 | 90.4          | 101    | 97            | 83.55       | 101    |  |  |
| 0.54 | 89.35         | 98.9   | 98.6          | 82.5        | 101    |  |  |
| 0.56 | 87.3          | 99     | 89.25         | 74.35       | 101    |  |  |
| 0.58 | 78.3          | 100.1  | 88.7          | 71.25       | 101    |  |  |
| 0.6  | 78.55         | 100.45 | 81.8          | 71.45       | 101    |  |  |
| 0.62 | 71.7          | 101    | 81.7          | 66.65       | 101    |  |  |
| 0.64 | 73            | 98.2   | 79            | 63.75       | 100.1  |  |  |
| 0.66 | 77.65         | 99.35  | 72.2          | 58          | 101    |  |  |
| 0.68 | 60.15         | 96.4   | 68.5          | 54          | 101    |  |  |
| 0.7  | 51.1          | 94.95  | 69.85         | 62.7        | 98.3   |  |  |
| 0.72 | 60.3          | 88.9   | 64.9          | 57.05       | 99.3   |  |  |
| 0.74 | 58.35         | 87.1   | 67.6          | 64.05       | 93     |  |  |
| 0.76 | 61.7          | 96.4   | 51.7          | 54.55       | 94.8   |  |  |
| 0.78 | 02.25         | 92.55  | 60.75         | 50.65       | 90.65  |  |  |
| 0.8  | 43.45         | 80.85  | 50.8          | 54.15       | 94.35  |  |  |
| 0.82 | 52.25<br>40.1 | 83.80  | 58.2          | 50.2        | 81.45  |  |  |
| 0.84 | 42.1          | (3.4   | 52.15<br>27.6 | 20.32       | 80.10  |  |  |
| 0.80 | 47.5          | 64.75  | 37.0          | 42.13       | 80.5   |  |  |
| 0.00 | 44.75         | 48.0   | 40.0          | 47.4        | 00.7   |  |  |
| 0.9  | 40.0          | 40.9   | 42.05         | 42.85       | 72.05  |  |  |
| 0.92 | 44.4          | 44 15  | 40            | 42.85       | 80.55  |  |  |
| 0.94 | 35 55         | 43.5   | 37 45         | 38 35       | 71.95  |  |  |
| 0.90 | 34 7          | 44.65  | 41.3          | 37.65       | 70.25  |  |  |
| 1    | 40.65         | 39.45  | 39.55         | 33.7        | 63.8   |  |  |

| Tab                   | le 18: | Mean  | extinctio  | n time v | versus | isolation | ı percei | ntage, | dynamic   | c removal | Erdo  | os-Renyi,  | Epider | nic paraı | neter |
|-----------------------|--------|-------|------------|----------|--------|-----------|----------|--------|-----------|-----------|-------|------------|--------|-----------|-------|
| $\operatorname{set.}$ | Perfe  | orman | ce of remo | oval bas | ed on  | degree-,  | eigen-,  | closer | ness-, an | d between | nness | centrality | are c  | ompared   | with  |
| each                  | othe   | r and | with the p | perform  | ance o | f randor  | n dynai  | mic re | moval.    |           |       |            |        |           |       |

| iso% | Degree | Eigen | Closeness | Betweenness | Random |  |  |
|------|--------|-------|-----------|-------------|--------|--|--|
| 0    | 101    | 101   | 101       | 101         | 101    |  |  |
| 0.02 | 101    | 101   | 101       | 101         | 101    |  |  |
| 0.04 | 101    | 101   | 101       | 101         | 101    |  |  |
| 0.06 | 101    | 101   | 101       | 101         | 101    |  |  |
| 0.08 | 101    | 101   | 101       | 101         | 101    |  |  |
| 0.1  | 101    | 101   | 101       | 101         | 101    |  |  |
| 0.12 | 101    | 101   | 101       | 101         | 101    |  |  |
| 0.14 | 101    | 101   | 101       | 101         | 101    |  |  |
| 0.16 | 101    | 101   | 101       | 101         | 101    |  |  |
| 0.18 | 101    | 101   | 101       | 99.9        | 101    |  |  |
| 0.2  | 101    | 101   | 101       | 97.6        | 101    |  |  |
| 0.22 | 101    | 101   | 101       | 98.1        | 101    |  |  |
| 0.24 | 100.85 | 101   | 98.8      | 96.35       | 101    |  |  |
| 0.26 | 97.85  | 101   | 99.65     | 92.7        | 101    |  |  |
| 0.28 | 90.2   | 101   | 101       | 87.45       | 101    |  |  |
| 0.3  | 96.5   | 98.3  | 98.3      | 88.55       | 101    |  |  |
| 0.32 | 90.75  | 101   | 101       | 85.45       | 101    |  |  |
| 0.34 | 89.2   | 101   | 93.9      | 76.5        | 101    |  |  |
| 0.36 | 85.55  | 95.15 | 94.5      | 78.15       | 101    |  |  |
| 0.38 | 91.85  | 96.55 | 90.6      | 68.95       | 101    |  |  |
| 0.4  | 83.15  | 97.1  | 93.05     | 72.55       | 101    |  |  |
| 0.42 | 85.05  | 99.9  | 73.85     | 74.3        | 97.85  |  |  |
| 0.44 | 79.4   | 94.05 | 83.7      | 63.55       | 94.5   |  |  |
| 0.46 | 76.15  | 95.8  | 84.8      | 55.15       | 94.25  |  |  |
| 0.48 | 68.35  | 93.1  | 81.4      | 66.35       | 88.6   |  |  |
| 0.5  | 70.8   | 93.65 | 81.95     | 55.15       | 87.15  |  |  |
| 0.52 | 60.85  | 89.2  | 69.1      | 59.4        | 75.15  |  |  |
| 0.54 | 69.45  | 75.9  | 71.4      | 54.15       | 74.05  |  |  |
| 0.56 | 62.05  | 81    | 68.3      | 53.25       | 74.3   |  |  |
| 0.58 | 52.65  | 80.05 | 69.3      | 57.75       | 69.05  |  |  |
| 0.6  | 72.65  | 72.55 | 58.8      | 50.2        | 70.35  |  |  |
| 0.62 | 56.5   | 77.35 | 52.45     | 56.7        | 67.9   |  |  |
| 0.64 | 48.15  | 66.8  | 55        | 47          | 65.7   |  |  |
| 0.66 | 59.5   | 74.05 | 51.05     | 53.7        | 58.05  |  |  |
| 0.68 | 53.1   | 72.25 | 53.75     | 45.25       | 65.2   |  |  |
| 0.7  | 54.9   | 59.85 | 48.9      | 48.25       | 54.8   |  |  |
| 0.72 | 49.2   | 60    | 54.65     | 49.35       | 54.15  |  |  |
| 0.74 | 48.95  | 55.8  | 47        | 50.9        | 45.5   |  |  |
| 0.76 | 43.65  | 58.45 | 48.1      | 47          | 48.5   |  |  |
| 0.78 | 48.05  | 59.6  | 45.05     | 47.85       | 49.5   |  |  |
| 0.8  | 44.75  | 62.95 | 41.5      | 42.5        | 52.8   |  |  |
| 0.82 | 42.35  | 47.3  | 42.6      | 43.45       | 46.45  |  |  |
| 0.84 | 35.3   | 46.5  | 44        | 43.25       | 50.95  |  |  |
| 0.86 | 44.3   | 47.6  | 37.6      | 42.5        | 43.65  |  |  |
| 0.88 | 40.25  | 47.35 | 45.15     | 39.2        | 44.95  |  |  |
| 0.9  | 46.9   | 50.75 | 34.85     | 44.65       | 45.45  |  |  |
| 0.92 | 38.5   | 47.1  | 36.9      | 42.7        | 43     |  |  |
| 0.94 | 35.95  | 36.3  | 33.7      | 42.55       | 42.45  |  |  |
| 0.96 | 38.75  | 44.5  | 34.85     | 34.4        | 43     |  |  |
| 0.98 | 37.6   | 39.5  | 39.1      | 37.9        | 42.95  |  |  |
| 1    | 38.5   | 35.2  | 39.15     | 38.6        | 46.5   |  |  |

| iso% | Degree | Eigen | Closeness     | Betweenness    | Random        |
|------|--------|-------|---------------|----------------|---------------|
| 0    | 101    | 101   | 101           | 101            | 101           |
| 0.02 | 101    | 101   | 101           | 101            | 101           |
| 0.04 | 101    | 101   | 101           | 101            | 101           |
| 0.06 | 101    | 101   | 101           | 101            | 101           |
| 0.08 | 101    | 101   | 101           | 101            | 101           |
| 0.1  | 101    | 101   | 101           | 101            | 101           |
| 0.12 | 101    | 101   | 101           | 97.65          | 101           |
| 0.14 | 101    | 101   | 101           | 101            | 101           |
| 0.16 | 98     | 101   | 101           | 98.85          | 101           |
| 0.18 | 100.1  | 101   | 101           | 101            | 98.25         |
| 0.2  | 95.7   | 97.65 | 94.95         | 93             | 101           |
| 0.22 | 91.7   | 93.15 | 99.45         | 85.75          | 97.1          |
| 0.24 | 90.6   | 100.5 | 97.35         | 79.55          | 99.05         |
| 0.26 | 83.1   | 97.3  | 85.1          | 86.9           | 94 15         |
| 0.28 | 77 55  | 93.35 | 89.15         | 74.8           | 97            |
| 0.3  | 75.1   | 98.1  | 88.55         | 78             | 90.3          |
| 0.32 | 72.2   | 89.55 | 81.8          | 66 5           | 86.3          |
| 0.34 | 77.5   | 86.05 | 77.85         | 60.2           | 78.1          |
| 0.34 | 92.75  | 80.35 | 04.2          | 64.45          | 60.75         |
| 0.30 | 60.85  | 70.45 | 70.8          | 64.05          | 79.25         |
| 0.38 | 60.55  | 76.0  | 60.25         | 54.65          | 64.45         |
| 0.4  | 56.2   | 78.0  | 67.05         | 64.05          | 62.7          |
| 0.42 | 20.3   | 70.9  | 74.0          | 04.33          | 62            |
| 0.44 | 60.45  | 67.05 | (4.9<br>61 EE | 00.70<br>64.95 | 54 5          |
| 0.40 | 50.45  | 72.0  | 60.05         | 64.25          | 04.0<br>EE 4E |
| 0.48 | 54.7   | 13.9  | 00.95         | 54             | 55.45         |
| 0.5  | 30.33  | 59.6  | 58.0          | 51.35          | 56.3          |
| 0.52 | 46.9   | 03.4  | 52.5          | 50.9           | 44.25         |
| 0.54 | 50.2   | 63    | 54.3          | 53.9           | 45.9          |
| 0.56 | 55.5   | 69.6  | 49.85         | 46.1           | 46.95         |
| 0.58 | 49.15  | 71.6  | 52.15         | 46.15          | 48.45         |
| 0.6  | 50.55  | 64.95 | 56.25         | 49.95          | 52.1          |
| 0.62 | 50.15  | 69.05 | 49.1          | 49.1           | 46.55         |
| 0.64 | 47.2   | 62.05 | 46.25         | 40.85          | 40.65         |
| 0.66 | 44.25  | 54.9  | 44.7          | 46.5           | 48.15         |
| 0.68 | 47.05  | 52.05 | 38.6          | 42.7           | 39.8          |
| 0.7  | 45.65  | 54.8  | 47.8          | 43.5           | 42.5          |
| 0.72 | 42.85  | 52.9  | 43.6          | 42.45          | 41.35         |
| 0.74 | 42.6   | 48.75 | 43.3          | 38.15          | 42.55         |
| 0.76 | 38.2   | 44    | 47            | 46.35          | 41.15         |
| 0.78 | 41.8   | 44.25 | 41.9          | 37.25          | 37.1          |
| 0.8  | 38.75  | 41.05 | 42.1          | 42             | 46.45         |
| 0.82 | 34.3   | 45.4  | 39.35         | 35.65          | 39.25         |
| 0.84 | 42.65  | 49.55 | 40.2          | 37.95          | 45.6          |
| 0.86 | 41.2   | 38.75 | 33.05         | 37.4           | 46.6          |
| 0.88 | 40.2   | 38.85 | 35.5          | 42.2           | 46.8          |
| 0.9  | 35.35  | 41.35 | 40.2          | 36.9           | 38.85         |
| 0.92 | 38.75  | 41.1  | 37            | 38.2           | 41.3          |
| 0.94 | 41.15  | 36.85 | 39.95         | 43.55          | 43.3          |
| 0.96 | 34.55  | 42.25 | 41.55         | 39.85          | 42.8          |
| 0.98 | 34.65  | 36.4  | 35.6          | 39.25          | 45.1          |
|      |        |       | 10.0          | 00.15          | <u> </u>      |

Table 19: Mean extinction time versus isolation percentage, dynamic removal, Erdos-Renyi, Weak epidemic parameter set. Performance of removal based on degree-, eigen-, closeness-, and betweenness centrality are compared with each other and with the performance of random dynamic removal.

| Table 20: Mean extinction time versus isolation percentage, dynamic removal, nearly-isolated community, CC | )VID- |
|------------------------------------------------------------------------------------------------------------|-------|
| 19 parameter set. Performance of removal based on degree-, eigen-, closeness-, and betweenness centrality  | y are |
| compared with each other and with the performance of random dynamic removal.                               |       |

| iso% | Degree        | Eigen         | Closeness     | Betweenness   | Random         |
|------|---------------|---------------|---------------|---------------|----------------|
| 0    | 101           | 101           | 101           | 101           | 101            |
| 0.02 | 101           | 101           | 101           | 101           | 101            |
| 0.04 | 101           | 101           | 101           | 101           | 101            |
| 0.06 | 101           | 101           | 101           | 101           | 101            |
| 0.08 | 101           | 101           | 101           | 101           | 101            |
| 0.1  | 101           | 101           | 101           | 101           | 101            |
| 0.12 | 101           | 101           | 101           | 101           | 101            |
| 0.14 | 101           | 101           | 101           | 101           | 101            |
| 0.16 | 101           | 101           | 101           | 101           | 101            |
| 0.18 | 101           | 101           | 101           | 101           | 101            |
| 0.2  | 101           | 101           | 101           | 101           | 101            |
| 0.22 | 101           | 101           | 101           | 101           | 101            |
| 0.24 | 101           | 101           | 101           | 101           | 101            |
| 0.26 | 101           | 101           | 101           | 101           | 101            |
| 0.28 | 101           | 101           | 101           | 101           | 101            |
| 0.3  | 101           | 101           | 101           | 101           | 101            |
| 0.32 | 101           | 101           | 101           | 101           | 101            |
| 0.34 | 101           | 101           | 101           | 101           | 101            |
| 0.36 | 98.5          | 101           | 101           | 101           | 101            |
| 0.38 | 101           | 101           | 101           | 101           | 101            |
| 0.4  | 100           | 101           | 101           | 101           | 101            |
| 0.42 | 101           | 101           | 101           | 101           | 101            |
| 0.44 | 100.8         | 101           | 101           | 100.4         | 101            |
| 0.46 | 101           | 101           | 101           | 101           | 101            |
| 0.48 | 100.2         | 101           | 101           | 101           | 101            |
| 0.5  | 99.8          | 101           | 101           | 101           | 101            |
| 0.52 | 97.7          | 101           | 97.75         | 101           | 101            |
| 0.54 | 101           | 101           | 101           | 99.25         | 101            |
| 0.56 | 93.55         | 101           | 101           | 98.6          | 101            |
| 0.58 | 96.85         | 101           | 98.15         | 98.75         | 101            |
| 0.6  | 97.4          | 101           | 99.55         | 97.1          | 101            |
| 0.62 | 90.15         | 101           | 94.2          | 94.6          | 101            |
| 0.64 | 84.55         | 100.7         | 96.3          | 85.5          | 101            |
| 0.66 | 85.95         | 101           | 96.7          | 95.2          | 99.35          |
| 0.68 | 81.5          | 101           | 90.75         | 92.2          | 101            |
| 0.7  | 91.7          | 98.6          | 85.5          | 90.1          | 98.8           |
| 0.72 | 87.3          | 101           | 87.25         | 89.2          | 92.25          |
| 0.74 | 80.35         | 101           | 77.55         | 92.95         | 96.6           |
| 0.76 | 74.85         | 93.8          | 81.8          | 87.35         | 97.9           |
| 0.78 | 55.7          | 93.4          | 73.0          | 80.05         | 91.1           |
| 0.8  | 61.4          | 86.05         | (3.1          | 82            | 93.5           |
| 0.82 | 52.2          | 90            | 65.85         | 78.85         | 92.8           |
| 0.84 | 47.8          | 74.55         | 68.25         | 82.1          | 90.35          |
| 0.80 | 47.15         | 71.05         | 00.7<br>40.25 | 70.2          | 80.20          |
| 0.88 | 44.4          | (1.85         | 49.35         | (2.3          | 88.8           |
| 0.9  | 42.45         | 61.95         | 40.1          | 71            | 79 75          |
| 0.92 | 40.4          | 04.2<br>51.5  | 40.8          | 50.U5<br>52.2 | (2.(5          |
| 0.94 | 00<br>22 55   | 01.0<br>40.75 | 30.4<br>27 4  | 00.0<br>44.65 | 09.3<br>71.1F  |
| 0.90 | 33.00<br>20.1 | 40.75         | 37.4<br>41.15 | 44.00         | (1.10<br>72.0F |
| 1    | 36.05         | 36.1          | 41.10         | 40.2          | 64.7           |
| T    | 30.05         | 30.1          | 40            | 04.4          | 04.7           |

| Table 21: | Mean   | extinction  | $\operatorname{time}$ | versus   | isolation | percentage   | , dynamic   | removal,  | nearly-isolated | community,     | Epi-  |
|-----------|--------|-------------|-----------------------|----------|-----------|--------------|-------------|-----------|-----------------|----------------|-------|
| demic par | ameter | set. Perfo  | rmanc                 | e of rei | noval ba  | sed on degre | e-, eigen-, | closeness | -, and between  | ness centralit | y are |
| compared  | with e | ach other a | and w                 | ith the  | performa  | ance of rand | om dynan    | nic remov | al.             |                |       |

| iso% | Degree | Eigen | Closeness | Betweenness | Random |
|------|--------|-------|-----------|-------------|--------|
| 0    | 101    | 101   | 101       | 101         | 101    |
| 0.02 | 101    | 101   | 101       | 101         | 101    |
| 0.04 | 101    | 101   | 101       | 101         | 101    |
| 0.06 | 101    | 101   | 101       | 101         | 101    |
| 0.08 | 101    | 101   | 101       | 101         | 101    |
| 0.1  | 101    | 101   | 101       | 101         | 101    |
| 0.12 | 101    | 101   | 101       | 101         | 101    |
| 0.14 | 101    | 101   | 101       | 101         | 101    |
| 0.16 | 101    | 101   | 101       | 101         | 101    |
| 0.18 | 101    | 101   | 101       | 101         | 101    |
| 0.2  | 101    | 101   | 101       | 101         | 101    |
| 0.22 | 101    | 101   | 101       | 101         | 101    |
| 0.24 | 101    | 101   | 101       | 101         | 101    |
| 0.26 | 101    | 98.25 | 101       | 101         | 101    |
| 0.28 | 101    | 101   | 101       | 101         | 101    |
| 0.3  | 101    | 101   | 101       | 101         | 101    |
| 0.32 | 101    | 101   | 98.2      | 99.5        | 101    |
| 0.34 | 98.35  | 101   | 101       | 100.6       | 101    |
| 0.36 | 97.5   | 101   | 101       | 92.6        | 100.4  |
| 0.38 | 98.5   | 101   | 100.85    | 97.75       | 100.85 |
| 0.4  | 89.6   | 101   | 101       | 91.15       | 101    |
| 0.42 | 89.4   | 97.95 | 98.25     | 98.65       | 94.85  |
| 0.44 | 94.15  | 101   | 101       | 88.9        | 93.1   |
| 0.46 | 96.95  | 98.6  | 97.05     | 88.8        | 96.6   |
| 0.48 | 89.7   | 101   | 101       | 89.15       | 90.3   |
| 0.5  | 84.5   | 101   | 99.7      | 87.65       | 82.4   |
| 0.52 | 87.75  | 99.95 | 99.05     | 81.45       | 79.7   |
| 0.54 | 90.1   | 89.2  | 101       | 79.7        | 76.65  |
| 0.56 | 89.55  | 96.2  | 101       | 82.35       | 79.6   |
| 0.58 | 82.8   | 96.75 | 94.8      | 66.45       | 76.7   |
| 0.6  | 79.9   | 97.3  | 97.75     | 79.3        | 73.65  |
| 0.62 | 71.65  | 98    | 75.45     | 74.5        | 67.75  |
| 0.64 | 72.25  | 81.7  | 84.15     | 69.95       | 70     |
| 0.66 | 62.45  | 98.45 | 72.85     | 56.25       | 59.85  |
| 0.68 | 67.65  | 87.55 | 68.4      | 67.7        | 63.65  |
| 0.7  | 66.8   | 89.25 | 70.75     | 76.45       | 49.75  |
| 0.72 | 78.7   | 74.35 | 70.15     | 62.3        | 54     |
| 0.74 | 55.25  | 81.4  | 70.3      | 70.3        | 56.3   |
| 0.76 | 49.45  | 75.95 | 60.85     | _50         | 47.85  |
| 0.78 | 47.15  | 64.9  | 52.2      | 72.85       | 60.25  |
| 0.8  | 47.8   | 60.95 | 51.3      | 61.4        | 52.8   |
| 0.82 | 50.3   | 67.75 | 54.35     | 54.75       | 50.75  |
| 0.84 | 41.75  | 47.25 | 44.1      | 55.25       | 47.5   |
| 0.86 | 46.9   | 53.35 | 39.35     | 50          | 43.6   |
| 0.88 | 42.55  | 44.8  | 37.3      | 56.5        | 45.6   |
| 0.9  | 40.55  | 46.7  | 40.8      | 47.35       | 53.7   |
| 0.92 | 41.9   | 42    | 44.15     | 39.9        | 43.4   |
| 0.94 | 38.05  | 42.25 | 39.55     | 43.1        | 47.5   |
| 0.96 | 37     | 40.7  | 39.2      | 41.85       | 47.15  |
| 0.98 | 34.75  | 36.65 | 40.95     | 32.25       | 47.15  |
| 1    | 37.6   | 36    | 46.4      | 34.75       | 42.1   |

| Table 22: | Mean ex   | ctinction ti | me versus   | isolation | percentage,  | dynamic     | removal    | , nearly-i | solated | communit   | ty, Weak  |
|-----------|-----------|--------------|-------------|-----------|--------------|-------------|------------|------------|---------|------------|-----------|
| Epidemic  | paramet   | er set. Per  | formance of | of remova | l based on d | legree-, ei | gen-, clos | seness-, a | nd betw | veenness c | entrality |
| are compa | ared with | each othe    | r and with  | the perfe | ormance of a | random d    | ynamic r   | emoval.    |         |            |           |

| iso% | Degree       | Eigen | Closeness     | Betweenness | Random |
|------|--------------|-------|---------------|-------------|--------|
| 0    | 101          | 101   | 101           | 101         | 101    |
| 0.02 | 101          | 101   | 101           | 101         | 101    |
| 0.04 | 101          | 101   | 101           | 101         | 101    |
| 0.06 | 101          | 101   | 101           | 101         | 101    |
| 0.08 | 101          | 101   | 101           | 101         | 101    |
| 0.1  | 101          | 101   | 101           | 101         | 101    |
| 0.12 | 101          | 101   | 101           | 101         | 101    |
| 0.14 | 101          | 101   | 101           | 101         | 100.15 |
| 0.16 | 101          | 101   | 101           | 99.3        | 101    |
| 0.18 | 99.85        | 101   | 97.35         | 101         | 101    |
| 0.2  | 101          | 101   | 101           | 101         | 101    |
| 0.22 | 98.25        | 101   | 101           | 98.25       | 97.05  |
| 0.24 | 93.45        | 101   | 100.1         | 97.15       | 98.35  |
| 0.26 | 100.5        | 101   | 101           | 97.25       | 96.9   |
| 0.28 | 95.9         | 101   | 100.15        | 94.25       | 88.95  |
| 0.3  | 96.9         | 101   | 97.3          | 96.85       | 85.6   |
| 0.32 | 89.95        | 101   | 99.05         | 87.8        | 89     |
| 0.34 | 87.8         | 95    | 98.95         | 81.1        | 88     |
| 0.36 | 82.8         | 94.35 | 96.95         | 97.65       | 76.9   |
| 0.38 | 76.45        | 99.55 | 96.35         | 83.1        | 77.2   |
| 0.4  | 85.15        | 93.3  | 95.2          | 81.7        | 78.05  |
| 0.42 | 81.45        | 93.6  | 90.85         | 79.25       | 60.85  |
| 0.44 | 85.85        | 82.7  | 87.75         | 69.15       | 58.1   |
| 0.46 | 77.1         | 83.85 | 90.9          | 74.55       | 56.95  |
| 0.48 | 76.85        | 87.95 | 75.1          | 82.45       | 53.15  |
| 0.5  | 63           | 97.45 | 91.4          | 65.65       | 53.1   |
| 0.52 | 74.45        | 85.9  | 71.45         | 69.25       | 60.9   |
| 0.54 | 68.65        | 89    | 72.45         | 72.55       | 50.3   |
| 0.56 | 64.25        | 70.1  | 71.65         | 70.55       | 49.45  |
| 0.58 | 08.7         | 70.15 | (1.0          | 04.55       | 40.2   |
| 0.6  | 03.7<br>67.9 | 18.8  | (1.85         | 60 4        | 30.15  |
| 0.64 | 50.25        | 70.0  | 60.1          | 51.2        | 47.45  |
| 0.04 | 50.25        | 72.3  | 60.0          | 51.5        | 49.5   |
| 0.00 | 50.0         | 70.5  | 02.7          | 54.05       | 40.40  |
| 0.08 | 40.55        | 66.6  | 04.0<br>57.45 | 54.15       | 43.3   |
| 0.7  | 49.55        | 66.25 | 60.6          | 55.6        | 40.00  |
| 0.72 | 35.65        | 61.7  | 40.8          | 54.65       | 43.45  |
| 0.74 | 47.2         | 57.65 | 40.8          | 56.6        | 43.45  |
| 0.78 | 47.2         | 63.0  | 40.35         | 60.4        | 38.05  |
| 0.10 | 48.8         | 53.4  | 42.45         | 37 15       | 37     |
| 0.82 | 43 75        | 45.9  | 41.4          | 46.7        | 41 35  |
| 0.84 | 39.1         | 43.2  | 30.2          | 48.8        | 40.15  |
| 0.86 | 41.35        | 40.4  | 41.2          | 38.85       | 40.05  |
| 0.88 | 39           | 45.2  | 35.9          | 40.85       | 37 15  |
| 0.9  | 37.5         | 40.85 | 37 25         | 44 25       | 37.9   |
| 0.92 | 40.3         | 36.55 | 37.3          | 35.4        | 39.4   |
| 0.94 | 40.65        | 36.6  | 36.25         | 39.9        | 40.7   |
| 0.96 | 39.55        | 38.8  | 40.45         | 36.85       | 44.35  |
| 0.98 | 34           | 37.95 | 37.95         | 36.2        | 43.15  |
| 1    | 37.3         | 36.9  | 36.3          | 37.1        | 41     |

| Table 23: | Mean     | extinction  | $\operatorname{time}$ | versus  | isolation  | $\operatorname{per}$ | centage, | dynami  | ic removal, | com | munity-affilia | tion, | COVI  | D-  |
|-----------|----------|-------------|-----------------------|---------|------------|----------------------|----------|---------|-------------|-----|----------------|-------|-------|-----|
| 19 parame | eter set | . Perform   | ance o                | of remo | oval based | on                   | degree-, | eigen-, | closeness-, | and | betweenness    | centr | ality | are |
| compared  | with e   | ach other a | and wi                | th the  | performa   | nce o                | of rando | m dynai | mic remova  | 1.  |                |       |       |     |

| iso% | Degree | Eigen         | Closeness     | Betweenness | Random        |
|------|--------|---------------|---------------|-------------|---------------|
| 0    | 101    | 101           | 101           | 101         | 101           |
| 0.02 | 101    | 101           | 101           | 101         | 101           |
| 0.04 | 101    | 101           | 101           | 101         | 101           |
| 0.06 | 101    | 101           | 101           | 101         | 101           |
| 0.08 | 101    | 101           | 101           | 101         | 101           |
| 0.1  | 101    | 101           | 101           | 101         | 101           |
| 0.12 | 101    | 101           | 101           | 101         | 101           |
| 0.14 | 101    | 101           | 101           | 101         | 101           |
| 0.16 | 101    | 101           | 101           | 99.8        | 101           |
| 0.18 | 100.05 | 101           | 101           | 99.85       | 101           |
| 0.2  | 99.9   | 101           | 101           | 100.45      | 101           |
| 0.22 | 95.45  | 101           | 99.8          | 95.55       | 101           |
| 0.24 | 97.8   | 101           | 98.2          | 95.4        | 101           |
| 0.26 | 92.8   | 101           | 99.45         | 90.6        | 101           |
| 0.28 | 86.75  | 95.55         | 95.3          | 84.9        | 101           |
| 0.3  | 90.7   | 96.65         | 92.2          | 92.55       | 101           |
| 0.32 | 88.7   | 98.2          | 90.3          | 86.6        | 101           |
| 0.34 | 72.6   | 92.45         | 88.9          | 80.4        | 101           |
| 0.36 | 82.8   | 96.25         | 96.35         | 80          | 101           |
| 0.38 | 73.6   | 100.05        | 78.15         | 80.95       | 101           |
| 0.4  | 74.8   | 97.6          | 88 85         | 65.4        | 101           |
| 0.42 | 61.9   | 96.7          | 87.25         | 70.1        | 101           |
| 0.44 | 72 75  | 100.15        | 75.95         | 56.9        | 101           |
| 0.44 | 63.85  | 96.7          | 78.1          | 56 75       | 101           |
| 0.48 | 66.05  | 97.1          | 66.8          | 60.65       | 101           |
| 0.40 | 68.6   | 94 45         | 66.2          | 55.65       | 98 7          |
| 0.52 | 57.85  | 08.0          | 71.45         | 54.7        | 100.0         |
| 0.52 | 55.7   | 96            | 60.05         | 52 05       | 98.6          |
| 0.54 | 55.7   | 95.45         | 60.25         | 56.05       | 94.2          |
| 0.58 | 54 35  | 02.05         | 57            | 49.9        | 00.05         |
| 0.00 | 41.1   | 92.90         | 49.65         | 49.9        | 97.6          |
| 0.62 | 41.1   | 023           | 43.00         | 53.1        | 87.4          |
| 0.64 | 49.3   | 01.3          | 44.0          | 51 4        | 01.05         |
| 0.64 | 44.9   | 82.05         | 50.6          | 47.4        | 91.55         |
| 0.00 | 44.2   | 83.95<br>91.0 | 48.25         | 41.4        | 84.05         |
| 0.08 | 43.0   | 73.6          | 40.25         | 30.75       | 80.15         |
| 0.72 | 20.2   | 76.25         | 40.4          | 44.9        | 79.25         |
| 0.72 | 39.2   | 59.25         | 40.4          | 44.2        | 60.15         |
| 0.74 | 44.4   | 72.45         | 44.33         | 40.1        | 75 65         |
| 0.70 | 28.0   | 60.25         | 27.7          | 40.75       | 73.05         |
| 0.78 | 27.15  | 52.20         | 37.7<br>25.45 | 40.05       | 60.05         |
| 0.0  | 37.13  | 55.5          | 33.43         | 40.9        | 77 55         |
| 0.84 | 30.0   | 58.0          | 37.4          | 34.15       | 64.1          |
| 0.84 | 41.35  | 59.1          | 39.55         | 40.25       | 64.1          |
| 0.80 | 39.7   | 49.45         | 34.95         | 40.2        | 05.0          |
| 0.00 | 30.0   | 32.33         | 33.60         | 34.9        | 00.7          |
| 0.9  | 31     | 44.30         | 33.8<br>95 9  | 31.9        | 03.30         |
| 0.92 | 34.55  | 43.2          | 35.3          | 34.8        | 6U.6<br>E4.9F |
| 0.94 | 35.35  | 42.6          | 30.5          | 40.05       | 54.85         |
| 0.96 | 38.05  | 30.7          | 34.1          | 33.6        | 46.15         |
| 0.98 | 32.85  | 40.65         | 33.3          | 33.6        | 58.35         |
| 1    | 31.95  | 38.65         | 37            | 42.25       | 56.1          |

| iso% | Degree | Eigen | Closeness | Betweenness | Random |
|------|--------|-------|-----------|-------------|--------|
| 0    | 101    | 101   | 101       | 101         | 101    |
| 0.02 | 101    | 101   | 101       | 101         | 101    |
| 0.04 | 101    | 101   | 101       | 101         | 101    |
| 0.06 | 101    | 101   | 101       | 101         | 101    |
| 0.08 | 101    | 101   | 101       | 101         | 101    |
| 0.1  | 99.2   | 99.5  | 101       | 98.95       | 101    |
| 0.12 | 98.9   | 101   | 101       | 97.65       | 101    |
| 0.14 | 97.95  | 101   | 101       | 98.7        | 101    |
| 0.16 | 91.15  | 98.2  | 95.5      | 86.7        | 101    |
| 0.18 | 81.7   | 101   | 95.15     | 99.25       | 101    |
| 0.2  | 86.1   | 97.3  | 98.85     | 80.8        | 101    |
| 0.22 | 92.25  | 96.35 | 87.15     | 84.55       | 101    |
| 0.24 | 81.55  | 95.05 | 84 7      | 86.3        | 101    |
| 0.24 | 77.05  | 03 7  | 87.05     | 68 35       | 100 7  |
| 0.20 | 76.7   | 72.95 | 87.6      | 91 05       | 00.05  |
| 0.28 | 69.45  | 97.75 | 67.0      | 51.05       | 99.95  |
| 0.3  | 60.45  | 01.10 | 72.2      | 75.0        | 101    |
| 0.34 | 02.55  | 00.1  | 13.3      | 75.5        | 101    |
| 0.34 | 66.65  | 84.45 | 70.25     | 63.85       | 95.5   |
| 0.36 | 70.3   | 78.55 | 70.1      | 60.95       | 93.9   |
| 0.38 | 63.75  | 74.4  | 65.65     | 48.55       | 89.5   |
| 0.4  | 64.8   | 79.35 | 70.6      | 52.3        | 85.65  |
| 0.42 | 61.45  | 79.1  | 68.95     | 53.05       | 83.65  |
| 0.44 | 56     | 82.75 | 55.2      | 54.25       | 72.5   |
| 0.46 | 53.4   | 68.95 | 56.95     | 50.3        | 79.7   |
| 0.48 | 53.9   | 85.05 | 52.85     | 45.9        | 71.1   |
| 0.5  | 47.9   | 57.95 | 48.2      | 45.75       | 69.35  |
| 0.52 | 49.5   | 73.35 | 49.5      | 42.5        | 66.1   |
| 0.54 | 44.85  | 83.6  | 50.1      | 39.55       | 62.1   |
| 0.56 | 47.8   | 82.8  | 51.75     | 47.4        | 68.9   |
| 0.58 | 42.25  | 61.1  | 41.5      | 39.3        | 65.05  |
| 0.6  | 41.85  | 70.75 | 44.7      | 42.15       | 62.65  |
| 0.62 | 45.55  | 66.3  | 39.1      | 44.05       | 57.4   |
| 0.64 | 38.35  | 63.55 | 47.15     | 40.75       | 54.6   |
| 0.66 | 39.85  | 58.55 | 40.55     | 50.9        | 47.55  |
| 0.68 | 41.1   | 63 25 | 45.3      | 42.6        | 52 45  |
| 0.7  | 36.9   | 50 45 | 38.2      | 40.7        | 58.05  |
| 0.72 | 38.95  | 55 35 | 36.2      | 35 35       | 46.65  |
| 0.74 | 42.7   | 55.4  | 30.5      | 38 55       | 40.00  |
| 0.74 | 38 55  | 47.5  | 38.25     | 36.15       | 51.1   |
| 0.70 | 44.6   | 47.0  | 24.0      | 30.13       | 47.4   |
| 0.78 | 28.0   | 45.5  | 25.05     | 20.8        | 41.4   |
| 0.8  | 30.9   | 47.4  | 33.03     | 39.8        | 42.75  |
| 0.84 | 37.2   | 49.55 | 37.9      | 41.0        | 43.9   |
| 0.84 | 35.2   | 45.5  | 33        | 42.5        | 43.4   |
| 0.80 | 35.15  | 43    | 34.95     | 39          | 40.75  |
| 0.88 | 34.45  | 39.5  | 37.15     | 42.45       | 50.25  |
| 0.9  | 39.75  | 41.45 | 33.65     | 36.3        | 44.4   |
| 0.92 | 35.5   | 40.6  | 37        | 40.3        | 38.35  |
| 0.94 | 37.05  | 43.45 | 35.45     | 41.15       | 38.8   |
| 0.96 | 35.5   | 40.4  | 36.1      | 35.9        | 42.9   |
| 0.98 | 34.2   | 34.85 | 34.35     | 37.45       | 39.3   |
| 1    | 39.2   | 38.3  | 36.8      | 40.8        | 44.9   |

Table 24: Mean extinction time versus isolation percentage, dynamic removal, community-affiliation, Epidemic parameter set. Performance of removal based on degree-, eigen-, closeness-, and betweenness centrality are compared with each other and with the performance of random dynamic removal.

| Table 25: Mean extinction time versus isolation percentage | dynamic removal       | , community-affiliation | , Weak epi-   |
|------------------------------------------------------------|-----------------------|-------------------------|---------------|
| demic parameter set. Performance of removal based on degr  | ee-, eigen-, closenes | ss-, and betweenness co | entrality are |
| compared with each other and with the performance of rand  | lom dynamic remo      | val.                    |               |

| iso% | Degree        | Eigen  | Closeness | Betweenness | Random |
|------|---------------|--------|-----------|-------------|--------|
| 0    | 101           | 101    | 101       | 101         | 101    |
| 0.02 | 101           | 101    | 101       | 101         | 101    |
| 0.04 | 101           | 100.65 | 101       | 101         | 101    |
| 0.06 | 99.25         | 90.95  | 101       | 101         | 101    |
| 0.08 | 96.35         | 96.8   | 91.6      | 97.7        | 101    |
| 0.1  | 90.15         | 93.5   | 98.35     | 93.2        | 101    |
| 0.12 | 82.05         | 92     | 90.75     | 84.4        | 98.25  |
| 0.14 | 74.5          | 98.4   | 82.4      | 86.7        | 99.65  |
| 0.16 | 77.5          | 80.15  | 77.35     | 80.55       | 92.5   |
| 0.18 | 76.35         | 78.25  | 81.85     | 73.1        | 89.1   |
| 0.2  | 64.05         | 86.05  | 76.8      | 76.1        | 92.05  |
| 0.22 | 51.05         | 85.9   | 71.15     | 69.95       | 87.6   |
| 0.24 | 52.8          | 75.3   | 63.25     | 55          | 92     |
| 0.26 | 59.35         | 72.85  | 59.4      | 57 35       | 79.3   |
| 0.28 | 53.25         | 74.6   | 58 7      | 52.6        | 73.6   |
| 0.20 | 59.3          | 60.75  | 61 75     | 63.05       | 68.4   |
| 0.32 | 53.1          | 64 15  | 57.65     | 59.15       | 60.05  |
| 0.34 | 47.95         | 62     | 53.05     | 45 35       | 62.35  |
| 0.34 | 57            | 521    | 52.2      | 56.25       | 71.0   |
| 0.30 | 70 6          | 70.7   | 56.7      | 47.8        | 50.4   |
| 0.30 | 12.2          | 56.2   | 46.95     | 47.8        | 62.9   |
| 0.4  | 43.3          | 59.45  | 40.85     | 41.0        | 50.05  |
| 0.42 | 41.4          | 60.40  | 40.40     | 43.0        | 50.95  |
| 0.44 | 44.90         | 18.05  | 03.20     | 43.95       | 10.05  |
| 0.40 | 04.0<br>44.05 | 48.05  | 42        | 47.9        | 49.05  |
| 0.48 | 44.05         | 47.9   | 40.5      | 40.25       | 42.0   |
| 0.5  | 40.05         | 61.5   | 47        | 44.4        | 45.95  |
| 0.52 | 43.35         | 51.00  | 40.9      | 40.6        | 48.0   |
| 0.54 | 41.65         | 51.2   | 42.55     | 35.95       | 43.45  |
| 0.56 | 37.35         | 53.4   | 34.9      | 38.35       | 43.9   |
| 0.58 | 37.85         | 54.6   | 38.1      | 39.1        | 52.15  |
| 0.6  | 37.55         | 57.9   | 39.3      | 41.3        | 44.95  |
| 0.62 | 43.25         | 52.25  | 42.3      | 41.25       | 40.55  |
| 0.64 | 38.75         | 53.9   | 38.45     | 46.6        | 39.45  |
| 0.66 | 43.3          | 46.95  | 43.1      | 37.9        | 37.9   |
| 0.68 | 40.95         | 40.5   | 39.1      | 38.85       | 42.25  |
| 0.7  | 43.5          | 46.15  | 35.1      | 39.1        | 42.15  |
| 0.72 | 40.35         | 44.3   | 37.5      | 39.75       | 43.05  |
| 0.74 | 34.35         | 46.55  | 39        | 37.2        | 38.75  |
| 0.76 | 39.7          | 44.05  | 35.75     | 32.1        | 38.05  |
| 0.78 | 39.45         | 42.4   | 42.05     | 38.15       | 40.05  |
| 0.8  | 36.1          | 39.65  | 36.95     | 39.1        | 40.9   |
| 0.82 | 40            | 47.85  | 39.4      | 34.95       | 43.2   |
| 0.84 | 37            | 46.95  | 35.15     | 40.65       | 39.85  |
| 0.86 | 40.15         | 38.55  | 38.5      | 38.65       | 39.45  |
| 0.88 | 37.3          | 37.25  | 38.05     | 38.1        | 38.6   |
| 0.9  | 36.5          | 36.5   | 38.55     | 36.25       | 36.95  |
| 0.92 | 32.5          | 39.3   | 37.25     | 30.9        | 39.4   |
| 0.94 | 32.6          | 41.45  | 40.75     | 40.7        | 38.5   |
| 0.96 | 39.1          | 34.6   | 33.75     | 33.95       | 39.95  |
| 0.98 | 35.75         | 41.55  | 37.85     | 34.45       | 35.75  |
| 1    | 33.9          | 34.5   | 39.35     | 37.9        | 36.3   |

| Table 26: Mean total costs versus isolation percentage, dynamic removal, Erdos-Renyi, COVID-19 parameter set   |
|----------------------------------------------------------------------------------------------------------------|
| Performance of removal based on degree-, eigen-, closeness-, and betweenness centrality are compared with each |
| other and with the performance of random dynamic removal.                                                      |

| iso% | Degree  | Eigen   | Closeness | Betweenness | Random  |
|------|---------|---------|-----------|-------------|---------|
| 0    | 6124778 | 6133293 | 6127146   | 6135840     | 6136297 |
| 0.02 | 5964724 | 5966924 | 5991142   | 5935933     | 5965836 |
| 0.04 | 5940042 | 5988346 | 5952793   | 5905507     | 5906339 |
| 0.06 | 5896599 | 6042915 | 6082326   | 5795710     | 6050505 |
| 0.08 | 5891595 | 6151978 | 6137516   | 5936623     | 6029247 |
| 0.1  | 5706996 | 6213480 | 6204493   | 5962039     | 6128516 |
| 0.12 | 5773028 | 6359771 | 6243127   | 5834393     | 6281287 |
| 0.14 | 5443912 | 6342139 | 6323470   | 5855485     | 6469414 |
| 0.16 | 5317529 | 6186415 | 6445554   | 5507085     | 6548248 |
| 0.18 | 5044409 | 5908795 | 6250231   | 5167901     | 6722336 |
| 0.2  | 4544074 | 5846290 | 5771446   | 4732069     | 6853058 |
| 0.22 | 3886599 | 5500281 | 5516077   | 4445495     | 6955116 |
| 0.24 | 3621178 | 5183106 | 4881059   | 3940030     | 6895993 |
| 0.26 | 3314949 | 4691281 | 4501115   | 3597940     | 6970185 |
| 0.28 | 3003269 | 4592331 | 4612505   | 3134937     | 6767582 |
| 0.3  | 2816906 | 4295442 | 3815208   | 2003803     | (1816/1 |
| 0.32 | 2591254 | 3966334 | 3388024   | 2478531     | 6863666 |
| 0.34 | 2397691 | 3798049 | 3481020   | 2194482     | 7198459 |
| 0.36 | 2228350 | 3455874 | 2976646   | 1797071     | 6961382 |
| 0.38 | 1925704 | 3408215 | 20/3109   | 1090808     | 7079486 |
| 0.4  | 1904740 | 3450236 | 2367391   | 1493909     | 6813712 |
| 0.42 | 1483646 | 3308246 | 2177070   | 1260620     | 6892197 |
| 0.44 | 1407031 | 3343134 | 18/04/1   | 1283844     | 6728770 |
| 0.46 | 1343333 | 3351361 | 1012780   | 1052122     | 6738770 |
| 0.48 | 1120856 | 3043790 | 1483034   | 994780      | 6734075 |
| 0.5  | 1044264 | 3134770 | 1422239   | 856879      | 0346476 |
| 0.52 | 076661  | 2024400 | 1210000   | 840180      | 5990310 |
| 0.54 | 796111  | 2710009 | 1072946   | 661246      | 5628070 |
| 0.50 | 700051  | 2550272 | 207025    | 786667      | 5544206 |
| 0.38 | 704075  | 2000012 | 852620    | 680051      | 5120565 |
| 0.62 | 634017  | 2087631 | 687722    | 605890      | 5048561 |
| 0.64 | 560417  | 1861458 | 615574    | 536914      | 4713413 |
| 0.66 | 548462  | 1010064 | 580006    | 531082      | 4701318 |
| 0.68 | 480416  | 1408358 | 500831    | 534401      | 4202286 |
| 0.03 | 474423  | 1417805 | 452291    | 442095      | 3574210 |
| 0.72 | 417733  | 1214195 | 476916    | 495409      | 3371018 |
| 0.74 | 420007  | 1092003 | 440386    | 422774      | 3079646 |
| 0.74 | 348247  | 828290  | 401370    | 472918      | 2922872 |
| 0.78 | 346702  | 785348  | 338756    | 404566      | 2604514 |
| 0.8  | 343976  | 691013  | 360203    | 418482      | 2606721 |
| 0.82 | 356884  | 580695  | 355036    | 395134      | 2219519 |
| 0.84 | 306473  | 501549  | 342018    | 379885      | 1652333 |
| 0.86 | 329236  | 478042  | 307633    | 308509      | 1808259 |
| 0.88 | 288269  | 420916  | 289527    | 315876      | 1372785 |
| 0.9  | 309224  | 410396  | 285057    | 303744      | 1161545 |
| 0.92 | 276187  | 349391  | 272224    | 314479      | 1274950 |
| 0.94 | 271417  | 314393  | 289546    | 336388      | 1256709 |
| 0.96 | 277966  | 311324  | 291759    | 313206      | 1024182 |
| 0.98 | 296409  | 294484  | 265979    | 314951      | 926148  |
| 1    | 257296  | 283217  | 264349    | 274283      | 1013812 |
|      |         |         |           |             |         |

| Table 27: | Mean total   | costs ve  | ersus isolati | on perce  | entage,  | dynamic    | removal, | Erdos-Renyi,    | Epidemic | paran  | neter  | set. |
|-----------|--------------|-----------|---------------|-----------|----------|------------|----------|-----------------|----------|--------|--------|------|
| Performan | nce of remov | val based | d on degree   | -, eigen- | , closer | ness-, and | between  | ness centrality | are comp | ared v | with e | each |
| other and | with the pe  | erforman  | nce of rando  | om dyna   | mic rer  | noval.     |          |                 |          |        |        |      |

| iso% | Degree  | Eigen   | Closeness | Betweenness | Random  |
|------|---------|---------|-----------|-------------|---------|
| 0    | 5329825 | 5343236 | 5409682   | 5415387     | 5392133 |
| 0.02 | 4971423 | 5000623 | 5033540   | 4909034     | 5099246 |
| 0.04 | 4740370 | 4794356 | 4794645   | 4648217     | 4915613 |
| 0.06 | 4519009 | 4534661 | 4586950   | 4463392     | 4772837 |
| 0.08 | 4348562 | 4294942 | 4395859   | 4321476     | 4741418 |
| 0.1  | 4035919 | 4146572 | 4276230   | 4005527     | 4724732 |
| 0.12 | 3733582 | 3920910 | 3974335   | 3879077     | 4724121 |
| 0.14 | 3116848 | 3506954 | 3741170   | 3487569     | 4570231 |
| 0.16 | 2999042 | 3470559 | 3316819   | 2991842     | 4641688 |
| 0.18 | 2775920 | 3092841 | 3269665   | 2545966     | 4689528 |
| 0.2  | 2240253 | 2963816 | 2779716   | 2365084     | 4472086 |
| 0.22 | 2106521 | 2582117 | 2421346   | 2062393     | 4530180 |
| 0.24 | 1804010 | 2439531 | 2111965   | 1534176     | 4394800 |
| 0.26 | 1664065 | 2164241 | 2083586   | 1479377     | 4203999 |
| 0.28 | 1344537 | 2074842 | 1819436   | 1199964     | 4072437 |
| 0.3  | 1206009 | 1983492 | 1634511   | 1045275     | 3898504 |
| 0.32 | 1189793 | 1823286 | 1453217   | 915094      | 3513698 |
| 0.34 | 1064523 | 1739995 | 1298966   | 776566      | 3341876 |
| 0.36 | 1010548 | 1615852 | 1131115   | 749601      | 3189058 |
| 0.38 | 820151  | 1489343 | 992921    | 637076      | 2864920 |
| 0.4  | 714701  | 1446645 | 912243    | 646890      | 2509915 |
| 0.42 | 713298  | 1354809 | 813701    | 558016      | 2194384 |
| 0.44 | 621347  | 1285060 | 766102    | 563792      | 2143926 |
| 0.46 | 596930  | 1080219 | 715782    | 535080      | 1818788 |
| 0.48 | 667785  | 1024177 | 625707    | 443726      | 1726684 |
| 0.5  | 503899  | 1023388 | 653012    | 485241      | 1417781 |
| 0.52 | 484655  | 984646  | 505834    | 376163      | 1129043 |
| 0.54 | 478364  | 921758  | 515249    | 422314      | 1205922 |
| 0.56 | 418850  | 864506  | 521803    | 416873      | 925143  |
| 0.58 | 369483  | 720009  | 430544    | 429118      | 817524  |
| 0.6  | 414745  | 689526  | 399099    | 378480      | 752129  |
| 0.62 | 343852  | 575733  | 380075    | 360902      | 771986  |
| 0.64 | 420964  | 572157  | 371349    | 336656      | 660164  |
| 0.66 | 368440  | 577921  | 332398    | 345951      | 662817  |
| 0.68 | 346838  | 476030  | 356791    | 349594      | 584230  |
| 0.7  | 345277  | 490754  | 359911    | 370726      | 563289  |
| 0.72 | 331618  | 513863  | 317806    | 314484      | 577980  |
| 0.74 | 327115  | 440035  | 309703    | 324879      | 549652  |
| 0.76 | 292796  | 426643  | 311892    | 317054      | 516439  |
| 0.78 | 289704  | 459328  | 283924    | 321733      | 435420  |
| 0.8  | 266582  | 396905  | 336283    | 312550      | 494834  |
| 0.82 | 287550  | 353210  | 264529    | 303607      | 501878  |
| 0.84 | 305925  | 347589  | 286556    | 318119      | 487087  |
| 0.86 | 249905  | 346615  | 253064    | 319173      | 443302  |
| 0.88 | 294358  | 319822  | 284861    | 268212      | 494100  |
| 0.9  | 269067  | 301936  | 275285    | 299512      | 481093  |
| 0.92 | 277576  | 311741  | 292206    | 306695      | 384767  |
| 0.94 | 266076  | 292343  | 282908    | 277342      | 436416  |
| 0.96 | 257350  | 321886  | 278372    | 275961      | 460558  |
| 0.98 | 289083  | 267146  | 295701    | 269871      | 401535  |
| 1    | 250494  | 281920  | 286607    | 262799      | 389500  |

| Table 28: Mean total costs versus isolation percentage, | dynamic removal, Erdos-Renyi, Weak epidemic parameter    |
|---------------------------------------------------------|----------------------------------------------------------|
| set. Performance of removal based on degree-, eigen-,   | closeness-, and betweenness centrality are compared with |
| each other and with the performance of random dynar     | nic removal.                                             |

| iso% | Degree  | Eigen   | Closeness | Betweenness | Random  |
|------|---------|---------|-----------|-------------|---------|
| 0    | 3707012 | 3663044 | 3690584   | 3738920     | 3573818 |
| 0.02 | 3217156 | 3210473 | 3239224   | 3256894     | 3241093 |
| 0.04 | 2926034 | 2829391 | 2830876   | 2861567     | 3117562 |
| 0.06 | 2561535 | 2578657 | 2613776   | 2466158     | 2934414 |
| 0.08 | 2169976 | 2148364 | 2209535   | 2203613     | 2731175 |
| 0.1  | 1806370 | 2082660 | 2017110   | 1956371     | 2542470 |
| 0.12 | 1744915 | 1745224 | 1816278   | 1700168     | 2450680 |
| 0.14 | 1478373 | 1505370 | 1543467   | 1396797     | 2363035 |
| 0.16 | 1359177 | 1444252 | 1403653   | 1166196     | 1967198 |
| 0.18 | 968319  | 1272514 | 1220075   | 1105504     | 1710789 |
| 0.2  | 906609  | 1069084 | 1071423   | 920334      | 1837360 |
| 0.22 | 820381  | 1092164 | 910773    | 860548      | 1666874 |
| 0.24 | 702233  | 917166  | 887609    | 692509      | 1304690 |
| 0.26 | 707163  | 845474  | 775481    | 600132      | 1056443 |
| 0.28 | 667207  | 786257  | 609764    | 557536      | 936258  |
| 0.3  | 567809  | 752033  | 631400    | 469814      | 953334  |
| 0.32 | 505338  | 613601  | 612974    | 413156      | 726025  |
| 0.34 | 517035  | 661718  | 571684    | 453516      | 595301  |
| 0.36 | 421425  | 542527  | 492585    | 444206      | 618791  |
| 0.38 | 436210  | 567764  | 445992    | 404758      | 623518  |
| 0.4  | 362312  | 542252  | 416200    | 339957      | 516419  |
| 0.42 | 362327  | 461157  | 393451    | 374340      | 556271  |
| 0.44 | 319692  | 443047  | 342207    | 374890      | 516879  |
| 0.46 | 394625  | 461078  | 391596    | 309423      | 390476  |
| 0.48 | 336281  | 426719  | 340573    | 339708      | 381817  |
| 0.5  | 328739  | 388181  | 346787    | 332198      | 376861  |
| 0.52 | 303477  | 412076  | 331954    | 322107      | 401839  |
| 0.54 | 328103  | 357874  | 302304    | 289198      | 404804  |
| 0.56 | 341849  | 353063  | 308987    | 299800      | 374273  |
| 0.58 | 297962  | 430667  | 322613    | 295356      | 412368  |
| 0.6  | 258004  | 379289  | 303467    | 299059      | 358644  |
| 0.62 | 293682  | 357218  | 290068    | 290581      | 346561  |
| 0.64 | 288369  | 343000  | 300703    | 257462      | 358693  |
| 0.66 | 252599  | 320499  | 285058    | 309858      | 335228  |
| 0.68 | 270655  | 348952  | 302878    | 328468      | 389978  |
| 0.7  | 222764  | 354435  | 279461    | 290037      | 330353  |
| 0.72 | 276503  | 298986  | 260440    | 268781      | 324085  |
| 0.74 | 283441  | 326437  | 303054    | 255836      | 343039  |
| 0.76 | 270603  | 326371  | 283093    | 274404      | 325737  |
| 0.78 | 276165  | 276426  | 271061    | 288741      | 302809  |
| 0.8  | 264785  | 278268  | 208813    | 262906      | 310341  |
| 0.82 | 2/3//9  | 295085  | 291685    | 283741      | 320597  |
| 0.84 | 280351  | 308381  | 282010    | 282271      | 320007  |
| 0.80 | 200018  | 279870  | 200030    | 287244      | 331980  |
| 0.00 | 202394  | 299951  | 2004015   | 293500      | 301631  |
| 0.9  | 245791  | 304052  | 284010    | 2/9211      | 320838  |
| 0.92 | 279075  | 271073  | 273948    | 24/0/3      | 342384  |
| 0.94 | 201290  | 210092  | 200071    | 200020      | 301138  |
| 0.90 | 211023  | 249423  | 200001    | 212203      | 291090  |
| 0.90 | 211010  | 201043  | 203002    | 210001      | 212000  |
| 1    | 200904  | 212208  | 270021    | 211234      | 312908  |

| Table 29: Mean total costs versus isolation percentage, dynamic removal, nearly-isolated community, COVIE     |
|---------------------------------------------------------------------------------------------------------------|
| 19 parameter set. Performance of removal based on degree-, eigen-, closeness-, and betweenness centrality and |
| compared with each other and with the performance of random dynamic removal.                                  |

| iso% | Degree  | Eigen   | Closeness | Betweenness | Random  |
|------|---------|---------|-----------|-------------|---------|
| 0    | 6158064 | 6157711 | 6182506   | 6180389     | 6153767 |
| 0.02 | 6090373 | 6089522 | 6080089   | 6041341     | 6042130 |
| 0.04 | 6155783 | 6202034 | 6097294   | 6056275     | 6079975 |
| 0.06 | 6338387 | 6341173 | 6226513   | 6191338     | 6181988 |
| 0.08 | 6499474 | 6685482 | 6317014   | 6373926     | 6393145 |
| 0.1  | 6733798 | 6893450 | 6641119   | 6442378     | 6636397 |
| 0.12 | 6983722 | 7073875 | 6842352   | 6657647     | 6905787 |
| 0.14 | 7137957 | 7157997 | 6989835   | 6710508     | 7124278 |
| 0.16 | 6839894 | 6803194 | 7074485   | 6476774     | 7254493 |
| 0.18 | 6665577 | 5972408 | 6975782   | 6512761     | 7499045 |
| 0.2  | 6116822 | 5248838 | 6268268   | 6123884     | 7706200 |
| 0.22 | 5677949 | 5280700 | 5606820   | 6058971     | 8099066 |
| 0.24 | 5252960 | 5235372 | 4953339   | 5748964     | 8129035 |
| 0.26 | 4532451 | 5524414 | 4725612   | 4794208     | 8488654 |
| 0.28 | 4427416 | 5394267 | 4469205   | 4977540     | 8428696 |
| 0.3  | 4052930 | 5660146 | 3825620   | 4765890     | 8478630 |
| 0.32 | 3731619 | 5229682 | 3545294   | 4176887     | 8631286 |
| 0.34 | 3493513 | 5545705 | 3387813   | 3873024     | 8686903 |
| 0.36 | 3376268 | 5464821 | 2855020   | 3530230     | 8769669 |
| 0.30 | 2859404 | 5340735 | 2683084   | 3340070     | 8572862 |
| 0.30 | 2836107 | 5523478 | 2603004   | 2850137     | 8405906 |
| 0.4  | 2427021 | 5166590 | 2024113   | 2721466     | 8577602 |
| 0.42 | 2427021 | 5156480 | 2429643   | 2721400     | 8416477 |
| 0.44 | 2241370 | 4970241 | 2292942   | 2436041     | 8410477 |
| 0.40 | 2230333 | 4072241 | 1052402   | 2019200     | 7097144 |
| 0.48 | 2014000 | 4039010 | 1933403   | 2214231     | 1901144 |
| 0.5  | 1603624 | 4710707 | 1811340   | 2109038     | 8003333 |
| 0.52 | 1600044 | 4303784 | 16193929  | 1912980     | 7840043 |
| 0.54 | 1000944 | 4200215 | 1010137   | 1712070     | 7040172 |
| 0.56 | 1339491 | 3861956 | 1450076   | 1599483     | 7095031 |
| 0.58 | 1321417 | 3620700 | 1240802   | 140/42/     | 6778560 |
| 0.6  | 1093721 | 3314645 | 1229791   | 1454185     | 5989800 |
| 0.62 | 1033654 | 3238471 | 1121106   | 1260206     | 6208527 |
| 0.64 | 950575  | 2710195 | 1026923   | 1192183     | 5266155 |
| 0.66 | 886747  | 2425597 | 845488    | 1221463     | 4971226 |
| 0.68 | 751706  | 2132011 | 892867    | 1179737     | 4805446 |
| 0.7  | 725335  | 1875469 | 677609    | 1298603     | 3709865 |
| 0.72 | 634642  | 1494324 | 623569    | 1062825     | 4634632 |
| 0.74 | 572023  | 1574390 | 563831    | 932180      | 3709958 |
| 0.76 | 492476  | 1155413 | 570801    | 737363      | 3422298 |
| 0.78 | 476238  | 1157613 | 530075    | 773603      | 3195182 |
| 0.8  | 447871  | 903156  | 513025    | 706931      | 2255541 |
| 0.82 | 438330  | 807521  | 528271    | 641721      | 2509189 |
| 0.84 | 398108  | 699698  | 433227    | 694635      | 2302248 |
| 0.86 | 381177  | 564861  | 405321    | 657715      | 1600580 |
| 0.88 | 370987  | 573544  | 380953    | 647620      | 1801776 |
| 0.9  | 375226  | 484653  | 372269    | 604178      | 1828936 |
| 0.92 | 344603  | 421049  | 328066    | 500055      | 1355495 |
| 0.94 | 371450  | 425144  | 387127    | 434633      | 1305131 |
| 0.96 | 358798  | 356135  | 299835    | 414213      | 1277864 |
| 0.98 | 331757  | 335450  | 359104    | 332808      | 1276698 |
| 1    | 323266  | 321189  | 351979    | 333714      | 1124972 |

| Table 30: Mean total costs versus isolation percentage, dynamic removal, nearly-isolated community, Epid | $\operatorname{demic}$ |
|----------------------------------------------------------------------------------------------------------|------------------------|
| parameter set. Performance of removal based on degree-, eigen-, closeness-, and betweenness centralit    | y are                  |
| compared with each other and with the performance of random dynamic removal.                             |                        |

| iso% | Degree  | Eigen   | Closeness | Betweenness | Random  |
|------|---------|---------|-----------|-------------|---------|
| 0    | 5572880 | 5591714 | 5564030   | 5579777     | 5601062 |
| 0.02 | 5306678 | 5346653 | 5250201   | 5304137     | 5353208 |
| 0.04 | 5193412 | 5205974 | 5157859   | 5163212     | 5181854 |
| 0.06 | 5092941 | 5185434 | 5156522   | 4985864     | 5182140 |
| 0.08 | 4993465 | 5095093 | 4862611   | 5073925     | 5129203 |
| 0.1  | 4704530 | 4864918 | 4866703   | 4526019     | 5308588 |
| 0.12 | 4541534 | 4477618 | 4508479   | 4731182     | 5240738 |
| 0.14 | 3943902 | 3946004 | 4235474   | 4325371     | 5366877 |
| 0.16 | 3606472 | 3520190 | 3962560   | 3962778     | 5300872 |
| 0.18 | 3249252 | 3113202 | 3456795   | 3439753     | 5452903 |
| 0.2  | 2965692 | 2919489 | 3116217   | 3167785     | 5407763 |
| 0.22 | 2985161 | 2933606 | 3003189   | 2838542     | 5067228 |
| 0.24 | 2452108 | 2950223 | 2767802   | 2510611     | 5290110 |
| 0.26 | 2361603 | 3048562 | 2393997   | 2329808     | 4865577 |
| 0.28 | 2416368 | 3081437 | 2332143   | 1980672     | 4741420 |
| 0.3  | 1890988 | 3121047 | 2256061   | 1892620     | 4625627 |
| 0.32 | 1719264 | 2823968 | 2013086   | 1691499     | 4347348 |
| 0.34 | 1591184 | 2897755 | 1875090   | 1642429     | 3879540 |
| 0.36 | 1596618 | 2656807 | 1591865   | 1337525     | 3804847 |
| 0.38 | 1418786 | 2624989 | 1495625   | 1322096     | 3199341 |
| 0.4  | 1322268 | 2498824 | 1471104   | 1172559     | 2819423 |
| 0.42 | 1169022 | 2417068 | 1358989   | 1198668     | 2636104 |
| 0.44 | 1127701 | 2265822 | 1369284   | 1087997     | 2271208 |
| 0.46 | 1094084 | 2117806 | 1208245   | 991396      | 1966748 |
| 0.48 | 952925  | 2047120 | 1001602   | 906616      | 1775403 |
| 0.5  | 936844  | 1815000 | 1000349   | 903960      | 1768061 |
| 0.52 | 867902  | 1793751 | 861603    | 1042336     | 1303935 |
| 0.54 | 679779  | 1488965 | 803104    | 714268      | 1215652 |
| 0.56 | 682143  | 1617112 | 751470    | 848072      | 1211335 |
| 0.58 | 745258  | 1511175 | 732631    | 737478      | 1044657 |
| 0.6  | 625874  | 1279471 | 692613    | 802236      | 988095  |
| 0.62 | 565952  | 1168913 | 662006    | 664723      | 1012654 |
| 0.64 | 483448  | 985790  | 604071    | 645559      | 871051  |
| 0.66 | 486863  | 910760  | 553555    | 659227      | 728035  |
| 0.68 | 442342  | 880868  | 510820    | 569558      | 772015  |
| 0.7  | 481577  | 769339  | 495269    | 644334      | 742227  |
| 0.72 | 379000  | 670271  | 428912    | 557136      | 743886  |
| 0.74 | 380562  | 594824  | 420040    | 558074      | 698569  |
| 0.76 | 375106  | 556800  | 389369    | 547325      | 697415  |
| 0.78 | 375463  | 582349  | 400189    | 539850      | 688465  |
| 0.8  | 336322  | 479550  | 382155    | 550752      | 606508  |
| 0.82 | 352722  | 481069  | 370069    | 449201      | 592082  |
| 0.84 | 382984  | 433047  | 385749    | 460247      | 602452  |
| 0.86 | 329296  | 419128  | 349956    | 423607      | 598999  |
| 0.88 | 328560  | 387605  | 346528    | 433002      | 567660  |
| 0.9  | 349231  | 395161  | 339612    | 413092      | 588491  |
| 0.92 | 356591  | 371062  | 342167    | 409775      | 575447  |
| 0.94 | 353396  | 378599  | 348505    | 364652      | 541452  |
| 0.96 | 343897  | 342312  | 327403    | 380137      | 491522  |
| 0.98 | 358304  | 342856  | 346457    | 382904      | 524970  |
| 1    | 311019  | 344830  | 336001    | 385621      | 499215  |

| Table 31: Mean total cos | sts versus | isolation  | percenta | .ge, dynami | ic removal, ne | arly-isolat | ed community,   | Weak epi-    |
|--------------------------|------------|------------|----------|-------------|----------------|-------------|-----------------|--------------|
| demic parameter set. Per | formance   | of remova  | al based | on degree-, | eigen-, closen | ess-, and   | betweenness cer | ntrality are |
| compared with each othe  | r and wit  | h the perf | ormance  | e of random | dynamic rem    | oval.       |                 |              |
|                          |            |            |          |             |                |             |                 |              |
|                          | iso%       | Dogroo I   | Figon    | Closonoss   | Botwoonnoss    | Bandom      |                 |              |

| iso% | Degree  | Eigen   | Closeness        | Betweenness | Random  |
|------|---------|---------|------------------|-------------|---------|
| 0    | 3954658 | 3988847 | 3948100          | 3864680     | 3870629 |
| 0    | 3533481 | 3613972 | 3525502          | 3599468     | 3569143 |
| 0    | 3177582 | 3340864 | 3334229          | 3228002     | 3273719 |
| 0    | 2952526 | 2982667 | 2955537          | 2868603     | 3198334 |
| 0    | 2640676 | 2570422 | 2772434          | 2656181     | 2989353 |
| 0    | 2216654 | 2291318 | 2471738          | 2306893     | 2949487 |
| 0    | 1940326 | 1989017 | 2240157          | 2041756     | 2754593 |
| 0    | 1741833 | 1844534 | 1800105          | 1893619     | 2534411 |
| 0    | 1416191 | 1571635 | 1632671          | 1634649     | 2309646 |
| 0    | 1252702 | 1550762 | 1710100          | 1437430     | 1976506 |
| 0    | 1262867 | 1601110 | 1476694          | 1289738     | 1880070 |
| Ő    | 1102979 | 1431072 | 1292515          | 1156579     | 1504754 |
| 0    | 963784  | 1534008 | 1177893          | 1078779     | 1427225 |
| Ő    | 931278  | 1451413 | 990667           | 1048301     | 1245366 |
| Õ    | 896365  | 1288532 | 985260           | 904513      | 1118042 |
| ŏ    | 817495  | 1321747 | 964958           | 876317      | 865189  |
| õ    | 778778  | 1171087 | 937524           | 761917      | 794124  |
| ŏ    | 670665  | 1134976 | 868041           | 673477      | 864923  |
| ő    | 637570  | 1115663 | 823350           | 660220      | 683145  |
| ő    | 581788  | 978326  | 703405           | 670437      | 590068  |
| ő    | 505852  | 035180  | 677774           | 637256      | 658275  |
| 0    | 570156  | 960300  | 602610           | 582875      | 604895  |
| 0    | 567565  | 880707  | 626425           | 550297      | 564740  |
| 0    | 516745  | 814122  | 577102           | 605526      | 560202  |
| 0    | 427927  | 700127  | 557755           | 510827      | 520042  |
| 1    | 437237  | 790137  | 557755           | 510837      | 407116  |
| 1    | 412104  | 700009  | 504615           | 106990      | 497110  |
| 1    | 400282  | 667591  | 502051<br>475010 | 496820      | 230303  |
| 1    | 419327  | 559061  | 473919           | 400338      | 470198  |
| 1    | 398889  | 510711  | 414599           | 460877      | 472000  |
| 1    | 432323  | 518711  | 445892           | 408227      | 4/435/  |
| 1    | 398375  | 565874  | 391378           | 429462      | 419461  |
| 1    | 363499  | 519812  | 414053           | 454141      | 426854  |
| 1    | 370382  | 444265  | 404137           | 432154      | 410799  |
| 1    | 383934  | 466228  | 380350           | 405628      | 430964  |
| 1    | 334573  | 461284  | 363087           | 385228      | 450377  |
| 1    | 362682  | 402165  | 375851           | 407322      | 451292  |
| 1    | 386216  | 424939  | 373438           | 355486      | 400713  |
| 1    | 333255  | 378292  | 326456           | 414694      | 433069  |
| 1    | 317201  | 446422  | 366380           | 390687      | 430410  |
| 1    | 332293  | 391661  | 378095           | 395053      | 412260  |
| 1    | 321183  | 380265  | 365615           | 350898      | 424743  |
| 1    | 302917  | 373725  | 374341           | 387868      | 385705  |
| 1    | 340223  | 379254  | 321260           | 394304      | 362530  |
| 1    | 311406  | 331668  | 306738           | 356026      | 436876  |
| 1    | 350966  | 376076  | 356796           | 382338      | 455393  |
| 1    | 337900  | 356157  | 344709           | 350851      | 361637  |
| 1    | 305616  | 359029  | 337429           | 353169      | 402807  |
| 1    | 316172  | 336563  | 353634           | 348349      | 406615  |
| 1    | 306934  | 338393  | 339276           | 361252      | 396977  |
| 1    | 348537  | 339154  | 317472           | 344096      | 366244  |
| 1    | 341621  | 364778  | 329647           | 336297      | 370373  |

| Table 32: M  | ean total | costs v  | ersus i | solation  | percentag  | ge, dyna | amic rem | noval,   | communit   | y-affiliation, | COVIE    | )-19 pa- |
|--------------|-----------|----------|---------|-----------|------------|----------|----------|----------|------------|----------------|----------|----------|
| rameter set. | Performa  | nce of r | emoval  | l based o | n degree-, | eigen-,  | closenes | ss-, and | l betweenr | ness centralit | y are co | mpared   |
| with each of | her and w | with the | perfor  | mance o   | f random   | dynam    | ic remov | val.     |            |                |          |          |

| iso% | Degree  | Eigen   | Closeness | Betweenness | Random  |
|------|---------|---------|-----------|-------------|---------|
| 0    | 4329558 | 4377802 | 4206399   | 4450136     | 4435010 |
| 0.02 | 3945539 | 4026035 | 3936193   | 3809860     | 4093048 |
| 0.04 | 3444177 | 3801615 | 3754662   | 3550482     | 4111371 |
| 0.06 | 3421299 | 3443606 | 3756046   | 3310686     | 3967724 |
| 0.08 | 2695794 | 3453361 | 3560545   | 2952325     | 3785377 |
| 0.1  | 2651602 | 3231643 | 3397935   | 2669456     | 3849692 |
| 0.12 | 2133883 | 2757562 | 2817102   | 2445452     | 3793057 |
| 0.14 | 2132986 | 2572739 | 2576291   | 2246688     | 3760279 |
| 0.16 | 1582321 | 2277700 | 2614343   | 1776576     | 3878964 |
| 0.18 | 1465043 | 2544414 | 2061160   | 1888960     | 3826241 |
| 0.2  | 1379112 | 2094103 | 2024732   | 1520012     | 3680874 |
| 0.22 | 1121577 | 1906390 | 1442173   | 1397237     | 3609331 |
| 0.24 | 1144054 | 1764652 | 1594504   | 1119860     | 3613019 |
| 0.26 | 1020806 | 1574631 | 1183053   | 961855      | 3765142 |
| 0.28 | 740038  | 1410490 | 1109399   | 749472      | 3452294 |
| 0.3  | 694843  | 1361701 | 1034488   | 781014      | 3518808 |
| 0.32 | 643885  | 1186888 | 926056    | 719002      | 3370976 |
| 0.34 | 649994  | 1428045 | 731250    | 547788      | 3637194 |
| 0.36 | 506568  | 1284934 | 693218    | 538333      | 3324838 |
| 0.38 | 452829  | 1111391 | 577866    | 451172      | 3196157 |
| 0.4  | 474860  | 1240526 | 635586    | 425025      | 2896041 |
| 0.42 | 401882  | 1172985 | 548265    | 459764      | 3004421 |
| 0.44 | 470588  | 1006012 | 454330    | 463420      | 2892180 |
| 0.46 | 369418  | 1119176 | 434226    | 395005      | 2851448 |
| 0.48 | 285501  | 992800  | 381470    | 289806      | 2712343 |
| 0.5  | 294237  | 1171339 | 379958    | 277663      | 3060440 |
| 0.52 | 272034  | 1209991 | 335094    | 331218      | 2380046 |
| 0.54 | 329151  | 1210255 | 256737    | 313020      | 2546031 |
| 0.56 | 300393  | 1070521 | 244577    | 295524      | 1823551 |
| 0.58 | 235757  | 924681  | 235397    | 256134      | 2304010 |
| 0.6  | 214254  | 913056  | 217206    | 264716      | 2537215 |
| 0.62 | 213204  | 873804  | 213045    | 220952      | 1606985 |
| 0.64 | 216518  | 720337  | 223032    | 258820      | 1538207 |
| 0.66 | 216545  | 101120  | 214769    | 220539      | 1255137 |
| 0.68 | 197578  | 506146  | 209626    | 238149      | 1/48/13 |
| 0.7  | 201244  | 320140  | 208272    | 203508      | 1200047 |
| 0.72 | 203713  | 40/02/  | 191000    | 244475      | 045045  |
| 0.74 | 193392  | 242200  | 184205    | 204740      | 943043  |
| 0.76 | 174098  | 343290  | 184295    | 224730      | 240607  |
| 0.78 | 101040  | 075101  | 187700    | 203103      | 849097  |
| 0.0  | 191042  | 273181  | 180470    | 105074      | 010101  |
| 0.84 | 111010  | 307903  | 151409    | 102284      | 711696  |
| 0.84 | 138430  | 242941  | 175581    | 193284      | 609249  |
| 0.80 | 174450  | 240741  | 161603    | 189758      | 581516  |
| 0.88 | 102204  | 219773  | 160927    | 208621      | 524602  |
| 0.9  | 192294  | 211902  | 174287    | 200021      | 562282  |
| 0.92 | 108110  | 200372  | 1/420/    | 193008      | 548999  |
| 0.94 | 170785  | 182048  | 160103    | 1010/2      | 346233  |
| 0.90 | 177965  | 187027  | 109193    | 191943      | 447010  |
| 1    | 101780  | 155045  | 162040    | 1200400     | 447019  |
| T    | 191/02  | 100040  | 103049    | 100001      | 400000  |

| Table 33: | Mean total costs vers | sus isolation percentag | ge, dynamic removal   | l, community-affil | liation, Epidemic | param-  |
|-----------|-----------------------|-------------------------|-----------------------|--------------------|-------------------|---------|
| eter set. | Performance of remov  | val based on degree-,   | eigen-, closeness-, a | and betweenness    | centrality are co | ompared |
| with each | other and with the p  | performance of random   | n dynamic removal.    |                    |                   |         |

| iso% | Degree  | Eigen   | Closeness | Betweenness | Random  |
|------|---------|---------|-----------|-------------|---------|
| 0    | 3134659 | 3228396 | 3398167   | 3348215     | 3234287 |
| 0.02 | 2790419 | 2755534 | 2936127   | 2789547     | 3211853 |
| 0.04 | 2636697 | 2465107 | 2420905   | 2432197     | 2916825 |
| 0.06 | 1928749 | 2181412 | 2296543   | 1833638     | 2836337 |
| 0.08 | 1711900 | 1946475 | 2040698   | 1819758     | 2513091 |
| 0.1  | 1430993 | 1679638 | 1511598   | 1543347     | 2489726 |
| 0.12 | 1116049 | 1588818 | 1474663   | 1363626     | 2551255 |
| 0.14 | 1108119 | 1129218 | 1454653   | 1134905     | 2428739 |
| 0.16 | 792610  | 1207506 | 1168934   | 1053760     | 2245234 |
| 0.18 | 871733  | 1238632 | 972181    | 731583      | 2182755 |
| 0.2  | 712546  | 915872  | 641139    | 711433      | 2035957 |
| 0.22 | 525974  | 1011654 | 689020    | 553915      | 1940655 |
| 0.24 | 583457  | 745289  | 702294    | 525059      | 2117548 |
| 0.26 | 480538  | 690919  | 654994    | 471977      | 1798711 |
| 0.28 | 389882  | 646688  | 493441    | 359608      | 1965586 |
| 0.3  | 385751  | 591585  | 435011    | 432672      | 1554699 |
| 0.32 | 337751  | 513537  | 473754    | 346990      | 1373009 |
| 0.34 | 367225  | 516259  | 368256    | 298413      | 1462443 |
| 0.36 | 292000  | 500122  | 338799    | 264266      | 1236161 |
| 0.38 | 255889  | 590004  | 298801    | 312790      | 1334145 |
| 0.4  | 264778  | 416667  | 252139    | 275433      | 1100349 |
| 0.42 | 262697  | 484253  | 257366    | 231599      | 908828  |
| 0.44 | 224336  | 394950  | 259640    | 231033      | 793280  |
| 0.46 | 211324  | 457679  | 250614    | 250614      | 843894  |
| 0.48 | 250116  | 395339  | 235168    | 199147      | 562681  |
| 0.5  | 232025  | 392766  | 198485    | 226354      | 720018  |
| 0.52 | 215753  | 428699  | 220611    | 201724      | 472605  |
| 0.54 | 210603  | 384111  | 206457    | 204480      | 464840  |
| 0.56 | 182106  | 418106  | 197769    | 190958      | 490805  |
| 0.58 | 187907  | 366369  | 200588    | 188862      | 453255  |
| 0.6  | 204785  | 377989  | 186692    | 204634      | 357728  |
| 0.62 | 180641  | 305294  | 187644    | 170708      | 386572  |
| 0.64 | 167909  | 333499  | 179996    | 210968      | 371662  |
| 0.66 | 172336  | 308714  | 191309    | 199001      | 308479  |
| 0.68 | 185100  | 293242  | 184716    | 189417      | 312942  |
| 0.7  | 196717  | 284764  | 169273    | 187840      | 270982  |
| 0.72 | 188270  | 240626  | 166902    | 176096      | 312698  |
| 0.74 | 170090  | 266263  | 175953    | 184873      | 296109  |
| 0.76 | 186614  | 237362  | 174842    | 175704      | 283531  |
| 0.78 | 173147  | 241968  | 176212    | 176248      | 280727  |
| 0.8  | 171001  | 223839  | 156087    | 176694      | 315109  |
| 0.82 | 162798  | 198930  | 192952    | 178975      | 246333  |
| 0.84 | 185061  | 213010  | 158469    | 182118      | 281581  |
| 0.86 | 178455  | 201360  | 183919    | 171878      | 250863  |
| 0.88 | 174329  | 191531  | 182129    | 196484      | 259115  |
| 0.9  | 170227  | 185501  | 171069    | 176234      | 254748  |
| 0.92 | 168151  | 193390  | 177061    | 179372      | 275639  |
| 0.94 | 160522  | 179246  | 178762    | 199842      | 233407  |
| 0.96 | 175975  | 181920  | 155593    | 180625      | 243863  |
| 0.98 | 167274  | 192105  | 180130    | 184573      | 232087  |
| 1    | 176422  | 171949  | 178859    | 156213      | 244647  |

| Table 34: | Mean   | total  | $\cos$ ts | versus  | isolatic | n perc | enta | age, dyna | amic ren | noval, | comm   | unity | r-affiliation, | Weak epi  | demic |
|-----------|--------|--------|-----------|---------|----------|--------|------|-----------|----------|--------|--------|-------|----------------|-----------|-------|
| parameter | set.   | Perfo  | rman      | ce of r | emoval   | based  | on   | degree-,  | eigen-,  | closer | ness-, | and   | betweenness    | centralit | y are |
| compared  | with e | each o | ther a    | nd wit  | h the p  | erform | ance | e of rand | om dyna  | amic r | emova  | l.    |                |           |       |

| iso% | Degree  | Eigen   | Closeness | Betweenness | Random  |
|------|---------|---------|-----------|-------------|---------|
| 0    | 1972070 | 1853964 | 1825470   | 1850653     | 1939157 |
| 0.02 | 1556219 | 1538791 | 1504777   | 1455029     | 1918333 |
| 0.04 | 1230715 | 1061056 | 1138550   | 1263779     | 1597532 |
| 0.06 | 921956  | 1004977 | 906719    | 940102      | 1319035 |
| 0.08 | 842487  | 907844  | 989348    | 817387      | 1234269 |
| 0.1  | 659290  | 662954  | 658113    | 775016      | 1141075 |
| 0.12 | 511924  | 654617  | 648951    | 525952      | 1061858 |
| 0.14 | 445365  | 486747  | 468862    | 515717      | 1087859 |
| 0.16 | 406896  | 477544  | 379702    | 487876      | 940121  |
| 0.18 | 366984  | 354939  | 419600    | 420098      | 748737  |
| 0.2  | 330042  | 392844  | 313409    | 375767      | 808731  |
| 0.22 | 276490  | 348603  | 346940    | 272323      | 556540  |
| 0.24 | 294564  | 332150  | 273812    | 267001      | 527050  |
| 0.26 | 282004  | 304860  | 248231    | 273021      | 496364  |
| 0.28 | 246513  | 262643  | 262155    | 282584      | 418159  |
| 0.3  | 221931  | 272923  | 284231    | 267350      | 367351  |
| 0.32 | 222639  | 246648  | 249530    | 231642      | 373843  |
| 0.34 | 236348  | 241490  | 221340    | 219100      | 371781  |
| 0.36 | 218269  | 257332  | 229744    | 216571      | 311960  |
| 0.38 | 184197  | 245353  | 210001    | 185843      | 303712  |
| 0.4  | 219853  | 211811  | 226288    | 210961      | 279709  |
| 0.42 | 192621  | 209286  | 196660    | 192060      | 259835  |
| 0.44 | 193488  | 215971  | 190276    | 188824      | 287813  |
| 0.46 | 196722  | 241823  | 200279    | 205270      | 251734  |
| 0.48 | 188610  | 205447  | 182044    | 184336      | 227735  |
| 0.5  | 212054  | 253486  | 177105    | 188604      | 250271  |
| 0.52 | 174024  | 242456  | 171195    | 179466      | 250631  |
| 0.54 | 159510  | 224819  | 172920    | 174940      | 233497  |
| 0.50 | 1/0103  | 244146  | 1/1028    | 181797      | 207363  |
| 0.58 | 107703  | 209928  | 181073    | 202460      | 227945  |
| 0.0  | 191342  | 194427  | 102761    | 162276      | 232024  |
| 0.64 | 164600  | 220102  | 163701    | 164140      | 190138  |
| 0.04 | 176616  | 220908  | 162934    | 151024      | 202392  |
| 0.00 | 10050   | 202047  | 159700    | 177020      | 194002  |
| 0.08 | 192009  | 204344  | 164002    | 194797      | 210309  |
| 0.72 | 151063  | 230023  | 163343    | 102058      | 215805  |
| 0.72 | 152210  | 102287  | 182052    | 160824      | 210800  |
| 0.74 | 184071  | 193287  | 171587    | 187206      | 107014  |
| 0.78 | 150807  | 180331  | 180503    | 162690      | 108/85  |
| 0.10 | 170000  | 211596  | 105052    | 101832      | 106002  |
| 0.82 | 165780  | 181282  | 186123    | 187410      | 218111  |
| 0.84 | 154006  | 181010  | 160123    | 170092      | 213652  |
| 0.84 | 155602  | 188052  | 166742    | 165357      | 212354  |
| 0.88 | 182357  | 107085  | 178246    | 170074      | 212334  |
| 0.00 | 170010  | 173024  | 172047    | 101523      | 203032  |
| 0.9  | 168302  | 1828/3  | 206405    | 153705      | 201720  |
| 0.94 | 152758  | 196219  | 169136    | 185643      | 200437  |
| 0.94 | 176905  | 184543  | 195271    | 182177      | 217953  |
| 0.90 | 189014  | 172032  | 153826    | 193300      | 211355  |
| 1    | 178095  | 169559  | 178473    | 189018      | 202130  |
| Ŧ    | 110090  | 103003  | 110410    | 103018      | 202032  |