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Abstract 

This research explores two different kinds of formation control in a port-Hamiltonian 
framework. Moreover, the agents in this research are modelled by double-integrator 
dynamics. In section 1, an introduction to formation control, and the port-Hamiltonian 
framework will be given based on previous research. Second, some preliminary 
knowledge on graph theory, port-Hamiltonian systems and formation control will be 
presented in section 2, after which the research problem is formulated in section 3. In 
section 4, displacement-based formation control is researched, proven to be stable and 
simulated in Matlab, after which distance-based formation control is researched in a 
similar fashion in section 5. Naturally, the conclusion and future research suggestions 
follow in section 6. 
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1 Introduction 
Animals have been expressing their behaviour in forms of patterns for as long as 
mankind exists. Take as an example bird flying formations, where the birds fly with a 
certain geometric shape (formation) to optimize their use of energy as a collective, or a 
herd of animals flocking together to minimize the risk of being attacked by predators 
[1]. In the past few decades, this behaviour has been studied in the form of formation 
control. Formation control in this research is described as group behaviour being 
exhibited to achieve a desired geometric shape [2].  

1.1 Applications 
Formation control is a concept widely used in both civil and military applications [3]. 
Often, the purpose of formation control is either surveillance or exploration of a given 
region. For example, much research has been and is being conducted in the field of 
formation flying, such as unmanned airborne vehicles (UAV’s). Some research in this 
field was done by [1], [3] and [4], which demonstrate the various opportunities for 
practical applications and further research on this subject. 

Another purpose of formation control is inspection and maintenance. For example, in 
the ROSE project [2], robots and sensors were used in a specific formation to inspect 
the quality of dykes. By using robots in a triangular formation  that travel along the 
length of a dyke (one robot on top of the dyke, and one on either side of the dyke), an 
image could be made of the internal dyke structure to spot failures, and repair it 
accordingly. 

In paper [5], some other applicability’s of formation control are mentioned, such as 
environmental disaster monitoring, rescue cases (exploration), environmental 
monitoring, chemical spill searching, etc. In conclusion, it is safe to say that this field 
has a wide practical applicability.  

1.2 Current Research 
In the past few decades, a lot of research has been conducted in the field of formation 
control. A book [6] published in the end of 2019 contains a detailed overview of the 
current methods used for formation control, and serves as a basis for discovering 
relevant formation control methods. One of the methods that can be used is using 
gradient control laws [7][8]. A paper published in 2020 still used this method to 
control the formation of mobile robots [9].  

Another approach of formation control is aligning the orientation of agents in a system 
[6], which is used in papers such as [10] and [11]. The last method widely used is when 
bearing measurements are used for formation control. This is a combination of the 
aforementioned two methods combined with graph theory [6] An example of 
formation control using this approach is [12] which is a theoretical research on 
formation control. 

1.3 Port-Hamiltonian Systems 
For this research, the input-state-output port-Hamiltonian form will be used to model 
formation control. This is part of a mathematical framework that describes a system 
based on the energy it contains, and offers a great starting point for control design for 
the above mentioned formation examples [2]. Additionally, by using port-Hamiltonian 
framework, multi-domain interconnections of a physical system are revealed which 
allow for better understanding of the system. In addition, port-Hamiltonian systems 
provide insights into system properties such as stability, passivity, and scalability [13] 
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which are very useful for designing a controller for formation control. A more in-depth 
explanation will be given in the preliminaries.  

In order to check the stability of the designed controllers using the input-state-output 
port-Hamiltonian form, the Lyapunov’s stability theorem and the LaSalle’s invariance 
principle are u. sed in many researches on the topic of formation control. A few 
examples are given in [1][2][6][14]. Subsequently, they will also be used for this 
research. 

1.4 Contribution 
Despite such favourable characteristics for modelling control, the port-Hamiltonian 
framework has only been used a handful amount of times in the field of formation 
control. Examples of researches using this framework include [8], [14], [15], [16], [17], 
[18] and [19]. 

However, the topic of this research is not covered by these papers. For example, in [19], 
a gradient control law is used, and in [16], the passivity assumption of port-
Hamiltonian systems is relaxed and the underlying graph topology of the system 
described in this research are considered to be acyclic. In [17], only the Hamiltonian 
equation is used instead of the energy preserving port-Hamiltonian system. Last, in 
[18], Linear Matrix Inequalities had to be solved, which is a very complicated process.  

This research aims to use the port-Hamiltonian framework for describing physical 
systems to design a controller for formation control in a way that has not been done 
before. Passivity is assumed in this research, and the agents will be modelled by 
second-order dynamics. Additionally, the stability of distance-based formation control 
on cyclic graphs is explored, which has not been done so far. 

 

 

  



7 
 

2 Preliminaries 

2.1 Graph Theory 
Graph theory is essential when it comes to formation control. Hence, a brief 
introduction of this field will be given in this section. 

A graph is composed of a set of vertices 𝒱 and edges ℰ, and is a mathematical structure 
defined as 𝒢 = (𝒱, ℰ) to model pairwise interactions between objects [2]. In this 
research, the objects will be agents in a system defined in the node set 𝒱, and an edge 
set ℰ ⊆ 𝒱 × 𝒱 that corresponds with the way two agents interact with each other. 

Node set 𝒱 = {𝑛1, 𝑛2, … , 𝑛𝑁} has 𝑁 = |𝒱| elements, which in this research, will only be 
𝑁 = 2 or 𝑁 = 3, and the edge set ℰ = {𝑒1, 𝑒2, … , 𝑒𝐸} has 𝐸 = |ℰ| elements. 

The graphs that will be used in this research can be seen below in figure 2.1. It shows a 
system where 𝑁 = 2 and 𝐸 = 1, and where the agents denoted by 𝑖 ∈ {1,2}, and the 
edge by 𝑗 ∈ {1}. On the right, 𝑁 = 3, 𝐸 = 3 and 𝑖, 𝑗 ∈ {1,2,3} 

 

 

 

 

 

 

Figure 2.1: Graphs of two- and three agent systems considered in this research 

Graphs in this research are considered to be undirected, which means that an edge of 
a pair of nodes is unordered ((𝑛1, 𝑛2) ∈ ℰ if and only if (𝑛2, 𝑛1) ∈ ℰ). For these types of 
graphs, an arbitrary orientation can be assigned to each edge, denoted by the positive 
(head) sign and negative (tail) sign in figure 2.2.  

  

i=1 i=2 
j=1 

N=2, E = 1 

i=1 i=2 
j=1 

N=3, E = 3 

i=3 

j=2 j=3 
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Figure 2.2: Edge orientation of two and three agent systems 

Graphs can simply be described using various matrices, namely a degree matrix Δ ∈
ℝ𝑁×𝑁, an adjacency matrix A ∈ ℝ𝑁×𝑁, and incidence matrix B ∈ ℝ𝑁×𝐸. The degree 

matrix is defined as Δ = 𝑑𝑖𝑎𝑔(𝑑(𝑛1),… , 𝑑(𝑛𝑁)), where 𝑑(𝑛𝑖) is the degree of node 𝑛𝑖, or 

the number nodes adjacent to it in 𝒢. Adjacency matrix A represents adjacency 
relationships within 𝒢, and is defined by 

𝑎𝑖𝑗 = {
1 if (𝑛1, 𝑛2) ∈ ℰ 

0 if (𝑛1, 𝑛2) ∉ ℰ.
(2.1) 

The most important matrix for this research is incidence matrix B, which is defined as 

𝑏𝑖𝑗 = {
+1
−1
0

  

if node 𝑛𝑖is the head of edge 𝑒𝑗 ,

if node 𝑛𝑖is the tail of edge 𝑒𝑗,

otherwise.                                     

(2.2) 

Further, some minor background in graph rigidity is needed. For this, the reader is 
referred to [6], as Sun, Z. has explained these concepts thoroughly. With respect to 
graph rigidity, it must be noted that the graph for distance-based control is minimally 
and infinitesimally rigid. This means that the graphs used in this research contain the 
minimal amount of edges that it requires in order to be considered rigid. 

2.2 Formation Control 
In general, formation control can be described by a system of agents, of which the 
desired (controlled) output behaviour  is a spatial configuration (the formation) [6]. 
This could mean both that the agents must form, and maintain the formation  [20]. 

A visual representation of a simple case of formation control can be seen in figure 2.3. 
Here, a global coordinate system (large coordinate system in figure 2.3) can be seen 
containing three agents, where each agent has its own coordinate system, called a local 
coordinate system (smaller coordinate systems in figure 2.3). The position 𝑞𝑖  ∈ ℝ2×1 
of each agent i (i = 1,2,3) is represented using a solid black circle, and its desired 
position 𝑞𝑖

∗ is denoted by a dotted circle. The goal of formation control is to design a 
controller such that the current position qi of each agent i converges to the desired 
position q* (figure 2.3). In mathematical terms, the goal is then 𝑞𝑖 → 𝑞𝑖

∗ for 𝑖 = 1,2, . . , 𝑛 
number of agents. 
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Figure 2.3: Formation with (right) and without (left) control 

According to papers from various researchers such as  [21] and [22], at least three 
approaches of formation control can be distinguished in the existing literature. Two of 
those are relevant for this research, and are explained in more detail below.  

2.2.1 Displacement-based Formation Control 
Displacement-based formation control is widely researched and is based on only a 
global coordinate system, where the agents are able to sense the position of their 
neighbouring agents with respect to their own local coordinate system[21]. Based on 
this information, the agents can control their own displacement. Additionally, with this 
form of formation control, the local coordinate systems of all agents are aligned with 
respect to a global coordinate system, which can be seen in figure 2.4. 

Displacement-based formation control is based on displacement information of the 
edges ℰ between agents in the system, defined as 𝑧𝑗  =  𝑞1 – 𝑞2 ∈ ℝ2×1  [16][21], where 

j denotes the edge between two agents in a system. Therefore, the formal control 
objective for displacement-based formation control is stated as follows: 

𝑧𝑗 → 𝑧𝑗
∗. (2.3) 
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Figure 2.4: Displacement-based formation control 

For this research, the displacement-based formation control is based on an acyclic 
graph with two edges. This can be attributed to the fact that controlling two edges is 
sufficient to achieve the desired displacement formation. 

 

2.2.2 Distance-based Formation Control 
Distance-based formation control is the main topic of this research. Here, the agents 
in a system only have access to the inter-agent distances between themselves and other 
agents, based on their own local coordinate system (see figure 2.5) [21]. In contrast to 
displacement-based formation control, these local coordinate systems are not aligned. 
Logically, this form of formation control is useful in cases where there is no information 
on global coordinates of agents [22], for example space and planet exploration 
missions. 

For determining the distance 𝑑𝑗 ∈ ℝ1×1 between a pair of agents in a system, the 

modulus of the difference between their relative positions in a two-dimensional space 
is used. Alternatively, the distance dj between two agents is given by the modulus of 

edge zj such that 𝑑𝑗 = ‖𝑧𝑗‖ (see displacement-based formation control). The formal 

formation control problem is then given by 

𝑑𝑗 → 𝑑𝑗
∗. (2.4) 
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Figure 2.5: Distance-based formation control 

It can be noted that in contrast to displacement-based formation control, distance-
based formation control is nonlinear due to taking the norm of edge zj . Additionally, 
the graphs used for distance-based formation control are cyclic, meaning all agents are 
connected through edges as shown in figure 2.5. This can be attributed to the fact that 
using three edges is the only way to achieve the desired formation when using distance-
based control formation. 

Furthermore, the ultimate interest of this research is distance-based formation control. 
However, to get familiar with the topic of formation control altogether, it has been 
advised to first start with displacement-based formation control and work onwards 
from there. Displacement based formation control is simpler due to its linearity, and 
more widely researched than distance-based, which makes it easier to get a grasp of 
the theory and concepts. 

Table 2.1: Summary of crucial information on different kinds of formation control 
[21] 

 Displacement-based Distance-based 

Sensed variables Relative positions of neighbours Relative position of 
neighbours 

Controlled variables Relative positions of neighbours Inter-agent distances 
Coordinate system Orientation aligned local 

coordinate system 
Local coordinate system 
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2.3 Input-State-Output port-Hamiltonian Systems 
The port-Hamiltonian theory consists of two important parts, namely the Hamiltonian 
equation and power-port theory. First, the Hamiltonian will be discussed. 

2.3.1 The Hamiltonian 
The Hamiltonian equation describes the total energy stored in a system [2], which is 
the sum of all kinetic and potential energy in a system: 

𝐻(𝑥) = 𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 + 𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙. (2.5) 

In this research, the systems that will be analyzed are two-dimensional systems. That 
means that the potential energy 𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 is zero, which simplifies the system. Then, 

the Hamiltonian is given by 

𝐻(𝑥) = 𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 , (2.6) 

where 

𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 =
1

2
𝑝𝑇𝑀−1𝑝. (2.7) 

Here, �̇� is a vector that denotes velocity, and matrix 𝑀 ∈ ℝ𝑛×𝑛 is the product of mass 
vector m and the identity matrix.. 

2.3.2 Port-based Modelling and Dirac Structure 
Port-based modelling is based on the power-port interconnection of three types of 
elements in a system: static energy-dissipating elements, dynamical energy-storing 
elements, and static lossless energy-routing elements [15]. In physical systems, power 
ports provide an interface for the subsystems to interact with each other [2]. Moreover, 
each power-port consists of two conjugate variables named flow f and effort e, which 
are linked using a  Dirac Structure. This Dirac structure is a geometric structure defined 
by the totality of the energy-routing elements and the interconnection topology of the 
system [15], and is therefore the key element underlying port-Hamiltonian systems as 
it ensures passivity of the system (these exact Dirac properties can be found in [2], [13] 
and [15]. According to [2][15], port-Hamiltonian systems are often represented using 
the structure below. 

 

 

 

 

 

 

 

 

Figure 2.6: Port-Hamiltonian system with a Dirac structure. 
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2.3.3 Port-Hamiltonian System 
As mentioned before, the interest of this research lies with the input-state-output form 
of port-Hamiltonian systems. The general formula for this [2][15] is given by 

�̇� = (𝐽(𝑥) − 𝑅(𝑥))
𝜕𝐻

𝜕𝑥
(𝑥) + 𝑔(𝑥)𝑢, 

(2.8) 

𝑦 =  𝑔𝑇(𝑥)
𝜕𝐻

𝜕𝑥
(𝑥). 

Here, �̇� represents the dynamics of the system using the Hamiltonian 
𝜕𝐻

𝜕𝑥
(𝑥). 

Additionally, the matrix 𝐽(𝑥) contains information regarding the interconnection of 
subsystems within the system, and is always a skew-symmetric matrix [2][15] such that 
𝐽(𝑥) = −𝐽𝑇(𝑥). Matrix 𝑅(𝑥) describes the dissipation of energy in the system, and is a 
positive semi-definite matrix such that 𝑅(𝑥) = 𝑅𝑇(𝑥) ≥ 0 [2][15]. Last, 𝑔(𝑥) is the 
input matrix for 𝑢, the control input of the system. Note that port-variables (𝑢, 𝑦) 
correspond to the control port in figure 2.6 [2][15]. 

2.4 Double-Integrator Models 
The agents in the systems of this research will be modelled using double integrators, 
because it shows the second-order dynamic kinematics of the agents. In this case, the 
state of an agent i is given by 𝑥𝑖 = [𝑞𝑖, 𝑣𝑖]

𝑇 , where 𝑞𝑖 ∈ ℝ2×1 denotes the relative 
position of agent i based on a global coordinate system, and 𝑣𝑖 ∈ ℝ2×1 denotes its 
velocity and their dynamics are given by 

 {
�̇�𝑖 = 𝑣𝑖  
�̇�𝑖 = 𝑢𝑖 .

(2.9) 

This is an exemplary system in which the relation between the state, position and 
velocity of an agent is clearly visible by using a double integrator. 

2.5 Lyapunov’s Direct Method Stability Theorem 
In this section, a brief introduction of the Lyapunov direct method stability theory will 
be introduced based on [23]. Take 𝑥 ∈ ℝ as the state vector of a system, and consider 
the following time-invariant system 

�̇� = 𝑓(𝑥), (2.10) 

where 𝑓 ∶  𝒟 →  ℝ𝑛  is a locally Lipschitz map from a domain 𝒟 ∈  ℝ𝑛 into ℝ𝑛 . Let 𝑥 be 
an equilibrium point in the system and  𝒟 ∈  ℝ𝑛 be an open subset containing 𝑥 = 0. 
Let 𝑉 ∶ 𝒟 → ℝ   be a continuously differentiable function such that 

𝑉(0) = 0 and 𝑉(𝑥) > 0 𝑖𝑛 𝒟 − {0}, (2.11) 

�̇�(𝑥) ≤ 0 𝑖𝑛 𝒟. (2.12) 

Then, 𝑥 = 0 is stable, and if  

�̇�(𝑥) < 0 𝑖𝑛 𝒟 − {0}, (2.13) 

then 𝑥 = 0 is asymptotically stable. 

A function 𝑉(𝑥) that is continuously differentiable and that satisfies (2.11) and (2.13) is 
called a Lyapunov function. It must be noted that many systems in fact fail to meet 
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condition (2.13) due to the fact that �̇� is only negative semi-definite �̇�(𝑥) ≤ 0 𝑖𝑛 𝒟 −
{0}. If so, LaSalle’s invariance principle can be used to assess the stability of the system 
[2].  

2.6 LaSalle’s Invariance Principle 
LaSalle’s invariance principle is an extension of the Lyapunov stability theorem, and is 
stated as follows [2][23]: 

Let Ω ⊂ 𝐷 be a compact set that is positively invariant with respect to (2.10). Let 𝑉 ∶
𝐷 → ℝ be a continuously differentiable function such that �̇�(𝑥) ≤ 0 in Ω. Let 𝐸 be the 

set of all points in Ω where �̇�(𝑥) = 0. Let ℳ be the largest invariant set in 𝐸. Then, 
every solution starting in Ω approaches ℳ as 𝑡 → ∞ . 
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3 Problem Formulation 

3.1 Double Integrator in Input-State-Output port-Hamiltonian Form 
Now that formation control, the double integrator model of the agents, and the input-
state-output port-Hamiltonian systems have been introduced, it is time to write our 
double integrator modelled agents in the port-Hamiltonian form. 

State 𝑥𝑖 = [𝑞𝑖, 𝑝𝑖]
𝑇 of an agent i is modelled by its position 𝑝𝑖 ∈ ℝ2×1 and momentum 

𝑝𝑖 ∈ ℝ2×1. Position and momentum are related by mass matrix 𝑀 ∈ ℝ2×2 , which is a 
mass vector m multiplied with an identity matrix I such that 

𝑝𝑖 = 𝑀�̇�𝑖, (3.1) 

and their dynamics are given by 

{
�̇�𝑖 = 𝑀−1𝑝𝑖 
�̇�𝑖 = 𝑢𝑖 .           

(3.2) 

In order to write our agents in the input-state-output port-Hamiltonian form, we will 
first rewrite the Hamiltonian equation by substituting equations (2.7) and (3.1): 

𝐻𝑖 =
1

2
𝑝𝑖

𝑇𝑀−1𝑝𝑖. (3.3) 

Then, the system is written in the following way, 

[
�̇�𝑖

�̇�𝑖
] = [

0 𝐼2
−𝐼2 −𝐷𝑖

𝑟]

[
 
 
 
 
𝜕𝐻𝑖

𝜕𝑞𝑖

(𝑝𝑖)

𝜕𝐻𝑖

𝜕𝑝𝑖

(𝑝𝑖)]
 
 
 
 

+ [
0
𝐼2

] 𝑢𝑖 , 

(3.4) 

𝑦𝑖 = [0 𝐼2]

[
 
 
 
 
𝜕𝐻𝑖

𝜕𝑞𝑖

(𝑝𝑖)

𝜕𝐻𝑖

𝜕𝑝𝑖

(𝑝𝑖)]
 
 
 
 

 , 

where the interconnection matrix contains two nonzero elements, and the dissipative 
matrix only contains one non-zero element, namely 𝐷𝑟 ∈ ℝ𝑁×𝑁, which is a damping 
vector multiplied with the identity matrix. This damping exists due to friction. 
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3.2 Control Objectives 
In this section, the exact definitions of the formation control objectives are given for 
both displacement-, and distance based formation control. 

3.2.1 Displacement-based Formation Control Objective 
The goal of this research is to first achieve a desired formation in two- and three-agent 
systems using displacement-based formation control in input-state-output port-
Hamiltonian form such that 𝑧𝑗 → 𝑧𝑗

∗. Here, 𝑧𝑗 denotes the edge between a pair of 

agents, and 𝑖 ∈ 1,2,3 denotes the agent number (figure 3.1). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Displacement-based formation control with 3 agents 

The incidence matrix B for this three-agent graph is given by 

𝐵 = [
−1 0
1 −1
0 1

] , (3.5) 

where the columns represent the number of edges (𝐸), and the rows represent the 
number of agents (𝑁). 

3.2.2 Distance-based Formation Control Objective 
Next, the goal is to achieve a desired distance dj* between two agents i ∈  1,2, … ,𝑁 by 
designing a controller such that in systems with two or three agents, the distance 
converges such that 𝑑𝑗 → 𝑑𝑗

∗ by using the port-Hamiltonian input-state-output form, 

and simulating the systems and their controller in Matlab to validate the research. 
Specifically, for a two-agent system, the objective is visualized in figure 3.2, and its 
incidence matrix 𝐵 is given by 

𝐵 =  [−1 1]. (3.6) 

Note that the incidence matrix for a two-agent system is equal for both displacement 
and distance-based formation control. 
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Figure 3.2: Two-agent distance-based formation control objective 

For a three-agent system, the distance-based control objective is visualized in figure 
3.3, and its incidence matrix is given by 

𝐵 = [
−1 0 1
1 −1 0
0 1 −1

] . (3.7) 

As mentioned before, this incidence matrix for a three-agent system differs from the 
incidence matrix for a two-agent system due to the fact that one is an acyclic graph 
(displacement-based) and one is a cyclic graph (distance-based). 

 

 

 

 

 

 

 

 

 

Figure 3.3: Three-agent distance-based formation control objective 
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4 Displacement-based Formation Control 
In this section, displacement-based formation control in the input-state-output port-
Hamiltonian form will be explored. In order to achieve the formation control goal as 
formulated in (2.3), a controller needs to be designed, after which it will be validated 
by proving its stability using Lyapunov’s stability theorem. 

4.1 Controller Design 
The controller design in this section will be based on assigning virtual couplings 
between agents. These virtual couplings consist of a spring and a damper in parallel. 
That way, the spring ensures the formation control objective is reached, and the 
damper ensures a smooth transition by preventing overshoot and unnecessary 
oscillations. A schematic representation of the closed loop system is given below in 
figure 4.1. 

 

 

 

 

Figure 4.1: Schematic representation of closed loop system 

The spring-damper controllers will be modelled using spring elongation zj, input 
velocity 𝑢𝑗

𝑐, and corresponding output force 𝑦𝑗
𝑐 [2][116]. Let 𝑧�̅� = 𝑧𝑗 − 𝑧𝑗

∗ ∈ ℝ2×1, the 

dynamics are then given by 

𝑧̅�̇� = 𝑢𝑗
𝑐 , (4.1) 

𝑦𝑗
𝑐 = 

𝜕𝐻𝑗
𝑐

𝜕𝑧�̅�
+ 𝐷𝑗

𝑐𝑢𝑗
𝑐, (4.2) 

 

where 𝐷𝑗
𝑐 ∈ ℝ𝐸×𝐸 is a damping coefficient matrix, and 𝐻𝑖𝑗

𝑐  the Hamiltonian that equals 

the stored potential energy in the spring and is given by 

𝐻𝑗
𝑐 =

1

2
𝑧�̅�

𝑇𝐾𝑗
𝑐𝑧�̅� , (4.3) 

with spring constant matrix 𝐾𝑗
𝑐 ∈ ℝ𝐸×𝐸.  

From the above equations, combined with the schematic representation of the closed 
loop system, the following control law can be written: 

𝑢𝑗 = −𝑘𝑗
𝑐𝑧�̅� − 𝑑𝑗

𝑐𝑧̅�̇� . (4.4) 

Note that for the above equation, the formation control is related to the edge 𝑗, but the 
control objective of this research is to control the agents 𝑖 rather than the edge. Hence, 
to transfer the control power from edge 𝑗 to agent 𝑖, the incidence matrix defined in 
(3.5) or (3.6) can be used [2][16] for deriving the coupling equations such that 

𝑢 =  −(𝐵 ⊗ 𝐼2)𝑦
𝑐, (4.5) 

𝑢𝑐 = (𝐵𝑇 ⊗ 𝐼2)𝑦. (4.6) 
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Note that for both equations (4.5) and (4.6), 𝑦 and 𝑦𝑐 can be simply substituted with 
equations (3.4) and (4.2). Then, the final control law can be written such that 

𝑢 =  −(𝐵 ⊗ 𝐼2)𝐾
𝑐𝑧̅ − (𝐵 ⊗ 𝐼2)𝐷

𝑐(𝐵𝑇 ⊗ 𝐼2)𝑀
−1𝑝     (4.7) 

Theorem 4.1: Consider a multi-agent system modelled by double integrator 
dynamics, shown in (3.4). The underlying graph consists of a two or three-agent 
acyclic network as shown in figure 3.1. Under the proposed control law defined in 
(4.7), the group of agents achieve the control objective defined in (2.3), and are 
globally stable. 

4.2 Closed-loop System in Input-State-Output port-Hamiltonian 
Form 

Now that the dynamics of the system and the controller, and their relation has been 
defined, a new closed-loop system can be written in the input-state-output port-
Hamiltonian form. Recall equations (3.2),(4.3) and (4.5), we then have that the initial 
state variable �̇� becomes 

�̇� = −𝐷𝑟
𝜕𝐻

𝜕𝑝
− (𝐵 ⊗ 𝐼2) (

𝜕𝐻𝑐

𝜕𝑧̅
+ 𝐷𝑐𝑢𝑐) , (4.8) 

and can be derived further, substituting equations (3.4) and (4.6) into (4.8), such that  

�̇� = −𝐷𝑟
𝜕𝐻

𝜕𝑝
− (𝐵 ⊗ 𝐼2) (

𝜕𝐻𝑐

𝜕𝑧̅
+ 𝐷𝑐 ((𝐵𝑇 ⊗ 𝐼2)

𝜕𝐻

𝜕𝑝
)) 

�̇� = −(𝐵 ⊗ 𝐼2)
𝜕𝐻𝑐

𝜕𝑧̅
− (𝐷𝑟 + (𝐵 ⊗ 𝐼2)𝐷

𝑐(𝐵𝑇 ⊗ 𝐼2))
𝜕𝐻

𝜕𝑝
. (4.9) 

As for the newly defined state variable 𝑧̅̇, the dynamics are given by combining 
equations (3.4),(4.1) and (4.6) such that 

𝑧̅̇ = (𝐵𝑇 ⊗ 𝐼2)
𝜕𝐻

𝜕𝑝
. (4.10) 

The closed-loop Hamiltonian is then the sum of the two earlier defined Hamiltonian 
equations (3.3) and (4.3), and results in the following equation[2][16]: 

𝐻𝑐𝑙 = 
1

2
𝑝𝑇𝑀−1𝑝 +

1

2
𝑧̅𝑇𝐾𝑐𝑧̅, (4.11) 

Finally, the new closed-loop system can be written as 

[
�̇�
�̇�

𝑧̅̇
] = [

0 1 0
−1 −𝐷𝑟 − (𝐵 ⊗ 𝐼2)𝐷

𝑐(𝐵𝑇 ⊗ 𝐼2) −(𝐵 ⊗ 𝐼2)

0 (𝐵𝑇 ⊗ 𝐼2) 0
]

[
 
 
 
 
 
 
𝜕𝐻𝑐𝑙

𝜕𝑞
(𝑝, 𝑧̅)

𝜕𝐻𝑐𝑙

𝜕𝑝
(𝑝, 𝑧̅)

𝜕𝐻𝑐𝑙

𝜕𝑧̅
(𝑝, 𝑧̅)]

 
 
 
 
 
 

, 
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𝑦 =  [0 𝐼2 0]

[
 
 
 
 
 
 
𝜕𝐻𝑐𝑙

𝜕𝑞
(𝑝, 𝑧̅)

𝜕𝐻𝑐𝑙

𝜕𝑝
(𝑝, 𝑧̅)

𝜕𝐻𝑐𝑙

𝜕𝑧̅
(𝑝, 𝑧̅)]

 
 
 
 
 
 

 . (4.12) 

4.3 Stability of the System 
In order to determine the stability of the system, Lyapunov’s stability theorem will be 
used to prove theorem 4.1.  

Proof: Take the closed-loop Hamiltonian 𝐻𝑐𝑙(𝑝, 𝑧̅) (4.11) as the candidate Lyapunov 
function. The equilibrium of the formation is defined by  𝑝 → 0 and 𝑧 → 𝑧∗ (or  𝑧̅ → 0) 
when 𝑡 →  ∞. By taking (4.11) as the Lyapunov function, it can be proven that stability 
criteria 𝑉(0) = 0 (2.11) is satisfied in the following way: 

𝐻𝑐𝑙(0,0) =  
1

2
0𝑀−10 +

1

2
0𝐾𝑐0, 

𝐻𝑐𝑙(0,0) = 0. (4.13) 

The other criteria for stability, 𝑉(𝑥) > 0 𝑖𝑛 ℛ − {0}, is satisfied by the fact that both 𝑀 
and 𝐾𝑐 are positive constants, and that momentum 𝑝 and displacement 𝑧 are squared. 
Therefore, the above mentioned constraint is satisfied for all values where 𝑝 ≠ 0 and 
𝑧̅ ≠ 0. 

In order to test the following criteria �̇�(𝑥) ≤ 0 𝑖𝑛 ℛ (2.12), the derivative of 𝐻𝑐𝑙(𝑝, 𝑧̅) is 
written out below using the chain rule: 

�̇�𝑐𝑙(𝑝, 𝑧̅) =  
𝜕𝐻𝑐𝑙

𝜕𝑞
�̇� +

𝜕𝐻𝑐𝑙

𝜕𝑝
�̇� +

𝜕𝐻𝑐𝑙

𝜕𝑧̅
𝑧̅̇. (4.14) 

The derivative with respect to position 𝑞 is zero, and both �̇� and 𝑧̅̇ can be substituted 
from (4.12) resulting in the following simplified equation: 

�̇�𝑐𝑙(𝑝, 𝑧̅) =  −
𝜕𝑇𝐻𝑐𝑙

𝜕𝑝
(𝐷𝑟 + (𝐵 ⊗ 𝐼2)𝐷

𝑐(𝐵𝑇 ⊗ 𝐼2))
𝜕𝐻𝑐𝑙

𝜕𝑝
. (4.15) 

From this equation, it can be concluded that the minus sign, combined with the 

squared partial derivative of 𝐻𝑐𝑙, ensures that �̇�(𝑥) ≤ 0 𝑖𝑛 ℛ. Then, using LaSalle’s 

invariance principle, �̇�𝑐𝑙 converges to the largest invariant set where �̇�𝑐𝑙 = 0. 
Subsequently, this results in 𝑝 = 0 and �̇� = 0, which can be substituted in (4.12) such 
that 

0 = −(𝐵 ⊗ 𝐼𝑛)
𝜕𝐻𝑐

𝜕𝑧̅
= −(𝐵 ⊗ 𝐼𝑛)𝐾𝑐𝑧̅. (4.16) 

In order to prove that the above equation holds, it must be proven that −𝐵𝐾𝑐𝑧̅ = 0. 
This will be done by proving that the columns of 𝐵𝐾𝑐 are linearly independent. That 
way, it is proven that for (4.16) to hold, 𝑧̅ → 0. 

Linear independence can be proven by determining the kernel, and showing that it is 
equal to the zero vector {0}. The kernel can be determined by writing the matrices in 
Reduced Row Echelon Form (RREF), and determining the rank of the matrices. If the 
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rank of a matrix is full (every column in the RREF matrix has a non-zero entry), the 
columns are linearly independent, and kernel is a zero vector. It must be noted that 
ker(𝐵𝐾𝑐) = ker(𝐵), because 𝐾𝑐 is a positive diagonal matrix. As an example, a three-
agent system will be taken to prove linear independence with incidence matrix 𝐵 ∈
ℝ3×2 and diagonal spring constant matrix 𝐾𝑐 ∈ ℝ2×2. 

First, matrix 𝐵𝐾𝑐 will be put in RREF such that: 

𝑅𝑅𝐸𝐹 ([

−𝑘1
𝑐 0

𝑘1
𝑐 −𝑘2

𝑐

0 𝑘2
𝑐

]) = [
𝑘1

𝑐 0

0 𝑘2
𝑐

0 0

] . (4.17) 

It can be seen that the rank of the RREF matrix is 2, meaning that the columns of this 
matrix are linearly independent. Subsequently, in order for equation (4.16) to hold, 𝑧̅ 
must converge to zero. Hence, the control objective is achieved. 

∎ 

4.4 Simulations 
The system was simulated in Matlab Simulink, version 2021b, with 𝑁 = 3 agents, and 
𝑀 = 2 edges, and moving in an x-y plane. Each agent was considered to be a point-
mass, and has a mass 𝑚𝑖 = 1 𝑘𝑔. The virtual couplings of edges j each have a spring 
constant 𝑘𝑗

𝑐 = 0.3 𝑘𝑔𝑠−2 and a damping coefficient 𝑑𝑗
𝑐 = 1 𝑘𝑔𝑠−2. The desired 

displacements 𝑧𝑗 are set to 𝑧1 = [0.5, −2] and 𝑧2 = [−1,0], which is equal to the spring 

length. 

Furthermore, the agents’ initial conditions are given by 𝑞10
= [1,1]𝑇, 𝑞20

= [2,2]𝑇, 

𝑞30
= [3,1]𝑇 in [𝑚], and 𝑝𝑖 = [0.5,0.5]𝑇 [𝑘𝑔𝑚𝑠−1] for all 3 agents 𝑖. This means that the 

initial velocity of all agents is set to �̇�𝑖 = 0.5 [𝑚𝑠−1]. The Simulink models and Matlab 
scripts can be found in Appendix A. 
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4.4.1 Simulation of system without friction 
In this part, friction term 𝑑𝑟 is set to zero. In the figures below, the results of the Matlab 
simulation can be seen. 

Figure 4.2: Edge convergence over time, which shows the control objective is 
achieved. 

In figure 4.2, the convergence of both edges 𝑧1 and 𝑧2 is shown. It can be concluded 
that this plot shows that control objective (2.3) is achieved after roughly 10 seconds. 
Figure 4.3 shows the displacement of both edges as well, but this time it shows 
convergence to the values specified in the first part of section 4.4 (desired displacement 
values). 
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Figure 4.3: Edge displacement over time. 

 

Figure 4.4: Trajectories of the agents after control is applied. 

In order to visualize how the agents move in the system, figure 4.4 was created to show 
the trajectories of the agents. Here, it can be seen that the formation continues to travel 
at a certain velocity, even after the formation is initially formed. The Matlab simulation 
was made to be 20 seconds, Hence the final position of the agents in figure 4.4. 
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Last, figure 4.5 shows the velocity of each agent over time. After a few other simulations 
with different initial velocities of agents, an interesting observation arose.  

Remark 4.1: The agents from system (4.12) return to their initial velocities as 𝑡 → ∞ 
when friction is neglected. 

This can be attributed to the potential energy stored in the spring parts of the virtual 
couplings between agents. Naturally, the agents have an initial velocity. When the 
virtual coupling springs are not in equilibrium, the potential energy in the spring is not 
equal to zero. Subsequently, this affects the velocity of both agents connected by the 
edge. However, once the desired formation is achieved, the potential energy in the 
springs equal zero. Then, the agents return to their initial velocity, as there is no energy 
dissipated from the system (friction is neglected). 

Figure 4.5: Velocity of agents. 

  



25 
 

4.4.2 Simulation of system with friction 
For the next simulations, friction is considered. This means that friction coefficient 𝑑𝑟 
is set to 0.3 [𝑘𝑔𝑠−1], and energy will dissipate from the system. This is both reflected in 
the time it takes for the final formation to form, and the final velocity of the agents. 
Figures 4.6 and 4.7 show the convergence and displacements of the edges again, the 
settling time is slightly longer than a system without friction (roughly 11 seconds). 

 

Figure 4.6: Edge convergence over time. 
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Figure 4.7: Edge displacement over time 

The significant difference can be seen in the agent trajectory and velocity plots. In 
contrast to the system where friction is neglected, the agents come to a full stop 
relatively quickly once the final formation is reached.  

Figure 4.8: Trajectories of the agents after control is applied 
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Moreover, the velocity plot also shows that the agents velocities converge to zero 
instead of their initial given velocities. As mentioned before, this was to be expected 
due to energy leaving the system. 

Figure 4.9: Velocity of agents 
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5 Distance-based Formation Control 
For the distance-based formation control part of this research, there will be more 
challenges that need to be faced when designing and validating the controller. As 
mentioned before, this can partially be attributed to the fact that this type of formation 
control is non-linear. Additionally, the rank of incidence matrix 𝐵 for a three-agent 
system is not full when put in RREF, making it harder to prove stability. Therefore, 
most of the section below will be based on research conducted by Li et al. [24], as that 
is also the only research up to date on distance-based control in port-Hamiltonian 
form. 

For this part of the research, the same system will be used as defined in section 3.1. 
Additionally, the formal control objective for distance-based formation control was 
previously explained in section 3.2.2. 

5.1 Controller Design 
The closed loop system is again represented below in figure 5.1. For this part of the 
research, only a spring will be used for assigning virtual couplings between agents. This 
can be attributed to the fact that a damping term does not have an impact on the 
stability of the system, as distance 𝑑𝑗 is a scalar compared to displacement 𝑧𝑗, which is 

a vector. 

 

 

 

 

Figure 5.1: Schematic description of the system 

 

The controller will be modelled using the dynamics of distance 𝑑𝑗, or �̇�, input velocity 

𝑢𝑗
𝑑, and corresponding output force 𝑦𝑗

𝑑. The dynamics for the system pictured above, 

are given by 

�̇� =
𝜕𝐻𝑑

𝜕𝑑

𝜕𝑑

𝜕𝑧
�̇�, (5.1) 

𝑦𝑗
𝑑 = 

𝜕𝐻𝑗
𝑑

𝜕𝑧𝑗
, (5.2) 

where 𝐻𝑗
𝑑 is the Hamiltonian. In order to force the formation to reach the desired 

distance requirements, as shown in figures 3.2 and 3.3, the desired distance-based 
Hamiltonian is given by 

𝐻𝑗
𝑑 =

1

2
(𝑑𝑗

2 − 𝑑𝑗
∗2

). (5.3) 

From the above equations, combined with the schematic overview shown in figure 5.1, 
the following control law for edge 𝑗 is proposed to be 
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𝑢𝑗 = −
𝜕𝐻𝑗

𝑑

𝜕𝑧𝑗
. (5.4) 

Similar to displacement-based formation control, the power of control in the above 
described equation lies with the edge. This power can again be translated to power that 
lies with the agents by using the incidence matrix to derive the coupling equations such 
that 

𝑢 =  −(𝐵 ⊗ 𝐼2)𝑦
𝑑, (5.5) 

𝑢𝑑 = (𝐵𝑇 ⊗ 𝐼2)𝑦. (5.6) 

Note that for both equations (5.5) and (5.6), 𝑦 and 𝑦𝑑 can be substituted with equations 
(3.4) and (5.2). The final control law is then given by 

𝑢 =  −(𝐵 ⊗ 𝐼2)𝑧. (5.7) 

Theorem 5.1: Consider a multi-agent system modelled by double integrator 
dynamics, shown in (3.4). The underlying graph consists of a two or three-agent 
cyclic network as shown in figures 3.2 and 3.3. Under the proposed control law 
defined in (5.7), the group of agents achieve the control objective defined in (2.4). In 
addition, it is assumed that the initial position of the agents are in the neighborhood 
of the desired formation. Then, the system is locally stable. 

5.2 Closed-loop system in input-state-output port-Hamiltonian form 
Now that the dynamics of the controller, and its relation to the system has been 
defined, the closed-loop system can be written in input-state-output port-Hamiltonian 
form. Recall equations (3.4) and (5.2), then state variable �̇� becomes 

�̇� = −𝐷𝑟
𝜕𝐻

𝜕𝑝
− (𝐵 ⊗ 𝐼2)

𝜕𝐻𝑑

𝜕𝑧
. (5.8) 

It must be noted that the objective of distance-based control is with respect to distance, 
but in the above equation, displacement 𝑧 is used. This is because distance 𝑑 and 
displacement 𝑧 are naturally closely related. Hence, we have the following relation 

𝜕𝐻𝑑

𝜕𝑧
=

𝜕𝐻𝑑

𝜕𝑑

𝜕𝑑

𝜕𝑧
. (5.9) 

From this, it can be concluded that 
𝜕𝑑

𝜕𝑧
=

𝑧

𝑑
. Moreover, distance 𝑑 is naturally a function 

of position 𝑞. Hence, another relation that is significant for the closed-loop system is 
the following: 

�̇� =
𝜕𝑑

𝜕𝑞
�̇�. (5.10) 

Then, similar to displacement-based formation control, the closed-loop Hamiltonian 
for this system is simply 𝐻𝑐𝑙 = 𝐻 + 𝐻𝑑 such that 

𝐻𝑐𝑙 = 
1

2
𝑝𝑇𝑀−1𝑝 +

1

2
(𝑑2 − 𝑑∗2). (5.11) 
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Finally, the closed-loop system can be written as 

[

�̇�
�̇�

�̇�

] =

[
 
 
 
 

0 𝐼2 0

−𝐼2 −𝐷𝑟 −
𝑧

𝑑
(𝐵 ⊗ 𝐼2)

0
𝑧𝑇

𝑑
(𝐵𝑇 ⊗ 𝐼2) 0 ]

 
 
 
 

[
 
 
 
 
 
 
𝜕𝐻𝑐𝑙

𝜕𝑞
(𝑝, 𝑑)

𝜕𝐻𝑐𝑙

𝜕𝑝
(𝑝, 𝑑)

𝜕𝐻𝑐𝑙

𝜕𝑑
(𝑝, 𝑑)]

 
 
 
 
 
 

, 

(5.12) 

𝑦 =  [0 𝐼2 0]

[
 
 
 
 
 
 
𝜕𝐻𝑐𝑙

𝜕𝑞
(𝑝, 𝑑)

𝜕𝐻𝑐𝑙

𝜕𝑝
(𝑝, 𝑑)

𝜕𝐻𝑐𝑙

𝜕𝑑
(𝑝, 𝑑)]

 
 
 
 
 
 

 . 

5.3 Stability of the system 
Similar to displacement-based formation control, the stability of the controller will be 
tested using the Lyapunov stability theorem. However, when taking the closed loop 
Hamiltonian 𝐻𝑐𝑙 (5.11) as the candidate Lyapunov function, it becomes clear quickly 
that this equation does not satisfy the stability requirements. Hence, a new state will 
be formulated in order to prove that the system is stable. 

The new state will be defined using a new Hamiltonian given by  

𝐻𝑗
𝑑 =

1

4
(𝑒𝑗

𝑑)
2
, (5.13) 

where  

𝑒𝑗
𝑑 = 𝑑𝑗

2 − 𝑑𝑗
∗2

. (5.14) 

Using the same control law 𝑢𝑗  (5.4) and coupling dynamics (5.5) and (5.6), the 

interconnection between the controller and the original system is defined as 

𝑢𝑑 = −(𝐵𝑇 ⊗ 𝐼𝑑)
𝜕𝐻𝑑

𝜕𝑧
= −𝑧𝑇(𝐵𝑇 ⊗ 𝐼2)𝑒

𝑑 . (5.15) 

The new Hamiltonian of the closed-loop system is then given by 𝐻𝑐𝑙 = 𝐻 + 𝐻𝑑 such 
that 

𝐻𝑐𝑙 =
1

2
𝑝𝑇𝑀−1𝑝 +

1

4
(𝑒𝑑)2. (5.16) 

The new state equation for �̇� can be obtained by combining equations (5.8),(5.9), (5.10) 
and (5.14) and is given by 

�̇� = −𝐷𝑟
𝜕𝐻

𝜕𝑝
− 𝑧(𝐵 ⊗ 𝐼2)

𝜕𝐻𝑑

𝜕𝑒𝑑
, (5.17) 

and the new state equation for �̇�𝑑 is given by 



31 
 

�̇�𝑑 = 𝑧𝑇(𝐵𝑇 ⊗ 𝐼2)
𝜕𝐻𝑐𝑙

𝜕𝑝
. (5.18) 

The new closed-loop system is then  

[
�̇�
�̇�

�̇�𝑑

] = [

0 𝐼2 0

−𝐼2 −𝐷𝑟 −(𝐵 ⊗ 𝐼2)𝑧

0 𝑧𝑇(𝐵𝑇 ⊗ 𝐼2) 0
]

[
 
 
 
 
 
 
𝜕𝐻𝑐𝑙

𝜕𝑞
(𝑝, 𝑒𝑑)

𝜕𝐻𝑐𝑙

𝜕𝑝
(𝑝, 𝑒𝑑)

𝜕𝐻𝑐𝑙

𝜕𝑒𝑑
(𝑝, 𝑒𝑑)]

 
 
 
 
 
 

, 

(5.19) 

𝑦 =  [0 𝐼2 0]

[
 
 
 
 
 
 
𝜕𝐻𝑐𝑙

𝜕𝑞
(𝑝, 𝑑)

𝜕𝐻𝑐𝑙

𝜕𝑝
(𝑝, 𝑑)

𝜕𝐻𝑐𝑙

𝜕𝑒𝑑
(𝑝, 𝑑)]

 
 
 
 
 
 

 . 

Now, the proof for theorem 5.1 will follow. 

Proof: Take closed loop Hamiltonian equation 𝐻𝑐𝑙 (5.16) as the candidate Lyapunov 
function. The equilibrium for the formation is defined by 𝑑 →  𝑑∗ when 𝑡 →  ∞. It 
follows that 𝐻𝑐𝑙 ≥ 0, because the both terms are squared. Moreover, it can be seen that 
𝐻𝑐𝑙(0,0) = 0, satisfying stability constraint (2.11). 

As for the time derivative of 𝐻𝑐𝑙, using the chain rule it is given by 

�̇�𝑐𝑙(𝑝, 𝑒𝑑) =  
𝜕𝐻𝑐𝑙

𝜕𝑞
�̇� +

𝜕𝐻𝑐𝑙

𝜕𝑝
�̇� +

𝜕𝐻𝑐𝑙

𝜕𝑒𝑑
�̇�𝑑 (5.20) 

where �̇�, �̇� and �̇�𝑑 can be substituted from (5.17). It follows that 

�̇�𝑐𝑙(𝑝, 𝑒𝑑) = −
𝜕𝐻𝑐𝑙

𝜕𝑝
𝐷𝑟

𝜕𝐻𝑐𝑙

𝜕𝑝
, (5.21) 

which satisfies (2.12). Then, invoking LaSalle’s Invariance Principle, the system 

converges to the largest invariant where �̇�𝑐𝑙 = 0. Subsequently, 𝑝 = 0 and �̇� = 0, which 
can be substituted in (5.19) such that 

0 = −(𝐵 ⊗ 𝐼𝑑)𝑧
𝜕𝐻𝑑

𝜕𝑒𝑑
. (5.22) 

By calculating 
𝜕𝐻𝑑

𝜕𝑒𝑑
 and substituting it into (5.22), the following equation can be 

obtained: 

0 = −𝑅(𝑧)𝑒𝑑, (5.23) 

where 𝑅(𝑧) is the rigidity matrix [24] defined as 

𝑅(𝑧) = (𝐵 ⊗ 𝐼𝑑)𝑧. (5.24) 
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As mentioned before, the graphs in this research are considered to be minimally and 
infinitesimally rigid. Subsequently, according to lemma 1 from [25], matrix 𝑅(𝑧)𝑅(𝑧)𝑇 
is positive definite. A condition for positive definiteness is that all columns of the 
matrix in question are linearly independent. Hence, in order for (5.23) to hold, 𝑒𝑑 is 
forced to zero, which concludes the proof.  

∎ 

5.4 Simulations 
In contrast to the simulations for displacement-based formation control, no Matlab 
Simulink was used. Instead, only a Matlab script was used which can be found in 
Appendix B.  

For these simulations, a network with 𝑁 = 3 agents and 𝐸 = 3 edges is used, which can 
move in an x-y plane. Each agent has a mass 𝑚𝑖 = 1 [𝑘𝑔]. Regarding the virtual 
couplings, there is no spring constant and no damping coefficient. Moreover, similar 
to the displacement-based setup, the initial positions are set to 𝑞10

= [0,1]𝑇, 𝑞20
=

[2,2]𝑇, 𝑞30
= [3,1]𝑇 in [𝑚], and 𝑝𝑖 = [0.5,0.5]𝑇 [𝑘𝑔𝑚𝑠−1] for all 3 agents 𝑖. In turn, this 

means the initial velocity of all agents is �̇�𝑖 = 0.5 [𝑚𝑠−1]. Last, all three desired 
distances, or spring lengths, are set to 1.5 [𝑚]. 

For these simulations, the friction coefficient 𝑑𝑟 is set to 1.5 [𝑘𝑔𝑠−1].  

Remark 5.1: The agents in system (5.17) will never achieve a steady formation when 
friction in the system is neglected and no damping term is included in the controller. 

This can be attributed to the fact that a spring coupling between agents will continue 
to oscillate when there is no damping term. Hence, the virtual couplings between 
agents will not converge to their equilibrium. A lack of a damping term could be 
compensated by adding in a friction term to the system. Hence, the friction is taken 
into account in the following simulations. It must be noted that when velocity tracking 
is applied to the system, which was also researched in [16] and [24]. 

Figure 5.2 shows the convergence of the distance errors as defined in (5.12). It can be 
noted that after roughly 7 seconds, the final formation is formed. 
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Figure 5.2: Distance error convergence over time, which shows the control objective 
is achieved. 

In figure 5.3, the distance between agents over time is shown. As all desired distances 
were set to 1.5, the figure shows that the distances converge to this value. 

Figure 5.3: Distances between agents over time. 
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In order to see how the positions of the agents change over time, another agent 
trajectory graph was created, and can be seen in figure 5.4. This figure shows that the 
agents eventually achieve their desired inter-distances. The initial formation, and final 
formation are also clearly visualized with black dotted and dash-dotted lines. 

Figure 5.4: Trajectories of agents after control is applied 

The last figure, figure 5.5, shows the velocities of the agents over time. As expected, due 
to friction the velocities converge to zero. 
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Figure 5.5: Velocity of agents 
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6 Conclusion and Future Research 

6.1 Conclusion 
In this research, two different control laws were proposed in order to achieve a desired 
formation for displacement- and distance-based formation control. This was done in 
the port-Hamiltonian framework, as this provides interesting insights into the 
behaviour and interconnections of the systems.  

For the displacement-based setup, the control law is based on a virtual coupling that 
consists of a spring and a damper in parallel. It was shown using simulations that this 
control law ensures that the control objective is reached. Further, it was proven that 
this control law can ensure this achievement for any system consisting of two or three 
agents in a 2-dimensional space. In addition, using Lyapunov’s Stability Theorem, the 
proposed control law was proven to be stable in create a closed-loop system. 

Regarding the distance-based control formation, it can be concluded that theorem 5.1 
is proven to be true. The figures in section 5.4 show that the control objective as defined 
in equation (2.4) is achieved. Additionally, using the Lyapunov Stability Theorem and 
the LaSalle Invariance Principle, local stability was proven. 

 

6.2 Future Research 
Based on the research conducted for this Bachelor Integration Project, some 
interesting ideas for future research suggestions came to mind. 

First, a somewhat obvious suggestion would be to explore systems with more than 
three agents. Due to the fact that only two and three agent systems were considered in 
this research, all graphs in this research are considered to be rigid. When adding more 
agents to the system, graph rigidity becomes an extra factor that will need to be taken 
into account. In addition, the relation between proving stability of a formation 
controlled system and rigidity is interesting, as [24] made an interesting discovery. 

Another interesting research would be to research formation control with two and 
three agents in a 3-dimensional space. This would make the formation control 
problems more complicated, but this is necessary in order to practically apply 
formation control.  

For this research, some graphs were made of the trajectories that the agents followed 
once control was applied. It is interesting to see what path the agents choose in order 
to obtain the desired formation, because not always the position closest to the agents 
initial position is chosen with displacement-based formation control. With this regard, 
research could be done to improve its efficiency by applying agent trajectory tracking 
to a formation control setup. 

Last, the systems used in this research did not include disturbances. When formation 
control is applied in the physical world, some problems may arise, such as agents 
encountering obstacles. As this was not researched in this paper, the model could also 
not be tested under disturbing circumstances. Hence, the model’s robustness could not 
be tested. Due to the fact that incorporating disturbances in the system makes the 
research immediately very complicated, it would make an interesting topic for future 
research. 
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Appendix A. Displacement-based Formation 
Control 

A.1 Simulink Models 

 
Figure 7.1: Simulink model representation of figure 4.1. 

 

Figure 7.2: Simulink model of Agents. 
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Figure 7.3: Simulink model of Controller 

A.2 Matlab Script 
 

% Script for displacement-based formation control 
% Ba IP project 
% J.M. Oeben 
% s4101839 
 
clc 
clear 
close all 
 
% Number of agents 
n=3 
 
% Define constants 
M = eye(n);                     % mass matrix 
B = [-1,0;1,-1;0,1];            % Incidence matrix B 
E = 2;                          % nr of edges 
z_d1 = [0.5,-2]; z_d2 = [-1,0]; %desired displacement 
z_d = [z_d1,z_d2]; 
 
kronB = kron(B,eye(2)); % Kronecker product 
 
% Agents 
M_a = 1.*ones(2*n,1); % agent mass 
D_r = 0.*eye(2*n)';  % linear damping 
K = 0.3.*eye(2*E);    % spring constant matrix 
q_10=[1 1]; q_20=[2 2]; q_30=[3 1];  
q_0 = [q_10'; q_20'; q_30'];     %initial position agents 
p_0 = 0.5.*ones(1,2*n);          %initial momentum agents  
 
%Virtual couplings 
D_f = 1.*eye(2*E);      % virtual damping constant 
p_d = 1*ones(2*n,1);    % Desired momentum 
 
z_0 = kronB'*q_0;       % Initialising z_0 
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% Setting up simulation 
simtime = 20; 
sim('sim_attempt',simtime) 
 
% Retrieving data from simulink model 
sim_t = position.time(); 
sim_q_a = position.signals.values(); 
sim_z = spring_elongation.signals.values(); 
sim_v = velocity.signals.values(); 
 
% Z bar convergence plot 
figure(1) 
sgtitle("Convergence of edges to desired edge over time",... 
    'interpreter','LaTex') 
subplot(2,1,1) 
hold on 
    plot(sim_t,sim_z(:,1)-z_d(1),'r','LineWidth',1)     % z1x data 
    plot(sim_t,sim_z(:,2)-z_d(2),'b','LineWidth',1)     % z1y data 
    yline(0,'k--','$$\bar{z}$$','interpreter','LaTex')  % ref line 
hold off 
xlim([0,20]);ylim([-3,4]); 
grid on 
ylabel("Displacement, $$\bar{z}$$, [m]",'interpreter','LaTex') 
xlabel("Time, t, [s]",'interpreter','LaTex') 
legend("z_1_x","z_1_y") 
title("Displacement of edge 1",'FontSize',12,'interpreter','LaTex') 
subplot(2,1,2) 
hold on; grid on 
    plot(sim_t,sim_z(:,3)-z_d(3),'r','LineWidth',1)     % z2x data  
    plot(sim_t,sim_z(:,4)-z_d(4),'b','LineWidth',1)   % z2y data 
    yline(0,'k--','$$\bar{z}$$','interpreter','LaTex')  % ref line 
xlim([0,20]);ylim([-3,4]); 
ylabel("Displacement, $$\bar{z}$$, [m]",'interpreter','LaTex') 
xlabel("Time, t, [s]",'interpreter','LaTex') 
title("Displacement of edge 2",'FontSize',12,'interpreter','LaTex') 
legend("z_2_x","z_2_y") 
 
% Agent trajectory plot 
q_a = length(sim_q_a);  % Determining last index of position vector 
figure(2) 
sgtitle("Agent trajectories when control is applied",... 
    'interpreter','LaTex') 
hold on; grid on 
plot(sim_q_a(:,1),sim_q_a(:,2),'r--','LineWidth',1) % agent 1 data 
plot(sim_q_a(:,3),sim_q_a(:,4),'b--','LineWidth',1) % agent 2 data 
plot(sim_q_a(:,5),sim_q_a(:,6),'g--','LineWidth',1) % agent 3 data 
%   Marking begin & end points 
plot(sim_q_a(q_a,1),sim_q_a(q_a,2),...               
    '^','color','k','MarkerFaceColor','k')    
plot(sim_q_a(1,1),sim_q_a(1,2),...                   
    'o','color','k','MarkerSize',7) 
plot(sim_q_a(q_a,3),sim_q_a(q_a,4),... 
    '^','color','k','MarkerFaceColor','k') 
plot(sim_q_a(q_a,5),sim_q_a(q_a,6),... 
    '^','color','k','MarkerFaceColor','k') 
plot(sim_q_a(1,3),sim_q_a(1,4),... 
    'o','color','k','MarkerSize',7)      
plot(sim_q_a(1,5),sim_q_a(1,6),... 
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    'o','color','k','MarkerSize',7) 
xlim([0,16]);ylim([0,20]); 
xlabel("x-axis, [m]",'interpreter','LaTex'); 
ylabel("y-axis, [m]",'interpreter','LaTex'); 
%   Making tirangle shapes in plot 
plot([sim_q_a(1,1) sim_q_a(1,3)],[sim_q_a(1,2) sim_q_a(1,4)],... 
    'k:','LineWidth',0.8) 
plot([sim_q_a(1,1),sim_q_a(1,5)],[sim_q_a(1,2),sim_q_a(1,6)],... 
    'k:','LineWidth',0.8) 
plot([sim_q_a(1,3),sim_q_a(1,5)],[sim_q_a(1,4),sim_q_a(1,6)],... 
    'k:','LineWidth',0.8) 
plot([sim_q_a(q_a,1) sim_q_a(q_a,3)],[sim_q_a(q_a,2) sim_q_a(q_a,4)],... 
    'k:','LineWidth',0.8) 
plot([sim_q_a(q_a,1),sim_q_a(q_a,5)],[sim_q_a(q_a,2),sim_q_a(q_a,6)],... 
    'k:','LineWidth',0.8) 
plot([sim_q_a(q_a,3),sim_q_a(q_a,5)],[sim_q_a(q_a,4),sim_q_a(q_a,6)],... 
    'k:','LineWidth',0.8) 
legend("Trajectory agent 1","Trajectory agent 2",... 
    "Trajectory agent 3","Final positions","Initial positions") 
 
% Agent velocity plot 
figure(3) 
grid on 
hold on 
plot(sim_t,sim_v(:,1),'r','LineWidth',1) 
plot(sim_t,sim_v(:,3),'b','LineWidth',1) 
plot(sim_t,sim_v(:,5),'g','LineWidth',1) 
plot(sim_t,sim_v(:,2),'r--','LineWidth',1) 
plot(sim_t,sim_v(:,4),'b--','LineWidth',1) 
plot(sim_t,sim_v(:,6),'g--','LineWidth',1) 
hold off 
legend("Velocity agent 1 x-direction","Velocity agent 2 x-direction",... 
    "Velocity agent 3 x-direction","Velocity agent 1 y-direction",... 
    "Velocity agent 2 y-direction","Velocity agent 3 y-direction") 
ylabel('Velocity, $$\dot{q}$$, [m/s]','Interpreter','latex') 
xlabel("Time, t, [s]",'interpreter','LaTex') 
sgtitle("Velocity of agents (x and y component) over time",... 
    'interpreter','LaTex') 
 
% Edge displacement plot 
figure(4) 
sgtitle("Displacement of edges to desired edge over time", ... 
    'interpreter','LaTex') 
subplot(2,1,1) 
hold on 
plot(sim_t,sim_z(:,1),'r','LineWidth',1) 
plot(sim_t,sim_z(:,2),'b','LineWidth',1) 
hold off 
yline([0.5,-2],'k--') 
xlim([0,20]);ylim([-3,4]); 
grid on 
ylabel("Displacement, z, [m]",'interpreter','LaTex') 
xlabel("Time, t, [s]",'interpreter','LaTex') 
legend("z_1_x","z_1_y") 
title("Displacement of edge 1",'FontSize',12) 
subplot(2,1,2) 
hold on; grid on 
plot(sim_t,sim_z(:,3),'r','LineWidth',1) 
plot(sim_t,sim_z(:,4),'b','LineWidth',1) 
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yline([0,-1],'k--') 
xlim([0,20]);ylim([-3,4]); 
ylabel("Displacement, z, [m]",'interpreter','LaTex') 
xlabel("Time, t, [s]",'interpreter','LaTex') 
title("Displacement of edge 2",'FontSize',12) 
legend("z_2_x","z_2_y") 
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Appendix B. Distance-based Formation Control 

B.1. Matlab Script 
 

% Script for distance-based formation control 
% Ba IP project 
% J.M. Oeben 
% s4101839 
 

clear 
clc 
close all 
 
N = 3; %number of agents 
 
% Define constants 
B = [-1 0 1; 1 -1 0; 0 1 -1]; 
E = 3; 
kronB = kron(B,eye(2)); 
M_a = 1*ones(2*N,1);      % agent mass 
D_r = 1.5.*eye(2*N);      % linear damping 
 
% Agents 
q_10=[0 1]; q_20=[2 2]; q_30=[3 1];   
q_0 = [q_10'; q_20'; q_30']; % initial position agents 
p_0 = 0.5.*ones(2*N,1);      % initial momentum agents     
v_0 = p_0./ M_a;             % initial velocity 
 
% Desired distances 
d_r = [1.5; 1.5; 1.5];    % virtual nominal spring length position 
 
% Setting up loop simulation 
t_step_sim = 0.01;  % Timestep simulation 
end_time = 20;      % End time simulation 
a = zeros(2*N,1);   % Initialising a 
v = 0.5.*ones(2*N,1);   % Initialising v 
q = q_0;            % Initialising q 
 
% Calculating q and v values 
for i = 1 : end_time / t_step_sim 
    % physical state update 
    v = v + a * t_step_sim; 
    q = q + v * t_step_sim; 
    z = kronB'*q;    % Calculating distances between agents 

    dist = [sqrt((q(3)-q(1))^2+(q(4)-q(2))^2); 
            sqrt((q(5)-q(3))^2+(q(6)-q(4))^2); 
            sqrt((q(5)-q(1))^2+(q(6)-q(2))^2)]; 
    e_z = [(q(3)-q(1))^2+(q(4)-q(2))^2; 
           (q(5)-q(3))^2+(q(6)-q(4))^2; 
           (q(5)-q(1))^2+(q(6)-q(2))^2]; 
    % Error of distances between agents as defined in report 
    e_d = e_z - (d_r).^2; 
    a1 = -kronB*(blkdiag(z(1:2,:)',z(3:4,:)',z(5:6,:)')')*e_d; 
    a2 = -D_r*v; 
    a = a1+a2; 
     
    % Storing data in plot format 
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    dis_plot(i,1:N)=dist; 
    error_plot(i,1:N)=e_d; 
     
    % Saving positions in seperate vectors 
    ag1x(i)=q(1); 
    ag1y(i)=q(2); 
    ag2x(i)=q(3); 
    ag2y(i)=q(4); 
    ag3x(i)=q(5); 
    ag3y(i)=q(6); 
     
    % Saving velocities in seperate vectors 
    v1x(i)=v(1); 
    v1y(i)=v(2); 
    v2x(i)=v(3); 
    v2y(i)=v(4); 
    v3x(i)=v(5); 
    v3y(i)=v(6); 
end 
 
% Define again for plots 
sim_t = 0.01:0.01:20; 
 
% Agent trajectory plot 
figure(1) 
sgtitle("Agent trajectories when control is applied",'interpreter','LaTex') 
hold on 
grid on 
plot(ag1x,ag1y,'r--','LineWidth',1) 
plot(ag2x,ag2y,'b--','LineWidth',1) 
plot(ag3x,ag3y,'g--','LineWidth',1) 
plot(ag1x(1),ag1y(1),... 
    'o','color','k','MarkerSize',7) 
plot(ag1x(end),ag1y(end),... 
    '^','color','k','MarkerFaceColor','k') 
plot(ag2x(1),ag2y(1),... 
    'o','color','k','MarkerSize',7) 
plot(ag2x(end),ag2y(end),... 
    '^','color','k','MarkerFaceColor','k') 
plot(ag3x(1),ag3y(1),... 
    'o','color','k','MarkerSize',7) 
plot(ag3x(end),ag3y(end),... 
    '^','color','k','MarkerFaceColor','k') 
xlim([0,3.5]);ylim([0,3.5]) 
xlabel("x-axis, [m]",'interpreter','LaTex');ylabel("y-axis, 
[m]",'interpreter','LaTex'); 
%   Making tirangle shapes in plot 
plot([ag1x(1) ag2x(1)],[ag1y(1) ag2y(1)],... 
    'k:','LineWidth',0.8) 
plot([ag1x(1) ag3x(1)],[ag1y(1) ag3y(1)],... 
    'k:','LineWidth',0.8) 
plot([ag2x(1) ag3x(1)],[ag2y(1) ag3y(1)],... 
    'k:','LineWidth',0.8) 
plot([ag1x(end) ag2x(end)],[ag1y(end) ag2y(end)],... 
    'k-.','LineWidth',0.8) 
plot([ag1x(end) ag3x(end)],[ag1y(end) ag3y(end)],... 
    'k-.','LineWidth',0.8) 
plot([ag2x(end) ag3x(end)],[ag2y(end) ag3y(end)],... 
    'k-.','LineWidth',0.8) 
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legend("Trajectory agent 1","Trajectory agent 2",... 
    "Trajectory agent 3","Initial position","Final position") 
 
% Distance plot 
figure(2) 
hold on 
sgtitle("Distances between agents",'interpreter','LaTex') 
plot(sim_t,dis_plot(:,1),'r','LineWidth',1) 
plot(sim_t,dis_plot(:,2),'b','LineWidth',1) 
plot(sim_t,dis_plot(:,3),'g','LineWidth',1) 
grid on 
legend("Distance between agents 1 and 2","Distance between " + ... 
    "agents 2 and 3","Distance between agents 1 and 3") 
ylabel("Distance, d, [m]",'interpreter','LaTex') 
xlabel("Time, t, [s]",'interpreter','LaTex') 
xlim([0,12]);ylim([0,3.5]) 
 
% Distance error plot 
figure(3) 
hold on 
grid on 
sgtitle("Distance error $$e^{d}$$ between agents",'interpreter','LaTex') 
plot(sim_t,error_plot(:,1),'r','LineWidth',1) 
plot(sim_t,error_plot(:,2),'b','LineWidth',1) 
plot(sim_t,error_plot(:,3),'g','LineWidth',1) 
legend("Error distance agents 1&2","Error distance agents "+... 
    "2&3","Error distance agents 1&3") 
ylabel("Distance error, $$e^{d}$$, [m]",'interpreter','LaTex') 
xlabel("Time, t, [s]",'interpreter','LaTex') 
xlim([0,12]);ylim([-3,7]) 
 
% Velocity plot 
figure(4) 
hold on 
grid on 
sgtitle("Velocity of agents over time",'interpreter','LaTex') 
plot(sim_t,v1x,'r','LineWidth',1) 
plot(sim_t,v2x,'b','LineWidth',1) 
plot(sim_t,v3x,'g','LineWidth',1) 
plot(sim_t,v1y,'r--','LineWidth',1) 
plot(sim_t,v2y,'b--','LineWidth',1) 
plot(sim_t,v3y,'g--','LineWidth',1) 
xlim([0,12]); 
ylabel('Velocity, $$\dot{q}$$, [m/s]','Interpreter','latex') 
xlabel("Time, t, [s]",'interpreter','LaTex') 
yline(0.5,'k--','v_0','LineWidth',0.8) 
legend("Velocity agent 1 x-direction","Velocity agent 2 x-direction",... 
    "Velocity agent 3 x-direction","Velocity agent 1 y-direction",... 
    "Velocity agent 2 y-direction","Velocity agent 3 y-direction") 
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