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Abstract

Magnetohydrodynamics (MHD) fluid simulations have the potential to tap into a wealth of
knowledge on fusion plasma dynamics at a fraction of the cost of experiments. OpenFOAM
is a highly-flexible, open-source CFD software that provides the standard MHD solver mhd-
Foam. An adaptation of this solver, called resistivemhdFoam, was used by González et al.,
2020 on a toroidal domain and further studied by Jacoberger, 2021 on toroidal and cylin-
drical domains under fusion conditions. This is the first study that aims to investigate the
viability of resistivemhdFoam as an MHD solver. mhdFoam and resitivemhdFoam were stud-
ied over the 3D Orszag-Tang Vortex (OTV) benchmark with ν = λ = 0.02 and Hartmann
duct flows with Ha = 5, 10, 20, 50, 100. It was found that resistivemhdFoam matches mhd-
Foam in OTV simulations excellently. Both were found to agree well with literature. All
Hartmann profiles simulated by mhdFoam decently matched literature. resistivemhdFoam
showed poor profiles for Ha = 5, but conformed excellently to theory for Ha ≥ 20 numbers,
outperforming mhdFoam for Ha = 20.
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1 Introduction

In a time where renewable energy is increasingly more necessary to dampen climate change
(Pedersen et al., 2022), many international efforts are made to investigate nuclear fusion
technology. As a clean, on-demand, safe renewable energy source, it is one of the main can-
didates to replace the fossil fuels. Various concepts of fusion reactors have been proposed
and built over the decades (Donné, 2019), but creating a net-positive fusion reactor proves
to be a complex challenge due to the extreme conditions that need to be maintained (Linke
et al., 2019).

Experimental setups are astronomically expensive (Wendelstein cost an approximate
$1billion Feder, 2011) and the lack of fundamental understanding in magnetohydrodynam-
ics – the physics governing plasma dynamics - makes the research programme difficult to
advance. Simulations can aid significantly in this process. With a fraction of the cost and
the ability to analyse over various geometries and conditions, it may provide vital insights
for the development of nuclear fusion.

This work aims to contribute to the development of simulation software by studying a
finite volume solver for magnetohydrodynamics in OpenFOAM. OpenFOAM is a free open-
source CFD software for various kinds of fluid dynamics (OpenCFD, 2022). It is renowned
for its flexibility, allowing the user to modify existing solvers or develop new ones with ease.

One such custom solver is resistivemhdFoam, first implemented by González et al., 2020.
It is based on the standard mhdFoam solver for magnetohydrodynamics (MHD) provided by
OpenFOAM. This work aims to validate resistivemhdFoam as a viable MHD solver for fusion
conditions (Ha≥ 104 (Bühler et al., 2007)) and compare it to the existing solver, mhdFoam.
To achieve this, the solvers are applied to two benchmark MHD cases: the Orszag-Tang
Vortex and Hartmann Duct flow. Results of both solvers are compared and are further
examined in relation to literature.
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2 Magnetohydrodynamics

2.1 Governing equations

First described by Alfvén, magnetohydrodynamics governs the motion of a conducting fluid
through a magnetic field. As potential differences arise, electrical currents emerge through-
out the fluid. These currents simultaneously induce a magnetic field as a result of Faraday’s
law. It is this interplay of conductive flow and (induced) magnetic field that defines magne-
tohydrodynamics. (Roberts, 1967)

The governing equations of magnetohydrodynamics are derived from Maxwell’s equa-
tions of electrodynamics and Ohm’s law, combined with the momentum equation for an
incompressible fluid. The resulting system assumes an incompressible conducting fluid in
laminar flow. (Cappello and Escande, 2000) (OpenCFD, 2022)

∂B

∂t
= ∇× (U ×B)− ∇× (j)

Rm
(2.1)

∂u

∂t
= j ×B − (v · ∇)u+∇2(νu) (2.2)

∇ ·B = 0 (2.3)

∇ · u = 0 (2.4)

Here, B is the magnetic field, u is the velocity field, the current density j is given by
j = ∇× b and Rm is the magnetic Reynolds number, further explained below.

2.2 Parameters of interest

The ordinary Reynolds number, which indicates the degree of turbulence in a fluid, is defined
as:

Re =
U L

ν

(∗)
=

1

ν

Where ν is the kinematic viscosity. This parameter is significant for any CFD simulation,
since turbulence has a strong influence on computational and dynamical properties. The
OpenFOAM packages used in this study assume laminar flow, so Reynolds numbers in the
considered cases must be low enough. In this study, all cases considered have Re ≤ 50, well
below the critical Reynolds number of most geometries, including the ones considered in this
study. Motivated by the Reynolds number, magnetohydrodynamics is also characterized by
the magnetic Reynolds number. This number is a measure for the magnitude of the induced
field relative to the inducing field (Roberts, 1967). It is defined as follows:

Rm ≡ σµ U L
(∗)
= σ =

1

µλ

(∗)
=

1

λ

Where σ is the electrical conductivity, λ is the magnetic diffusivity, and µ is the magnetic
permeability. U and L are typical velocity and length scales, respectively. In this study we
assume µ = 1 for a plasma, and in the cases studied, we have U · L = 1, resulting in (∗).
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Note that the Reynolds number and magnetic Reynolds number are equal to the inverses of
ν and λ, respectively.

The energy dissipation per unit mass ϵ = ν⟨ω2⟩+λ⟨j2⟩, is the sum of viscous dissipation
ν⟨ω2⟩ and Ohmic dissipation λ⟨j2⟩ (Jadhav and Chandy, 2021). Where ⟨...⟩ is the volumetric
average and j = ∇×b. It may be noted that in the limit ν � 0 and λ � 0 there is no energy
dissipation. This motivates the time evolution of magnetic, kinetic and total energy (their
sum) as parameters of interest.

Ek =
⟨u2⟩
2

, Em =
⟨B2⟩
2

, Et = Ek + Em (2.5)

The ratio of Lorentz force to viscous force is captured by the Hartmann number Ha,
which is defined as:

Ha = BL

√
σ

ρν

(⋆)
= BL

1√
νλ

With B,L , σ, ν and λ defined as above.

3 OpenFOAM

OpenFOAM is free open source CFD software, with a large worldwide user base throughout
various fields of science and engineering (OpenCFD, 2022), (Jasak, 2009). The software has
the combination of flexibility, computational efficiency and user-friendliness due to its toolkit
approach. This allows users to implement custom solvers with relative ease. This study uses
the standard OpenFOAM solver mhdFoam, and a custom user-made solver resistivemhdFoam,
which is highly similar to mhdFoam. This custom solver was developed by González et al.,
2020 and has been reproduced and further studied in this work.

3.1 MhdFoam

The mhdFoam solver is a laminar incompressible MHD solver, based on the momentum
equation for incompressible fluids and the coupled Maxwell-Navier stokes equations. First
the solver sets up the linear algebra for the U equation. The solver then predicts U with
the so called ’momentum predictor’, −∇p at line 12.

The solver then enters a PISO loop (Issa, 1986), that solves the momentum equation
”UEqn” up to the desired tolerance specified in sytem/fvSolution. In this study, this is always
1e-5 for all fields - U, B, Bt and Bfixed - except for the p field, which has a tolerance of 1e-6.
For further details of the PISO algorithm, the reader is referred to the online documentation
provided by OpenFOAM (OpenCFD, 2022).

The B field is computed by a similar method. The code immediately enters the ”B-PISO
loop” (PISO loop for the magnetic field), loads in the algebra and iteratively solves for the
equations (2.1)-(2.4) using the Helmholtz-Hodge decomposition (Maria Denaro, 2003).
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1 fvVectorMatrix UEqn

2 (

3 fvm::ddt(U)

4 + fvm::div(phi, U)

5 - fvc::div(phiB, 2.0*DBU*B)

6 - fvm::laplacian(nu, U)

7 + fvc::grad(DBU*magSqr(B))

8 );

9

10 if (piso.momentumPredictor())

11 {

12 solve(UEqn == -fvc::grad(p));

13 }

Figure 1: Momentum equation for incompressible fluid in mhdFoam with momentum pre-
dictor

1 while (bpiso.correct())

2 fvVectorMatrix BEqn

3 (

4 fvm::ddt(B)

5 + fvm::div(phi, B)

6 - fvc::div(phiB, U)

7 - fvm::laplacian(DB, B)

8 );

9

10 BEqn.solve();

11 ...

Figure 2: B-PISO loop in mhdFoam

3.2 ResistivemhdFoam

In order to implement a permanent inducing field, mhdFoam is modified and renamed re-
sistivemhdFoam. It is the result of replacing the B field with Bfixed + Bt in figure 2. Here,
Bfixed is a permanent magnetic field and Bt is a time perturbation of the magnetic field. To
obtain the resistivemhdFoam solver, the linear algebra of the B-PISO loop in the mhdFoam
solver is modified as in figure 3.

By replacing B � Bfixed + Bt, all spatial terms are doubled by linearity of the divergence
and Laplacian operator. Only the fvm::ddt term is not doubled since d

dtBfixed = 0, which
hard codes the time-independence of Bfixed into the solver. Note that the Bt terms are
discretized into the B-PISO loop, and are solved implicitly (fvm::). The Bfixed terms are
calculated explicitly using current values (fvc::), because Bfixed does not depend on time
and so does not need to be solved for in the B-PISO loop.

As Bt is now the field that is solved for in the B-PISO loop, the rest of the B-PISO code

7



1 while (bpiso.correct())

2 {

3 fvVectorMatrix BtEqn

4 (

5 fvm::ddt(Bt)

6 + fvc::div(phi, Bfixed) // for Bfixed field use current value (fvc)

7 + fvm::div(phi, Bt)

8 - fvc::div(phiBt, U)

9 - fvc::div(phiBfixed, U)

10 - fvc::laplacian(DB, Bfixed)

11 - fvm::laplacian(DB, Bt)

12 );

13 ...

Figure 3: Modified B-PISO loop in resistivemhdFoam

needs a slight adjustment: mhdFoam reduces the divergence of B by solving for the poten-
tial field pB using the Helmholt-Hodge decomposition (further information can be found in
(Maria Denaro, 2003)). The B-PISO loop in resistivemhdFoam needs to solve iteratively for
Bt, which is implemented by replacing ”phiB = fvc::flux(B)” � ”phiBt = fvc::flux(Bt)” and
replacing phiB accordingly.

While it has been suggested by (Jacoberger, 2021) that resistivemhdFoam may lead to a
B field with ∇B ̸= 0 (forbidden by 2.3), this is actually not the case as long as Bfixed = 0,
since this implies ∇B = ∇Bt +∇Bfixed = 0. This should therefore not form a problem in
applications, as ∇Bfixed = 0 for any physical magnetic field.

4 Orszag-Tang Vortex

4.1 Theory

This vortex was first studied by Orszag and Tang in 1979 (Orszag and Tang, 1979). Since
then, it has been extensively studied and by now it is a well-understood test case. The orig-
inal Orszag-Tang vortex was specified in two dimensions, but a three dimensional extension
of this test has been studied by numerous papers over the decades (Mininni et al., 2006),
(Mena, 2013), (Jadhav and Chandy, 2021).

The three dimensional test consists of a periodic cube with sides of length 2π, with the
initial profiles for the velocity and magnetic field as:

v0 = (−2 sin y, 2 sinx, 0) (4.1)

B0 = β(−2 sin y + sin z, 2 sinx+ sin z, sinx+ sin y) (4.2)

Where β = 4
5 is chosen such that Ek = Em = 2.
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4.2 Case setup

In this study, the 3D Orszag-Tang vortex was examined using timestep ∆t = 0.001 and
grids of N = 403, 803, 1603, 2003 homogeneously distributed cells. The mesh was set up
using OpenFOAM’s integrated blockMesh utility, with simpleGrading (1 1 1), i.e. with an
expansion ratio of 1 in x, y and z direction. The initial profiles for velocity u (4.1) and
magnetic field (4.2) are set using the setExprFields utility. Transport variables are set equal
to µ = ρ = 1, while ν and λ are set equal to 0.02, implying Re = Rm = 50.

With the initial conditions and mesh as above, both mhdFoam and resistivemhdFoam
were run. In order to run mhdFoam, the B field is initialized as in equation (4.2), and the U
field as equation (4.1). For running resitivemhdFoam, the Bfixed field was set to 0, and the
Bt field was set to the initial magnetic field profile (4.2).

4.3 Results

Maximal current density is plotted for various mesh sizes an compared to previous work in
figure 4. The data from previous work was retrieved by a visual data extractor.
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m
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|j
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A
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−
2
)

N = 2003

N = 1603

N = 803

N = 403

Literature

Figure 4: Maximal current density over time for various mesh sizes. The solver mhdFoam is
used with ν = λ = 0.02 and compared to the findings of González et al., 2020 (dashed lines)

Due to the high degree of consistency in both mhdFoam and resistivemhdFoam - as can be
seen in figure 5 - data was compared more quantitatively by extracting the maximal relative
deviation of resistivemhdFoam relative to mhdFoam. Relative deviation was bounded by
0.61%, with the average deviation being just 0.23%. This was also done for the N = 1603

and N = 2003 maximal current density plot. The N = 1603 showed a maximal deviation of
10.7%, with an average of 1.7%. The N = 2003 showed a maximal deviation of 5.5% and an
average of 1.7%. The maximal errors arise around t = 2.9 and t = 3.05, respectively. These
differences appear small in the figures 5a and 5b due to the choice of logarithmic axes.
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Figure 5: Maximal current density of mhdFoam (black) and resistivemhdFoam (red) over
grids of N = 1603 (left), N = 803 (right, bottom) and N = 2003 (right, top)
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Figure 6: Total energy (yellow), magnetic energy (red) and kinetic energy (blue) over time
as computed by mhdFoam on a mesh of N = 1603, compared to meshes of N = 803 (dashed
black line) and N = 2003 (black circles). Energy data of resistivemhdFoam at N = 2003 had
a maximal relative deviation of 0.61%, with an average of 0.23%.
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Figure 7: B magnitude plots of mhdFoam (left) and resistivemhdFoam (right) at t = 2 for a
grid of N = 2003.

5 Hartmann flow

5.1 Theory

Magnetohydrodynamics in a duct was first studied experimentally and analytically by Hart-
mann in 1937 (Hartmann and Lazarus, 1937). This early test case considers a duct with
an opening of size 2a and length L, oriented along the y and x direction, respectively. A
magnetic field B is applied in the z-direction. This setup, contrary to the Orszag-Tang vor-
tex, has an analytic solution. The equilibrium velocity profile can be derived as (Davidson,
2002):

u(y) = u0

(
1− cosh[(Ha)y/a]

cosh(Ha)

)
(5.1)

δ =
( ρν

σB2

)1/2

(5.2)

Where δ is the thickness of the so-called ’Hartmann layer’, and u0 = u(y = 0) is the
equilibrium velocity in the centre of the duct. The Hartmann number in this setting is equal
to Ha = a

δ .

2a

L

Bz

u(y)x̂

Low Ha

u(y)x̂

δ

High Ha

y
x

O

Figure 8: Schematic of the Hartmann duct flow for low and high Hartmann number

As the forced flow at the inlet in this study is u|x=0(y) = 1, this means
∫ 1

−1
u(y)·y dy = 2,
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and u0 may be computed as∫ 1

−1

u0

(
1− cosh(Ha · y/a)

cosh(Ha)

)
dy = 2 ⇒ u0 =

2∫
... dy

5.2 Case setup

In this study, Hartmann flow is considered in a 2D duct with a = 1, L = 20 and Re = Rm =
1. The flow is forced by U(y) = 1 · x̂ at x = 0. Note the useful identities Ha = B = 1

δ for
this case. Hartmann flows of Hartmann number 5, 10, 20, 50 and 100 are studied by varying
the B field.

OpenFOAM has already implemented the Hartmann case with mhdFoam as a tutorial
case. The permanent magnetic field is introduced as a Dirichlet boundary condition of
B(y = ±1) = 20ẑ, and the internal field is initialized as Bt=0(z) = 20ẑ.

Running the Hartmann case with resistivemhdFoam is done in two ways. 1) The Bfixed
field is set to 20ẑ, and Bt = 0. This method resembled physical intuition most closely, as it
represents the permanent field by Bfixed while an additional induced field can arise in Bt.
This method is called resistivemhdFoam from now on. 2) The Bt field is set to 20ẑ and Bfixed
= 0. This is similar to how mhdFoam is run, and serves as a basic comparison between the
two solvers. This method is called BtFoam from now on. Note that resistivemhdFoam fixes
Bfixed and solves the dynamics as perturbations in Bt, while BtFoam eliminates Bfixed and
sets Dirichlet conditions on Bt, bearing strong resamblance to mhdFoam.

Preliminary ’slice’ scans in Paraview are done to verify that the flow profile reaches an
equilibrium at x = 15 and t = 2. Then, mhdFoam and resistivemhdFoam y-velocity profiles
are taken at x = 15 and t = 2, and plotted against the analytical equilibrium profile. Note
that only the profiles are depicted starting from the centre of the duct at y = 0 to the upper
wall at y = 1. The δ values are also extracted by taking the y-value of the mesh point p⃗
with

U(p⃗) ≈ u(1− δ) =

(
1− cosh(B − 1)

coshB
·
)
u0

closest to the analytical value. Here, U indicates the velocity field computed by Open-
FOAM, and u(1− δ) is the analytical velocity value at the edge of the Hartmann boundary
layer.

5.3 Meshing

The mesh for the Hartmann flow is set up using blockMesh with simpleGrading options, set
up as follows:

More cells are assigned towards the upper and lower walls of the duct mesh, to allow
a more precise determination of δ. For higher Hartmann number a finer mesh is required
to resolve the value of δ, due to the δ = 1

Ha relationship. As such, the number of cells in
the y-direction is increased for higher Hartmann numbers, and the timestep is decreased ac-
cordingly. The precise mesh configurations per simulation, and the resolution can be found

12



1 blocks

2 (

3 hex (0 1 2 3 4 5 6 7) (100 80 1)

4 simpleGrading

5 (

6 1 // x-direction expansion ratio

7 (

8 (0.2 0.3 4) // 20\% y-dir, 30\% cells, expansion = 4

9 (0.6 0.4 1) // 60\% y-dir, 40\% cells, expansion = 1

10 (0.2 0.3 0.25) // 20\% y-dir, 30\% cells, expansion = 0.25 (1/4)

11 )

12 3 // z-direction expansion ratio

13 )

14 );

Figure 9: The used simpleGrading options in blockMeshDict

in table 1. The resolution is the y-dimension of the cells at y = 1− δ.

Ha #y-cells resolution ∆t

5 80* 2.5e-2 0.001
10 80 1.3e-2 0.001
20 80 1.0e-2 0.001
50 80 8.6e-3 0.001
100 120 5.1e-3 0.0005

Table 1: Parameters for the various cases of Hartmann flow. *The mesh was setup with
simpleGrading (1 1 1) for Ha = 5
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Figure 10: Part of the rectangular mesh with 80 y-cells, used for the runs with Hartmann
number 10,20 and 50 (see figure 1). The red line indicates the centre of the duct. The
settings in blockMeshDict are as described in figure 9

5.4 Results
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Figure 11: Log-log plot of Hartmann layer thickness δ over Hartmann number Ha. Error
bars are taken as resolution/2
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6 Torus

This paper set out to study MHD inside a toroidal configuration with R0 = 0.55π and
r0 = 0.3π using resistivemhdFoam, and build on the work of González et al., 2020. Due to
time constraints and the relative complexity of the geometry, results could not be obtained
for discussion in the current study. In this section, important hurdles and complications are
laid out in order to expedite future work.

6.1 Meshing

Having a good mesh set up is an important part of any CFD simulation. It not only reduces
the computational effort, but also improves accuracy. On top of this, poor meshing may lead
to unphysical (as seen in the Orszag-Tang case for low number of cells) or even diverging
results. An example of diverging results on a torus is demonstrated in González et al., 2020.

As a starting point, parameters of the discussed Hartmann and Orszag-Tang test cases
were applied to the toroidal confinement. The mesh was set up using OpenFOAM’s snappy-
HexMesh utility. This utility takes an STL file and a background mesh (usually generated
with blockMesh) and sets up a mesh in three steps. A variety of snappyHexMesh settings
was explored, but none yielded a non-diverging mesh. In what follows, the snappyHexMesh
settings as in figure 13 and their output will be discussed. The addLayersControls dictionary
is excluded since this mesh operation is not deemed the source of problems.

1 castellatedMeshControls

2 {

3 refinementSurfaces

4 {

5 torus

6 {

7 level (2 3);

8 }

9 }

10 locationInMesh (-0.01 1 0.01); // Offset from (0 0 0) to avoid

11 nCellsBetweenLevels 3;

12 }

13

14 snapControls

15 {

16 nSolveIter 30;

17 nFeatureSnapIter 10;

18 }

19 ...

Figure 13: Settings for snappyHexMesh that resulted in poor mesh quality.

In the first step, snappyHexMesh identifies all cubes of the background mesh that intersect
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with surfaces in the STL geometry. It removes all cells that are not in the region of interest
(specified by the locationInMesh keyword), and refines the mesh close to the boundary by
halving the cells a number of times, specified by levels.

Figure 14: The toroidal mesh after cell removal and refinement. Note the castellated bound-
ary.

In the second step, snap, the vertex points of the outer cells are moved onto the STL
surface in order to smoothen the boundary. The resulting mesh is shown in figure 15.

Figure 15: The toroidal mesh after smoothening by snap. Note the diagonal cuts through
the inner mesh, as well as the tiny cells in the outer regions.

The snap feature results in a well-smoothened boundary. As a downside, it has created
some very small cells in the outer layer of the mesh, as well as a diagonal cut through the
inner regions of the mesh. The reader may also consider using OpenFOAM’s refineMesh
utility instead (Gisen, 2014).

For completeness, the final mesh after the third stage of meshing, addLayers, is also added
in figure 16. It is not further elaborated on, since the poor meshing of snap makes it hard
to assess the meshing quality of addLayers.
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Figure 16: The toroidal mesh after the final stage, addLayers. The mesh has only gotten
worse

6.2 Dynamic timestepping

An important parameter for implicit solvers is the Courant number C = u∆t
∆x , where ∆t is

the time step and ∆x is the cell size. If C > 1, information in one cell can flow past the
neighbouring cell in only one timestep. This causes problems for implicit solution schemes
(which solve the equations locally), of which several are used in both resistivemhdFoam and
mhdFoam. After running resistivemhdFoam and mhdFoam on meshes the same as, or similar
to, the mesh described above, simulations tended to terminate after approximately 20-120
iterations. As may be expected, termination was strongly correlated to Courant number of
value greater than 1. Though this may likely be attributed to poor meshing, future work
may benefit from the dynamic timestepping functionalities in OpenFOAM. These enable the
user to set a maximal Courant number, after which OpenFOAM will adjust the timestep
when needed.

7 Discussion

To verify that the Orszag-Tang vortex results obtained using mhdFoam are valid, maximal
current density data was compared to the findings of González et al., 2020 in figure 4. The
results of this study agree almost perfectly with González et al., 2020 over all four meshes.
Upon close inspection, deviations can be seen for N = 403, but these are only the result of
under sampling when extracting the data. Meshes of size N ≥ 1603 seem to have converged
to physically accurate results. Comparing the maximal current density plots of mhdFoam
to resistivemhdFoam in figure 5, it is clear that resistivemhdFoam shows highly similar be-
haviour. For the rough mesh of N = 803, there is some discrepancy between the two, but the
resistivemhdFoam results quickly converge as the mesh is refined to N ≥ 1603 (see figure 5a
and figure 5b top). This is confirmed by looking at the 3D plots of current density in figure 7.

Energy plots agree excellently with the findings of Orszag and Tang, 1979 (figure 5),
Jadhav and Chandy, 2021 (figure 2) and Politano et al., 1995 (figure 1, run A). Figure ??
shows excellent agreement of energy plots between runs of mhdFoam. A data comparison
for mhdFoam and resistivemhdFoam show a high degree of precision, with relative deviations
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of at most 0.61%.

For Hartmann duct flow at low Hartmann numbers (Ha = 5, 10), mhdFoam and BtFoam
significantly outperform resistivemhdFoam, as seen in figure 12. This can also be seen in the
determination of δ in figure 11. Note, however, that the delta measurement in essence is the
extraction of the duct position at the value of u(1−δ) from figure 12. As such, consideration
of figure 12 should be given more weight.

For Ha = 20, velocity profile results of both applications of resistivemhdFoam agree excel-
lently with theory and outperform the profiles of the conventional mhdFoam solver. Results
of mhdFoam, show a slight deviations for y ≥ 0.7. This is also seen in the determination
of the Hartmann layer thickness δ (figure 11), where both BtFoam and resistivemhdFoam
choose a cell containing the analytic value, while mhdFoam is significantly off.

For the highest Hartmann numbers studied, Ha = 50, 100, all three solving methods
yield flow profiles that agree excellently with theory. This is confirmed in the excellent
agreement of the determined values of the Hartmann layer thickness.

8 Conclusions

This work shows the viability of resistivemhdFoam as an MHD solver for the Orszag-Tang
and Hartmann duct flow conditions.

Overall, BtFoam (resistivemhdFoam with Bfixed=0) outperforms mhdFoam for Hartmann
duct flow, and shows excellent agreement with mhdFoam and previously obtained results by
Orszag and Tang, 1979, Jadhav and Chandy, 2021, Politano et al., 1995 on the Orszag-Tang
Vortex. This support the validity of resistivemhdFoam as an MHD solver. On top of this,
BtFoam matches or outperforms mhdFoam in all velocity profiles for Hartmann duct flow.

Additionally, resistivemhdFoam deviates from theory in Hartmann velocity flow profiles
with low Hartmann number (Ha = 5, 10), but the results converge quickly as Hartmann
number increases. As Hartmann number This makes resistivemhdFoam a viable option sim-
ulations of fusion conditions.

9 Outlook

Further research may investigate the validation of resistivemhdFoam at higher Hartmann
numbers. Due to time constraints, Hartmann numbers relevant to fusion conditions (Ha ≈
104 (Bühler et al., 2007)) were not investigated. As Hartmann number increases, carefully
constructed meshes and timestep are necessary to resolve δ = 1/(Ha) 1 and the flow profile
details, which are at the same order of magnitude.

1For paramaters as in this study.
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