
On the existence of Early-Bird tickets in

Reinforcement Learning and how to find them

Bachelor’s Project Thesis

Alexandru Dimofte, s4019199, a.dimofte@student.rug.nl,

Supervisor: Dr. Matthia Sabatelli

Abstract: The Winning Lottery ticket hypothesis has shown that a neural network can contain
sparse sub-networks that perform similarly or better in comparison. This finding was extended
by the Early-Bird ticket hypothesis, which revealed that winning lottery tickets can be found
early within the first few initial training steps. This study demonstrates the existence of Early-
Bird tickets in neural networks used in reinforcement learning and introduces EB Exploit -
an algorithm which can reliably find EB tickets in simple RL problems, as well as increasing
efficiency in the training process of such agents.

1 Introduction

The Lottery tickets hypothesis (Frankle & Carbin,
2018) has revealed that dense neural networks
can contain sparser sub-networks which perform
just as well, or better than the original over-
parameterized network. Winning lottery tickets,
as they are known, have been found consistently
throughout other types of problems besides super-
vised learning, such as for instance natural lan-
guage processing (T. Chen et al., 2020; Yu et
al., 2019), self-supervised learning (T. Chen et al.,
2021), as well as reinforcement learning (Vischer et
al., 2021). Unfortunately, the process by which win-
ning ticket are found, known as iterative magnitude
pruning, proves to be tedious and computationally
expensive, with the most inefficient training itera-
tion being the very first one (You et al., 2019). To
address the efficiency issue, You et al. have shown
that winning lottery tickets can emerge within the
first few epochs of a regular training process in a
computer vision task. These sparse sub-networks
were named Early-Bird tickets and they were used
in the making of an efficient training procedure
known as EB Train (You et al., 2019). Inspired by
the success of this solution, X. Chen et al. (2020)
created EarlyBERT - an efficient natural language
processing algorithm which uses the same concepts
as Early-Bird tickets.

In this study, Early-Bird tickets are explored fur-

ther, this time in the context of simple Deep Rein-
forcement Learning (DRL) tasks. EB tickets rely on
the assumption that the training process of a neural
network begins first by learning which weights are
most important, followed after by optimising these
important weights (Achille et al., 2018; You et al.,
2019). In contrast to supervised learning, this as-
sumption has not yet been verified in reinforcement
learning, which poses some distinct challenges when
attempting to find EB tickets. An additional issue
is the inherent change in the quality of states that
the agent has access to as it learns. For example, in
the early stages of learning, the agent may fail con-
sistently and would therefore only have access to
states more similar to the initial state. After some
training time-steps, the agent may learn to utilize
these actions to move within the environment, thus
gaining access to states more complicated or more
different than the initial state.

These changes in data mean that the learning
process of a neural network used within deep re-
inforcement learning can often be more unstable
than in supervised learning, and, as this paper will
discuss, it seems that some weights may be more
important during the early stages of learning, in
the exploration phase, while being less important
during the later exploitation phase. For all these
reasons, the EB Train procedure cannot be directly
applied to reinforcement learning and it is unclear
whether EB tickets could be found at all.

1

To address these issues, this study was split in
four parts which built onto each-other. First, the
importance of the weights throughout training was
visualized using the same methods as You et al.
(2019) in subsection 3.3. This is followed with an
analysis of the performance of possible EB tickets
found at different stages throughout learning (sub-
sections 3.4 and 3.5). Finally, EB Exploit is intro-
duced in subsection 3.6, which is an algorithm that
can find EB tickets in deep reinforcement learning,
as well as train such agents more efficiently. All the
notions necessary to understand this study are ex-
plained in the Background section (section 2).

The contributions of this study are the following:

• Showing that neural networks used in deep re-
inforcement learning learn which weights are
most important in the first few episodes of the
exploitation period;

• Demonstrating that EB Tickets exist in DRL
and they are more efficient if finetuned for the
exploitation period rather than retrained;

• A tool which can be used to find EB tickets
and train DRL agents efficiently.

2 Background

2.1 Reinforcement Learning

Reinforcement learning is a family of problems in
which an agent learns to interact with an environ-
ment. The interaction between the agent and the
environment is reduced to a set of actions A that
the agent can choose from, a set of states S and a
set of rewards R given to the agent, for each action
it takes. At each time-step t, the agent observes a
state st ∈ S and selects an action at ∈ A for which
the agent receives a reward rt+1 ∈ R and the envi-
ronment transitions to a new state st+1 ∈ S (Sut-
ton & Barto, 2018).

An action is selected by the agent according to
a policy π, which is a function that indicates the
utility of each action a ∈ A based on the observed
state s ∈ S. This is denoted by π(s). The goal is
to learn an optimal policy π∗ (Equation 2.1) that
maximizes the expected return, which is the sum of
rewards received for the duration of one episode.

π∗ = max
π∈Π

E
[t=T−1∑

t=0

rt+1(st+1 | st, π(st))
]

(2.1)

where Π is the set of all possible policies,
rt+1(st+1 | st, π(st)) or (simply rt+1) is the reward,
received by transitioning from state st to state st+1

via the action selected by the policy for the respec-
tive state π(st) and T is the last state, also referred
to as terminal state. The terminal state is either a
state where the agent fails, or the last state allowed
by the environment (e.g. winning state). Once a ter-
minal state is reached, the environment is restarted
and another episode commences (Sutton & Barto,
2018).

In this study, a policy uses a state-action value
function Q(s, a) (Equation 2.2) to describe the util-
ity of an action a taken at some state s in terms of
the expected sum of discounted future rewards.

Qπ(s, a) = E
[t=T−1∑

t=t0

γtrt+1

∣∣∣∣ st0 = s, at0 = a; π

]
(2.2)

where γ ∈ (0, 1] is a discount factor which scales
future rewards such that earlier rewards have a
higher contribution. An optimal policy π∗ is there-
fore, one which maximizes the state-action value
function defined in Equation 2.2 (Sutton & Barto,
2018).

To reach an optimal policy π∗, a popular algo-
rithm is that of Q-Learning (Dayan & Watkins,
1992), which learns a state-action value function by
bootstrapping from previously made estimations of
the same function (Equation 2.3).

Q(st, at)← Q(st, at)+

+ α
[
rt+1 + γmax

a∈A
Q(st+1, a)−Q(st, at)

] (2.3)

where α is the learning rate.

2.2 Deep Reinforcement Learning

Deep reinforcement learning methods make use of
artificial neural networks in order to estimate util-
ity functions. A popular DRL algorithm, and the
one used for this study is that of DQN (Deep Q-
Network) (Mnih et al., 2013), which expands on

2

Q-learning by using a neural network with param-
eters θ to approximate the state-action value func-
tion Q(s, a). In order to update the parameters
of the neural network, the utility update function
(Equation 2.3) is turned into the following semi-
differentiable loss function (Equation 2.4):

L(θ) = E⟨st,at,rt+1,st+1⟩∼U(D)

[
(
rt+1 + γmax

a∈A
Q(st+1, a; θ

−)−

−Q(st, at; θ))
2

] (2.4)

This function requires a few more notions to under-
stand. By introducing an approximator neural net-
work into Q-learning, the training process becomes
unstable, which led to two additional modifications
(Mnih et al., 2013).
The first modification was the use of an ex-

perience replay buffer denoted by D. This buffer
is a fixed-size queue of trajectories of the form
⟨st, at, rt+1, st+1⟩ collected by the agent through-
out the training episodes. The neural network is
not, however, trained with all the trajectories in the
order they were collected, since that would likely
result in learning a few fixated steps. Instead, to
decorrelate the trajectories, a batch of an arbitrary
size is sampled at random from the replay buffer
D, which is then used to train the network (Mnih
et al., 2013).
The second addition was the use of a second neu-

ral network with parameters θ−. At first, the target
network, as it is called, is initialized as a copy of the
online network with parameters θ (e.g. θ− ← θ0)
and it is updated again after an arbitrary number
of episodes (e.g. θ− ← θi at every ith episode), dur-
ing which, θ is updated as usual via the state-action
value loss (Equation 2.4) (Mnih et al., 2013).

2.3 Pruning of neural networks

A neural network approximating a function f(x)
with parameters θ is said to be pruned when a
percentage P of its weights are removed. This
is done by drawing a mask over the parameters
m ∈ {0, 1}|θ|, and applying it to the parameters
such that a 0 assigned to some weight wij renders
the weight obsolete (pruned), while a 1 allows the
weight to be utilised as usual (unpruned). Remov-
ing individual weights in this manner is known as

unstructured pruning, but pruning can also be done
by removing entire neuron units, utilising channels
and other methods, which fall in the category of
structured pruning (Blalock et al., 2020). Once a
mask m is applied to the parameters of a neural
network, they are denoted with m ⊙ θ. Therefore,
if a neural network is denoted with f(x; θ), then a
sparse sub-network found within its architecture (a
pruned neural network) is denoted with f(x;m⊙θ).
Additionally, in order to effectively prune a neu-

ral network, one must also choose which weights
should be pruned. For this, a metric is used to des-
ignate which weights are least important, such that
when pruning, the top P% least useful weights can
be removed (Blalock et al., 2020). There are many
metrics that can achieve this, but L1 norm has
been found to achieve the best results. while prun-
ing random weights is usually used as a baseline for
comparison (Blalock et al., 2020; Frankle & Carbin,
2018; Vischer et al., 2021).

Pruning can also be done globally or locally. Both
methods compare weights with each-other and aim
to remove the P% least useful weights. The dif-
ference lies in which weights are being compared.
Global pruning refers to a comparison between all
the parameters in θ, while local pruning only com-
pares parameters contained in a single layer, usu-
ally used to remove the P% least useful weights
layer by layer (Blalock et al., 2020).

Finally, there are many pruning-training com-
binations that one can consider. For example,
one could schedule the amount of weights to be
pruned in different ways, like pruning all the desired
P% weights at once, dividing the percentage into
smaller pruning steps distributed throughout the
training process or by varying the pruning percent-
age P throughout the training according to some
function (Blalock et al., 2020). Likewise, one can
choose how and when training may occur relative to
when pruning happens. Methods here are focused
on how to continue the training process, or more
specifically, which parameters to use after pruning
has occurred, for which variations include the fol-
lowing (Blalock et al., 2020):

• pruning at some epoch i and continuing train-
ing using parameters m⊙θi with no additional
change, which will hence-forth be referred to as
fine-tuning ;

• rewinding the parameters to a previous state

3

m⊙ θi−n referred to as rewinding ;

• rewinding the parameters to the initial state
m⊙ θ0, referred to as reinitializing

2.4 Winning Lottery Tickets

The winning lottery tickets hypothesis states that
any randomly-initialised feedforward neural net-
work contains at least one sub-network which can
match or outperform the testing performance of the
original, unpruned network, while utilising less pa-
rameters and converging in at most the same num-
ber of training steps (Frankle & Carbin, 2018). The
sub-networks, known as winning lottery tickets or
simply, winning tickets, are found via the iterative
magnitude pruning algorithm, which is outlined be-
low in Algorithm 2.1.

Algorithm 2.1 Iterative Magnitude Pruning

1: Randomly initialize neural network f(x; θ0)
2: Train for i iterations, resulting in parameters

θi
3: Prune P% of parameters, by drawing mask m
4: Reinitialize parameters to θ ← m⊙ θ0
5: Train for i iterations, resulting in parameters

m⊙ θ′

6: Prune P% of parameters, by drawing mask m′

7: Set m← m′

8: Repeat steps 4 to 7 for j times.

At step 2 and 5, the network is trained such that
after i training steps, the network converges to a
local minimum. Step 8 indicates that the process
can be repeated as many times as it is needed to
reach a desired sparsity, hence the ”iterative” part
of the algorithm’s name.

2.5 Early-Bird Tickets

An Early-Bird ticket is a winning lottery ticket or
sparse neural network akin to a winning lottery
ticket, found within the first few training itera-
tions, or epochs, of the learning process. The hy-
pothesis states that for any neural network f(x; θ)
which converges to a minimum validation loss floss
in i training steps, with test accuracy facc, there is
at least one sparse sub-network f(x;m ⊙ θ) which
converges to a minimum validation loss f ′

loss in t

training steps with test accuracy f ′
acc such that

t ≪ i (e.g. early stopping) and f ′
acc ≈ facc (or

higher). In other words, the sparse sub-network
converges much faster than the unpruned network,
while maintaining a similar or better performance
(You et al., 2019).

This hypothesis is inspired by empirical results
which have revealed that neural networks learn
important connections between neurons (weights)
within the first few training steps. Having learned
the most useful weights, their importance relative
to each-other hardly changes throughout the re-
maining duration of the learning process (Achille
et al., 2018), which means that a network’s P%
least important weights can be pruned within the
first few epochs with a mask which would be sim-
ilar to the mask taken at the end of the training
(i.e. a winning ticket) (You et al., 2019).

To further analyse this hypothesis, You et al.
drew masks from each epoch throughout the train-
ing process and computed the inverse normalized
hamming distances (Equation 2.6) between all the
masks with each-other (h−1 ∈ [0, 1], where h−1 = 1
means the two masks are the same and h−1 = 0
means they are entirely different).

h =
1

n

n∑
i

|m1,i −m2,i| (2.5)

h−1 = 1− h (2.6)

where n is the total number of weights in the
network and m1,i ∈ {0, 1} represents whether the
i-th weight should be pruned according to mask
m1.

The result was a matrix of distances, with each
number representing the inverse normalized ham-
ming distance between a mask taken at some re-
spective epoch n and another mask taken at an-
other epoch m. This study used the same method
to analyse the existence of EB tickets in reinforce-
ment learning (see subsection 3.3).

Finally, the authors introduce EB Train, a
method of training neural networks more efficiently
via the finding of EB tickets. It differs from a usual
training procedure mainly by the fact that after
each epoch e, a mask is drawn and compared (via
hamming distance) with the mask drew from the
previous epoch e− 1. If their hamming distance is
lower than a parameter ϵ (e.g. ϵ = 0.1), then the

4

network is pruned, reinitialised to its original pa-
rameters θ0 and retrained to convergence.

3 Methods and Results

Four different experiments were employed, each of
them building onto the previous ones.
This section first describes the environments

used throughout the experiments (subsection 3.1),
followed by an explanation of the training setup
that all experiments shared (subsection 3.2), and
finally, the individual experiments along with justi-
fications for each choice made (subsections 3.3, 3.4,
3.5, 3.6).

3.1 Environments

The environments used were two classic control
problems known as Cartpole (Barto et al., 1983)
and Acrobot (Sutton, 1995). The specific versions
of these environments that were used in this study
were provided by the OpenAI Gym toolkit (Brock-
man et al., 2016).

Figure 3.1: CartPole-v0 state

The first environment, CartPole-v0 is a pole
balancing problem first introduced by Barto et al.,
which consists of a pole placed vertically on a cart
that can move left or right (see Figure 3.1). The
aim is to learn a set of movements for the cart
which balance the pole vertically (with an allowed
deviation from a vertical position of 15 degrees)
for as long as possible without moving the cart too
far left or right from the central starting position.
CartPole-v0 is a simplified version of the original
cartpole problem which does not take into account
cart friction and runs for a total of 200 time-steps.

At each time-step, the agent has access to an obser-
vation (state) of four floating point numbers: cart
position, cart velocity, pole angle and pole angu-
lar velocity. Using this information, the agent must
decide whether to move the cart towards the left
or right side. For each time-step in which the pole
is within the allowed inclination interval, the agent
receives a reward of +1. As soon as the agent fails,
either by moving too far off the screen or by letting
the pole fall further than 15 degrees, the reward
is 0 and the environment is restarted with a fully
vertical pole.

Figure 3.2: Acrobot-v1 state

The second environment, Acrobot-v1 uses the
implementation of Geramifard et al. (2015) which
consists of two links connected via a joint to form
a chain. The first link has an additional joint at
the first end, which is fixated near the center of
the window (see Figure 3.2). This joint is actuated
such that the agent can apply positive torque (+1),
negative torque (−1) or no torque (0). The goal is to
learn how to apply a set of torques on the actuated
joint such that the end of the chain reaches the top
bar in as little time-steps as possible.

To this end, the agent has access to an observa-
tional space consisting of 6 float number: the cosine,
sine and velocity of the first link’s angle, such that
an angle of 0 means pointing straight downwards;
as well as the cosine, sine and velocity of the second
link’s angle relative to the first, such that an angle
of 0 means the chain forms a straight line.

An episode in the Acrobot-v1 environment lasts
a total of 500 time-steps, during which the agent
receives a null reward (r = 0) for a transition to
a winning state, and a negative reward (r = −1)
otherwise.

5

3.2 Training setup

All experiments used the DQN algorithm (see sub-
section 2.2) training first on CartPole-v0 and
then on Acrobot-v1 (see subsection 3.1). For
each environment, the hyper-parameters of DQN
were tweaked in order to reach acceptable perfor-
mance. Acceptable performance in this case means
reaching a total accumulated reward of 200 in
CartPole-v0 and −100 or higher in Acrobot-v1. A
detailed view of the specific DQN hyperparameters
used can be seen in appendix B.

The architecture of the Q-Networks used in DQN
consists entirely of fully-connected layers. All hid-
den layers used 128 neurons, while the input lay-
ers used as many neurons as the observation space
needed (e.g. for an observation space of 6 float num-
bers, 6 neurons were used). Likewise, the output
layers had as many neurons as there are actions
allowed, 2 neurons for cartpole and 3 neurons for
acrobot. All layers, except the output layer, used
ReLu (Agarap, 2018) as their activation function.
In the cartpole problem, two hidden layers were
used, and only one in acrobot. This was done in
order to achieve acceptable performance as fast as
possible in both environments, and also serves to
compare different architectures. For an overview
of the implementation details regarding the neu-
ral networks architecture, please consult appendix
A.

Unless explicitly stated otherwise, early-stopping
was also employed to stop training once the al-
gorithm converged in order to cut unnecessary or
damaging additional training time. The training
process was stopped after 10 consecutive episodes
in which the agent reached acceptable performance.

Finally, all the experiments involved pruning and
drawing masks. The following paragraphs describe
how these were done throughout the experiments
according to the criteria outlined in subsection 2.3,
along with a brief justification for each choice made.
These choices applied for drawing masks both with
and without pruning.

Pruning structure: in both supervised and re-
inforcement learning, structured pruning has often
been found to lead to worse results, due to removing
too many weights at once (Frankle & Carbin, 2018;
Vischer et al., 2021). For this reason, unstructured
pruning is used throughout the experiments.

Weight importance metric: as discussed in

subsection 2.3, L1 norm has been found to achieve
the best results, and therefore it was the metric
used in this study.

Local vs Global pruning: local pruning has
been found to be too aggressive, which led to worse
results overall when compared to global pruning
(Frankle & Carbin, 2018; Vischer et al., 2021).
Therefore global pruning was used in this study.

3.3 Experiment 1
Mask Similarity

As explained in subsection 2.5, EB Tickets rely on
the assumption that a neural network learns which
weights are more important than others early in
the training (You et al., 2019). This has been em-
pirically shown by Achille et al. in the context of a
supervised learning problem, however it is not ob-
vious whether the hypothesis holds for neural net-
works used in reinforcement learning.

This assumption does not need to be directly
verified though, since it would be enough to verify
whether masks drawn at different episodes through-
out the training are similar to masks drawn later
in the training. This would offer a way to visualize
whether the importance of weights relative to each-
other changes significantly throughout the training
process.

To achieve this, an agent was trained for 500
episodes without early-stopping. Every 2 episodes,
a mask me was drawn from the network’s parame-
ters at the respective episode θe, such that a set
percentage of weights P was deemed pruned by
the mask. Following each mask draw, the network
continued being trained using the unpruned pa-
rameters θe. Once training had finished, the in-
verse normalized hamming distance H between all
the masks was calculated, which resulted in a dis-
tance matrix displaying similarities between masks
drawn at different episodes. This experiment was
repeated 10 times across different pruning percent-
ages, P ∈

{
0.2, 0.4, 0.6, 0.8}. The outcome was

a total of 40 mask distance matrices for each en-
vironment (80 in total) which were aggregated by
taking the average per environment, per pruning
percentage P used across the 10 repetitions of the
experiment.

6

(a) Cartpole

(b) Acrobot

Figure 3.3: Experiment 1 results - Distance matrices averaged over 10 experiments for each envi-
ronment, and each pruning percentage P ∈ {0.2, 0.4, 0.6, 0.8}.

Mask similarity results

All 8 distance matrices resulting from the aggre-
gating process described above can be visualized in
Figure 3.3, displaying one mask distance matrix for
each environment and each pruning percentage P
as a heatmap. Each value in this heatmap repre-
sents the inverse normalized hamming distance be-
tween two masks taken at two respective episodes.

The heatmaps reveal bright square formations,
darkening quickly at the upper and left-most edges.
The bright square formations represent periods in
learning when the top (1 − P) ∗ 100% of weights
do not change significantly. It can be seen that es-
pecially in the cartpole problem (Figure 3.3a), the
longer the training progresses, the smaller the dif-
ference between masks becomes.

Interestingly, in both environments, the third
heatmap (P = 0.6) shows larger differences be-
tween masks taken at later episodes and those taken
earlier. However, the fourth heatmap (P = 0.8)
shows much smaller differences and it is more com-
parable to the first two heatmaps (P = 0.2 and
P = 0.4). This suggests that the largest changes in
relative importance that weights undergo through-
out their training lie within the range of [20%, 40%]
most important weights, this range constituting of

a flux of different weights changing continuously
until the network converges. To better explain this,
it could be thought of within the metaphor of brain
plasticity (Kolb & Whishaw, 1998). It seems that
the most plastic part of a neural network may be
what constitutes the most important 20% to 40%
of weights within the first few episodes. This plas-
ticity is also most pronounced within the first early
stages of learning, quickly slowing down as the net-
work learns.

What’s curious is that the masks taken approxi-
mately within episodes 10 to 90 during the cart-
pole task seem to be similar to each-other, but
different compared to masks drawn later in the
training. This is indicated in Figure 3.3a by the
bright square formations formed around these ini-
tial episodes, which are faint but present neverthe-
less. The effect is most visible in the plots with
P ∈ {0.6, 0.8}. Furthermore, these episodes co-
incide exactly with the initial exploration phase,
during which ϵ in the ϵ-greedy policy is gradually
decaying. These suggest the existence of a small
subset of weights (about 20% − 40% most impor-
tant) which pose a crucial role in the development
of the exploration phase, but are not as useful dur-
ing exploitation. Furthermore, the network learns
this hierarchy of weight importance early in the ex-

7

ploration period. The reason why this is not visible
in the acrobot heatmaps (Figure 3.3b) may be due
to the fact that the episodes are much longer ini-
tially than in cartpole, and since ϵ decays per step,
the exploration period lasts around 5-10 episodes,
which is not enough to visualize the mask distances
taken across every two episodes.
Together, these results show that neural net-

works used in DRL learn which weights are most
important within the first few episodes in the ex-
ploitation phase, with their relative importance no
longer changing significantly throughout the re-
maining exploitation episodes. Hints can also be
seen that this process may happen in the explo-
ration phase as well, however the current results do
not offer a decisive answer for this.

3.4 Experiment 2
Retraining EB Tickets

The results of experiment 1 (subsection 3.3) laid
the foundation for testing the existence of EB Tick-
ets in DRL in terms of performance. Since masks
drawn in the beginning of the training seem to
be similar to masks drawn later, this experiment
continued the search for EB Tickets by verify-
ing the overall performance and training length
of retrained sparse sub-networks drawn at differ-
ent episodes throughout the training. These were
then compared to unpruned networks and winning
tickets in order to verify whether EB tickets were
found.
For a sparse sub-network to be deemed an EB

ticket it must fulfil the following conditions (see
subsection 2.5):

1. Similar performance as an unpruned network
or higher;

2. Train for a similar amount of episodes as
an unpruned network or less (e.g. via early-
stopping);

3. Similar performance and training length to a
winning lottery ticket;

4. Be pruned at an earlier episode than a winning
lottery ticket.

Each instance of this experiment began by train-
ing a DQN agent without early stopping such that

the Q-Network with parameters θ could be pruned
at some episode eprune chosen arbitrarily. Follow-
ing the pruning, the Q-Network was reinitialized to
its initial parameters θ0 and retrained using m⊙θ0
with early-stopping for a maximum of 500 episodes.
Finally, once training finished, the agent was tested
on 100 episodes.

All the data necessary to find EB tickets was
collected from 10 repetitions of this experiment
for each environment, over different pruning per-
centages P ∈ {0.2, 0.4, 0.6, 0.8} across 12
different episodes at which to prune eprune, fo-
cused mostly in the early episodes (eprune ∈
{5, 20, 30, 40, 50, 75, 100, 130, 180, 250, 400, 500}.

The result was 120 training-retraining-testing
”sessions” for each of the 2 environments and for
each pruning percentage P (a total number of
120 ∗ 2 ∗ 4 = 960 sessions).

In order to perform the comparisons with un-
pruned networks necessary to verify the 1st and 2nd
criteria, 10 individual training iterations were per-
formed with early-stopping for each environment
using an unpruned Q-Network.

In addition, 10 winning lottery tickets were found
for each pruning percentage P via magnitude prun-
ing at the end of the training process. This is equiv-
alent to performing iterative magnitude pruning
with only 1 iteration. If EB tickets are present at
the beginning of the training process, they should
be comparable in terms of performance and retrain
length to the one-time magnitude pruned winning
tickets, which would satisfy the 3rd criteria.

Regarding the 4th and final criteria, winning lot-
tery tickets are always pruned once a full network
reaches early-stopping, which therefore means all
EB tickets must be pruned before that.

Retrain results

All figures resulted from this experiment contain
two graphs. The top graphs represent the testing
performance of retrained networks pruned at some
episode represented along the x axis. The bottom
graphs represent the amount of episodes it took
during retraining to reach early-stopping.

A comparison of performance and retrain length
between different pruning percentages can be seen
in Figure 3.4, which displays the results for the
cartpole environment in Figure 3.4a and those for
acrobot in Figure 3.4b. Both figures compare the

8

results of the pruned networks to the results of the
unpruned ones.

(a) Cartpole retrain results

(b) Acrobot retrain results

Figure 3.4: Experiment 2 results - retrain test
performance and retrain length per episode at
which pruned.

In Figure 3.4a, it can be seen that during the
cartpole task, neural networks pruned approxi-
mately within the episodes 25 to 100 achieve both a
similar test performance compared to an unpruned
neural network (top graph), while also training in
a similar amount of time (bottom graph), some-
thing which holds for all pruning percentages P
attempted. For networks pruned in episodes out-
side this interval, the effect still holds, however not
for networks which were pruned with P = 0.6 or
P = 0.8.

For Acrobot (Figure 3.4b), it is only the net-
works pruned with P = 0.2 that achieve both simi-
lar test performance and similar retraining length.

As expected, this holds for most networks pruned
at episodes in the exploitation phase, but not as
much for those pruned during exploration (e.g. 5th
episode), since they under-performed both in test
performance and training length. As for other prun-
ing percentages, the effect seems to degrade propor-
tionally to the amount of weights pruned (i.e. larger
P , weaker effect). For instance, networks pruned
with P = 0.8 resulted in overall poor performance
during testing, while also never achieving early-
stopping.

Figures 3.5 (cartpole) and 3.6 (acrobot) compare
the retrain results of networks pruned at different
episodes (in yellow), to the results of the winning
tickets (black dashed lines). In cartpole, across all
pruning percentages except P = 0.8, the results
follow closely those of the winning tickets, both in
terms of test performance, as well as retrain length.
This trend also continues for networks pruned with
P = 0.8 but only those pruned within episodes 40
and 100. The same cannot be said for the acrobot
results, since they only match the winning tickets
for the networks pruned with P = 0.2.
Nevertheless, these results fit all 4 criteria out-

lined above, and thus confirm the existance of EB
tickets across all pruning percentages in the cart-
pole environment, and for P = 0.2 in acrobot.

3.5 Experiment 3
Finetuning EB Tickets

This experiment draws inspiration from the results
of experiment 1 and 2. More specifically, as dis-
cussed in the results of subsection 3.3, the impor-
tance of the weights relative to each-other appears
to be different between the initial exploration phase
and the exploitation phase. With this assumption,
reinitializing a network to parameters m⊙ θ0, with
a mask taken at some episode during exploitation,
could destabilize the relationship between the ex-
ploration and exploitation phases during retrain-
ing.

To fix this, finetuning was considered as an alter-
native to reinitialization, the idea being that fine-
tuning after pruning within exploitation would sim-
ply continue training within the same phase where
the importance of the weights does not change sig-
nificantly, and may thus converge faster.

This experiment was designed the same on all
aspects as experiment 2, with the only difference

9

(a) P = 0.2

(b) P = 0.4

(c) P = 0.6

(d) P = 0.8

Figure 3.5: Cartpole - comparison of retrained
networks (yellw), with finetuned networks (pur-
ple) and winning tickets (dash black lines)

(a) P = 0.2

(b) P = 0.4

(c) P = 0.6

(d) P = 0.8

Figure 3.6: Acrobot - comparison of retrained
networks (yellow), with finetuned networks
(purple) and winning tickets (dash black lines)

10

being that once the Q-Network was pruned at an
episode n = eprune, rather than reinitializing to
the original parameters θ0, the agent was finetuned
from the latest parameters with the mask applied,
m⊙θn until early-stopping for a maximum number
of episodes of 500 episodes.
Like before, the results of the finetuned networks

were compared first to unpruned networks and then
to winning lottery tickets found by retraining. In
addition, they were also compared to the retrained
networks found in the previous experiment. The ex-
pectation was that finetuning from the moment of
pruning would require significantly less episodes to
converge compared to retraining.

FineTune results

Like in the retrain experiment (subsection 3.4), all
figures are composed of two graphs, the top graph
showing the average test performance upon finetun-
ing or retraining a network pruned at some episode
indicated on the x axis. The bottom graph rep-
resents the amount of episodes required to reach
early-stopping, from the moment of pruning, as a
function of episode at which pruned.
Figure 3.7 shows a comparison across the differ-

ent pruning percentages P with the unpruned net-
works (3.7a for cartpole and 3.7b for acrobot). In
cartpole, the test performance is maintained con-
sistently close to an unpruned network, while re-
quiring much less training time overall. In acrobot,
the test performance is similar to the unpruned net-
works across all episodes for P ∈ {0.2, 0.4}, while
also achieving similar or faster training time com-
pared to the unpruned networks. Like it is the case
with retraining (Figure 3.4b), the effect weakens
with each increase in pruning percentage P .

Figure 3.5 and Figure 3.6 show a comparison be-
tween finetuned networks, retrained networks and
winning lottery tickets, for the cartpole environ-
ment and, respectively, for acrobot. Here, a notice-
able improvement in training length when finetun-
ing can be seen across all results except for those
of acrobot with P = 0.8 (Figure 3.6d), which never
achieve early-stopping.
For cartpole, nearly all finetuned sparse neural

networks pruned before the 200th episode require
much less training steps than the unpruned net-
works, winning lottery tickets as well as the re-
trained EB tickets. All this while also achieving

similar test performance to all three (or higher
in Figure 3.5c). There is, however, more volatility
when pruning within the first 50 episodes, which
can be explained by the fact that masks drawn at
those episodes are different than the masks drawn
during exploitation, as shown by the results of ex-
periment 1 (subsection 3.3). Nevertheless, EB tick-
ets seem to be widely present in this environment
across all pruning percentages.

(a) Cartpole finetuning results

(b) Acrobot finetuning results

Figure 3.7: Experiment 3 results - finetun-
ing test performance and finetune length per
episode at which pruned.

As for the acrobot results, the largest difference
lies in the training lengths. Finetuning allows a net-
work pruned with P = 0.2 or P = 0.4 to train
in a similar amount of time or faster compared to
both an unpruned network (Figure 3.7b) and a win-
ning lottery ticket (subfigures 3.6a and 3.6b). This
means that pruning early with P = 0.2 and P = 0.4

11

and finetuning can lead to an EB ticket, but prun-
ing more aggressively can not.

3.6 Experiment 4
EB Exploit algorithm

Using the knowledge gained from the experiments
above, this paper introduces EB Exploit, which
is a simplified and modified version of EB Train,
adapted to DRL. This algorithm is described be-
low in algorithm 3.1, and it can be used to find and
train EB tickets in DRL.

Algorithm 3.1 EB Exploit

1: Randomly initialize neural network f(x; θ) used
in a DRL agent;

2: Train normally until the end of the exploration
period (e.g. ϵ == ϵmin);

3: While training, draw masks at a window of n
episodes;

4: Compute the normalized hamming distance h
between each two consecutive masks (Equa-
tion 2.5);

5: If h < ξ where ξ ∈ (0, 1), prune using the latest
mask;

6: Finetune network with parameters f(x;m⊙θ0)
until early-stopping.

For the purpose of testing the algorithm’s effi-
cacy, as well as giving an example, EB Exploit with
ξ = 0.1 was ran 10 times for each pruning percent-
age P ∈ {0.2, 0.4, 0.6, 0.8} in each environments,
resulting in a total of 80 runs. Like in the previ-
ous experiment, the resulting sparse networks were
tested in terms of test performance and training
length after finetuning.

EB Exploit results

Figure 3.8 contains the results of this experiment,
Figure 3.8a for cartpole results and Figure 3.8b for
acrobot. Both sub-figures contain two graphs. The
top graph displays the average test performance of
an agent trained with EB Exploit at different prun-
ing percentages. P = 0.0 indicates an unpruned
network and acts as the comparison baseline. The
bottom graph shows the average training length of
different phases. The ’search’ phase consists of all
episodes within steps 1, 2, 3 and 4 in algorithm 3.1.

The ’finetune’ phase consists of the training length
from step 5 and 6. For comparison, the training
length of a unpruned network is also displayed.

For cartpole (Figure 3.8a), the test performance
is in most cases acceptable, while also training in
much less time compared to an unpruned network,
even when 60% of the network was pruned. Pruning
with P = 0.8 however, leads most often to lower
performance.

(a) Cartpole EB Exploit results

(b) Acrobot EB Exploit results

Figure 3.8: Experiment 4 results - EB Exploit
test performance and length per episode at
which pruned.

For acrobot (Figure 3.8b), while the test perfor-
mance stays relatively high for all pruning percent-
ages except P = 0.8, the length of training is often

12

higher than that of an unpruned network. With
that said, the increased volatility of the results
in the acrobot environment were to be expected
given the results of the previous experiments. Fur-
thermore the algorithm does find EB tickets for
P = 0.2. It should also be noted that this experi-
ment used a relatively high ξ value, which is why
pruning is done so early in acrobot. Comparing this
to Figure 3.7b, where EB tickets were found by
pruning at later episodes (e.g. 50 to 100), it seems
that lowering ξ may lead to better tickets.

4 Discussion

In a series of three experiments, this study demon-
strated the existence of Early Bird tickets in Deep
Reinforcement learning. The EB tickets were first
retrained and then finetuned, which revealed that
finetuning EB tickets is much more efficient both in
terms of training length and performance. Compar-
ing them to winning lottery tickets revealed similar
or higher performance with faster training time, es-
pecially in the case of finetuned EB tickets.
Using this knowledge, EB Exploit was designed

and tested in its own experiment, which revealed
the fact that DRL agents can indeed be trained
efficiently, as long as one of its parameters, ξ, is
tuned appropriately.
With the above being said, this study suffers

from limitations which stem from the lack of variety
in algorithms, environments and neural network ar-
chitectures. The effect was only tested using DQN
on two environments that do not require complex
neural networks. Because of that, the EB tickets
effect was tested only on MLPs.
Moreover, throughout all experiments, large dif-

ferences were observed between the results of the
two environments. While the environments are very
different, part of the difference could also be at-
tributed to the implementation of the Q-Networks.
As mentioned above, the network used in cartpole
used two hidden layers rather than just one, like in
the acrobot problem. Pruning a higher percentage
of the weights in cartpole, therefore, would leave
the network with more weights than in acrobot.
Future studies could extend this research to other

types of DRL algorithms, first within the same
temporal-difference learning class of reinforcement
learning algorithms, and then to others, such as for

instance policy gradient methods. A further exten-
sion could be to examine EB tickets in convolu-
tional layers across more environments, as well as
other neural network architectures.

Finally, this study also demonstrates that the
training process of neural networks used in DRL
consists of learning which weights are more impor-
tant than others within the first few early episodes,
followed by no significant changes in this impor-
tance hierarchy. In addition, the first experiment
hints at two possible effects. First, it seems that
learning the importance of weights happens two
separate times within DRL: in the exploration
phase and in the exploitation phase. Second, as dis-
cussed in the results of this experiment, it seems
that the weights which fall within the most im-
portant [20%, 40%] hierarchy range is changing
much more rapidly than within other ranges, with
weights entering this range and leaving swiftly. In
the respective subsection, the metaphor of brain
plasticity was used in mentioning that this range of
weights is more plastic than others. Future research
could investigate a possible similarity between the
change in weight importance across training and
the change in brain plasticity present in the human
brain as the human ages. Just like human brain
plasticity decreases as the human ages (Kramer et
al., 2004), weights importance seems to stop chang-
ing significantly as the network is trained. Fur-
thermore, critical learning periods in reinforcement
learning could be analyzed more directly using sim-
ilar methods as Achille et al. (2018).

In conclusion, the key takeaways of this study are
that EB tickets seem to exist in deep reinforcement
learning, along with the main assumption of how
neural networks learn weight importance; EB tick-
ets are much more efficient when finetuned rather
than when they are retrained and EB Exploit can
be used to find EB tickets, as well as to train rein-
forcement learning agents more efficiently.

References

Achille, A., Rovere, M., & Soatto, S. (2018). Crit-
ical learning periods in deep networks. In Inter-
national conference on learning representations.

Agarap, A. F. (2018). Deep learning using
rectified linear units (relu). arXiv preprint

13

arXiv:1803.08375 .

Barto, A. G., Sutton, R. S., & Anderson, C. W.
(1983). Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE
transactions on systems, man, and cybernet-
ics(5), 834–846.

Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., &
Guttag, J. (2020). What is the state of neural
network pruning? Proceedings of machine learn-
ing and systems, 2 , 129–146.

Brockman, G., Cheung, V., Pettersson, L., Schnei-
der, J., Schulman, J., Tang, J., & Zaremba,
W. (2016). Openai gym. arXiv preprint
arXiv:1606.01540 .

Chen, T., Frankle, J., Chang, S., Liu, S., Zhang,
Y., Carbin, M., & Wang, Z. (2021). The lot-
tery tickets hypothesis for supervised and self-
supervised pre-training in computer vision mod-
els. In Proceedings of the ieee/cvf conference
on computer vision and pattern recognition (pp.
16306–16316).

Chen, T., Frankle, J., Chang, S., Liu, S., Zhang,
Y., Wang, Z., & Carbin, M. (2020). The lottery
ticket hypothesis for pre-trained bert networks.
Advances in neural information processing sys-
tems, 33 , 15834–15846.

Chen, X., Cheng, Y., Wang, S., Gan, Z., Wang, Z.,
& Liu, J. (2020). Earlybert: Efficient bert train-
ing via early-bird lottery tickets. arXiv preprint
arXiv:2101.00063 .

Dayan, P., & Watkins, C. (1992). Q-learning. Ma-
chine learning , 8 (3), 279–292.

Frankle, J., & Carbin, M. (2018). The lottery ticket
hypothesis: Finding sparse, trainable neural net-
works. arXiv preprint arXiv:1803.03635 .

Geramifard, A., Dann, C., Klein, R. H., Dabney,
W., & How, J. P. (2015). Rlpy: a value-function-
based reinforcement learning framework for edu-
cation and research. J. Mach. Learn. Res., 16 (1),
1573–1578.

Kolb, B., & Whishaw, I. Q. (1998). Brain plastic-
ity and behavior. Annual review of psychology ,
49 (1), 43–64.

Kramer, A. F., Bherer, L., Colcombe, S. J., Dong,
W., & Greenough, W. T. (2004). Environmental
influences on cognitive and brain plasticity dur-
ing aging. The Journals of Gerontology Series A:
Biological Sciences and Medical Sciences, 59 (9),
M940–M957.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., & Riedmiller, M.
(2013). Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602 .

Sutton, R. S. (1995). Generalization in reinforce-
ment learning: Successful examples using sparse
coarse coding. Advances in neural information
processing systems, 8 .

Sutton, R. S., & Barto, A. G. (2018). Reinforce-
ment learning: An introduction. MIT press.

Vischer, M. A., Lange, R. T., & Sprekeler, H.
(2021). On lottery tickets and minimal task
representations in deep reinforcement learning.
arXiv preprint arXiv:2105.01648 .

You, H., Li, C., Xu, P., Fu, Y., Wang, Y., Chen, X.,
. . . Lin, Y. (2019). Drawing early-bird tickets:
Towards more efficient training of deep networks.
arXiv preprint arXiv:1909.11957 .

Yu, H., Edunov, S., Tian, Y., & Morcos, A. S.
(2019). Playing the lottery with rewards and
multiple languages: lottery tickets in rl and nlp.
arXiv preprint arXiv:1906.02768 .

14

A Neural Network details

Parameter Cartpole Acrobot
Input neurons 4 6
Hidden neurons 128 128
Nr. Hidden layers 2 1
Output neurons 2 3
Optimiser Adam Adam
Hidden layers activation function ReLu ReLu

B DQN Details

Parameter Cartpole Acrobot
Learning Rate 0.0025 0.001
Batch size 32 64
Replay buffer size 1000 2000
Start learning after 200 transitions 1000 transitions
Target network update every episode every episode
Max training episodes 500 500
Update frequency every 4 transitions every 1 transition
Early-Stopping threshold 200 -100
Discount factor γ 0.99 0.99
ϵ decay factor 0.95 0.999
ϵ start 1.0 1.0
ϵ min 0.01 0.01

15

	Introduction
	Background
	Reinforcement Learning
	Deep Reinforcement Learning
	Pruning of neural networks
	Winning Lottery Tickets
	Early-Bird Tickets

	Methods and Results
	Environments
	Training setup
	Experiment 1Mask Similarity
	Experiment 2 Retraining EB Tickets
	Experiment 3 Finetuning EB Tickets
	Experiment 4 EB Exploit algorithm

	Discussion
	Neural Network details
	DQN Details

