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Abstract: Driving is a complex and highly demanding task. Since multitasking typically leads to
decreased performance of the main task, it is expected that any concurrent task would interfere
with driving performance. Instead, a human study showed that paying full attention to the road
while in a monotonous environment results in marginally worse driving performance than if one
were driving and listening to the radio at the same time. One possible explanation is that a
monotonous driving environment stimulates mind-wandering, which may be more demanding,
from a cognitive standpoint, than a simple-enough secondary task. The present study tries to
verify this hypothesis by augmenting an ACT-R model of human driving behaviour with i) mind-
wandering behaviour and ii) a secondary task of listening to the radio. Results show that the
listening model performed significantly better than the mind-wandering model, thus validating
the findings of the human study. Overall, this study demonstrated how computational models
can be used to provide insights into common misconceptions regarding in-vehicle device design
and, more generally, driver safety.

1 Introduction

Driving has become a ubiquitous activity in mod-
ern society - for example, American drivers spend
on average 87 minutes per day behind the wheel
[Langer, 2005]. Driving is a highly demanding task,
which requires dynamic execution of multiple con-
current sub-tasks. These sub-tasks range in diffi-
culty from low-level steering and basic maneuvers
such as lane changing or lane merging, to high-level
decision-making and planning.

It is of no surprise, therefore, that a secondary
task, such as a phone conversation [e.g. Strayer and
Johnston, 2001] or listening to music [e.g. Brodsky,
2001], can cause distraction and negatively affect
driving performance. However, other studies show
evidence that multi-tasking can be beneficial under
certain circumstances [e.g. Atchley and Chan, 2011]
and this might be caused by a reduction of mind-
wandering behaviour [e.g. Nijboer et al., 2016]. The
current study investigates whether mind-wandering
can explain this discrepancy in the literature, by
building and evaluating a computational model of
human driving behaviour.

1.1 Driving in a monotonous envi-
ronment

Around 90%-95% of road accidents can be at-
tributed to human error, and inattention to the
road is one of the leading contributing factors
[Treat et al., 1979]. This implies that road safety
interventions should be focused more towards dis-
couraging driver inattention. Instead, current coun-
termeasures are more oriented towards road infras-
tructure improvement or laws and regulations [Eoh
et al., 2005]. As a consequence, driving has rather
been reduced to a simple lane-keeping task on high-
ways and this led to a new type of contemporary
car crashes, caused by lapse of vigilance due to
monotony [Cerezuela et al., 2004].

It is possible that this lapse of vigilance mani-
fests as a result of an increase of mind-wandering.
It has been shown that people tend to mind-wander
when they have enough cognitive resources to do
so [Mooneyham and Schooler, 2013], and a boring
driving environment, where there is little to no ex-
ternal engagement, is the perfect breeding ground
for this phenomenon.
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1.2 Detriments of mind-wandering

Mind-wandering is a mental activity characterized
by decoupling of attention from the external en-
vironment and redirecting said attention to inter-
nal unrelated events [for a more detailed account,
see Smallwood and Schooler, 2015]. Due to this de-
coupling from the external world, mind-wandering
is usually accompanied by a decrease in perfor-
mance of the task in progress. This is due to the
fact that most activities occur in direct relation to
the external environment and, by definition, mind-
wandering obstructs that [Smallwood and Schooler,
2006].

Yanko and Spalek [2014] measured how mind-
wandering affects driving performance by probing
participants at random times during a simulated
driving task, to indicate whether or not they were
focused on the task at that moment. The authors
noted that reports of mind-wandering were consis-
tent with worse driving performance on multiple
levels: participants exhibited longer reaction times
to unexpected events, drove at a higher speed and
maintained a shorter headway distance to the car
in front.

Overall, mind-wandering constitutes a severe risk
with regards to driver safety: since it is associated
with reduced awareness of the external environ-
ment, reacting in time to obstacles and unexpected
situations becomes more difficult.

1.3 Benefits of a secondary task

Two concurrent tasks requiring the same cognitive
resource will contend for said resource and this,
consequently, will lead to decreased performance
for both tasks [Wickens, 2002]. Therefore, under-
taking a secondary task while driving can have a
negative impact on performance, especially when
the task interference occurs at a perceptual level
[e.g. Gherri and Eimer, 2011], motor level [e.g.
Janssen et al., 2012] or working memory level [e.g.
Strayer and Johnston, 2001].

On the other hand, it has been shown that a
secondary task can lead to improved performance of
the primary task. For example, Nijboer et al. [2016]
conducted a study in which they tested the effects
of four different secondary tasks on performance
during a monotonous driving scenario. They found
that participants’ driving performance was overall

better when the driving task was combined with
a non-demanding secondary task, such as listening
to the radio, as compared to the no-secondary-task
baseline.

The authors hypothesize that such a secondary
task reduces the chance of intrusion of another
more demanding, involuntary phenomenon, such as
mind-wandering. Ultimately, this does not mean
that multi-tasking improves performance, per se,
but rather that a simple enough secondary task is
the smaller of two evils in terms of cognitive re-
source contention.

1.4 Computational driving model

The computational model proposed by Salvucci
[2006] implements two basic vehicle control tasks:
i) lateral control to maintain a central position with
respect to the center of the current lane (i.e. steer-
ing) and ii) longitudinal control to maintain con-
stant speed and appropriate distance from a lead
vehicle (i.e. acceleration/breaking). The mathemat-
ics behind the corresponding control laws will be
expanded upon in section 2.2.

The Salvucci driving environment is simple: a
straight road with three lanes and a lead vehicle
(see Fig 1.1). The lead vehicle maintains a constant
speed and does not interfere with the driving task
- one should rather think of it as a landmark in the
distance. This driving scenario is consistent with
the monotonous environment required as part of
the current study.
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Figure 1.1: Driving environment of the Salvucci
[2006] simulation. The blue rectangle represents
the lead vehicle and the yellow circle represents
the point of focus. The road is colored with
gray and the three lanes are delimited by white
striped lines. The perspective is that of the sim-
ulated car’s driver.

1.5 Current study

1.5.1 Description

The present study aims to investigate the results
found in the Nijboer et al. [2016] study, by build-
ing two cognitive computational models within
the ACT-R architecture. The model proposed by
Salvucci [2006] will be used as a baseline of human
driving behaviour and augmented with i) mind-
wandering behaviour and ii) a secondary task of lis-
tening to the radio. The models will be compared
against each other and against the baseline driv-
ing model. The aim is to better understand, from
a behavioural standpoint, if and how multi-tasking
decreases the chance of mind-wandering and, conse-
quently, how that leads to improved overall driving
performance.

1.5.2 Motivation

The phenomenon found by Nijboer et al. [2016]
is puzzling. Driving is a task with such high cog-
nitive workload that one would expect any con-
current task to affect driving performance, since
any task, large or small, involves some procedu-
ral steps [Salvucci and Taatgen, 2010]. However,
it seems that, under certain circumstances, a sec-
ondary task can indirectly lead to improved driving
performance, perhaps by obstructing the most in-
trusive aspects of mind-wandering.

The current study will contribute to a better
understanding of driver behaviour and will serve
to invalidate common misconceptions regarding in-
vehicle device design and, more generally, driver
safety.

2 Model

2.1 ACT-R architecture

The cognitive models of the present study were
developed using the Adaptive Control of Thought
(ACT-R) architecture [Anderson, 2007]. ACT-R is
a general psychological theory and provides a sim-
ulation environment that can be used to develop
cognitive models that adhere to this theory.

The architecture contains modules for cognitive
processing and external world interaction. The pro-
cedural module is used to coordinate actions across
different modules through production rules, based
on an if-then approach. Particularly, if the cur-
rent state of the modules matches the configura-
tion specified on the left-hand side of the rule, then
the respective production rule fires and the current
state of the modules is modified as specified by the
right-hand side configuration. A production rule is
executed in 50 ms and multiple rules are executed
serially.

Other modules of interest here are the declara-
tive module (to store factual knowledge), the visual
module (for visual perception), the manual module
(for manual manipulation) and the aural module
(for aural processing). Each module has a buffer as-
sociated with it. A buffer can be understood as the
interface between the module and the procedural
memory system. Each buffer can contain at most
one chunk at a time, which are building structures
that store the declarative knowledge of the system.

2.1.1 Threaded cognition

Threaded cognition Salvucci and Taatgen [2008] is
an extension of the ACT-R architecture, which im-
plements a theory of concurrent multitasking (i.e.
performing multiple tasks at the same time). The
underlying assumption of threaded cognition is that
tasks can be represented as independent process-
ing threads and coordinated by the procedural sys-
tem. The theory allows for concurrent execution,
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resource retrieval and conflict resolution across all
threads.

The theory specifies a mechanism to interleave
the execution of production rules associated with
different tasks. This mechanism is said to be
“greedy” and “polite”. It is greedy in the sense that
threads request resources as soon as possible, when
needed. If multiple rules are eligible at the same
time, the one corresponding to “the most urgent
task” is chosen first. The title of “most urgent” cor-
responds to the task which has had a rule chosen
for execution least recently. The mechanism is po-
lite in the sense that a thread releases resources for
other threads as soon as possible after execution
had been completed.

Overall, threaded cognition allows for concurrent
task execution by having the procedural system
send requests to various modules and supervising
completion of requests. This implies that, as long as
there is no resource interference, the threads com-
plete their respective tasks independently. Other-
wise, the greedy and polite resource usage assump-
tion mediates conflicts. The theory of threaded cog-
nition is useful in implementing the listening model,
since task interplay between mind-wandering and
listening to the radio is controlled by the theory.

2.2 Baseline model: driving

The basic driving model [Salvucci, 2006] imple-
ments the tasks of lateral and longitudinal control.

Lateral control involves a continuous process of
surveying the road and adjusting the steering wheel
in response, to maintain the car in a central posi-
tion relative to the lane. Several research studies
define driver vision of the road in terms of two re-
gions (see Fig 2.1) a near point close to the front
of the car, which provides information regarding
the car’s position in relation to the road (e.g. how
close the car is to the center of the lane) and ii) a
far point set at an arbitrarily distant point, which
provides information regarding the curvature of the
road [e.g. Donges, 1978]. The far point is character-
ized as: i) the vanishing point on a straight road,
up to a maximum distance equivalent to 2 seconds
of headway, ii) the tangent point to a curved road
or iii) a lead vehicle [Salvucci, 2006]. In the current
driving scenario, the simulation uses only the third
option.

Figure 2.1: Division of driver visual field into
a near and a far region. The black dots in the
near and far regions represent the near point
and the far point, respectively. Diagram taken
from Salvucci and Taatgen [2010].

Using this definition of the visual field of a driver,
Salvucci and Gray [2004] defined a mathematical
steering-control law. Let θnear be the horizontal an-
gle to the near point with respect to the driver’s
direction of travel and ∆θnear the change in θnear
compared to the last control check. Assume θfar
and ∆θfar to be the equivalent for the far point.
According to the control law, after an arbitrarily
short period of time ∆t, the steering angle φ is
modified by ∆φ, as specified by the equation:

∆φ = kfar∆θfar +knear∆θnear +klθnear∆t (2.1)

where kfar, knear and kl are scaling constants. The
control-law imposes three constraints, such that the
far point is stable (i.e. ∆θfar → 0), the near point
is stable (i.e. ∆θnear → 0) and the near point is at
the center of the lane (i.e. θnear → 0).

Longitudinal control involves a process of ad-
justing the accelerator/brake depression in accor-
dance to the time-headway to the far point (in
this case, the lead vehicle). This adjustment is
computed by considering the current time-headway
(let us define it as thwcar), the change of time-
headway as compared to the last control check (i.e.
∆thwcar) and some arbitrary desired time-headway
(i.e. thwfollow). Thus, the model computes the up-
date value of the car’s acceleration (ψ), over an
arbitrarily short period of time (∆t) as follows:

∆ψ = kcar∆thwcar+kfollow(thwcar−thwfollow)∆t
(2.2)
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where kcar and kfollow are scaling constants. Note
that the longitudinal control law is an extension
of the lateral control law. Similarly, the longitu-
dinal control law imposes two constraints, such
that the car maintains a steady time-headway
(i.e. ∆thwcar → 0) and the current time-headway
approaches the desired time-headway value (i.e.
thwcar − thwfollow → 0).
Overall, the driving task is embedded in ACT-R

as an iterative loop of four procedural steps:

1. Determine the horizontal visual angle to the
near point (θnear)

2. Determine the horizontal visual angle to the
far point (θfar)

∗

3. Adjust steering angle (φ) and acceleration (ψ)
based on their respective control laws

4. Check vehicle stability† and go back to the first
step

The first two steps require visual processing and
the third step requires the employ of the motor
module. Considering the fixed execution time of 50
ms of an ACT-R production rule [Anderson, 2007],
one iteration of the process runs in 200 ms.

2.3 Mind-wandering model

The model described by van Vugt et al. [2015] was
used as inspiration for this study’s mind-wandering
model. Fig 2.2 demonstrates the embedding of
the mind-wandering model into the Salvucci [2006]
driving model.
At any time, the model can be in one of two

possible goal states: “attend” or “wander”. These
goal states are encoded as chunks in the declara-
tive memory, following the structure (chunk-type

goal state). If the model is in the attending state,
then the process described in section 2.2 ensues.
Otherwise, the model is said to be in the mind-
wandering state.
The mind-wandering process consists of con-

tinuous retrieval of memory chunks from the

∗Note that the current time-headway (i.e. thwcar), nec-
essary for the longitudinal control law computation, can be
obtained if one knows the far point.

†Defined as a situation in which the velocity of the two
visual angles and the near visual angle are all below some
preset thresholds. The thresholds were defined experimen-
tally.

Figure 2.2: The implementation of the mind-
wandering driving model. The diagram should
be read starting from the upper left corner, (i.e.
attend near) *This production rule fires only
when the location of the lead vehicle is in the
visual-location buffer.

declarative module. A memory chunk is of the
form (chunk-type memory awareness), where
the “awareness” slot serves as an identifier. The
model contains 30 memory chunks of type “wan-
der” awareness and 1 chunk of type “attend” aware-
ness with the same baseline activation level, follow-
ing the approach described in Moye and van Vugt
[2019]. As a result, the model has a 30/31 chance to
mind-wander. If a memory chunk of type “wander”
awareness is retrieved, then the model will retrieve
another memory chunk, entering a continuous loop
of memory retrievals, similar to the concept of a
“train of thoughts”. This loop, however, can be in-
terrupted in two distinct cases.

Firstly, the loop can be interrupted by the re-
trieval of a memory chunk of type “attend”, in
which case the model switches to the attending
state. This is equivalent to a person remembering
that there is a main task to be done (driving in this
case).

Secondly, the loop can be interrupted by surpass-
ing a threshold value of maximum lane deviation.
The model makes the assumption that any driver,
experienced or not, would regain focus to the main
driving task once the car deviates by a large enough

5



factor from the middle of the lane. In this driving
scenario, the large-enough-factor is assumed to be
the event of crossing over into a different lane. The
assumption is justified by the fact that highways
often have rumble strips applied on the lane sep-
arators, which cause vibration and audible rum-
bling to be sent through the wheels to the vehi-
cle interior. Since these have been shown to con-
sistently prevent run-off-the-road crashes [see e.g.
Khan et al., 2015], the model assumes that a rum-
ble strip provides intrusive enough behavior that
it should override mind-wandering inattention and
instead return driver attention back to the task.
Based on observed behavior within the simulation,
the threshold value was set to 1 foot of lane devi-
ation towards left or right, from the middle of the
current lane.
Overall, note that the model supports a wide va-

riety of driver behavior. This is due to the fact that
entering the mind-wandering process has a 50%
chance (i.e. the model can either retrieve the “at-
tend” or “wander” goal chunk, with relatively equal
chance) and the duration of the mind-wandering
episode varies, depending on the 3.33% retrieval
chance of the memory of “attend” awareness. Thus,
the model is a comprehensive representation of
mind-wandering effects on driving performance.

2.4 Listening model

The listening model simulates behaviour akin to
listening to the radio while driving. For this, an
audio event is periodically injected into the simu-
lation. An audio event encodes characteristics of a
sound, such as duration, content and location. In
the current study, audio events are spaced 300ms
apart (resulting in a speech rate of approximately
200 words per minute) as an approximation of hu-
man speech rates, which can range from 120-150
words per minute, during typical conversations, to
250-300 words per minute during animated conver-
sations [Ray and Zahn, 1990]. All audio events en-
code words, which represent lyrics of a song that the
model “hears” on the radio. Once an audio event is
perceived by the model, two production rules can
fire: i) attend sound or ii) access meaning. The im-
plementation of these production rules was based
on the methodology described in Borst et al. [2010].
The attend sound production rule is only a

preparatory step. It matches a set of constraints

against the audio module (in this case, it checks if
there is an audio event in the audio-location buffer),
requests an attention shift to the audio event and
places a chunk in the aural buffer. Overall, this pro-
cess is akin to realising that there is a sound present
in the environment and it lasts for 50ms.

The access meaning production rule processes
the audio event chunk in the aural buffer and re-
trieves the information in the content slot. Next,
the model retrieves one chunk from the declarative
memory of form (chunk-type word spelling),
whose spelling slot matches with the information
from the content slot of the audio event. Note that
the retrieval will always be successful, since the au-
dio event content and the word chunks are both
hardcoded (based on the assumption that humans
would not encounter difficulties in understanding
lyrics of songs). Overall, this process is akin to re-
trieving the meaning of a word from memory and
it lasts for 550ms (i.e. the duration of a chunk re-
trieval from declarative memory).

The listening production rules were built upon
the mind-wandering model (see section 2.3) and
the order of firing of all production rules is reg-
ulated by threaded cognition (see section 2.1.1).
Note that the listening production rules create a
bottle-neck at the level of memory chunk retrieval
of the mind-wandering model. This is caused by the
fact that there is resource contention for declarative
chunks (memory chunks in the case of the mind-
wandering model and word chunks in the case of
the listening model). As a reminder, according to
threaded cognition conflict resolution implementa-
tion, if two production rules corresponding to two
different tasks match at a point in time, then the
rule corresponding to the task used the longest time
ago fires first. Thus, it is expected for the wander-
ing loop to be interrupted by a listening production
rule whenever an audio event occurs in the environ-
ment.

Since I did not have a clear hypothesis regard-
ing the extent to which participants in the human
study processed sound, assumptions regarding the
degree of information processing of audio events
had to be made. Accordingly, the listening model
was divided into four sub-models. An overview is
presented in Table 2.1, where the “attending” and
“wandering” labels correspond to the states in Fig.
2.2.
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Model Attending Wandering

Attend
sound

Access
meaning

Attend
sound

Access
meaning

Listen 1 X X
Listen 2 X X X X
Listen 3 X X
Listen 4 X X X

Table 2.1: Degree of processing audio event
information across 4 different listening sub-
models. “Attend sound” is considered light
processing (awareness of sound), while “access
meaning” is considered heavy processing (re-
trieval of word meaning). Note that accessing
meaning cannot occur without attending sound
but the reverse can be the case.

Listen 1 involves light processing of information,
as it only attends to the sound. This is akin to lis-
tening to a song in a foreign language - one is aware
of the presence of sound but cannot understand the
meaning of the words.

Listen 2 is on the opposite side of the spectrum
from the Listen 1, since it involves heavy process-
ing. This is akin to intently listening to a piece of
news on the radio.

Listen 3 involves heavy processing only during
the wandering state. This model assumes that driv-
ing is such an intense activity that the driver would
completely “phase out” all sound.

Listen 4 involves heavy processing during the
wandering state and light processing during the at-
tending state. This model assumes that driving is
an intense enough activity that focus would be al-
located mostly to it, but the driver would still be
partially aware of the presence of sound in the en-
vironment.

Note that the four listening sub-models account
for fundamentally different types of dual-tasking in-
tegration behaviour and generate considerably and
consistently different results.

3 Results

Model results were generated and compared against
the original human study by Nijboer et al. [2016].
The data was generated by running the ACT-R
simulation 24 times (consistent with the human
study) for the mind-wandering and listening sub-
models and recording the state of the simulated
car once every 50ms. The plots were generated in
python (version 3.7.3), using the matplotlib‡ li-
brary. All statistical analyses were performed in R
(version 4.0.2).

3.1 General behaviour

Fig. 3.2 shows measurements of one random simula-
tion run of the mind-wandering model. These mea-
surements are juxtaposed against Fig. 3.1, which
shows measurements of one random human par-
ticipant of the Nijboer et al. [2016] study in the
single task condition. The figures are comparable
against each other because mind-wandering is in-
voluntary and unavoidable, which suggests that a
human would inevitably mind-wander while driving
in the single task condition.

Both plots investigate the same indices of driv-
ing performance: i) lane deviation, which indicates
the distance from the car to the center of the
current driving lane and ii) steering angle, which
records data from the steering wheel. While the
human study also investigated driving speed, in
the Salvucci [2006] driving model the speed con-
trol mechanism did not seem to be sensitive enough
to show any visible deviation as a result of mind-
wandering. For that reason, driving speed analysis
was excluded from the current study.

‡https://matplotlib.org/
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Figure 3.1: Measurements taken from one ran-
dom human participant. The red line (raw
data) is the main focus in the context of the
present study. Source: Nijboer et al. [2016]

Figure 3.2: Measurements taken from one ran-
dom mind-wandering model run.

Both figures show irregular behaviour and, while
any strong conclusion related to the compatibility
of the model to the human data is unreliable, one
can claim that the general trend of the model is hu-
manly plausible. This is further reinforced by the
fact that the scales of the measurements are some-
what consistent across the two studies.

3.2 Mind-wandering behaviour

The main interest of the study was to investigate
how the mind-wandering behaviour is influenced by
the listening task. Fig. 3.3 shows the distribution of
the count of mind-wandering occurrences, where an
“occurrence” is defined as one retrieval of a memory
chunk (in the context of this paper). The graph was
obtained by counting the number of occurrences for
each of the 24 runs and plotting the distribution of
the obtained 24 data points - the same procedure
was used for each model. Fig. 3.4 shows the distri-
bution of the average duration of mind-wandering
episodes, where an “episode” is defined as multiple
consecutive occurrences from start until interrup-
tion (due to lane deviation threshold, remember-to-
attend chunk retrieval or audio event interference).
The data was obtained by counting the number
of mind-wandering occurrences within each episode
and taking the mean of the counts. Thus, the graph
was obtained by repeating the operation for all 24
runs of each model and plotting the distribution
of the obtained 24 data points. Note that in both
plots, all values of the baseline (i.e. original Salvucci
[2006] driving model) distributions are 0, since no
mind-wandering occurs.

From both plots, it is clear that the mind-
wandering model wanders most and has the most
diverse behaviour. This is to be expected because
the listening sub-models implement an extra condi-
tion in which the wandering episode is interrupted
(through contention for the declarative module).
This a first confirmation that the hypothesis pro-
posed by Nijboer et al. [2016] could make sense.

Fig. 3.3 suggests that there is an inverse relation-
ship between the level of audio event processing
and the number of mind-wandering occurrences:
the heavier the processing, the lower the number of
mind-wandering episodes. This can be observed by
comparing the distributions of the Listen 1 model
(which only attends to sound, hence the lightest
kind of processing out of all models) and Listen 2
model (which retrieves the meaning of each word,
hence the heaviest kind of processing out of all
models).

The aforementioned phenomenon can be ex-
plained by the fact that accessing meaning takes
considerably longer than simply attending sound
(550ms vs 50ms) and, overall, there is less time for
mind-wandering. Moreover, Fig. 3.4 suggests that
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this difference in number of occurrences is due to
the frequency of mind-wandering, rather than du-
ration of episodes, since the durations are simi-
lar across different listening sub-models (except for
Listen 3, see further). This is because audio events
occur at the same intervals across all listening sub-
models and, therefore, it stands to reason that wan-
dering interruption patterns would be consistent
across models.

Figure 3.3: Distribution of total number
of mind-wandering occurrences for each of
the models. “Single” is the mind-wandering
(MW) model and the order of the listening
sub-models corresponds to table 2.1. Black
dots represent the mean across all model
runs and bars denote 95% CI.

Figure 3.4: Distribution of average dura-
tion of mind-wandering episodes for each of
the models. “Single” is the mind-wandering
(MW) model and the order of the listening
sub-models corresponds to table 2.1. Black
dots represent the mean across all model
runs and bars denote 95% CI.

According to the observations made in the cur-
rent section, one would expect Listen 3 to have a
higher occurrence count distribution than Listen 4
and the distribution of episode duration is signifi-
cantly different from the other three models. How-
ever, this does not seem to be the case. One hy-
pothesis is that this is caused by the decay time
of the audio event. Sounds are available in the en-
vironment for a short amount of time, after which
they decay and are not accessible anymore. One
important side effect of processing audio informa-
tion in the attending state is that the audio event
is essentially “cleared out” of the environment be-
fore the mind-wandering episode begins. However,
if no listening production rules fire during the at-
tending state, as is the case for only Listen 3, the
audio event still may linger in the environment at
the beginning of the mind-wandering episode (sup-
posing it had not decayed by that point). As a
result, due to this still lingering audio event, the
listening production rules of Listen 3 will fire and
interrupt the episode immediately, as soon as the
mind-wandering episode begins. Overall, this would
result in fewer mind-wandering occurrences and
shorter mind-wandering episodes, as can be seen
in Fig. 3.3 and 3.4, respectively.
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3.3 Human-model comparison

Driving performance cannot be measured directly,
but rather through indices of performance. Two
such indices are lane deviation and steering wheel
angle (also discussed in section 3.1). The averaged
model data is shown in Fig. 3.6 and 3.8. It is rele-
vant to compare the trends in the data generated
by the models against those generated by human
drivers. Generally, values close to 0 indicate good
driving performance, since it means that the car
maintains a constant position close to the middle
of the current driving lane. The baseline model is an
indicator of almost “perfect” driving behaviour and
all other models are expected to perform worse (i.e.
the underlying distribution should contain higher
values).

Fig. 3.5 plots the distribution of mean lane devia-
tion for the 24 human participants in the single and
listening conditions. While the distributions of the
conditions overlap considerably, it is clear that the
mean of the listening sample is marginally smaller
than the one for the single condition.

Comparing these human results against the re-
sults of the model (Fig. 3.6), one can see that
the same trend is mostly preserved: listening sub-
models are generally lower in value than the mind-
wandering model (note that the data labeled un-
der the “single” condition is both figures should
be compared against each other). The mean lane
deviation distributions differ between models: the
heavier the processing of an audio event, the higher
the values and the more diverse the behaviour. This
can be seen by comparing the distribution of Lis-
ten 1 (light processing) against the distribution of
Listen 2 (heavy processing).

This phenomenon indicates that high levels of
information processing produce disrupted driving
behaviour. This is to be expected both from a i)
cognitive standpoint - the more cognitive resources
allocated to audio processing the fewer allocated
to driving - and ii) design standpoint - accessing
meaning takes 550ms, during which no driving oc-
curs. The authors of the original human study also
investigated the standard deviation and maximum
lane deviation of the human participants. Refer the
Appendix in order to note similar trends to those
discussed above.

Figure 3.5: Mean lane deviation of human par-
ticipants. Black dots represent the mean across
subject and bars denote 95% CI. Source: Ni-
jboer et al. [2016].

Figure 3.6: Mean lane deviation of model runs.
“Baseline” is the original Salvucci [2006] driv-
ing model, “single” is the mind-wandering
(MW) model and the order of the listening
sub-models corresponds to table 2.1. Black dots
represent the mean across subject and bars de-
note 95% CI.

Fig. 3.7 and 3.8, illustrating steering wheel be-
haviour, show similar trends: the listening condi-
tion demonstrates largely better performance than
the single condition and there seems to be a direct
relationship between the level of audio processing
and level of disrupted driving behaviour.
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Figure 3.7: Mean steering angle of human par-
ticipants. Black dots represent the mean across
subject and bars denote 95% CI. Source: Ni-
jboer et al. [2016].

Figure 3.8: Mean steering angle of model runs.
“Baseline” is the original Salvucci [2006] driv-
ing model, “single” is the mind-wandering
(MW) model and the order of the listening
sub-models corresponds to table 2.1. Black dots
represent the mean across subject and bars de-
note 95% CI.

Another possible driving performance index is
the number of changes in car heading. Fig. 3.9 and
3.10 show that the listening task improves consis-
tency. However, the same trend between the level of
audio processing and the level of disrupted driving
behaviour does not seem to hold anymore. Instead,
higher processing levels seem to be associated with
more consistent behaviour. This can be explained
by the fact that, during the 550ms of access mean-
ing processing there is no driving and, overall, there
is less time for swerving. Another interesting obser-
vation is the fact that the baseline model performs

worst out of all models. This, again, has a design-
related explanation: throughout the entire simula-
tion time only driving ensues and, overall, there is
more time for swerving.

Figure 3.9: Count of direction changes of hu-
man participants. Black dots represent the
mean across subject and bars denote 95% CI.
Source: Nijboer et al. [2016].

Figure 3.10: Count of direction changes of
model runs. “Baseline” is the original Salvucci
[2006] driving model, “single” is the mind-
wandering (MW) model and the order of the
listening sub-models corresponds to table 2.1.
Black dots represent the mean across subject
and bars denote 95% CI.

Overall, all metrics point towards one conclusion:
a purely qualitative analysis suggests that driving
performance is mostly improved by the listening
dual task, as compared to the single task condi-
tion (i.e. purely mind-wandering). This is consis-
tent with the findings in Nijboer et al. [2016]. Ad-
ditionally, the level of audio information processing
influences driving performance, since Listen 2 (the

11



heaviest processing model) performs consistently
worse than all other models.

3.4 Statistical analysis

3.4.1 Most realistic listening sub-model

The four listening sub-models are based on different
assumptions regarding the extent to which drivers
process audio information. Therefore, it is interest-
ing to formally determine which of the four models
is most realistic. Here, the term “realistic” is de-
fined as the most similar to human data [i.e. the
data form the Nijboer et al., 2016, study].
Thus, the root mean square deviation (RMSD)

for all indices of performance of each of the four
listening sub-models were computed and used to
select the most realistic model (see Appendix for
exact values). RMSD is used as a measure of sim-
ilarity between the predictions of a model and the
actual observations.
In order to compare the human data against the

listening sub-models, the following formula was ap-
plied:

RMSD =

√√√√(µmodelSingle − µhumanSingle)
2+

(µmodelListen − µhumanListen)
2

(3.1)

where µX represents the mean of the X dis-
tribution. humanSingle corresponds to the single
condition of the human study and humanListen
corresponds to the listening condition of the hu-
man study. modelSingle and modelListen are the
equivalent for the respective listening sub-model.
The above equation was applied to all indices

of driving performance (the term µmodelListen in
the equation) and, thus, for each of the four listen-
ing sub-models five different RMSD values were ob-
tained. Next, a scoring system was created to select
the best model: for each index of performance the
smallest value is identified (through the nature of
the RMSD definition, smaller values indicate higher
similarity to the human data) and the correspond-
ing model received one point; the model with the
most points was considered the best. Thus, the Lis-
ten 1 model seems to be most alike human data.

Since Listen 1 is the least processing intensive, this
might suggest that human drivers tend to allocate
few cognitive resources to processing the audio in-
formation coming from the radio while driving.

Note that the scoring system used to select the
best model attributes the same level of importance
to the all indices of performance and is not sensi-
tive to the magnitude of the RMSD values. How-
ever, other scoring systems may also be appropriate
for the task: for example, one could compute the
average of the five performance index RMSD val-
ues and choose the model with the smallest average
value (interestingly, in the present study, using this
scoring system would yield the same result). More-
over, some could argue that, since three of the per-
formance indices compute lane deviation in some
form, attributing the same level of importance to all
indices may be undesirable. However, since the au-
thors of the human study also attributed the same
level of importance to all indices of performance,
the present study follows the same design, for con-
sistency.

3.4.2 Statistical comparison between mind-
wandering and listening models

The figures in section 3.3 qualitatively show evi-
dence that listening improves driving performance.
However, one should wonder if this difference in
performance is statistically significant.

The statistical analysis consisted of performing
one-to-one comparisons of all performance indices
of the mind-wandering model data against all per-
formance indices of the best listening sub-model
data (i.e. Listen 1 model). Thus, five Wilcoxon
signed-rank test were performed, using the R sup-
ported function§. The Wilcoxon signed-rank test is
the non-parametric equivalent of a paired Student’s
t-test, meaning that it is commonly used to deter-
mine whether the means of two sets of data are sig-
nificantly different from each other. The Wilcoxon
signed-rank test was used because the data does not
follow a normal distribution (as revealed by apply-
ing Shapiro-Wilk normality tests).

The Wilcoxon tests revealed that the difference
in means between the mind-wandering and best lis-
tening sub-models is statistically significant (p <

§https://www.rdocumentation.org/packages/stats/

versions/3.6.2/topics/wilcox.test
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0.05 for all indices of performance; for exact val-
ues refer to the Appendix). This shows that the
data associated with the listening condition is sig-
nificantly lower than the data associated with the
mind-wandering condition for all indices of driv-
ing performance. Since low values are indicative of
better driving performance, this is strong evidence
that listening to the radio improves driving perfor-
mance.

4 Discussion

Driving is a highly demanding task from a cognitive
standpoint, since it involves the interplay of multi-
ple concurrent sub-tasks. In this context, one would
expect that undergoing a secondary task while driv-
ing would have a negative impact on performance.
Instead, Nijboer et al. [2016] found the opposite ef-
fect in their study. The authors hypothesized that
a simple enough secondary task (such as listening
to the radio) counteracts the intrusion of mind-
wandering, a more demanding and involuntary pro-
cess.

The current study investigated the phenomenon
found by Nijboer et al. [2016] by building and
analysing two ACT-R computational models. Both
models augmented an already existing model of hu-
man driving behaviour proposed by Salvucci [2006].
The first model implemented mind-wandering be-
haviour as a process of continuous retrieval of mem-
ory chunks. The second model further augmented
the mind-wandering model and was divided into
four sub-models, which implemented different lev-
els of audio information processing. A qualitative
analysis of a random, but representative, model
run demonstrated that the mind-wandering model
implements realistic behaviour. Further statistical
analysis of driving performance indices revealed
that i) the least audio information processing in-
tensive listening sub-model behaves most similarly
to the human data and ii) the best listening sub-
model performs better on the driving task than the
mind-wandering model.

Overall, the present study provides strong ev-
idence in favour of the idea that listening to
the radio while driving in a monotonous environ-
ment has a positive effect on driving performance.
Since the single condition model involved mind-
wandering behaviour and the results of the study

point towards reasonable behaviour, this suggests
that mind-wandering is a plausible explanation for
the phenomenon observed by Nijboer et al. [2016].
Moreover, the present study provided insight into
how audio information processing influences driv-
ing performance: the more intensive the process-
ing level, the worse the performance on the driving
task.

4.1 Model evaluation

The mechanisms embedded into the models built as
part of the current study are based on assumptions
and simplifications of reality. As a result, the more
realistic the models are, from a biological stand-
point, the more useful and reliable the results of
the study. The models of the current study are
grounded in past research and reasonable assump-
tions of biological processes [see e.g. Salvucci and
Taatgen, 2010], thus they can claim good biological
plausibility. However, points of improvement with
regards to biological plausibility can be identified.

The driving model only implements basic vehicle-
control behaviour. Thus, it lacks an extra level
of metacognition, defined as the ability to reason
about one’s own performance and adjust one’s own
behaviour appropriately. In reality, drivers have
been shown to be aware that their own attention
is impaired while performing a dual task and allow
themselves a larger margin of error. This type of
adaptation of driving behaviour in distracted situ-
ations is important if one wishes to develop a re-
alistic model of human driving behaviour [Salvucci
and Taatgen, 2010].

The mind-wandering model is based on a pro-
cess of continuous retrieval of memory chunks. The
present model considers that all memory chunks
have the same activation baseline and the same
chance of being retrieved at a time. However, a
more biologically plausible approach would be to
implement spreading activation between memories,
ensuring that memories of the same valence (posi-
tive, negative or neutral) will be retrieved in a se-
quence [van Vugt et al., 2012].

The listening model was divided into four sub-
models based on assumptions made regarding the
level of audio information processing performed by
a human driver. Although reasonable, these as-
sumptions were not based on any former research
but rather on understanding of phenomena and in-
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trinsic human intuition. More specifically, the lis-
tening sub-model assumptions were gradually for-
mulated in order to better match the human study
behaviour. Thus, it is unclear if Listen 1, deemed
the most realistic out of all four sub-models, is also
the most realistic sub-model overall or if different
assumptions would match the human data even
better.
The main strengths of the models lie in generality

and simplicity. Firstly, both models implement di-
verse human behaviour, since the exit conditions of
the mind-wandering model can fire at diverse mo-
ments in time and in diverse situations. Secondly,
both models implement simplified versions of the
underlying biological mechanisms and no rules were
introduced unless necessary from a cognitive stand-
point.

4.2 Further research

The present study found statistical significance in
terms of the difference in behaviour between the
mind-wandering and listening models, for all in-
dices of performance. However, this result is incon-
sistent with the human study, where the authors
found evidence of statistical significance for only
one of the indices. This does not necessarily mean
that the studies generated contradictory results. It
could be the case that a larger sample of human
drivers would reveal statistical significance - in the
end, human behaviour is more diverse than the be-
haviour of a computational model. Thus, further
investigation would be required in order to deter-
mine the cause of this discrepancy.
The present study implements a simulation in a

boring environment. However, it is unclear what a
“boring” environment entails: it could be consid-
ered as easy (as is the case in this study), familiar
to the driver or non-stimulating in terms of the
landscape. For example, one might study the reac-
tion times of drivers stuck in a traffic jam, in the
same single and dual conditions. It could be that
listening to the radio would not have the same ef-
fect on driving performance anymore since driving
might not be perceived as the main task anymore -
in the end, it would mainly involve waiting in line.
The present study does not investigate driving

performance directly, but indirectly through indices
of performance. Perhaps other indices of perfor-
mance might be more appropriate, depending on

which aspect of driving one wishes to investigate.
While the present study investigates something
akin to driving accuracy and stability, it could be
that investigating reaction times in life-threatening
situations or brain imaging techniques would reveal
interesting patterns, which might contradict or fur-
ther reinforce the present study. Approaching an
issue from different angles gives a more thorough
narrative of underlying mechanisms.

4.3 Bigger picture

There are many misconceptions regarding sec-
ondary task interference and the appropriate safety
regulations. For example, although it has been
shown that there is almost no difference in terms of
driving performance between handheld and hands-
free phone use [Horrey and Wickens, 2006], efforts
are still allocated to designing in-vehicle devices
for phone mounting purposes. This is further rein-
forced by the Listen 2 model, which suggests that
paying full attention to audio information is asso-
ciated with worse driving performance. From this
it follows that a hands-free phone conversation, a
hand-held phone conversation or an in-vehicle con-
versation would not make a difference in terms of
performance on the driving task. In fact, this is ex-
actly the pattern displayed by human participants
in a study by Collet et al. [2009], where the authors
measured electrodermal activity, heart rate and re-
action times.

One hope is that cognitive models, such as those
built as part of this study, can be used to better
pinpoint the true source of secondary task interfer-
ence while driving and to test solutions.
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A Appendix

Figure A.1: Standard deviation of lane devia-
tion of human participants. Black dots repre-
sent the mean across subject and bars denote
95% CI. Source: Nijboer et al. [2016].

Figure A.2: Standard deviation of lane devia-
tion of model runs. “Baseline” is the original
Salvucci [2006] driving model, “single” is the
mind-wandering (MW) model and the order of
the listening models corresponds to table 2.1.
Black dots represent the mean across subject
and bars denote 95% CI.

Figure A.3: Maximum of lane deviation of
human participants. Black dots represent the
mean across subject and bars denote 95% CI.
Source: Nijboer et al. [2016].

Figure A.4: Maximum of lane deviation of
model runs. “Baseline” is the original Salvucci
[2006] driving model, “single” is the mind-
wandering (MW) model and the order of the
listening models corresponds to table 2.1. Black
dots represent the mean across subject and
bars denote 95% CI.
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B Appendix

Listen model 1 Listen model 2 Listen model 3 Listen model 4

Mean Lane Deviation 0.945 1.498 0.892* 0.899
SD Lane Deviation 1.969 2.025 1.932 1.916*
Max Lane Deviation 14.799* 15.705 14.804 15.077
Direction Change Count 6.776* 12.634 12.793 11.899
Mean Steering Angle 17.057* 36.674 20.081 22.396

Score 3 0 1 1

Table B.1: The root mean square deviation values of each index of performance for each of the
listening sub-models. Stars mark the smallest values per each index of performance. The score
was obtained by counting the number of index minimal values per each model.

Shapiro test Wilcoxon-test
p-value

Mean Lane Deviation 5.099e-08 0.005788
SD Lane Deviation 4.724e-08 0.02495
Max Lane Deviation 5.139e-08 0.0286
Direction Change Count 0.006692 0.0109
Mean Steering Angle 6.957e-05 1.319e-11

Table B.2: The exact p-values of the Shapiro-Wilk normality test and of the Wilcoxon signed-rank
test. Bold marks significance (i.e. values smaller than the significance level α = 0.05).

18


	Introduction
	Driving in a monotonous environment
	Detriments of mind-wandering
	Benefits of a secondary task
	Computational driving model
	Current study
	Description
	Motivation


	Model
	ACT-R architecture
	Threaded cognition

	Baseline model: driving
	Mind-wandering model
	Listening model

	Results
	General behaviour
	Mind-wandering behaviour
	Human-model comparison
	Statistical analysis
	Most realistic listening sub-model
	Statistical comparison between mind-wandering and listening models


	Discussion
	Model evaluation
	Further research
	Bigger picture

	Appendix
	Appendix

