
Completeness over Kripke models of
a cyclic proof system for game logic

E.S. Hoexum

Master Project Mathematics

University of Groningen

July 11, 2022

First supervisor: Second supervisor:
Prof. dr. H.H. Hansen Dr. A.E. Sterk

Abstract

Game logic is a modal logic introduced by Rohit Parikh for reasoning about the outcomes that
players can achieve in 2-player games. The language of game logic is usually interpreted over monotone
neighbourhood models, but it can also be interpreted through Kripke semantics, which means the atomic
games are interpreted as 1-player games. Parikh also gave a Hilbert-style proof system Par for game logic
and it was shown by Enqvist et al. that this system is complete over monotone neighbourhood models. For
their proof, they defined the proof systems CloM, CloG and G, which are used as intermediate systems to
connect Par to a cyclic sequent system Clo, which is known to be complete. In the process, all of these
systems are shown to be complete over monotone neighbourhood models.

As game logic can also be interpreted over Kripke models, it is natural to wonder whether the proof
systems defined by Enqvist et al. can be adapted to be complete over Kripke models. In this thesis, we
adapt CloG into a new cyclic sequent system for game logic and we show that this system is complete
over Kripke models. We do this by giving a validity-preserving translation from game logic to the modal
µ-calculus and then defining a transformation from Clo to our new system.
Keywords: game logic, modal µ-calculus, completeness, proof systems, sequent systems, cyclic systems

1

CONTENTS

Contents

1 Introduction 3
1.1 Background . 3
1.2 Motivation . 3
1.3 Approach and main results . 4
1.4 Outline . 4

2 Modal logic 5
2.1 Kripke and neighbourhood models . 5
2.2 Augmented neighbourhood models . 8
2.3 Normal vs. monotone modal logic . 11

3 The modal µ-calculus 15
3.1 Fixpoints . 15
3.2 Syntax . 15
3.3 Kripke semantics for the modal µ-calculus . 17
3.4 Subsumption order . 20
3.5 Names and annotations . 21
3.6 The proof system Clo . 21

4 Game logic 24
4.1 Game logic syntax and semantics . 24
4.2 Order on fixpoint formulas and names . 26
4.3 The proof system CloGK . 28

5 From game logic to the modal µ-calculus 29
5.1 Augmented game models . 29
5.2 Translating game logic into the modal µ-calculus . 29
5.3 Transforming Clo-derivations to CloGK-derivations 33
5.4 Completeness of CloGK via transformation . 38

6 Conclusion 39
6.1 Discussion . 39
6.2 Future research . 39

References 40

2

1 INTRODUCTION

1. Introduction

1.1. Background

In 1985, Parikh [1] introduced game logic as a modal logic for reasoning about the outcomes that
can be achieved in two-player games. The two players in these games are conventionally referred
to as Angel and Demon. The games and formulas in the game logic language are constructed
by applying certain operators to atomic games and propositional atoms. One operator that is
essential to game logic’s ability to describe two-player games is the dual operator (−)d, which
indicates the two players switching roles. This means that any moves or strategies that can be
applied by Angel in γ are moves or strategies that can be applied by Demon in γd, and vice versa.
The modal formula 〈γ〉ϕ indicates that Angel has a strategy in the game γ to achieve an outcome
where ϕ is true. Along with the language and semantics for game logic, Parikh [1] also provided a
Hilbert-style proof system Par for the language and sketched a way to translate game logic into
the bimodal normal µ-calculus. Later, Pauly [2] gave a translation that showed that game logic can
also be seen as a fragment of the monotone µ-calculus.

Semantically, game logic is usually interpreted over game models, which were also introduced by
Parikh in [1] and are essentially monotone neighbourhood models. These models consist of a set of
states, a valuation that defines which propositions are true at each state and an effectivity function
Eg for every atomic game g, which assigns to each state a set of neighbourhoods. Effectivity
functions Eγ for non-atomic games γ are constructed inductively alongside the notion of truth in
a game model. The intuition behind these effectivity function is that X ∈ Eγ(s) means that Angel
can achieve the set X when playing the game γ at the state s. Since Kripke models can be seen as
a special case of neighbourhood models, it is also possible to interpret game logic over Kripke
models. When we do this, all the atomic games are interpreted as 1-player games. It was shown
by Pauly [2] that game logic interpreted over Kripke models can be translated directly into the
normal µ-calculus, further deepening the connection between game logic and the µ-calculus.

A good property for a proof system to have is completeness with respect to a certain semantics,
which means that, whenever a formula is considered valid over that semantics, the formula is
derivable in the proof system. The completeness of the proof system Par for game logic introduced
by Parikh was an open question for a long time. This was until Enqvist et al. [3] were able to
prove the completeness of Par over game models by connecting it to a cyclic sequent system Clo
for the normal modal µ-calculus, which was introduced and shown to be complete over Kripke
models in [4]. This proof started with taking a game logic formula that was valid over game
models and translating it into a valid normal µ-calculus formula. Then, by the completeness of
Clo, there is a Clo-derivation of this translated formula and, trough a series of transformations to
other proof systems, this derivation is turned into into a Par-derivation for the original formula,
thus proving the completeness of Par. The proof systems that are used and the transformations
that are performed in [3] are summarised below.

Par←− G←− CloG←− CloM←− Clo

Of these proof systems, the systems Clo, CloM and CloG are called cyclic proof systems, since
they each contain a closure rule, which is used to detect repeated unfoldings of fixpoints.

1.2. Motivation

Since it is known that game logic can be interpreted over Kripke models and the system Clo is
complete over Kripke models, it is natural to wonder if we can adapt the system Par into a similar
proof system that is complete over Kripke models. This would also involve defining new proof

3

1 INTRODUCTION

systems that are adapted from G and CloG in such a way that they can be shown to be complete over
Kripke models by a sequence of transformations similar to the one from [3]. In the original proof,
the system CloM was defined to be a monotone analogue of Clo and facilitated switching from
Kripke semantics to neighbourhood semantics. However, if we we work with Kripke semantics
throughout the entire proof, there is no need for such a system, so the transformation can go
directly from Clo to a new proof system that is analogous to CloG.

So, a clear first step in this process is defining a sequent system for game logic that is adapted
from the system CloG in such a way that it is complete over Kripke models instead of game models.
Once such a proof system has been defined, it could be shown to be complete over Kripke models
by finding a way to transform Clo-derivations into derivations from this new system.

1.3. Approach and main results

The aim of this thesis is to adapt the existing proof system CloG into a new proof system for game
logic, which we call CloGK, and prove its completeness over Kripke models. This system is the
same as CloG, aside from the fact that it uses the normal modal rule instead of the monotone
modal rule. It works over game logic formulas that are annotated with names for formulas of
the form 〈γ×〉ϕ, which we call greatest fixpoint formulas. The names are used to keep track of the
unfoldings of greatest fixpoint formulas and together with the closure rule they allow us to detect
when a fixpoint formula is unfolded repeatedly, which closes a branch of a proof tree. In order to
apply conditions on the closure rule, we use the order 4 on the set F of fixpoint formulas, which
are game logic formulas of the form 〈γ×〉ϕ or 〈γ∗〉ϕ. This order is analogous to the subsumption
order on fixpoint variables in the modal µ-calculus.

With the system CloGK defined, we give a translation (−)] from normal form game logic
formulas to modal µ-calculus formulas and show that it is validity-preserving. For a game logic
formula ϕ, the fixpoint formulas in ϕ will correspond directly to fixpoint variables in the resulting
modal µ-calculus formula ϕ] and the subsumption order on the fixpoint variables in ϕ] will be
reflected into the order 4 on the fixpoint formulas in ϕ.

Finally, we show how a Clo-derivation for a translated formula ϕ] can be transformed into a
CloGK-derivation for the formula ϕ. We do this by showing that every inference rule in the system
Clo can be replaced by some sequence of applications of inference rules from CloGK.

This allows us to prove that CloGK is complete over Kripke models by the following argument.
Say we have a game logic formula ϕ that is valid over Kripke models, then we know that ϕ] is
also valid over Kripke models, since (−)] is validity-preserving. Then, by the completeness of Clo,
there is a Clo-derivation of ϕ] and we can then transform it into a CloGK-derivation for ϕ.

1.4. Outline

This thesis is structured as follows. In section 2, we review the syntax of modal logic and two
semantics that are standardly used to interpret it, namely Kripke and neighbourhood semantics.
In section 3, we review the syntax of the modal µ-calculus, along with other useful concepts,
and we take a closer look at the system Clo for the modal µ-calculus from [4]. In section 4, we
review the syntax and semantics of game logic and we introduce the system CloGK for game
logic. In section 5, we show how Clo-derivations can be transformed into CloGK-derivations, along
with giving the translation (−)] from game logic formulas into modal µ-calculus formulas, and
subsequently show that this proves the completeness of CloGK over Kripke models. Finally, in
section 6, we conclude the thesis and discuss possible future work.

4

2 MODAL LOGIC

2. Modal logic

2.1. Kripke and neighbourhood models

In this thesis, we will work with proof systems for game logic and the modal µ-calculus. In
order to understand these systems, we will first need to define these languages and the different
semantics we will interpret them over. In this section, we start with defining the syntax and
semantics of modal logic, which is necessary in order to define the syntax and semantics of the
modal µ-calculus in subsection 3.1. The definitions given in this section can be found in [5], [6]
and [7]. The language of modal logic is the language of propositional logic with the addition of
two modalities, ♦ and �.

Definition 2.1. Given a set Φ0 of atomic propositions, the language LML(Φ0) of modal logic is
given by the following grammar.

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �ϕ, p ∈ Φ0.

When the set Φ0 is fixed, but arbitrary, we will write LML.

The other modality ♦ and the commonly used connective ∨ are not included in the grammar,
since they can be defined in terms of the other logical symbols as follows.

ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), ♦ϕ := ¬�¬ϕ.

Some other symbols that are commonly used are the connectives→ and↔, which can be defined
as follows.

ϕ→ ψ := ¬ϕ ∨ ψ, ϕ↔ ψ := (ϕ ∧ ψ) ∨ (¬ϕ ∧ ¬ψ).

It is sometimes useful to specify that a formula is in negation normal form, meaning that the negation
operator only occurs in front of atomic propositions. This condition forces us to add the ∨ and ♦
operators to the grammar.

Definition 2.2. Given a set Φ0 of atomic propositions, the language LML
NF (Φ0) of negation normal

form basic modal logic is given by the following grammar.

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ, p ∈ Φ0

When the set Φ0 is fixed, but arbitrary, we will write LML
NF .

With the syntax defined, we can now give meaning to the formulas of modal logic with
semantics, for example the semantics of Kripke models.

Definition 2.3. Given a set Φ0 of atomic propositions, a Kripke model K = 〈S, R, V〉 consists of

• a set of states S,
• a relation R ⊆ S× S that defines which states can be accessed from each state, and
• a valuation V : Φ0 → P(S) that defines at which states each p ∈ Φ0 is true.

The class of all Kripke models is denoted K.

We can use the relation R to define R(s) = {s′ ∈ S | sRs′}, which is the set of states that are
accessible from a given state s. This means we can also see the relation as a map R : S → P(S)
that maps a state s to the set R(s). These Kripke models give us a way to check whether modal
logic formulas are true in certain states.

5

2 MODAL LOGIC

Definition 2.4. In a Kripke model K = 〈S, R, V〉, the truth of ϕ ∈ LML at s ∈ S is defined
inductively as follows.

K, s |= p ⇔ s ∈ V(p) (for p ∈ Φ0)

K, s |= ¬ϕ ⇔ K, s 6|= ϕ

K, s |= ϕ ∧ ψ ⇔ K, s |= ϕ and K, s |= ψ

K, s |= �ϕ ⇔ K, s′ |= ϕ for all s′ ∈ S such that sRs′

The truth assignments of ∨, ♦→ and↔ can be found by writing them in terms of the other
operators using their definition, but we can also give a direct truth-definition for them as follows.

K, s |= ϕ ∨ ψ ⇔ K, s |= ϕ or K, s |= ψ

K, s |= ♦ϕ ⇔ K, s |= ϕ for some s′ ∈ S such that sRs′

K, s |= ϕ→ ψ ⇔ K, s |= ϕ⇒ K, s |= ψ

K, s |= ϕ↔ ψ ⇔ K, s |= ϕ⇔ K, s |= ψ

With the truth-definition given, we can define validity with respect to Kripke semantics; this
will become important later for the definitions of soundness and completeness in the various proof
systems.

Definition 2.5. A formula ϕ ∈ LML is said to be

• valid on a Kripke model K, denoted K |= ϕ, if K, s |= ϕ for all s ∈ S.
• valid over Kripke models, denoted |=K ϕ, if K |= ϕ for all Kripke models K.

In order to give better intuition for the definitions of truth and validity we provide a short
example below.

Example 2.6. For Φ0 = {p, q}, take the Kripke model K = 〈S, R, V〉, where S = {s1, s2, s3},
R(s1) = {s1, s3}, R(s2) = S, R(s3) = {s1, s2}, V(p) = {s1, s2} and V(q) = {s1, s3}. This model is
represented visually in the figure below.

s1
{p, q}

s2
{p}

s3
{q}

Now, let’s look at the truth of a few formulas.

1. We have K, s3 |= q, since s3 ∈ V(q).
2. We have K, s3 |= �p, since K, s |= p for all s ∈ R(s3) = {s1, s2}.
3. We have K, s2 6|= �q, since s2Rs2 and K, s2 6|= q.
4. We have K, s1 |= ♦¬p, since s1Rs3 and K, s3 |= ¬p.
5. We have K |= ♦q, since K, s1 |= q and sRs1 for all s ∈ S.
6. We have K, s2 |= �♦q, since K, s |= ♦q for all s ∈ R(s2) = S.

Instead of using a relation to indicate how the states are related to each other, we could also
define a neighbourhood function N : S→ P(P(S)). Instead of one set, such a function assigns to a
state s a set N(s) of neighbourhoods. This gives rise to a different kind of model.

6

2 MODAL LOGIC

Definition 2.7. Given a set Φ0 of atomic propositions, a neighbourhood modelN = 〈S, N, V〉 consists of

• a set of states S,
• a neighbourhood function N : S→ P(P(S)) and
• a valuation V : Φ0 → P(S).

The class of all neighbourhood models is denoted by N.

In this thesis, we will mostly be working with the class of monotone neighbourhood models.

Definition 2.8. Given two partially ordered sets P = (P,≤) and P′ = (P′,≤′), a map f : P→ P′

is considered monotone if, for all x, y ∈ P, we have

x ≤ y ⇒ f (x) ≤′ f (y)

Since (P(S),⊆) is a partially ordered set, if we interpret a neighbourhood function as a map
N : P(S)→ P(S) by setting N(X) := {s ∈ S | X ∈ N(s)}, we can apply the definition above and
obtain a definition of monotone neighbourhood functions and models.

Definition 2.9. A neighbourhood function N : S → P(P(S)) is monotone if, for all s ∈ S and
X, Y ⊆ S such that X ⊆ Y, we have

X ∈ N(s) ⇒ Y ∈ N(s).

We say a neighbourhood model is monotone when its neighbourhood function is monotone. The
class of all monotone neighbourhood models is denoted by Nmon.

A neighbourhood model is similar to a Kripke model, so most of the truth-definition is the
same. However, to define truth for the box-modality, we first need to define the truth-set.

Definition 2.10. Given a language L and a modelM defined on L, the truth-set of ϕ ∈ L inM is

JϕKM = {s ∈ S | M, s |= ϕ},

which contains all the states at which ϕ is true in the modelM.

Definition 2.11. In a neighbourhood model N = 〈S, N, V〉, the truth of ϕ ∈ LML at s ∈ S is
defined inductively as follows.

N , s |= p ⇔ s ∈ V(p) (for p ∈ Φ0)

N , s |= ¬ϕ ⇔ N , s 6|= ϕ

N , s |= ϕ ∧ ψ ⇔ N , s |= ϕ and N , s |= ψ

N , s |= �ϕ ⇔ JϕKN ∈ N(s).

Again, we could find the truth assignments of ∨ and ♦ by writing out their definitions, but a
direct truth-definition is more convenient.

N , s |= ϕ ∨ ψ ⇔ N , s |= ϕ or N , s |= ψ

N , s |= ♦ϕ ⇔ JϕKC
N /∈ N(s).

The definition of validity for neighbourhood semantics similar to the one given for Kripke
semantics in Definition 2.5. We use |=N to denote validity over neighbourhood models and
|=Nmon for validity over monotone neighbourhood models. Below we provide an example of a
neighbourhood model and some true or valid formulas.

7

2 MODAL LOGIC

Example 2.12. For Φ0 = {p, q}, takeN = 〈S, N, V〉, where S = {s1, s2, s3}, V(p) = {s1, s2}, V(q) =
{s1, s3}, N(s1) = {{s1}, {s3}}, N(s2) = {{s2}, {s1, s3}} and N(s3) = {{s1, s2}}. This model is rep-
resented visually in the figure below.

s1

s2 s3

{p, q}

{p} {q}

Now, let’s look at the truth of a few formulas.

1. We have N , s1 |= p, since s1 ∈ V(p).
2. We have N , s3 |= �p, since JpKN = {s1, s2} ∈ N(s3).

3. We have N , s2 |= �q, since JqKN = {s1, s3} ∈ N(s2).

4. We have N , s1 |= �¬p, since J¬pKN = {s3} ∈ N(s1).

5. We have N , s2 |= �¬q, since J¬qKN = {s2} ∈ N(s2).

6. We have N , s1 |= ♦q and N , s3 |= ♦q, since JqKC
N = {s2} /∈ N(s1) ∪ N(s3).

7. We have N , s1 |= ��p, since J�pKN = {s3} ∈ N(s1).

8. We have N , s2 |= �♦q, since J�qKN = {s1, s3} ∈ N(s2).

9. We have N |= ♦¬(p ∨ q), since J¬(p ∨ q)KC
N = ∅C = S /∈ N(s1) ∪ N(s2) ∪ N(s3).

2.2. Augmented neighbourhood models

We can see a relation R as a neighbourhood function that associates exactly one set, R(s), with
each state s. Since we can see relations as a special kind of neighbourhood functions, we can see a
Kripke model as a special type of neighbourhood model. In this section, we will show that the
class K of Kripke models, in fact, corresponds directly to a specific subclass of neighbourhood
models, namely the class Naug of augmented neighbourhood models. The definitions and results given
in this section were first established by Chellas in [5].

Definition 2.13. Given a set of states S, a neighbourhood function N : S→ P(P(S)) is augmented
if, for all s ∈ S, the set N(s):

- contains its core. ⋂
N(s) ∈ N(s)

- is upwards closed.
X ∈ N(s), X ⊆ Y ⇒ Y ∈ N(s)

A neighbourhood model is augmented if its neighbourhood function is augmented. We say a
formula ϕ ∈ LML is valid over augmented neighbourhood models, denoted |=Naug ϕ, if N |= ϕ for all
augmented neighbourhood models N .

In order to show the correspondence between augmented neighbourhood models and Kripke
models, we will first show a way to construct an augmented neighbourhood function on S, given
a relation on S, and vice versa.

8

2 MODAL LOGIC

Definition 2.14. Given a relation R : S→ P(S), the corresponding neighbourhood function is

NR(s) = {X ⊆ S | R(s) ⊆ X}.

Given an augmented neighbourhood function N : S→ P(P(S)), the corresponding relation is

RN(s) = ∩N(s).

Lemma 2.15. For all relations R, the corresponding neighbourhood function NR is augmented.

Proof. Fix s ∈ S. Say s′ ∈ R(s), then s′ ∈ X for all X such that R(s) ⊆ X. This means that

s′ ∈
⋂

R(s)⊆X

X =
⋂

X∈NR(s)

X =
⋂

NR(s)

So R(s) ⊆ ∩NR(s), which means that ∩NR(s) ∈ NR(s). Next, say that X ∈ NR(s) and X ⊆ Y, then

R(s) ⊆ X ⊆ Y ⇒ Y ∈ NR(s).

The two conditions from Definition 2.13 are satisfied, so NR is augmented.

It is easily shown that the two constructions given in Definition 2.14 are each others inverse. This
implies that they define a bijection between relations and augmented neighbourhood functions.

Lemma 2.16. For all relations R and augmented neighbourhood functions N, we have

RNR(s) = R(s) and NRN (s) = N(s) ∀s ∈ S.

Proof. Take an arbitrary relation R, then, for all s ∈ S, we have

RNR(s) = ∩NR(s) =
⋂
{X ⊆ S | R(s) ⊆ X} = R(s).

Given an arbitrary augmented neighbourhood function N, we have, for all s ∈ S,

NRN (s) = {X ⊆ S | RN(s) ⊆ X} = {X ⊆ S | ∩ N(s) ⊆ X}.

Since N is augmented, we know that ∩N(s) ∈ N(s) and that it is upwards closed. This means
that ∩N(s) ⊆ X implies that X ∈ N(s), so NRN (s) = {X ⊆ S | X ∈ N(s)} = N(s).

We say a relation R and augmented neighbourhood function N correspond if R = RN or,
equivalently, N = NR. We lift this correspondence relation to Kripke models and augmented
neighbourhood models by saying a Kripke model K = 〈S, R, V〉 and an augmented neighbourhood
model N = 〈S, N, V〉 correspond whenever R and N correspond. We will now show that these
classes of models are pointwise modally equivalent, meaning that if a formula is true at some state s
in a Kripke model, then it is also true at s in the corresponding augmented neighbourhood model,
and vice versa. This result was first shown by Chellas in [5, Theorem 7.9].

Theorem 2.17. For all corresponding Kripke models K = 〈S, R, V〉 and augmented neighbourhood
models N = 〈S, N, V〉, all s ∈ S and all ϕ ∈ LML, we have

K, s |= ϕ ⇔ N , s |= ϕ

9

2 MODAL LOGIC

Proof. Take an arbitrary Kripke model K = 〈S, R, V〉, then the corresponding augmented neigh-
bourhood model is N = 〈S, NR, V〉. We will prove the claim using structural induction on ϕ.
For the base step, take an arbitrary atomic proposition p. In that case

K, s |= p ⇔ s ∈ V(p) ⇔ N , s |= p.

For the inductive hypothesis, assume that we have modal logic formulas ϕ and ψ such that

K, s |= ϕ ⇔ N , s |= ϕ and K, s |= ψ ⇔ N , s |= ψ.

Now, for the inductive step, we prove the claim for each formula that can be constructed by
applying one operator to ϕ or to ϕ and ψ.
For ¬ϕ we have

K, s |= ¬ϕ ⇔ K, s 6|= ϕ
(IH)
⇔ N , s 6|= ϕ ⇔ N , s |= ¬ϕ.

For ϕ ∧ ψ, we have

K, s |= ϕ ∧ ψ ⇔ K, s |= ϕ and K, s |= ψ

(IH)⇔ N , s |= ϕ and N , s |= ψ

⇔ N , s |= ϕ ∧ ψ

For �ϕ, we have

K, s |= �ϕ ⇔ K, s |= ϕ for all s′ ∈ S s.t. sRs′

(IH)⇔ N , s |= ϕ for all s′ ∈ S s.t. sRs′

⇔ R(s) ⊆ JϕKN
⇔ JϕKN ∈ NR(s)

⇔ N , s |= �ϕ

We have now proven by induction that for all modal logic formulas ϕ, we have

K, s |= ϕ ⇔ N , s |= ϕ.

From this result, it easily follows that these classes of models have the same valid formulas.

Theorem 2.18. For all modal formulas ϕ,

|=K ϕ ⇔ |=Naug ϕ

Proof. We will prove this claim by contraposition, so we will show that, for all ϕ ∈ LML,

6|=K ϕ ⇔ 6|=Naug ϕ.

First, assume we have ϕ ∈ LML such that 6|=K ϕ. This means that there exists a Kripke model
K = 〈S, R, V〉 and state s ∈ S such that K, s 6|= ϕ. Let N be the augmented neighbourhood model
that corresponds to K, then, by Theorem 2.17, we have N , s 6|= ϕ, which implies that 6|=Naug ϕ.

10

2 MODAL LOGIC

Next, assume we have ϕ ∈ LML such that 6|=Naug ϕ. Then, there is some augmented neighbour-
hood model N = 〈S, N, V〉 and state s ∈ S such that N , s 6|= ϕ. Let K be the Kripke model that
corresponds to N , then, by Theorem 2.17, we know that K, s 6|= ϕ, which means that 6|=K ϕ.

So far, we have been working with models that use only one relation or neighbourhood
function, but, further on in this thesis, we will work with Kripke models and neighbourhood
models that use a set of functions. We say such a neighbourhood model is augmented if all of its
neighbourhood functions are augmented. The correspondence relation defined in this section can
easily be expanded to these Kripke models and augmented neighbourhood models with multiple
functions and thus, modal equivalence can be shown for the class of Kripke models and the class
of augmented neighbourhood models with the same number of functions.

2.3. Normal vs. monotone modal logic

Proof systems are systems that are used to formalize logical arguments. These proof systems are
defined for some language and consist of a list of axioms, which are formulas that are assumed to
always hold, and a list of inference rules, which are of the form

A1, . . . , An
A

,

where A1, . . . , An are the premises and A is the conclusion. One example of a class of proof
systems is the class of Hilbert systems, which were first introduced by David Hilbert.

Definition 2.19. A Hilbert system H defined for the language L consists of a set of axioms, which
are formulas from L, and a set of inference rules, whose premises and conclusion are formulas
from L. A derivation in a Hilbert system H is a finite sequence of formulas from L, where each
formula is either an axiom in H or the conclusion of an inference rule of H, whose premises
occurred earlier in the sequence. A formula ϕ ∈ L has an H-derivation, denoted `H ϕ, if there is a
derivation in H with ϕ as its last line.

To improve readability, each formula in an H-derivation is numbered and annotated with the
axiom it is an instance of, or the inference rule it follows from along with the numbers of the
premises. An example of a Hilbert system is the system Par for game logic given by Parikh in [1].

Another class of proof systems is the class of sequent systems. Derivations in these systems
are not a list of formulas, like in a Hilbert system, but a tree, where each node is labelled with a
sequent ∆ = A1, . . . , An, which is a finite set of formulas. An inference rule in a sequent system
connects the nodes with its premises to the node with its conclusion, where the premise nodes are
called successors of the conclusion node. Inference rules may have multiple premises, which leads
to the derivations having the shape of a tree, which is built upwards from one root sequent. A leaf
is a node with no successors and a branch is a path from the root to a leaf.

Definition 2.20. A sequent system (or sequent calculus) S defined for the language L consists of
a set of axioms, which are formulas from L, and a set of inference rules, whose premises and
conclusion are formulas from L. A derivation in a sequent system S is a tree of sequent from L,
where each sequent is either an axiom in S or follows from the formula(s) directly above it by
some inference rule from S. A formula ϕ ∈ L has an S-derivation, denoted `S ϕ, if there is a
derivation in S with ϕ as its root.

Within a derivation in a sequent system, a sequent ∆ = A1, . . . , An is interpreted as the
disjunction of all the Ai’s. Some examples of sequent systems are Clo from [4] and CloG from [3].

11

2 MODAL LOGIC

Further on in this thesis, we introduce a sequent system called CloGK, which is created by replacing
one of the inference rules of CloG.

There are some properties that are desirable for a system to have, relative to certain semantics.
For a system S and a class of models C defined for the same language L, we would like to know
that if there is a derivation for a formula in S, then that formula is also valid over the semantics
of C. Otherwise, we would be able to derive formulas that are not valid, which means that the
system is not useful in combination with this semantics. This property is known as soundness.

Definition 2.21 (Soundness). Given a language L, a class C of models defined for L and a proof
system S defined for L, S is sound with respect to C if for all ϕ ∈ L

`S ϕ ⇒ |=C ϕ.

The converse is also useful to know, namely that for any formula that is valid in the class
of models C, there exists a derivation in the system S. If this is the case, we say the system S is
complete w.r.t the class of models C.

Definition 2.22 (Completeness). Given a language L, a class C of models defined for L and a
proof system S defined for L, S is complete with respect to C if, for all ϕ ∈ L

|=C ϕ ⇒ `S ϕ.

Within the class of Hilbert systems for modal logic, some sub-classes have been defined. Two
that are of interest for our thesis are the systems that are called normal and those that are called
monotone. These types of systems can be identified by certain axioms and inferences, but a system
does not necessarily need to have these axioms and inferences to be considered normal or monotone.

Definition 2.23. Given a Hilbert system defined for L, let T = {A ∈ L | `H A}. We say H

• contains the axiom A, if T contains all instances of A.
• is closed under the inference rule IR if, whenever T contains the premises of IR, it also contains

the conclusion of IR.

Definition 2.24. A Hilbert system H for the language LML is normal iff it contains all propositional
tautologies, the axiom

K. �(A→ B)→ (�A→ �B)

and is closed under the inference rules

Nec.
A
�A

and MP
A→ B, A

B
.

The last inference rule in this definition is also known as modus ponens. The minimal normal
system K is the Hilbert system that has all propositional tautologies, the axiom K and the inference
rules Nec and MP. This system is known to be both sound and complete with respect to the class
K of Kripke models [5, Theorem 5.12].

Definition 2.25. A Hilbert system H for the modal logic language LML is monotone iff it contains
all propositional tautologies, the axiom

M. �(A ∧ B)→ �A

and is closed under the inference rule MP.

12

2 MODAL LOGIC

The minimal monotone system M is the Hilbert system that has all propositional tautologies, the
axiom M and the inference rule MP. This system is known to be both sound and complete with
respect to the class Nmon of monotone neighbourhood models [5, Theorem 9.8].

So we have seen that the minimal normal system K is compatible with Kripke semantics and
the minimal monotone system M is compatible with monotone neighbourhood semantics. The
opposite is not true, however, as K is not sound over the class Nmon of monotone neighbourhood
models. This can be easily shown by an example of a formula that is provable in K, but not valid
over monotone neighbourhood models.

Example 2.26. Take ϕ = �(p→ q)→ (�p→ �q). This is an instance of the axiom K, so `K ϕ.
TakeN = 〈S, N, V〉, where S = {s1, s2, s3}, V(p) = {s1, s2}, V(q) = {s2}, N(s1) = {{s1, s2}, {s2, s3}, S}
and N(s2) = N(s3) = S. The neighbourhood function N satisfies Definition 2.9, so this is a mono-
tone neighbourhood model. We will show that, in this model, ϕ is not true at s1.

We have N , s2 |= p and N , s2 |= q, so we can say N , s2 |= p ⇒ N , s2 |= q. This means that
N , s2 |= p → q. Also, N , s3 6|= p and N , s3 6|= q, so N , s3 |= p → q. However, N , s1 |= p and
N , s1 6|= q, so N , s1 6|= p→ q. This gives us Jp→ qKN = {s2, s3} ∈ N(s1), so N , s1 |= �(p→ q).

Also, JqKN = {s2} /∈ N(s1), so N , s1 6|= �q, but since JpKN = {s1, s2} ∈ N(s1), we do have
N , s1 |= �p. This means that N , s1 6|= �p → �q, so N , s1 6|= �(p → q) → (�p → �q). So there
is a monotone neighbourhood model N and state s1 such that N , s1 6|= ϕ, so 6|=Nmon

ϕ.

Similarly, the system M is not complete over the class K of Kripke models, which we can
again show via an example of a formula that is valid over Kripke models, but does not have a
M-derivation. However, M is sound over Kripke models, which aligns with the fact that the class
of Kripke models has the same valid formulas as a subclass of neighbourhood models, which we
saw in Theorem 2.18. Below, we give an example of a formula that is valid over Kripke models,
but has no derivation in M in order to show that M is indeed not complete over K.

Example 2.27. Take ϕ = (�p ∧�q)→ �(p ∧ q). To show that this formula is valid over Kripke
models, take an arbitrary Kripke model K = 〈S, R, V〉 and s ∈ S and assume that K, s |= �p ∧�q.
This means that K, s |= �p and K, s |= �q, so, for all s′ ∈ S s.t. sRs′, we have K, s′ |= p and
K, s′ |= q. This means that K, s′ |= p ∧ q for all such s′ ∈ S, so K, s |= �(p ∧ q). This shows that

K, s |= �p ∧�q ⇒ K, s |= �(p ∧ q),

so K, s |= �(p ∧ q)→ �p ∧�q for all Kripke models K and states s. So, we have |=K ϕ.
Now, takeN = 〈S, N, V〉, where S = {s1, s2}, V(p) = {s1}, V(q) = {s2}, N(s1) = {{s1}, {s2}, S}

and N(s2) = S. Since N satisfies Definition 2.9, N is monotone. We have JpKN = {s1} ∈ N(s1) and
JqKN = {s2} ∈ N(s1), so N , s1 |= �p and N , s1 |= �q. This means that N , s1 |= �p ∧�q. How-
ever, Jp∧ qKN = ∅ /∈ N(s1), so N , s1 6|= �(p∧ q). This shows that N , s1 6|= (�p∧�q)→ �(p∧ q),
so 6|=Nmon ϕ. Since M is sound w.r.t. Nmon, this means that 6`M ϕ.

Another inference rule that can be used to define when a Hilbert system is normal is the normal
modal rule.

(A1 ∧ · · · ∧ An)→ A
mod

(�A1 ∧ · · · ∧�An)→ �A

It turns out that a Hilbert system is normal if and only if it is closed under the inference rules
mod and MP and it contains all propositional tautologies. This is in fact how the notion of a
normal system is defined in [5]. Similarly, we can also give a different definition of monotone
Hilbert systems based on the monotone modal rule.

13

2 MODAL LOGIC

A→ B
modm�A→ �B

A Hilbert system is monotone if and only if it is closed under modm and MP and contains all
propositional tautologies. The monotone modal rule is a special case of the normal modal rule
and their connection to normal and monotone Hilbert systems implies that the normal modal rule
is valid over Kripke models and the monotone modal rule is valid in monotone neighbourhood
models. To understand the change we make to the proof system CloG in order to obtain the new
proof system CloGK, we need to look at the variants of these rules for sequent systems. Below, the
normal modal rule for sequent systems is given on the left and the monotone one on the right.

A1, . . . , An, A
♦A1, . . . ,♦An,�A

A, B
♦A,�B

These rules describe the same logical inferences as the modal rules for Hilbert systems. This
can be seen for the monotone rule by plugging in ¬A for A and observing that the sequent
¬A, B is interpreted as ¬A ∨ B, which is equivalent to A→ B. This means the premises of both
monotone rules are equivalent and, by a similar reasoning, the conclusions are as well. Similarly,
both normal modal rules are also equivalent. This implies that, for sequent systems, the normal
modal rule is also valid over Kripke models and the monotone modal rule is valid over monotone
neighbourhood models. We will use this connection in subsection 4.3 when we adapt the proof
system CloG into a new proof system. By replacing the monotone modal rule in CloG with a
normal modal rule, we create the proof system CloGK that is designed to be complete over Kripke
models.

14

3 THE MODAL µ-CALCULUS

3. The modal µ-calculus

In this chapter, we will review the syntax and semantics of the model µ-calculus and various other
useful definitions, which can also be found in [8].

3.1. Fixpoints

In the modal µ-calculus, we work with two fixpoint operators, so before we can define its semantics,
we will first need to give the definitions of greatest and least fixpoints. For any set S, we know
that the partially ordered set (P(S),⊆) has

- S as its supremum, as X ⊆ S for all X ∈ P(S), and
- ∅ as its infimum, as ∅ ⊆ X for all X ∈ P(S).

Furthermore, if we take P ⊆ P(S), then we know that

-
⋃

P =
⋃

X∈P
X is the smallest set that has all sets in P as a subset, so it is the supremum of P.

-
⋂

P =
⋂

X∈P
X is the largest set that is a subset of all sets in P, so it is the infimum of P.

As every subset of P(S) has a supremum and infimum, it is a complete lattice w.r.t. ⊆. If we
have a monotone function on a complete lattice, we can apply the following fixed point theorems
from [9] and [10] respectively.

Theorem 3.1 (Knaster-Tarski Theorem). If (L,4) is a complete lattice and F : L→ L is a monotone
function, then the set of fixpoints of F in L is also a complete lattice w.r.t. 4.

Theorem 3.2 (Kleene’s fixpoint theorem). If (L,4) is a non-empty complete lattice and F : L→ L
is monotone, then F has a least fixed point lfp.F (or lfp X.F(X)), which is the supremum of

⊥ 4 F(⊥) 4 · · · 4 Fn(⊥) 4 . . . ,

where ⊥ is the infimum of L.

By inverting the partial order in the last theorem, we find that F also has a greatest fixed point
gfp.F (or gfp X.F(X)), which is the infimum of the chain beginning with >, the supremum of L.

> < F(>) < · · · < Fn(>) < . . .

3.2. Syntax

Poly-modal logic consists of the language of modal logic with the addition of a set of actions and,
instead of the general modalities � and ♦, two modalities �d and ♦d for each action d. The modal
µ-calculus adds to poly-modal logic the least and greatest fixpoint operators µ and ν. In this thesis,
we will only work with modal µ-calculus formulas in negation normal form.

Definition 3.3. Given a set Φ0 = {p, q, x, y, . . . } of propositional variables and a set D = {d, e, . . . }
of actions, the language Lµ

NF(Φ0, D) of negation normal form (nnf) modal µ-calculus formulas is given
by the following grammar.

A ::= p | ¬p | (A ∧ A) | (A ∨ A) | �d A | ♦d A | µx.A | νx.A,

where p, x ∈ Φ0 and d ∈ D. Propositional variables that are preceded by a fixpoint operator µ or
ν are called fixpoint variables and denoted by x, y, z. We add the condition that for any fixpoint
formula µx.A or νx.A, the formula A must be positive in x, meaning that every occurrence of x

15

3 THE MODAL µ-CALCULUS

in A is not of the form ¬x. From now on, when a fixpoint operator is applied to a formula, this
condition is implicit. The scope of the fixpoint operators extends as far as possible to the right.
When Φ0 and D are fixed, but arbitrary, we write Lµ

NF.

With this grammar established, we can now also define the concept of a subformula.

Definition 3.4. The set S f or0(A) of direct subformulas of A ∈ Lµ
NF is defined as follows.

S f or0(A) := ∅ if A is an atomic proposition
S f or0(A� B) := {A, B} where � ∈ {∧,∨}
S f or0(♥A) := {A} where ♥ ∈ {�d,♦d | d ∈ D}
S f or0(ηx.A) := {A} where η ∈ {µ, ν}.

We use the notation A /0 B if A ∈ S f or0(B). The set S f or(B) of subformulas of B is the smallest set,
which contains B and is closed under taking direct subformulas. We write A E B if A ∈ S f or(B).

When studying fixpoints, it is useful to differentiate between free and bound variables in a
formula. When a variable x in a formula A is within the scope of a fixpoint operator of the form
ηx, then this variable x is considered bound, otherwise it is free.

Definition 3.5. Given a formula A ∈ Lµ
NF, the sets of free and bound variables, denoted FV(A) and

BV(A) respectively, are defined inductively as follows.

FV(p) := {p} BV(p) := ∅
FV(¬p) := {p} BV(¬p) := ∅
FV(A ∨ B) := FV(A) ∪ FV(B) BV(A ∨ B) := BV(A) ∪ BV(B)
FV(A ∧ B) := FV(A) ∪ FV(B) BV(A ∧ B) := BV(A) ∪ BV(B)
FV(♦d A) := FV(A) BV(♦d A) := BV(A)
FV(�d A) := FV(A) BV(�d A) := BV(A)
FV(ηx.A) := FV(A)\{x} BV(ηx.A) := BV(A) ∪ {x}

We will need to define the unfolding of a fixpoint formula in order to understand some of the
inferences in our proof systems. However, before we are able to do this, we need to define the
notion of substitution and, for that, we first need the following definition.

Definition 3.6. Given A, B ∈ Lµ
NF and x ∈ Φ0, we say that A is free for x in B if B is positive in x

and whenever x occurs in a subformula of B of the form ηy.C, where y ∈ FV(A), it is in the scope
of a fixpoint operator λx.D in B.

In order to give a better idea of how this works, we give an example below.

Example 3.7. Take B = (νz.y ∧ z) ∨ µx.¬p ∨ y ∨ νy.q ∧�d(x ∨ y) and A = y ∨ z. Firstly, B is
positive in x, y and z. The variable y occurs in the subformula νz.y ∧ z, a fixpoint formula for
z ∈ FV(A). This occurrence is not in the scope of a fixpoint operator ηy in B, so A is not free for
y in B. The variable x occurs only in νy.q ∧�d(x ∨ y), a fixpoint formula for y ∈ FV(A). This
occurrence of x is in the scope of µx in B, so A is free for x in B.

When a formula A is free for z in another formula B, every instance of z in B could be replaced
by the formula A and the resulting formula would still be a well-formed formula.

16

3 THE MODAL µ-CALCULUS

Definition 3.8. Let A, B, C ∈ Lµ
NF and let z be a propositional variable. Assume A is free for z in

B and C, then we inductively define substitution [A/z] as follows.

B[A/z] :=
{

A if B = z
B if B is atomic but B 6= z

(♥B)[A/z] := ♥B[A/z], where ♥ ∈ {♦d,�d | d ∈ D}
(B� C)[A/z] := B[A/z]� C[A/z], where � ∈ {∨,∧}
(ηx.B)[A/z] := ηx.B[A/z], where η ∈ {µ, ν}

Definition 3.9. The unfolding of a fixpoint formula ηx.A is A[ηx.A/x].

Unfoldings of fixpoint formulas are essential to the way certain inferences in our proof systems
are defined. When we give these inference rules further on in this thesis, we will simplify
the notation for substitution somewhat. If we have a fixpoint formula ηx.A, the formula A is
considered a "function" of x and we write A(B) for some formula B that is free for x in A as
shorthand for A[B/x]. In particular, we will write A(ηx.A) to denote the unfolding of ηx.A.

3.3. Kripke semantics for the modal µ-calculus

Now that we have defined the syntax for formulas in the modal µ-calculus, we would now like to
assign meaning to them. Just as with modal logic, we can do this through Kripke semantics.

Definition 3.10. Given a set Φ0 of atomic propositions and a set D of actions, a Kripke-Lµ
NF(Φ0, D)

model KΦ0,D = 〈S, R, V〉 consists of:

• a set S of states,

• a set R = {Rd ⊆ S× S | d ∈ D} of relations, one for each action d

• a valuation V : Φ0 → P(S)

When the language Lµ
NF(Φ0, D) is fixed, but arbitrary, we write K and we refer to these models

simply as Kripke models. We denote by KΦ0,D the class of all Kripke models for Lµ
NF(Φ0, D).

Using these models, we can give a truth-definition for the modal µ-calculus. However, before
we can do this, we will first define an operator that can be applied to an existing valuation.

Definition 3.11. Given a Kripke model K = 〈S, R, V〉 and X ⊆ S, we define V[x 7→ X] as

V[x 7→ X](y) :=
{

V(y) if y 6= x
X if y = x

The Kripke model K[x 7→ X] is given by 〈S, R, V[x 7→ X]〉.

With this operator defined, we can now give the truth-definition for modal µ-calculus formulas.
When giving the semantics for modal logic, we started with the definition of the operator |= and
used this to define the truth-set of a formula. Here we will give those definitions the other way
around; we first give an inductive definition of the truth-set of a modal µ-calculus formula A in
the context of a Kripke model K and then go on to define the satisfaction relation |=.

Definition 3.12. Given A ∈ Lµ
NF and a Kripke model K = 〈S, R, V), the truth-set JAKK of A in K

17

3 THE MODAL µ-CALCULUS

is defined inductively as follows.

JpKK = V(p) J♦d AKK = {s ∈ S | Rd(s) ∩ JAKK 6= ∅}
J¬pKK = S\V(p) J�d AKK = {s ∈ S | Rd(s) ⊆ JAKK}

JA ∧ BKK = JAKK ∩ JBKK Jµx.AKK = lfp.AKx
JA ∨ BKK = JAKK ∪ JBKK Jνx.AKK = gfp.AKx

For x ∈ Φ0, the map AKx : P(S)→ P(S) is given by AKx (X) = JAKK[x 7→X]

For the truth-sets of fixpoints formulas given by this definition to be well-defined, we need
to make sure that AKx is monotone. If it is, it follows from Theorem 3.2 that the fixpoints lfp.AKx
and gfp.AKx exist. We prove its monotonicity below, with the added condition that A is positive
in x. We can add this condition, because the way that AKx is used in the definition, means that
x is always a fixpoint variable of a formula of the form ηx.A and, since we are working in the
language of normal form formulas, A must be positive in x. In order to give the proof for the
monotonicity of AKx , we first show the following lemma.

Lemma 3.13. Given complete lattices C = (C,≤C) and D = (D,≤D) and a monotone map
f : C× D → C, the map g : D → C given by

g(d) := lfp x. f (x, d)

is monotone.

Proof. Say we have d1, d2 ∈ D s.t. d1 ≤D d2. We define the map f n by setting f 1(c, d) = f (c, d) and

f n(c, d) = f (f n−1(c, d), d)

for all n ≥ 2. The map f is monotone and the composition of monotone maps is monotone, so we
know by induction that f n : C× D → C is monotone for all n ≥ 1. We denote by ⊥C the bottom
element of C. Since d1 ≤D d2, we have (⊥C, d1) ≤C×D (⊥C, d2), where ≤C×D is the usual product
order on C× D. Since f n is monotone, this means that

f n(⊥C, d1) ≤C f n(⊥C, d2) ∀n ≥ 1.

So f n(⊥C, d1) is a lower bound for f n(⊥C, d2) for all n ≥ 1, which means it is also a lower bound
for the supremum of f n(⊥C, d2) over n ≥ 1, so, by Theorem 3.2, we have

f n(⊥C, d1) ≤C sup
n≥1
{ f n(⊥C, d2)} = µx. f (x, d2) = g(d2) ∀n ≥ 1.

Now we see that g(d2) is an upper bound for f n(⊥C, d1) for all n ≥ 1. This means that it is also
an upper bound for the supremum of f n(⊥C, d1) over n ≥ 1, so

g(d1) = µx. f (x, d1) = sup
n≥1
{ f n(⊥C, d1)} ≤C g(d2).

We have shown that d1 ≤D d2 implies g(d1) ≤C g(d2), so g is monotone.

We can give a similar proof for a variant of this lemma, where we define g(d) := gfp x. f (x, d).
We will now prove the monotonicity of AKx by structural induction, where we use Lemma 3.13 in
the inductive step.

18

3 THE MODAL µ-CALCULUS

Theorem 3.14. For all K = 〈S, R, V〉, all A ∈ Lµ
NF and all x ∈ Φ0, where A is positive in x, the

map AKx is monotone.

Proof. We will prove this theorem by structural induction on A ∈ Lµ
NF. For the base case, take

some p ∈ Φ0 and K and assume that X ⊆ Y. If p 6= x, we have

pKx (X) = JpKK[x 7→X] = V[x 7→ X](p) = V[x 7→ Y](p) = JpKK[x 7→Y] = pKx (Y),

(¬p)Kx (X) = J¬pKK[x 7→X] = S\V[x 7→ X](p) = S\V(p) = S\V[x 7→ Y](p) = J¬pKK[x 7→Y] = (¬p)Kx (Y).

In the case where p = x, we have

xKx (X) = JxKK[x 7→X] = V[x 7→ X](x) = X ⊆ Y = V[x 7→ Y](x) = JxKK[x 7→Y] = xKx (Y).

We know that A is positive in x, so we do not need to consider the case for ¬x. So, we have shown
that pKx and (¬p)Kx are monotone for all p, x ∈ Φ0 and models K such that A is positive in x.

For the induction hypothesis, assume that we have two formulas B, C ∈ Lµ
NF such that BKx and

CKx are monotone for all x ∈ Φ0 and all models K such that A is positive in x.

For the inductive step we will prove monotonicity for each formula that can be constructed by
applying one operator to B or B and C. Assume that X ⊆ Y and take x ∈ Φ0 and K arbitrary.

For B ∧ C, we have

(B ∧ C)Kx (X) = JB ∧ CKK[x 7→X] = JBKK[x 7→X] ∩ JCKK[x 7→X] = BKx (X) ∩ CKx (X)
(IH)
⊆ BKx (Y) ∩ CKx (Y)

= JBKK[x 7→Y] ∩ JCKK[x 7→Y]

= JB ∧ CKK[x 7→Y]

= (B ∧ C)Kx (Y).

So (B ∧ C)Kx is monotone. The case for B ∨ C is similar.

Next, take ♦dB for some d ∈ D. We have

(♦dB)Kx (X) = J♦dBKK[x 7→X] = {s ∈ S | Rd(s) ∩ JBKK[x 7→X] 6= ∅} and

(♦dB)Kx (Y) = J♦dBKK[x 7→Y] = {s ∈ S | Rd(s) ∩ JBKK[x 7→Y] 6= ∅}.

From the induction hypothesis we have JBKK[x 7→X] ⊆ JBKK[x 7→Y], which implies that, if

Rd(s) ∩ JBKK[x 7→X] 6= ∅ ⇒ Rd(s) ∩ JBKK[x 7→Y] 6= ∅.

This means that (♦dB)Kx (X) ⊆ (♦dB)Kx (Y), so (♦dB)Kx is monotone.

For �dB, the induction hypothesis implies that, if Rd(s) ⊆ JBKK[x 7→X], then Rd(s) ⊆ JBKK[x 7→Y].
This gives us

(�dB)Kx (X) = J�dBKK[x 7→X] = {s ∈ S | Rd(s) ⊆ JBKK[x 7→X]} ⊆ {s ∈ S | Rd(s) ⊆ JBKK[x 7→Y]}

= J�dBKK[x 7→Y] = (�dB)Kx (Y),

which shows that (�dB)Kx is monotone.

19

3 THE MODAL µ-CALCULUS

Now take µy.B for some y ∈ Φ0, then we have

(µy.B)Kx (X) = lfp.BK[x 7→X]
y .

By the induction hypothesis, we know that BK[x 7→X]
y : P(S)→ P(S) is monotone, so this fixpoint

exists. The variable y is fixed. If we also fix K and x, we can define f : P(S)×P(S)→ P(S) by
setting f (X, Y) = BK[x 7→X]

y (Y). We also have (µy.B)Kx : P(S)→ P(S) which is defined by

(µy.B)Kx (X) = lfp Y.BK[x 7→X]
y (Y) = lfp Y. f (X, Y).

We know from the induction hypothesis that BK[x 7→X]
y is monotone, so f is monotone. Since P(S)

is a complete lattice, we can apply Lemma 3.13, which gives that (µy.B)Kx is monotone for all
x ∈ Φ0 and all models K.

The case for νy.B is similar, using a variant of Lemma 3.13, where g(d) := gfp x. f (x, d). So, by
induction, AKx is monotone for all A ∈ Lµ

NF, x ∈ Φ0 and K = 〈S, R, V〉.

With the truth-set defined, we define the satisfaction relation |= for these Kripke semantics by
saying that K, s |= A iff s ∈ JAKK. Validity is defined similarly to Definition 2.5, where we write
|=KΦ0,D ϕ when a modal µ-calculus formula ϕ is valid over Kripke-Lµ

NF(Φ0, D) models.

3.4. Subsumption order

In any modal µ-calculus formula, the variables can be ordered based on the nested layers of
fixpoint formulas.

Definition 3.15. Given a formula A ∈ Lµ
NF, let Var(A) = FV(A) ∪ BV(A). For x, y ∈ Var(A) we

write x <−A y if there is some B ∈ S f or(A) of the form ηy.C such that x ∈ FV(B). The subsumption
order <A is the transitive closure of <−A and we write x ≤A y if either x <A y or x = y. We say a
formula is well-named if <A is irreflexive.

Example 3.16. Take A = p ∨ µx.y ∨ νy.x ∨ y. We provide the syntax tree for clarity.

∨

p
µx

∨

y
νy

∨

x y

We have νy.x ∨ y ∈ S f or(A), a fixpoint formula of y in which x occurs freely, so x <−A y.
However, we also have µx.y ∨ νy.x ∨ y ∈ S f or(A), which is a fixpoint formula for x in which y
occurs freely, meaning y <−A x. When we construct the transitive closure, we get x <A x and
y <A y, so the subsumption order is not irreflexive, so this formula is not well-named.

We can fix this by renaming the variables. Since the occurrence of y in νy.x ∨ y ∈ S f or(A) is
not connected to the other occurrence of y, we can rename these instances of y to z. The new
formula we get is A′ = p ∨ µx.y ∨ νz.x ∨ z. From νz.x ∨ z, we get x <−A′ z and from µx.y ∨ νz.x ∨ z,
we have y <−A′ x, so y <−A′ x <−A z. This means the subsumption order for A′ is irreflexive.

20

3 THE MODAL µ-CALCULUS

3.5. Names and annotations

In the proof system Clo, which we introduce in the next section, the formulas are annotated with
names in order to keep track of the unfoldings of fixpoint formulas. These names refer to variables;
each variable x ∈ Φ0 has a countable set Nx of names, where Nx ∩ Ny = ∅ if x 6= y. The set of all
names is N = ∪x∈Φ0 Nx. The set N∗ contains all finite sequences of names from N, also called
words, including the empty word ε. Given a, b ∈ N∗, we say a is a subword of b, denoted a v b, if
x ∈ b for all x ∈ a.

In order to set conditions on these names and annotations, it would be useful to extend the
subsumption order to the set of names. Since the subsumption order <A is specific to a formula
A, we extend it to the names of variables that occur in A. This allows us to define an order on
NA = ∪x∈Var(A)Nx, which is the set of all names of variables in a formula A. Given a formula
A ∈ Lµ

NF and x, y ∈ NA, we say x <A y (x ≤A y) if x ∈ Nx and y ∈ Ny such that x <A y (x ≤A y).
An annotation is a word a = x1 . . . xn such that for all 1 ≤ i < j ≤ n, we have xi ≤A xj and

xi 6= xj. We can also use the subsumption order to establish a relation between annotations and
names. Given a ∈ N∗A and x ∈ Nx, we write a <A x (a ≤A x) if for all y ∈ a we have y ∈ Ny for
some y <A x (y ≤A x).

In [4], where the Clo system is introduced, the names inherit a global subsumption order,
denoted by <, on all the variables in the modal µ-calculus language. Defining this global order
involves renaming variables in modal µ-calculus formulas so that the subsumption orders for all
modal µ-calculus formulas agree, giving a global order that can be applied to any formula. In this
thesis, we will not get into this renaming process, so we will stick to our own "local" subsumption
order, but we will come across this global subsumption order when we introduce the Clo system.

3.6. The proof system Clo

The system Clo is a cyclic proof system for the modal µ-calculus, which was introduced and shown
to be sound and complete over Kripke models in [4]. It is defined for the language Lµ

NF of normal
form formulas, where we write [g] and [gd] instead of �g and ♦g for g ∈ D. More details about
this notational change are given in subsection 5.2.

Ax1pε,(¬p)ε
∆, Aa

mod
[gd]∆, [g]Aa

∆, Aa, Ba
∨∆, (A ∨ B)a

∆, Aa ∆, Ba
∧∆, (A ∧ B)a

∆ weak∆, Aa (a ≤ x, σ ∈ {µ, ν}) ∆, A(σx.A)a
σ∆, σx.Aa

(∀i ≤ k ai v bi)
Aa1

1 , . . . , Aak
k exp

Ab1
1 , . . . , Abk

k
.

[∆, νx.Aax]x

...

(a ≤ x ∈ Nx, x /∈ ∆) ∆, A(νx.A)ax
ν-clox∆, νx.Aa

Table 1: Axiom and rules for Clo

The proof system Clo is a sequent system and its axiom and inference rules are given in Table 1.

21

3 THE MODAL µ-CALCULUS

Here ∆ is a set of modal µ-calculus formulas, also called a sequent, and [gd]∆ = {[gd]A | A ∈ ∆}.
As mentioned in the previous section, this system works with annotated modal µ-calculus formulas,
which consist of a formula A ∈ Lµ

NF and an annotation a ∈ N∗. These annotations allow us to
keep track of the unfoldings of fixpoint formulas. For some inference rules, there are conditions
on these annotations, using the global subsumption order mentioned in the previous section. The
most notable rule in this system is the ν-clox inference.

[∆, νx.Aax]x

...

(a ≤ x ∈ Nx, x /∈ ∆)
∆, A(νx.A)ax

ν-clox∆, νx.Aa

In this rule, the sequent between brackets is an assumption that is discharged by the application
of the ν-clox rule. For this rule to be applied, the variable x can not appear in ∆ and there must be
a path from the assumption in brackets to the premise ∆, A(νx.A)ax. Due to the function that the
annotations serve in this system, a derivation in Clo can only be considered a valid Clo-derivation
of its root formula, if this formula has the empty word ε as its annotation.

Definition 3.17. A Clo-derivation is a finite tree of sequents consisting of annotated modal µ-
calculus formulas, where each sequent is either an axiom, a sequent that is discharged by an
instance of the ν-clox rule, or follows directly from the sequent above it by an inference rule. We
say A ∈ Lµ

NF has a Clo-derivation, denoted `Clo A, if there is a Clo-derivation with Aε as its root.

Ax1pε,(¬p)ε
∆, Aa

mod
[gd]∆, [g]Aa

∆, Aa, Ba
∨∆, (A ∨ B)a

∆, Aa ∆, Ba
∧∆, (A ∧ B)a

∆ weak∆, Aa (a ≤C x, σ ∈ {µ, ν}) ∆, A(σx.A)a
σ∆, σx.Aa

(∀i ≤ k ai v bi)
Aa1

1 , . . . , Aak
k exp

Ab1
1 , . . . , Abk

k
.

[∆, νx.Aax]x

...

(a ≤C x ∈ Nx, x /∈ ∆) ∆, A(νx.A)ax
ν-clox∆, νx.Aa

Table 2: Axiom and rules for CloC

As we noted in subsection 3.6, this system uses the global order from [4] in order to apply
conditions to its inference rules. However, in this thesis, we will only use the subsumption order
≤A for a specific formula A, since defining a global order would involve renaming variables,
which would result in complications with our translation from game logic to the modal µ-calculus
in section 5. To make sure we can work with this "local" subsumption order instead of the global
one, we define the proof system CloC, which is parametric in a formula C and differs from Clo
only in the fact that it uses the subsumption order ≤C instead of ≤ for its side conditions. The
axiom and inference rules for CloC are given in Table 2. The notion of a derivation in this system
is defined similarly to how it was defined for Clo.

22

3 THE MODAL µ-CALCULUS

Definition 3.18. A CloC-derivation is a finite tree of sequents consisting of annotated modal µ-
calculus formulas, where each sequent is either an axiom, a sequent that is discharged by an
instance of the ν-clox rule, or follows directly from the sequent above it by an inference rule. We
say A ∈ Lµ

NF has a CloC-derivation, denoted `CloC A, if there is a CloC-derivation with Aε as its root.

In order to use this system instead of Clo as a starting point for our proof transformation,
we must first show that, whenever there is a Clo-derivation of a formula C, then there is also a
CloC-derivation of C.

Theorem 3.19. If `Clo C, then `CloC C.

Proof. Say we have some Clo-derivation of C. Our goal is to show that if a rule can be applied in
Clo, then that rule can also be applied in CloC. The only difference between Clo and CloC is in the
side conditions for the rules σ and ν-clox, so any other rule that is applied in the Clo-derivation of
C could simply be replaced with the same rule from CloC. The order ≤ used in the side conditions
of Clo is a global order and thus contains the subsumption order ≤C, so for x, y ∈ Var(C), we have

x ≤ y ⇒ x ≤C y ∀x ∈ Nx, y ∈ Ny.

It is easily observed that the annotations of a Clo-derivation of C will only contains names for
variables in Var(C). So, say that we have a ≤ x. Take some y ∈ a, then there is some y ∈ Var(C)
such that y ∈ Ny and y ≤ x. Since x, y ∈ Var(C), we have x ≤C y. So, for all y ∈ a, there is some
y ∈ Var(C) such that y ∈ Ny and x ≤C y, so a ≤C x. So, whenever a ≤ x, we also have a ≤C x.

This means that whenever a side condition of a rule in Clo is satisfied, the side condition of the
corresponding rule in CloC is also satisfied. So, we can construct a CloC-derivation of C by simply
applying the same rules used in the Clo-derivation.

Note that, though Clo is complete over Kripke models, this result does not show that the
system CloC is complete over Kripke models. We have ensured that if a formula C can be derived
in Clo, then it can also be derived in CloC, but this claim can not be extended to all formulas that
are valid over Kripke models, since each such formula would generate its own version of CloC.

23

4 GAME LOGIC

4. Game logic

4.1. Game logic syntax and semantics

Game logic is a modal logic designed to reason about the outcomes that can be achieved by the
players, which we refer to as Angel and Demon, in 2-player games. Below we give the definition
of the original language as defined by Parikh [1].

Definition 4.1. Given the set Φ0 = {p, q, . . . } of atomic propositions and the set Γ0 = {g, h, . . . }
of atomic games, the game logic language LPar(Φ0, Γ0) is defined by the following grammar.

GPar 3 γ ::= g | γ; γ | γ t γ | γ∗ | γd | ϕ?, ϕ ∈ LPar

LPar 3 ϕ := p | ¬ϕ | ϕ ∨ ϕ | [γ]ϕ, γ ∈ GPar

where p ∈ Φ0 and g ∈ Γ0. When Γ0 and Φ0 are fixed, but arbitrary, we will simply write LPar.

The game γ1 t γ2 is interpreted as Angel choosing whether to play γ1 or γ2 and is referred to
as choice. The game γ∗ is known as iteration and indicates that the game γ is repeatedly played
as many times as Angel wants. The game ϕ? is called test and it involves checking whether a
formula ϕ holds. If it does, the game continues, but if it does not, the game ends and Angel loses.
The sequential game γ1; γ2 simply denotes that γ1 is played first, then γ2. The dual operator (−)d is
interpreted as the two players switching roles and it can be used to define demonic variants of the
game operators as follows.

γ1 u γ2 := (γd
1 t γd

2)
d ϕ! := ((¬ϕ)?)d γ× := ((γd)∗)d.

Where, in the game γ1 t γ2, Angel chooses which game to play, in the game γ1 u γ2 Demon
makes this decision. This game is called demonic choice. In the demonic iteration game γ×, Demon
chooses how many times γ will be played. The game ϕ!, known as demonic test, tests whether ϕ
holds, where Demon loses if it does not. In the game γ1; γ2, no choice is made by the players, so
there is no need for a demonic variant.

The formula [γ]ϕ denotes that Angel has an effective strategy in game γ to achieve the outcome
ϕ. It is important to note here that our notation deviates from what was established by Pauly
and Parikh in [11], where they use 〈γ〉ϕ to denote this property. This change is made to make
the interpretation of these modalities align with the interpretation of the modalities of the modal
µ-calculus, which will make translating between them further on in this thesis more intuitive.

When playing a game we would expect that if Angel can ensure ϕ, then Demon should not be
able to ensure ¬ϕ. If this were not the case, then the players could achieve contradicting outcomes
at the end of the game. This property of games is called consistency and it can be written as

[γ]ϕ ⇒ ¬[γd]¬ϕ.

The reverse statement is called determinacy and states that if an outcome can not be prevented by
Demon, then Angel must be able to achieve it. In other words, for every achievable outcome, at
least one of the players that has a strategy to achieve it, so

¬[γd]¬ϕ ⇒ [γ]ϕ.

The LHS can also be written as ¬〈γ〉¬ϕ, where 〈γ〉ϕ is the demonic version of [γ]ϕ. In this thesis,
we will be working with game logic formulas in normal form, which means the dual and negation
operators can only be applied to atoms. This forces us to include the demonic versions of the
game operators mentioned above in the grammar.

24

4 GAME LOGIC

Definition 4.2. Given the set Φ0 = {p, q, . . . } of atomic propositions and the set Γ0 = {g, h, . . . }
of atomic games, the language LNF(Γ0, Φ0) of normal form game logic formulas is defined as follows.

GNF 3 γ ::= g | gd| γ; γ | γ t γ | γ u γ | γ∗ | γ× | ϕ? | ϕ!, ϕ ∈ LNF

LNF 3 ϕ := p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | [γ]ϕ | 〈γ〉ϕ, γ ∈ GNF

where p ∈ Φ0 and g ∈ Γ0. When Γ0 and Φ0 are fixed, but arbitrary, we will simply write LNF.

With the language of game logic defined, we will now look at how to interpret the truth of
formulas in this language. For this purpose we will use game models.

Definition 4.3. Given the set of atomic propositions Φ0 and the set of atomic games Γ0, a game-
LNF(Φ,Γ0) model GΦ0,Γ0 = 〈S, E, V〉 consists of

• a set of states S,
• a set E of monotone effectivity functions Eg : S→ P(P(S)), one for each g ∈ Γ0, and
• a valuation V : Φ0 → P(S).

When the language LNF(Φ0, Γ0) is fixed, but arbitrary, we write G and we refer to these models
simply as game models. We denote by GΦ0,Γ0 the class of all game models for LNF(Φ0, Γ0).

The intuition behind the effectivity functions Eg for atomic games g is that it assign to a state s
all the sets of states that Angel can "choose" when playing the game g at state s. After that, Demon
picks at which state out of that set they will be after the game g. The notation sEγX is used to
express that X ∈ Eγ(s). We can also interpret the effectivity functions as maps Eγ : P(S)→ P(S)
by taking Eγ(X) = {s ∈ S | sEγX}.

Definition 4.4. In a game model G = 〈S, E, V〉, the truth-set of ϕ ∈ LNF at a state s ∈ S and the
effectivity functions for non-atomic games are defined by mutual induction as follows.

JpKG := V(p) for p ∈ Φ0 Eα;β(Y) := Eα(Eβ(Y))

J¬pKG := S\V(p) for p ∈ Φ0 Eαd(Y) := (Eα(YC))C

Jϕ ∨ ψKG := JϕKG ∪ JψKG Eαtβ(Y) := Eα(Y) ∪ Eβ(Y)

Jϕ ∧ ψKG := JϕKG ∩ JψKG Eαuβ(Y) := Eα(Y) ∩ Eβ(Y)

J[γ]ϕKG := Eγ(JϕKG) Eα∗(Y) := lfp X.Y ∪ Eα(X)

J〈γ〉ϕKG := S\Eγ(JϕKC
G) Eα×(Y) := gfp X.Y ∩ Eα(X)

Eϕ?(Y) := JϕKG ∩Y

Eϕ!(Y) := JϕKG ∪Y

For the effectivity functions for γ∗ and γ× to be well-defined, we need to show that these
fixpoints exists. As (P(S),⊆) is a complete lattice and the effectivity functions are functions on
P(S), if we can show they are monotone, we can apply Tarski’s fixed point theorem to show that
the fixpoints lfp X.Y ∪ Eα(X) and gfp X.Y ∩ Eα(X) do indeed exist.

Theorem 4.5. The effectivity functions Eγ are monotone w.r.t. ⊆ for all games γ.

Proof. We need to prove the theorem for all games γ, so we will use structural induction on γ.
For the base case, if γ is an atomic game, then Eγ is monotone by the definition of a game model.

Next, for the induction hypothesis, we assume that α, β are games s.t. Eα, Eβ are monotone
and ϕ is an arbitrary formula.

25

4 GAME LOGIC

For the inductive step, assume that we have Y, Z ∈ P(S) such that Y ⊆ Z, then we will prove
monotonicity for the effectivity functions of every game that can be constructed by applying one
operator to α or to α and β.

For ϕ?, since Y ⊆ Z, we have Eϕ?(Y) = JϕKG ∩Y ⊆ JϕKG ∩ Z = Eϕ?(Z), so Eϕ? is monotone.
For α; β, since Y ⊆ Z, by the monotonicity of Eα and Eβ, we have

Eβ(Y) ⊆ Eβ(Z) ⇒ Eα(Eβ(Y)) ⊆ Eα(Eβ(Z)) ⇒ Eα;β(Y) ⊆ Eα;β(Z),

so Eα;β is monotone.
For α t β, we have by the monotonicity of Eα and Eβ that

Eα(Y) ⊆ Eα(Z) ⊆ Eα(Z) ∪ Eβ(Z) and Eβ(Y) ⊆ Eβ(Z) ⊆ Eα(Z) ∪ Eβ(Z).

This gives us Eαtβ(Y) = Eα(Y) ∪ Eβ(Y) ⊆ Eα(Z) ∪ Eβ(Z) = Eαtβ(Z), so Eαtβ is monotone.
For αd, since Y ⊆ Z, we have ZC ⊆ YC. This means that, by the monotonicity of Eα, we have

Eα(ZC) ⊆ Eα(YC), so
Eαd(Y) = (Eα(YC))C ⊆ (Eα(ZC))C = Eαd(Z),

so Eαd is monotone
For the final game, α∗, we know from the induction hypothesis that Eα is monotone. This

means that for FY(X) = Y ∪ Eα(X), we have

V ⊆W ⇒ FY(V) = Y ∪ Eα(V) ⊆ Y ∪ Eα(W) = FY(W).

So FY(X) is monotone for any set Y ∈ P(S), so by Kleene’s theorem it has a least fixed point

LFP X.FY(X) = sup
n∈N

Fn
Y(∅).

We will now use induction on n to show that Fn
Y(∅) ⊆ Fn

Z(∅) for all n ≥ 0. For n = 0 we have
Fn

Y(∅) = ∅ = Fn
Z(∅). Now, for the induction hypothesis, assume that Fk

Y(∅) ⊆ Fk
Z(∅) for some

k ≥ 0. As Eα is monotone, we have Eα(Fk
Y(∅)) ⊆ Eα(Fk

Z(∅)), so

Fk+1
Y (∅) = Y ∪ Eα(Fk

Y(∅)) ⊆ Y ∪ Eα(Fk
Z(∅)) ⊆ Z ∪ Eα(Fk

Z(∅)) = Fk+1
Z (∅)

So, by induction, we have Fn
Y(∅) ⊆ Fn

Z(∅) for all n ≥ 0. It follows that

Eα∗(Y) = µX.FY(X) = sup
n∈N

Fn
Y(∅) ⊆ sup

n∈N

Fn
Z(∅) = µX.FZ(X) = Eα∗(Z),

so Eα∗ is monotone.

Now that we know that the truth-definition is well-defined, we can also define validity for
game logic semantics. It is similar to the validity definitions for the semantics for modal logic.

Definition 4.6. A formula ϕ ∈ LPar is considered

• valid on a game model G, denoted G |= ϕ, if G, s |= ϕ for all s ∈ S.
• valid over game models, denoted |=G ϕ, if G |= ϕ for all game models G.

4.2. Order on fixpoint formulas and names

As established in [3], in the context of game logic, formulas of the form [γ∗]ϕ and [γ×]ϕ take on
the role of fixpoint formulas.

26

4 GAME LOGIC

Definition 4.7. The sets of least and greatest fixpoint formulas in LNF are

F∗ := {[γ∗]ϕ | γ ∈ GNF, ϕ ∈ LNF} and F× := {[γ×]ϕ | γ ∈ GNF, ϕ ∈ LNF}.

We also define the set of all fixpoint formulas as F := F∗ ∪ F×.

One of the systems used in [3] is CloG, a sequent system for game logic. Similarly to Clo,
each sequent in this system is annotated with a sequence of names, which refer to greatest
fixpoint formulas. In [3], an order 4 on these fixpoint formulas was given and used to define side
conditions on the inference rules of CloG. We review this order in this section, since it is essential
to keeping track of unfoldings of fixpoint formulas in the proof system CloGK, which we define in
the next section. However, before we can look at the order 4 on F, we need to define an order on
games and formulas. A term is a game or a formula and we will now define the subterm relation.

Definition 4.8. The set Ster(σ) of direct subterms of a term σ ∈ LNF ∪ GNF is defined as follows.

Ster(g) := ∅ if g ∈ Γ0 Ster(p) := ∅ if p ∈ Φ0
Ster(gd) := {g} if g ∈ Γ0 Ster(¬p) := {p} if p ∈ Φ0
Ster(γ♥δ) := {γ, δ} where ♥ ∈ {t,u, ; } Ster(ϕ� ψ) := {ϕ, ψ} where � ∈ {∧,∨}
Ster(γ◦) := {γ} where ◦ ∈ {∗,×} Ster([γ]ϕ) := {γ, ϕ}
Ster(ϕo) := {ϕ} where o ∈ {!, ?}

We write σ /0 τ if σ ∈ Ster(τ). We denote by / the transitive closure of /0 and by E the reflexive,
transitive closure of /0. We say σ is a subterm of τ if σ E τ. For two formulas ϕ, ψ ∈ LNF, we say
ϕ is a subformula of ψ if ϕ E ψ.

We also define the notion of the closure of a game logic formula. This definition will be useful
later, when we give a translation from game logic to the modal µ-calculus.

Definition 4.9. The closure Cl(ϕ) of a formula ϕ ∈ LNF is the smallest subset of LNF that contains
ϕ, is closed under subformulas and satisfies the following rules:

1. If [γ; δ]ψ ∈ Cl(ϕ), then [γ][δ]ψ ∈ Cl(ϕ).
2. If [γ t δ]ψ ∈ Cl(ϕ) or [γ u δ]ψ ∈ Cl(ϕ), then [γ]ψ, [δ]ψ ∈ Cl(ϕ).
3. If [γ∗]ψ ∈ Cl(ϕ), then ψ ∨ [γ][γ∗]ψ ∈ Cl(ϕ).
4. If [γ×]ψ ∈ Cl(ϕ), then ψ ∧ [γ][γ×]ψ ∈ Cl(ϕ).
5. If [ψ?]χ ∈ Cl(ϕ) or [ψ!]χ ∈ Cl(ϕ), then ψ ∈ Cl(ϕ).

We define set F(ϕ) := F ∩ Cl(ϕ).

With the subterm relation defined, we can now give the order on the set of fixpoint formulas.

Definition 4.10. The order ≺ on F is defined as follows for all ϕ, ψ ∈ LNF and γ, δ ∈ GNF

[γ◦]ϕ ≺ [δ†]ψ if δ† / γ◦,
[γ◦]ϕ 4 [δ†]ψ if δ† E γ◦,

where ◦, † ∈ {∗,×}.

Example 4.11. .

• We have [g∗ u h×]p ≺ [h×]q, since h× / g∗ t h×.
• We have [([b×]p)?]q ≺ [b×]p, since b× / ([b×]p)?.
• We have [(g t hd)×]q 4 [(g t hd)×](p ∨ q), since (g t hd)× E (g t hd)×.

27

4 GAME LOGIC

In the next section, we define the proof system CloGK. Just like in Clo, formulas in this system
are annotated with names. However, where the names in Clo referred to variables, in CloGK they
refer to greatest fixpoint formulas. Concepts like words and annotations that were introduced
in subsection 3.4 are defined similarly for these names and the order ≺ extends to names and
annotations, just like the subsumption order ≤A does.

4.3. The proof system CloGK

The proof system CloG is a cyclic sequent system for game logic. It was defined in [3] as the first
game logic system in the transformation sequence from Clo to Par. This means it has many rules
which are the same as rules in Clo, but it also includes an inference rule for every game operator,
both angelic and demonic, and a game logic variant of the ν-clox rule.

We will adapt this proof system into a new cyclic proof system, called CloGK. This new system
is also a sequent system for the language LNF of normal form game logic formulas, but it uses the
more general normal modal rule mod instead of the monotone modal rule modm.

ϕa, ψb
modm([gd]ϕ)a, ([g]ψ)b

∆, ϕa
mod

[gd]∆, ([g]ϕ)a

As we established in subsection 2.3, this change ensures that CloGK is designed to be valid over
Kripke models. The axioms and inference rules of CloGK are listed in Table 3. Here, ∆ is a game
logic sequent, g is an atomic game and [gd]∆ = {[gd]ϕ | ϕ ∈ ∆}.

Definition 4.12. A CloGK-derivation is a finite tree of sequents consisting of annotated formulas
from LNF, where each sequent is either an axiom, a sequent that is discharged by an instance of
the clox rule, or follows directly from the sequent above it by an inference rule. We say ϕ ∈ LNF

has a CloGK-derivation, denoted `CloGK
ϕ, if there is a CloGK-derivation with ϕε as its root.

Ax1
pε, (¬p)ε

∆, ϕa
mod

[gd]∆, ([g]ϕ)a

∆, ϕa, ψa
∨

∆, (ϕ ∨ ψ)a
∆, ϕa ∆, ψa

∧
∆, (ϕ ∧ ψ)a

∆, ([γ]ϕ ∨ [δ]ϕ)a
t

∆, ([γ t δ]ϕ)a
∆, ([γ]ϕ ∧ [δ]ϕ)a

u
∆, ([γ u δ]ϕ)a

∆
weak

∆, ϕa
∆, ϕab

exp
∆, ϕaxb

∆, ([γ][δ]ϕ)a
;

∆, ([γ; δ]ϕ)a

(a 4 [γ∗]ϕ)
∆, (ϕ ∨ [γ][γ∗]ϕ)a

*∆, ([γ∗]ϕ)a
∆, (ϕ ∧ ψ)a

?
∆, ([ϕ?]ψ)a

(a 4 [γ×]ϕ)
∆, (ϕ ∧ [γ][γ×]ϕ)a

×
∆, ([γ×]ϕ)a

∆, (ϕ ∨ ψ)a
!

∆, ([ϕ!]ψ)a

[∆, ([γ×]ϕ)ax]x

...

(a 4 x ∈ N[γ×]ϕ, x /∈ ∆, a) ∆, (ϕ ∧ [γ][γ×]ϕ)ax
clox∆, ([γ×]ϕ)a

Table 3: Axiom and rules for CloGK

28

5 FROM GAME LOGIC TO THE MODAL µ-CALCULUS

5. From game logic to the modal µ-calculus

5.1. Augmented game models

The effectivity functions used in game models are monotone neighbourhood functions, so a game
model for LNF(Φ0, Γ0) is, in fact, a monotone neighbourhood model for LNF(Φ0, Γ0), where we
have one neighbourhood function for every atomic game in g ∈ Γ0.

In subsection 2.2, we defined the class of augmented neighbourhood models and proved that it
is modally equivalent to the class of Kripke models. Within the class G of game models, we can
define a similar subclass, namely the class GK of augmented game models, which are game models
whose effectivity functions are augmented. Since game models are monotone neighbourhood
models, we can use the correspondence relation between relations and augmented neighbourhood
function defined in Definition 2.14 to define a unique corresponding Kripke model for each
augmented game model and vice versa. From this, it is easy to see that the class G

Φ0,Γ0
K of

augmented game models for LNF(Φ0, Γ0) and the class KΦ0,Γ0 of Kripke models are modally
equivalent.

When we talk about interpreting game logic "over Kripke models", we mean the language of
game logic interpreted through the semantics of these augmented game models. In this context,
all the atomic games are interpreted to be 1-player games, in which all decisions are made by
Angel. The only way Demon interacts with games in this context is through the dual operator.

5.2. Translating game logic into the modal µ-calculus

In order to show the completeness of CloGK, we will transform Clo-derivations into CloGK-
derivations. We fix the set Φ0 of atomic propositions and the set Γ0 of atomic games and consider
CloGK for LNF(Φ0, Γ0) and Clo for Lµ

NF(Φ̂0, Γ0), where Φ̂0 = Φ0 ∪ {xϕ | ϕ ∈ F} for the set F of all
greatest and least fixpoint formulas in LNF(Φ0, Γ0). Recall that, in the system Clo, we write [g]
instead of �g and [gd] instead of ♦g for an action g in order to stay closer to the syntax of game
logic. Since these systems work over different languages, we will need a way of translating a game
logic formula into a modal µ-calculus formula, while preserving validity.

In [3], a validity-preserving translation of game logic into the monotone µ-calculus was given.
Since there is no difference in the syntax of the monotone µ-calculus and the normal modal
µ-calculus, we can use their translation as a translation from game logic to the normal µ-calculus.
However, since the semantics for the two languages are different, we will also need to provide a
proof that the translation is still validity-preserving in this context.

Definition 5.1. The translation (−)] : LNF(Φ0, Γ0)→ L
µ
NF(Φ̂0, Γ0) is defined by mutual structural

induction on formulas and games as follows.

p] := p τ
ϕ
γuδ(A) := τ

ϕ
γ (A) ∧ τ

ϕ
δ (A)

(¬p)] := ¬p τ
ϕ
γtδ(A) := τ

ϕ
γ (A) ∨ τ

ϕ
δ (A)

(ϕ ∧ ψ)] := ϕ] ∧ ψ] τ
ϕ
γ∗(A) := µx[γ

∗]ϕ.A ∨ τ
[γ∗]ϕ
γ (x[γ

∗]ϕ)

(ϕ ∨ ψ)] := ϕ] ∨ ψ] τ
ϕ
γ×(A) := νx[γ

×]ϕ.A ∧ τ
[γ×]ϕ
γ (x[γ

×]ϕ)

([γ]ϕ)] := τ
ϕ
γ (ϕ]) τ

ϕ
γ;δ(A) := τ

[δ]ϕ
γ (τ

ϕ
δ (A))

τ
ϕ
g (A) := [g]A τ

ϕ
ψ?(A) := ψ] ∧ A

τ
ϕ

gd(A) := [gd]A τ
ϕ
ψ!(A) := ψ] ∨ A

29

5 FROM GAME LOGIC TO THE MODAL µ-CALCULUS

Here the fixpoint variables that are used in the definition of τ
ϕ
γ∗ and τ

ϕ
γ× are the unique

variables x[γ
∗]ϕ and x[γ

×]ϕ associated with [γ∗]ϕ, [γ×]ϕ ∈ F and are thus not elements of Φ0. For
this translation to be useful, we need it to be validity-preserving. In other words, if a formula
ϕ ∈ LNF(Φ0, Γ0) is valid over augmented game models, then its translation ϕ] ∈ Lµ

NF(Φ̂0, Γ0)
should be valid over Kripke models. To show this, we will define a correspondence relation
between augmented game models and Kripke models, when the set of atomic propositions of the
game logic language is contained in the set of atomic propositions of the modal µ-calculus. This
relation is similar to the correspondence relation we introduced in subsection 2.2.

Definition 5.2. Given two sets X, Y such that X ⊆ Y and an augmented game model G = 〈S, E, V〉
for LNF(X, Γ0), we say a Kripke-Lµ

NF(Y, Γ0) model K = 〈S, R, V′〉 corresponds to G if Rg(s) :=
∩Eg(s) for all g ∈ Γ0 and V′(p) = V(p) for all p ∈ X. We denote this by G ↔ K.

We will now prove that if ϕ ∈ LNF(Φ0, Γ0) is true at s ∈ S in an augmented game model G,
then ϕ] ∈ Lµ

NF(Φ̂0, Γ0) is true at s in any corresponding Kripke model K.

Theorem 5.3. For all ϕ ∈ LNF(Φ0, Γ0) and all augmented game models G = 〈S, E, V〉, we have

JϕKG = Jϕ]KK

for any Kripke model K such that G ↔ K.

Proof. We will prove this claim using structural induction on the game logic formula ϕ.
For the base step, take some p ∈ Φ. We know that p] = p and (¬p)] = ¬p, so

JpKG = V(p) = V′(p) = JpKK = Jp]KK and J¬pKG = S\V(p) = S\V′(p) = J¬pKK = J(¬p)]KK

for any augmented game model G and Kripke model K such that G ↔ K.
For the induction hypothesis, assume that we have ϕ, ψ ∈ LNF such that

JϕKG = Jϕ]KK and JψKG = Jψ]KK

whenever G ↔ K.
For the inductive step, assume we have G and K s.t. G ↔ K. For ϕ ∧ ψ and ϕ ∨ ψ, we have

J(ϕ ∧ ψ)]KK = Jϕ] ∧ ψ]KK = Jϕ]KK ∩ Jψ]KK = JϕKG ∩ JψKG = Jϕ ∧ ψKG ,

J(ϕ ∨ ψ)]KK = Jϕ] ∨ ψ]KK = Jϕ]KK ∪ Jψ]KK = JϕKG ∪ JψKG = Jϕ ∨ ψKG .

For [γ]ϕ, we need to prove that J[γ]ϕKG = J([γ]ϕ)]KK for all γ ∈ GNF. In order to prove this,
we will first prove the following claim.

Claim 1. For all γ ∈ GNF(Φ0, Γ0), ζ ∈ LNF(Φ0, Γ0), all A ∈ Lµ
NF(Φ̂0, Γ0) such that A = ζ] or

A = xζ and all Kripke models K, we have Jτ
ζ
γ(A)KK = Eγ(JAKK).

Proof. We will prove this claim by structural induction on the game γ ∈ GNF(Φ0, Γ0).
For the base case, take some ζ ∈ LNF(Φ0, Γ0) and Kripke model K and take A ∈ Lµ

NF(Φ̂0, Γ0)

such that A = ζ] or A = xζ . We now prove the claim for γ = g and γ = gd.

Jτ
ζ
g (A)KK

5.1
= J[g]AKK

3.12
= {s ∈ S | Rg(s) ⊆ JAKK}

5.2
= {s ∈ S | ∩ Eg(s) ⊆ JAKK}

2.13
= {s ∈ S | JAKK ∈ Eg(s)}
= Eg(JAKK)

30

5 FROM GAME LOGIC TO THE MODAL µ-CALCULUS

Jτ
ζ

gd(A)KK
5.1
= J[gd]AKK

3.12
= {s ∈ S | Rg(s) ∩ JAKK 6= ∅}

5.2
= {s ∈ S |

(
∩ Eg(s)

)
∩ JAKK 6= ∅}

= {s ∈ S | ∃x ∈ ∩Eg(s) s.t. x ∈ JAKK}
= {s ∈ S | ∃x ∈ ∩Eg(s) s.t. x /∈ JAKC

K}
= {s ∈ S | ∩ Eg(s) 6⊆ JAKC

K}
= {s ∈ S | JAKC

K /∈ Eg(s)}
= ({s ∈ S | JAKC

K ∈ Eg(s)})C

= (Eg(JAKC
K))

C

4.4
= Egd(JAKK)

So the claim holds for γ = g and γ = gd for any ζ ∈ LNF(Φ0, Γ0), any Kripke model K and any
A ∈ Lµ

NF(Φ̂0, Γ0) such that A = ζ] or A = xζ .

For the induction hypothesis, assume we have γ, δ ∈ GNF(Φ0, Γ0) such that

Jτ
ζ
γ(A)KK = Eγ(JAKK) and Jτ

ζ
δ (A)KK = Eδ(JAKK),

for all A ∈ Lµ
NF(Φ̂0, Γ0) such that A = ζ] or A = xζ , ζ ∈ LNF(Φ0, Γ0) and all Kripke models K.

For the inductive step, take some ζ ∈ LNF(Φ0, Γ0), Kripke model K and A ∈ Lµ
NF(Φ̂0, Γ0) such

that A = ζ] or A = xζ . For the game γ u δ, we have

Jτ
ζ
γuδ(A)KK

5.1
= Jτ

ζ
γ(A) ∧ τ

ζ
δ (A)KK = Jτ

ζ
γ(A)KK ∩ Jτ

ζ
δ (A)KK

(IH)
= Eγ(JAKK) ∩ Eδ(JAKK)

4.4
= Eγuδ(JAKK)

The case for γ t δ is similar.

For γ∗, we have

Jτ
ζ
γ∗(A)KK

5.1
= Jµx[γ

∗]ζ .A ∨ τ
[γ∗]ζ
γ (x[γ

∗]ζ)KK
3.12
= lfp.

(
A ∨ τ

[γ∗]ζ
γ (x[γ

∗]ζ)
)K

x[γ∗]ζ
3.12
= lfp X.JA ∨ τ

[γ∗]ζ
γ (x[γ

∗]ζ)KK[x[γ∗]ζ 7→X]

3.12
= lfp X.JAKK[x[γ∗]ζ 7→X] ∪ Jτ

[γ∗]ζ
γ (x[γ

∗]ζ)KK[x[γ∗]ζ 7→X]

We know that A is either the variable xζ or the translation of ζ. In the first case, x[γ
∗]ζ clearly does

not appear in A and in the second case it also does not, since otherwise [γ∗]ζ would be a subterm
of ζ. Since x[γ]ζ does not occur in A, changing which set the valuation assigns to x[γ]ζ does not
affect the truth-set of A, so JAKK[x[γ∗]ζ 7→X] = JAKK, which gives us

Jτ
ζ
γ∗(A)KK = lfp X.JAKK ∪ Jτ

[γ∗]ζ
γ (x[γ

∗]ζ)KK[x[γ∗]ζ 7→X].

Here we can apply the induction hypothesis for the game γ, the modal µ-calculus formula x[γ
∗]ζ ,

the game logic formula [γ∗]ζ and the Kripke model K[x[γ∗]ζ 7→ X], which gives

Jτ
ζ
γ∗(A)KK = lfp X.JAKK ∪ Eγ(Jx[γ

∗]ζKK[x[γ∗]ζ 7→X]) = lfp X.JAKK ∪ Eγ(X)

4.4
= Eγ∗(JAKK).

31

5 FROM GAME LOGIC TO THE MODAL µ-CALCULUS

The case for γ× is similar.
Take the game γ; δ, then

Jτ
ζ
γ;δ(A)KK

5.1
= Jτ

[δ]ζ
γ (τζ

δ (A))KK
F
= Eγ(Jτ

ζ
δ (A)KK)

♥
= Eγ(Eδ(JAKK))

4.4
= Eγ;δ(JAKK).

At F we apply the induction hypothesis for γ with the modal µ-calculus formula τ
ζ
δ (A), the

game logic formula [δ]ζ (note that ([δ]ζ)] = τ
ζ
δ (ζ

])) and the Kripke model K. At ♥ we apply the
induction hypothesis for δ with the modal µ-calculus formula A, the game logic formula ζ and
the Kripke model K.

For the game ψ?, we get

Jτ
ζ
ψ?(A)KK

5.1
= Jψ] ∧ AKK

3.12
= Jψ]KK ∩ JAKK

(IH)
= JψKG ∩ JAKK

4.4
= Eψ?(JAKK)

The case for ψ! is similar. �

We have now shown by induction that the claim holds, so we can now return to our original
induction proof. If we plug in ζ = ϕ and A = ϕ] into our claim, we get

J([γ]ϕ)]KK
5.1
= Jτ

ϕ
γ (ϕ])KK

Claim 1
= Eγ(Jϕ]KK)

(IH)
= Eγ(JϕKG)

4.4
= J[γ]ϕKG

for all games γ ∈ GNF(Φ0, Γ0) and all G and K such that G ↔ K. This statements concludes our
original induction proof, so we have now shown that

JϕKG = Jϕ]KK

for all ϕ ∈ LNF(Φ0, Γ0) and all augmented game models G and Kripke models K s.t. G ↔ K.

By creating unique variables x[γ
◦]ϕ for each fixpoint formula [γ◦]ϕ that is translated, the

translation (−)] ensures that the order on the fixpoint formulas F is the same as the subsumption
order on the variables that correspond to these fixpoints in the translated formula.

Lemma 5.4. For all ϕ ∈ LNF(Φ0, Γ0) and all ψ, ζ ∈ F(ϕ), we have xψ, xζ ∈ Var(ϕ]) and

xψ ≤ϕ] xζ ⇒ ψ 4 ζ

This result is similar to [3, Proposition 24] and since we are using the same translation (−)]
and orders on F and Var(ϕ]), the proof for our lemma would essentially be the same as the proof
given for this proposition in [3]. We will demonstrate the result in the following example.

Example 5.5. Take the normal form formula ϕ = [((a× t b∗)×; c×)∗]p. Applying (−)] gives

ϕ] = τ
p
((a×tb∗)× ;c×)∗(p)

= µxϕ.p ∨ τ
[c×]ϕ
(a×tb∗)×(τ

ϕ
c×(xϕ))

= µxϕ.p ∨ τ
[c×]ϕ
(a×tb∗)×(νxθ .xϕ ∧ [c]xθ) θ = [c×]ϕ

= µxϕ.p ∨ νxζ .(νxθ .xϕ ∧ [c]xθ) ∧ τ
ζ
a×tb∗(xζ) ζ = [(a× t b∗)×]θ

= µxϕ.p ∨ νxζ .(νxθ .xϕ ∧ [c]xθ) ∧ (τζ
a×(xζ) ∨ τ

ζ
b∗(xζ))

= µxϕ.p ∨ νxζ .(νxθ .xϕ ∧ [c]xθ) ∧ ((νxη .xζ ∧ [a]xη) ∨ µxψ.xζ ∨ [b]xψ) η = [a×]ζ, ψ = [b∗]ζ

32

5 FROM GAME LOGIC TO THE MODAL µ-CALCULUS

When we apply the subsumption order <−
ϕ] to this formula, we get

xϕ <−
ϕ] xθ , xϕ <−

ϕ] xζ , xζ <−
ϕ] xη , xζ <−

ϕ] xψ.

Applying the transitive closure <ϕ] gives the two additional pairs

xϕ <ϕ] xη and xϕ <ϕ] xψ.

The order on fixpoint formulas gives

ϕ ≺ θ, ζ, η, ψ and ζ ≺ η, ψ,

which aligns with the results we got from the subsumption order.

5.3. Transforming Clo-derivations to CloGK-derivations

As was shown in Theorem 3.19, any Clo-derivation of ϕ] can be transformed into a Cloϕ]-derivation
of ϕ]. This means that in order to prove the completeness of CloGK over Kripke models, it suffices
to show that a Cloϕ]-derivation of ϕ] can be transformed into a CloGK-derivation of ϕ. In this
section, we will show how this transformation can be achieved.

However, we first introduce some notation. We will use A,B, . . . to indicate sets of sequents.
We write π : A `S Φ to say that π is an S-derivation of Φ from assumptions in the set of sequents
A. We also extend the translation (−)] to annotations and (sets of) sequents as follows.

(ϕa)] = (ϕ])a, Φ] = {(ϕa)] | ϕa ∈ Φ} and A] = {Φ] | Φ ∈ A}

and we define the set Nϕ of names for ϕ ∈ F to be equal to Nxϕ .

Theorem 5.6. For all ϕ ∈ LNF, if `Cloϕ] ϕ], then `CloGK
ϕ

Proof. We will prove the theorem by proving the following claim.

For all Cloϕ]-derivations π and all game logic sequents Φ such that π : A `Cloϕ] Φ],
there is a CloGK-derivation π′ : B `CloGK

Φ, where B] = A.
(1)

We prove this claim by induction on the complexity of Cloϕ]-derivations.
For the base case, the derivation π is either an application of the axiom Ax1, which derives Φ]

from no assumptions, or a derivation of the sequent Φ] from the assumption Φ]. In both cases, a
CloGK-derivation π′ satisfying the claim can be found by simply replacing Φ] with Φ in π.

For the inductive hypothesis, we take some n ≥ 1 and assume that (1) holds for all Cloϕ]-
derivations π with n or less nodes and all game logic sequents Φ such that π : A `Cloϕ] Φ].

For the inductive step, assume we have a Cloϕ]-derivation π : A `Cloϕ] Φ] with n + 1 nodes,
then we will prove that there always exists a CloGK-derivation π′ : B `CloGK

Φ, where B] = A.
We will show this by making a case distinction based on the last rule applied in π.

Before we start this case distinction, there are some assumptions we can make. Since π has
at least 2 nodes, the last applied rule can not be Ax1, so we only need to consider the inference
rules. Also, we may make the injectivity assumption, which states that for every formula A ∈ Φ],
there is one unique ψ ∈ Φ such that ψ] = A. If Φ did not satisfy this assumption, we could simply
remove formulas until it did. This would not change Φ], so we could still use the derivation π.
After finding a CloGK-derivation for this reduced version of Φ, we could use the weak rule to add

33

5 FROM GAME LOGIC TO THE MODAL µ-CALCULUS

the removed formulas back in and obtain a CloGK-derivation of Φ. Similarly, we can assume that
none of the formulas in Φ are of the form [γ; δ]ψ. If a formula would be of this form, we could
replace it with [γ][δ]ψ, which has the same translation. After finding a CloGK-derivation for this
altered Φ, we could return the formula to its original form by applying the ; rule.

If the last rule applied in π is mod, then Φ] = [gd]∆, [g]Aa. By the injectivity assumption,
there is one unique ψb ∈ Φ such that (ψb)] = ([g]A)a and Φ = ψb, Ψ, where Ψ] = [gd]∆. We can
deduce the shape of ψ by looking at the definition of the translation (−)]. Since it does not affect
annotations, we must have a = b and ψ] = [g]A. The only way the translation of ψ can have this
form is if ψ = [g]ψ0, where ψ]

0 = A. We also have the game logic sequent Ψ such that Ψ] = [gd]∆.
Define Ξ = {χ | ∃ζ ∈ Ψ s.t. ζ = [gd]χ}, then it is clear to see that Ξ] = ∆. The mod rule was
applied to the premise ∆, Aa. If we remove this rule from π, then we have a Cloϕ]-derivation
π0 : A `Cloϕ] ∆, Aa, which has n nodes, and a game logic sequent Ω = Ξ, ψa

0 such that Ω] = ∆, Aa.
This means we can apply the induction hypothesis to get a CloGK-derivation π′0 : B `CloGK

Ω,
where B] = A. If we apply mod to the root sequent Ω = Ξ, ψa

0 of this derivation, we obtain a
CloGK-derivation π′ of the sequent Φ = [gd]Ξ, [g]ψa

0 from the set of assumptions B, where B] = A.
If the last rule applied is exp, then Φ] = Ab1

1 , . . . , Abk
k and the exp-inference is applied to the

premise Aa1
1 , . . . , Aak

k , where ai v bi for all i ≤ k. By the injectivity assumption and the fact that
the translation does not affect annotations, we know that for every Ai there exists one unique
ψi ∈ Φ s.t. (ψi)

] = Ai. This means that Φ = ψb1
1 , . . . , ψbk

k . Removing the last applied rule from
π gives us a Cloϕ]-derivation π0 : A `Cloϕ] Aa1

1 , . . . , Aak
k with n nodes and we also have a game

logic sequent Ψ = ψa1
1 , . . . , ψak

k such that Ψ] = Aa1
1 , . . . , Aak

k . This means that we can apply the
induction hypothesis to get a CloGK-derivation π′0 : B `CloGK

Ψ, where B] = A. Since ai v bi for
all i ≤ k, each annotation ai can be turned into bi by repeatedly applying the exp rule to add every
name x ∈ bi that is not in ai. This gives us a CloGK-derivation π′ : B `CloGK

Φ, where B] = A.
If the last rule applied is ∨, then Φ] = ∆, (A0 ∨ A1)

a and the ∨ rule is applied to the premise
∆, Aa

0 , Aa
1 . By the injectivity assumption, there is a unique ψa ∈ Φ such that ψ] = A0 ∨ A1 and

Φ = ψa, Ψ, where Ψ] = ∆. Given its translation, there are three possibilities for the shape of ψ:

(i) ψ = ψ0 ∨ ψ1, where ψ]
0 = A0 and ψ]

1 = A1.

(ii) ψ = [γ0 t γ1]χ, where ([γ0]χ)
] = A0 and ([γ1]χ)

] = A1.

(iii) ψ = [ψ0!]ψ1, where ψ]
0 = A0 and ψ]

1 = A1.

We can obtain a Cloϕ]-derivation π0 : A `Cloϕ] ∆, Aa
0 , Aa

1 with n nodes by removing the ∨ rule at
the root of π. In all three cases, there is a game logic sequent Ξ such that Ξ] = ∆, Aa

0 , Aa
1 . In cases

(i) and (iii), it is Ξ = Ψ, ψa
0 , ψa

1 and in case (ii), it is Ξ = Ψ, ([γ0]χ)
a, ([γ1]χ)

a. So, in each case, we
can apply the induction hypothesis to get a CloGK-derivation π′0 : B `CloGK

Ξ, where B] = A.
In case (i), applying the ∨ rule to π′0 gives Ψ, (ψ0 ∨ ψ1)

a = Ψ, ψa = Φ.
In case (ii), applying the ∨ rule and then the t rule to π′0 gives Ψ, ([γ0 t γ1]χ)

a = Ψ, ψa = Φ.
In case (iii), applying the ∧ rule and then the ! rule to π′0 gives Ψ, ([ψ0]ψ1)

a = Ψ, ψa = Φ.
So, in each case, we have a CloGK-derivation π′ : B `CloGK

Φ, where B] = A.
If the last rule applied is ∧, then Φ] = ∆, (A0 ∧ A1)

a and the ∧ rule is applied to the premises
∆, Aa

0 and ∆, Aa
1 . By the injectivity assumption, there is a unique ψa ∈ Φ such that ψ] = A0 ∧ A1

and Φ = ψa, Ψ, where Ψ] = ∆. If we remove the ∧ rule from π, we get two Cloϕ]-derivations
π0 : A0 `Cloϕ] ∆, A0 and π1 : A1 `Cloϕ] ∆, A1, where A = A0 ∪A1. Given its translation, there are
three possibilities for the shape of ψ:

(i) ψ = ψ0 ∧ ψ1, where ψ]
0 = A0 and ψ]

1 = A1.

(ii) ψ = [γ0 u γ1]χ, where ([γ0]χ)
] = A0 and ([γ1]χ)

] = A1.

34

5 FROM GAME LOGIC TO THE MODAL µ-CALCULUS

(iii) ψ = [ψ0?]ψ1, where ψ]
0 = A0 and ψ]

1 = A1.

In each case, we can find two game logic sequents Ξ0 and Ξ1 such that Ξ]
0 = ∆, Aa

0 and Ξ]
1 = ∆, Aa

1 .
In cases (i) and (iii), take Ξi = Ψ, ψa

i for i = 0, 1 and, in case (ii), take Ξi = Ψ, ([γi]χ)
a for

i = 0, 1. So,in each case, we can apply the induction hypothesis to get two CloGK-derivations
π′0 : B0 `CloGK

Ξ0 and π′1 : B1 `CloGK
Ξ1, where B]i = Ai for i = 0, 1.

In case (i), applying the ∧ rule to π′0 and π′1 gives Ψ, (ψ0 ∧ ψ1)
a = Ψ, ψa = Φ.

In case (ii), applying the ∧ rule to π′0 and π′1 and then u, gives Ψ, ([γ0 u γ1]χ)
a = Ψ, ψa = Φ.

In case (iii), applying the ∧ rule to π′0 and π′1 and then the ? rule gives Ψ, ([ψ0?]ψ1)
a = Ψ, ψa = Φ.

So, in each case, we have a CloGK-derivation π′ : B `CloGK
Φ, where B] = A.

If the last rule applied is σ, then Φ] = ∆, (σx.A)a, where σ ∈ {µ, ν} and a ≤ϕ] x, and the σ rule
is applied to the premise ∆, A(σx.A)a. By the injectivity assumption, there is a unique ψa ∈ Φ
such that ψ] = σx.A and Φ = ψa, Ψ, where Ψ] = ∆.

Say σ = µ, then we know from the definition of the translation that ψ = [γ∗]χ for some γ and
χ such that A(x) = χ] ∨ τ

ψ
γ (x). Also, since the variable x is created by translating the fixpoint

formula ψ, we know that x = xψ. This gives

A(µxψ.A(xψ)) = χ] ∨ τ
ψ
γ (µxψ.A(xψ)) = χ] ∨ τ

ψ
γ (µxψ.χ] ∨ τ

ψ
γ (xψ)) = χ] ∨ τ

[γ∗]χ
γ (τχ

γ∗(χ
]))

= χ] ∨ ([γ][γ∗]χ)]

= (χ ∨ [γ][γ∗]χ)]

If we remove the σ rule from π, we get a Cloϕ]-derivation π0 : A `Cloϕ] ∆, A(µxψ.A(xψ)) with n
nodes. We also have the game logic sequent Ψ, χ ∨ [γ][γ∗]χ, which translates to ∆, A(µxψ.A(xψ)),
so by the induction hypothesis we have a CloGK-derivation π′0 : B `CloGK

Ψ, χ ∨ [γ][γ∗]χ, where
B] = A. We would like to apply the ∗ rule to the root of π′0, however, to do this, we need to ensure
that a 4 [γ∗]χ. Take y ∈ a, then by a ≤ϕ] xψ, we know that y ∈ Ny such that y ≤ϕ] xψ. Names
are not changed between languages, so y is a name for a variable in Φ̂0, as well as a name for a
fixpoint formula in F. So, there must be some ζ ∈ F such that y ∈ Nζ = Nxζ . Since Ny ∩ Nxζ = ∅
if y 6= xζ , we must have y = xζ . This means we have xζ ≤ϕ] xψ and since the order on Var(ϕ]) is
reflected into the order on game logic fixpoints by the translation, we have ζ 4 ψ. So, for all y ∈ a,
y ∈ Nζ such that ζ 4 ψ, which means a 4 ψ = [γ∗]χ. The side condition is satisfied, so we can
apply the ∗ rule to π′0, giving us a CloGK-derivation π′ : B `CloGK

Φ, where B] = A. In the case
where σ = ν, we can use similar reasoning, using the × rule instead of ∗.

If the last rule applied is ν-clox, then Φ] = ∆, (νx.A)a, the ν-clox rule was applied to
∆, A(νx.A)ax, where a ≤ϕ] x, x ∈ Nx and x /∈ ∆, a and there is a leaf of π that is labelled
with the assumption Ω = ∆, (νx.A)ax. By the injectivity assumption, there is a unique ψa ∈ Φ
such that ψ] = νx.A and Φ = ψa, Ψ, where Ψ] = ∆. From the translation, we know that
ψ = [γ×]χ for some γ and χ such that A(x) = χ] ∧ τ

ψ
γ (x) and we have x = xψ. We also know that

A(νx.A) = (χ ∧ [γ][γ×]χ)].
The approach we used in the previous cases will not work here. This is because when we

apply the induction hypothesis to get a CloGK-derivation of Ψ, χ∧ [γ][γ×]χ, we have no guarantee
that this derivation has Ψ, ([γ×]χ)ax as one of its assumptions. We do get at least one assumption
which would translate to Ω and, by the definition of the translation (−)], we know this assumption
would have the shape Θ, ([γ×]χ)ax, where Θ] = ∆, but we can not be sure that Θ = Ψ. This
means we might not be able to apply the clox rule in order to obtain the sequent Ψ, ([γ×]χ)a from
Ψ, (χ ∧ [γ][γ×]χ)ax. So, we will need to use a different approach here.

35

5 FROM GAME LOGIC TO THE MODAL µ-CALCULUS

We will first construct a derivation of Ψ, ([γ×]χ)a that only differs from a valid CloGK-derivation
in the fact that not all assumptions associated with applications of the clox rule are discharged,
and then transform it into a proper CloGK-derivation. In order to obtain the building blocks that
we will use to construct this proof, we will first need the observation below, where we define S to
be the set of game logic sequents Σ such that Σ] = ∆.

Claim 2. For all Σ ∈ S there exist sets BΣ and LΣ of game logic sequents such that

1) B]Σ = A and L]Σ = {∆}
2) For any annotation b = ax1, . . . , xn, where x1, . . . , xk ∈ N[γ×]χ, there is a CloGK-derivation

ρb
Σ : BΣ ∪ {Θ, ([γ×]χ)b | Θ ∈ LΣ} `CloGK

Σ, (χ ∧ [γ][γ×]χ)b

Proof of claim. Fix Σ ∈ S . We have Σ] = ∆, so the game logic sequent Σ, (χ∧ [γ][γ×]χ)ax translates
to ∆, A(νx.A)ax. If we remove the last applied rule, ν-clox, from π, we get a Cloϕ]-derivation
π0 : A ∪ {Ω} `Cloϕ] ∆, A(νx.A)ax. Since the ν-clox rule was removed, the assumption Ω is no
longer discharged, so it is added to the set of assumptions for π0. This derivation has n nodes, so
by the induction hypothesis, we have a CloGK-derivation π′0 : BΣ ∪ B′ `CloGK

Σ, (χ ∧ [γ][γ×]χ)ax,
where B]Σ = A and B′ contains all the assumptions that translate to Ω. This means that every
sequent in B′ must be of the form Θ, ζax, where Θ] = ∆ and ζ] = νx.A. Since ζ] is the same
fixpoint formula with the same fixpoint variable x as ψ], they must both be translations of the
same game logic fixpoint formula, so ζ = ψ = [γ×]χ. So B′ = {Θ, ([γ×]χ)ax | Θ ∈ LΣ}, where
LΣ is a set of sequents such that L] = {∆}. We have now obtained the sets BΣ and LΣ that satisfy
the first condition of our claim.

Say we have an annotation b = ax̄, where x̄ = x1 . . . xk and each xi is a name for [γ×]χ. Now, we
replace every instance of x in an annotation in π′0 with x̄. The inference rules that leave annotations
unchanged are not affected by this replacement. Note that x is in the annotation of the root sequent
of π′0, so there was no application of ν-clox, since this would have removed x from the annotations.
This means that the problem this replacement brings about is that applications of the exp rule that
were used to x to the annotation of a formula are now no longer valid. However, we can easily
solve this problem by replacing each such use of the exp rule with a sequence of applications of
the exp rule which adds each name in x̄ one by one. By making these changes, we have turned the
derivation π′0 into a derivation

ρb
Σ : BΣ ∪ {Θ, ([γ×]χ)b | Θ ∈ LΣ} `CloGK

Σ, (χ ∧ [γ][γ×]χ)b,

so the proof of the claim is finished. �

With this claim proven, we can now use these derivations ρb
Σ to construct a derivation of

Ψ, ([γ×]χ)a, which will be almost a valid CloGK-derivation. This will be a derivation in the proof
system D, which is CloGK extended with the following inference rule.

(a 4 x ∈ N[γ×]ϕ, x /∈ ∆, a) ∆, (ϕ ∧ [γ][γ×]ϕ)ax
Dx∆, ([γ×]ϕ)a

This rule is the clox rule without the requirement that the assumptions of the form ∆, ([γ×]ϕ)ax

are discharged. We will call a node t dangling if the Dx rule is applied at t. Before we start
constructing our D-derivation of Ψ, ([γ×]χ)a, we will add one name xΣ for every Σ ∈ S to the set
Nψ. We know from the side condition of ν-clox that a ≤ϕ] xψ. We saw in the case for the σ rule
that this means that for all y ∈ a there is some ζ ∈ F such that y ∈ Nζ and ζ 4 ψ, so we know that
a 4 x for any x ∈ Nψ. Furthermore, if x̄ contains only names from Nψ, we have ax̄ 4 x.

36

5 FROM GAME LOGIC TO THE MODAL µ-CALCULUS

We start our construction with a one-node derivation, which contains only the sequent
Ψ, ([γ×]χ)a. Suppose that at any time during our construction, our derivation has an as-
sumption of the form Σ, ([γ×]χ)b, where Σ ∈ S and b = ax̄, where x̄ = xΣ1

. . . xΣk
such that

Σ /∈ {Σ1, . . . , Σk} ⊆ S (Note that this includes our initial sequent!). By Claim 2, there is a CloGK-
derivation ρbxΣ

Σ of Σ, (χ ∧ [γ][γ×]χ)b from the set of assumptions BΣ ∪ {Θ, ([γ×]χ)b | Θ ∈ LΣ}.
Through an application of DxΣ

, we will adjoin the root of ρbxΣ
Σ to every leaf that is labelled with

the assumption Σ, ([γ×]χ)b. By doing this, we replace the assumption Σ, ([γ×]χ)b with the set of
assumptions BΣ ∪ {Θ, ([γ×]χ)b | Θ ∈ LΣ}.

Since S is a finite set, each branch of our constructed derivation will either end on an application
of Ax1, a sequent from BΣ for some Σ ∈ S or an assumption of the form Σ, ([γ×]χ)b, which has
already appeared earlier in the branch, albeit with a different annotation. When this last case
happens, we cannot use the claim to obtain a derivation ρbxΣ

Σ , since the name xΣ is already in the
annotation b. Once all branches have been closed in one of these three ways, we have found a
D-derivation ρ of Ψ, ([γ×]χ)a from assumptions in {BΣ | Σ ∈ S} ∪ {Σ, ([γ×]χ)b | Σ ∈ S}.

We can make some observations about the D-derivation ρ that we have constructed.

1. All leaves of ρ are either labelled with an axiom, a sequent from B =
⋃

Σ∈S BΣ or a
sequent of the form Σ, ([γ×]χ)b, where Σ ∈ S and b = axΣ1

. . . xΣk
such that Σ1 = Ψ,

Σ ∈ {Σ1, . . . , Σk} ⊆ S and Σi 6= Σj if i 6= j.

2. If a leaf l is labelled with Σ, ([γ×]χ)b, where b = axΣ1
. . . xΣk

, then the path from the root
of ρ to l passes through the nodes t1, . . . tk in that order, where ti is a dangling node or the
conclusion of an application of the cloxΣi

rule and the name xΣi is introduced by that rule.

3. If t is a dangling node of ρ, labelled with Σ, ([γ×]χ)b and l is a leaf above t labelled with
Σ, ([γ×]χ)c, then bxΣ v c.

To show that we can transform the D-derivation ρ into a CloGK-derivation, we will show that we
can turn any D-derivation satisfying the above conditions into a D-derivation that still satisfies the
conditions and has a smaller number of dangling nodes.

Let σ be a D-derivation satisfying the conditions given above. Pick a dangling node t with
maximal distance to the root of σ. This ensures that there are no dangling nodes above t.
Since t is a dangling node, it is labelled with Σ, ([γ×]χ)ax̄ and its successor is labelled with
Σ, (χ ∧ [γ][γ×]χ)ax̄xΣ for some Σ ∈ S and x̄ = xΣ1

. . . xΣk
, where Σ /∈ {Σ1, . . . , Σk} ⊂ S . Let Lt be

the set of leaves above t that are labelled with a sequent of the form Σ, ([γ×]χ)b.
If Lt is empty, then we can remove all occurrences of the name xΣ above t and replace the DxΣ

rule applied at t with an application of the × rule.
If Lt is non-empty, then every l ∈ Lt is labelled by a sequent of the form Σ, ([γ×]χ)bl for

some annotation bl . From condition 3, we know that bl = ax̄xΣcl for some sequence of names cl .
Clearly, for every leaf l ∈ Lt, the sequent it is labelled with could be derived from Σ, ([γ×]χ)ax̄xΣ

by repeated applications of the exp rule, which add all the names in cl . So, we attach to every
leaf l ∈ Lt such a sequence of applications of exp, replacing each leaf l with a new leaf l′ that is
labelled with Σ, ([γ×]χ)ax̄xΣ . Once this is done, we replace the DxΣ

rule applied at t with the cloxΣ

rule and subsequently discharge the assumption Σ, ([γ×]χ)ax̄xΣ at every leaf l′ with l ∈ Lt.
It is easy to see that in both of these cases, the resulting D-derivation still fulfills conditions 1, 2

and 3, the node t is no longer a dangling node and no new dangling nodes have been created. So,
by these transformations, we have finally obtained a CloGK-derivation π′ for Ψ, ([γ×]χ)a from the
set of assumptions B, where B] = A.

So in every case, there exists a CloGK-derivation π′ for Φ from assumptions B, where B] = A,
so the inductive step is complete and (1) has been proven by induction.

37

5 FROM GAME LOGIC TO THE MODAL µ-CALCULUS

5.4. Completeness of CloGK via transformation

Now that we have established that for any game logic formula ϕ and Clo-derivation of ϕ] we can
find a CloGK-derivation of ϕ, we have everything we need to show that the system CloGK for the
game logic language L is complete over Kripke models.

Theorem 5.7. [Completeness of CloGK] For all ϕ ∈ LNF(Φ0, Γ0), if |=KΦ0,Γ0 ϕ, then `CloGK
ϕ

Proof. Say we have a game logic formula ϕ that is valid over Kripke-Lµ
NF(Φ0, Γ0) models. By

the modal equivalence of the class KΦ0,Γ0 and the class G
Φ0,Γ0
K of augmented game models, this

means that ϕ is also valid over augmented game models. By Theorem 5.3, the translation (−)]
is validity-preserving, so we know that the modal µ-calculus formula ϕ] is valid over Kripke
models. Since the system Clo is known to be complete over Kripke models, we know that there
must be a Clo-derivation of ϕ]. By Theorem 3.19, there also exists a Cloϕ]-derivation of ϕ] and, by
Theorem 5.6, there is a CloGK-derivation for ϕ.

38

6 CONCLUSION

6. Conclusion

In this thesis, we adapted the sequent system CloG for game logic into a new cyclic sequent system
CloGK for game logic by replacing the monotone modal rule from CloG with the normal modal
rule. We then proved the completeness of CloGK over Kripke models. This result was obtained by
giving a validity-preserving translation (−)] from game logic formulas into the modal µ-calculus
and showing that we can transform any Clo-derivation of a translated game logic formula ϕ] into
a CloGK-derivation of ϕ.

6.1. Discussion

The translation (−)] from game logic to the modal µ-calculus we defined closely resembles the
one given in [3], but it differs in the fact that, in our paper, the languages it translates between
have different sets of propositional atoms. This is because the fixpoint variables xϕ for fixpoint
formulas ϕ ∈ F are unique variables that are "created" by this translation and did not exist in
the set of propositional atoms for game logic. These variables being unique is essential to make
sure that the translation reflects the subsumption order on the fixpoint variables into the order on
fixpoint formulas in game logic

We decided not to work with the global subsumption order for fixpoint variables in the modal
µ-calculus, instead creating the intermediate system CloC to get around using this order. This was
because we expected the renaming of variables, which is necessary to define this global order,
to pose a problem to the way we defined our translation (−)]. Since some unique variables are
"created" by this translation, having to rename some instances of these variables to use the global
order could have introduced complications.

The method we used to transform from Clo-derivations to CloGK-derivations closely follows the
approach used in [3] for the transformation from Clo to CloM. Our approach for finding a CloGK-
derivation that gives the same conclusion as an application of the closure rule in a Clo-derivation
involves constructing a derivation, which is almost a proper CloGK-derivation, by continuously
appending derivations to leaves that are labelled with a particular kind of assumption. This
derivation is then transformed step by step in to a proper CloGK-derivation. This method and
the machinery of annotated proofs could be some useful tools in working with and proving the
completeness of other cyclic proof systems.

Given more time, we would have liked to also adapt the systems G from [3] and Par from [1]
into systems that are complete over Kripke models and shown this completeness, but these tasks
turned out to be too intensive for time-frame we had for this paper.

6.2. Future research

As outlined in the introduction, after proving the completeness over Kripke models of CloGK,
a next step could be to also adapt the systems G and Par into systems that can be shown to be
complete over Kripke models by replacing their monotone modal rules with the normal version,
similarly to how we adapted CloG into CloGK. It might be possible to use a similar sequence of
transformations as the one given in [3] for the proof of the soundness and completeness over game
models of Par, starting at CloGK, to prove the completeness over Kripke models of these newly
defined systems.

It could also be attempted to give a transformation directly from Clo to CloGK by renaming the
variables in the modal µ-calculus to be able to use the global subsumption order. This would likely
involve redefining the translation (−)] such that it still reflects the this global order on fixpoint
variables into the order on fixpoint formulas. However, this seems like it would be a very difficult
task and there is not much new knowledge to be gained by doing it, so it is not of high priority.

39

REFERENCES

References

[1] Rohit Parikh. The logic of games and its applications. In North-Holland Mathematics Studies,
volume 102, pages 111–139. Elsevier, 1985.

[2] Marc Pauly. Logic for social software. Universiteit van Amsterdam, 2001.

[3] Sebastian Enqvist, Helle Hvid Hansen, Clemens Kupke, Johannes Marti, and Yde Venema.
Completeness for game logic. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pages 1–13. IEEE, 2019.

[4] Bahareh Afshari and Graham E Leigh. Cut-free completeness for modal mu-calculus. In
2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12. IEEE,
2017.

[5] Brian F Chellas. Modal logic: an introduction. Cambridge university press, 1980.

[6] Eric Pacuit. Neighborhood semantics for modal logic. Springer, 2017.

[7] Patrick Blackburn, Maarten De Rijke, and Yde Venema. Modal logic: graph. Darst, volume 53.
Cambridge University Press, 2002.

[8] Yde Venema. Lectures on the modal µ-calculus, 2008.

[9] Patrick Cousot and Radhia Cousot. Constructive versions of Tarski’s fixed point theorems.
Pacific Journal of Mathematics, 82(1):43 – 57, 1979.

[10] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5(2):285 – 309, 1955.

[11] Marc Pauly and Rohit Parikh. Game logic - an overview. Studia Logica, 75(2):165–182, 2003.

[12] Christopher Worthington. Proof transformations for game logic. Bachelor thesis, Rijksuniver-
siteit Groningen, 2021.

40

	Introduction
	Background
	Motivation
	Approach and main results
	Outline

	Modal logic
	Kripke and neighbourhood models
	Augmented neighbourhood models
	Normal vs. monotone modal logic

	The modal mu-calculus
	Fixpoints
	Syntax
	Kripke semantics for the modal mu-calculus
	Subsumption order
	Names and annotations
	The proof system Clo

	Game logic
	Game logic syntax and semantics
	Order on fixpoint formulas and names
	CloGK

	From game logic to the modal mu-calculus
	Augmented game models
	Translating game logic into the modal mu-calculus
	Transforming Clo-derivations to CloGK-derivations
	Completeness of CloGK via transformation

	Conclusion
	Discussion
	Future research

	References

