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Abstract

Upon closer inspection of the Kepler-Coulomb problem a constant vector quantity is de-
termined, revealing that the system admits a hidden symmetry. After investigating both the
utility and interpretation of this invariant LRL-vector, other hidden symmetries are sought out.
Through a mapping between the Kepler-Coulomb and two-dimensional harmonic oscillator, the
latter is concluded to contain a conserved tensor. As only systems with specific potential en-
ergies could host a hidden symmetry, a modernised version of Bertrand’s theorem is studied to
learn about the qualified set of potentials. Classically, only the Kepler-Coulomb and harmonic
oscillator potentials satisfy both the orbit equation and the closed orbit condition. Extension to
include special relativistic effects provide a general solution of rather unusual form. Revealing
that the classical solutions do not have closed orbits for all bound states in relativistic mechanics.
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1 Introduction

The importance of classical mechanics in physics is hard to overemphasise. For example, it not only
describes the phenomena of everyday life reliably, but also serves as the basis for most more advanced
ideas. As a result, classical mechanics is introduced as one of the very first courses to students.
Despite the fact that the subject is comprised of the lifework of countless great minds, course units
on the subject are merely allowed to teach for a couple of weeks. Due to this, unfortunately, the
omission of topics is inevitable.

One such excluded concept is the Laplace-Runge-Lenz (LRL) vector. This vector is generally
associated with inverse square force laws and possesses several special characteristics. Consequently,
the study of these features provides valuable insight on the nature of the system itself. For instance,
in addition to complementing the information obtained from energy and angular momentum, the
LRL-vector allows the description of the system in momentum space as well. Furthermore, its mere
existence is of crucial importance for the understanding of the time evolution of states in phase space.
Therefore, examining the LRL-vector can be conducted to determine properties of the system that
are invisible to other approaches.

Aside from its diverse functionality, the history of the LRL-vector is also noteworthy. Over the
course of time it seems that it has been independently discovered by numerous researchers. Thus,
the proper name of the vector is sometimes still a subject of controversy [1]. The story begins when
Lenz used the LRL-vector to describe the perturbed energy levels of the Kepler problem [7], in this
paper he cited a text by Runge as his source for the LRL-vector. Even though Runge applied the
vector to derive the orbit equation, similarly to Lenz, Runge did not claim ownership over the vector
[7]. After Lenz’s paper, Pauli used the vector to obtain the energy spectrum of hydrogen. Since Pauli
cited Lenz’s paper as his source, the vector temporarily became known as the “Runge-Lenz” vector.
Although this name was used in books on quantum mechanics written during that time period, such
as [14], people discovered the vector in older works by Laplace. Laplace demonstrated the vector’s
relation with the energy and angular momentum of the system in his Traté de mécanique celeste
[6]. From this point on, people widely referred to the vector as the Laplace-Runge-Lenz vector.
While this convention will also be used throughout this paper, the history of the LRL-vector did
not start here. Some time after it came to light that the vector had been derived by Hamilton,
in his Applications of Quaternions to Some Dynamical Questions the vector is referred to as the
“eccentricity vector” [6]. Furthermore, by utilising the connection between the LRL-vector and
hodographs shown by Hamilton, it became possible to trace this vector back to even older works
such as Gibb’s Vector analysis [6]. Despite rewinding the clock this far back, there are still earlier
works where the vector can be found. The oldest mention of the LRL-vector seems to be in a letter
exchange between Jakob Hermann and Johann I. Bernoulli. Here Hermann found the conserved
magnitude and Bernoulli generalised it to obtain the LRL-vector [1]. As one might imagine after
learning about its past, the LRL-vector has played a rather significant role throughout history. In
spite of the fact that before Lenz’s paper the vector was essentially unknown to the vast majority of
scientists, just from the observation that the LRL-vector has been independently derived by different
scientists for different goals speaks volumes of about its physical significance.

This paper is written with the intent to introduce the reader to the LRL-vector and study its
relevance both within the Kepler-Coulomb problem and to physics in general. This is done by first
revisiting the classical Kepler-Coulomb system following the steps of [8] and [11]. By utilising the
properties of the system alongside the Newtonian definition of force, the LRL-vector can be derived.
Then the constant vector is studied by looking at the orbital motion in position space, phase space
and momentum space. Secondly, largely following the footsteps of [12], the connection between
the inverse square force law and Hooke’s law is researched by studying a special complex mapping.
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In this section it will become clear, that quantities in the Kepler-Coulomb system can be mapped
to their counterparts in the harmonic oscillator system, when the orbital plane is reimagined as
a complex plane. From this can be observed that the components of the LRL-vector are mapped
towards a special tensor, which is described in more detail in [4]. This observation reveals that the
additional constants of motion of the two systems are related to each other. Finally, to determine
whether the LRL-vector could be applied to find other hidden symmetries, both a modernised
version and a special relativistic extension of Bertrand’s theorem are examined. More details on the
aforementioned versions of the theorem can be found in [3] [5] and [9] respectively. After reading
this paper the reader will have obtained a more complete portrayal of the Kepler-Coulomb problem
and understand its implications to hidden symmetries.

2 The Kepler-Coulomb problem

2.1 The problem description

In order to learn about the LRL-vector it is beneficial to start with the Kepler-Coulomb system.
This is a special case of the two-body problem where the interaction potential is given by the general
form

V (r) = −k

r
, (1)

where r is the inter-particle distance and the constant k is dependent on whether the interaction is
gravitational or electromagnetic. For the former, k = Gm1m2 with G being the Newtonian constant
of gravitation. For the latter k = q1q2

4πϵ0
with ϵ0 being the vacuum permittivity. In the aforementioned

expressions a subscript is given to the mass and the charge in order to be able to distinguish what
point particle is being referred to. From Equation 1 can be seen that V (r) is only dependent on the
distance between the point particles. These types of potentials are referred to as “central potentials”
and contain characteristics that can simplify the description of the system.

In principle, the motion of the two particles could be researched using the most general reference
frame, which is illustrated in Figure 1a. As the origin in this frame is merely used as a point of
reference, its position is chosen arbitrarily and does not contain any physical significance. The
Lagrangian describing such a reference frame is given by

L = T − V =
1

2
m1v

2
1 +

1

2
m2v

2
2 +

Gm1m2

|r⃗2 − r⃗1|
.

However, by choosing the position of the origin more carefully the Kepler-Coulomb problem can
be simplified. A new reference frame can be constructed by choosing the position of the origin to
coincide with the center of mass of the point masses, this is the center of mass frame. Since the
origin of this frame is always between the two point masses, the position vectors in this frame can
also be expressed in terms of the displacement vector r⃗. As a result of that, the expression for the
Lagrangian can be rewritten into

L =
1

2
µv2 +

Gm1m2

r
(2)

where µ = m1m2

m1+m2
is the reduced mass and v⃗ is the time derivative of the displacement vector.

Consequently, by choosing the center of mass reference frame the description of the Kepler-Coulomb
problem reduces to the motion of single body described by the vector r⃗.

Despite the fact that a physical particle is in principle allowed to move in three spatial dimen-
sions, the reference frames described presented in Figure 1a and Figure 1b are only two-dimensional.
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(a) This reference frame is considered the most
general reference frame due to the fact that the
position of the origin was chosen arbitrarily. Re-
gardless of its position one can always construct
position vectors towards the point masses without
changing its physical interpretation.

(b) By repositioning the origin to coincide with
the center of mass the new primed position vec-
tors will always be (anti-)parallel to the displace-
ment vector r⃗. Making use of this fact the two
body problem can be reduced to the description of
a single particle.

Figure 1

This apparent contradiction can be justified by studying the Lagrangian given in Equation 2. As
the Lagrangian does not contain any explicit angular dependence, the system can be concluded to
be symmetric under rotations. As Noether’s theorem relates symmetries to conservation laws, this
implies that the system conserves angular momentum. An alternative way to obtain the invariance
of the angular momentum is by noting that a central potential is not capable of creating any torque,
resulting in the fact that the angular momentum is not allowed to be time dependent. The con-
servation of angular momentum forces the motion described by r⃗ to be confined within a plane,
permitting the description of the orbital motion to be given in just two dimensions. However, it is
important to keep in mind that while the orbits are two-dimensional, the system is described by all
three spatial dimensions.

2.2 Conserved quantities and phase space

Due to the inherent symmetries of the Kepler-Coulomb problem the description of motion is more
illuminating in polar coordinates than in Cartesian coordinates. Rewriting Equation 2 in terms of
polar coordinates gives rise to the following

L =
1

2
µ(ṙ2 + r2ϕ̇2) +

Gm1m2

r
, (3)

where ϕ is the anti-clockwise angle defined between the position vector and the x-axis. Note that
this Lagrangian is independent of ϕ despite being dependent on ϕ̇. By solving the Euler-Lagrange
equation for ϕ it becomes clear that there is a conserved quantity

∂L
∂ϕ

=
∂

∂t

(
∂L
∂ϕ̇

)
= 0
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∂

∂t
(µr2ϕ̇) = 0.

The physical significance of this quantity is more readily understood by also looking at the Hamilton’s
equations of motion

pϕ =
∂H

∂ϕ
=

∂L
∂ϕ

≡ L,

where pϕ is the momentum conjugate of the angle ϕ, also known as the angular momentum L, and H
is the Hamiltonian of the system. Combining these equations together then results in the following
angular momentum equation

L = µr2ϕ̇. (4)

Aside from angular momentum there are other symmetries within this system. As shown in the
previous section, the symmetries of the system become more visible by inspecting the Lagrangian.
From Equation 3 it can be observed that the Lagrangian does not contain any explicit time depen-
dence. Hence, Noether’s theorem demands the total energy of the system to be invariant and given
by

E = T + V =
1

2
µ(ṙ2 + r2ϕ̇2)− Gm1m2

r
. (5)

Within the energy and angular momentum conservation laws a lot of information about the
orbital motion is contained. By combining Equation 4 with Equation 5 we obtain the orbit equation
[8] [11]

E =
1

2
µṙ2 +

L2

2µr2
− Gm1m2

r
,

which can be easily rearranged into

ṙ =

√
2

µ

(
E −

[
L2

2µr2
− Gm1m2

r

])
giving rise to the two integral equations

dt =
dr√

2
µ

(
E −

[
L2

2µr2 − Gm1m2

r

]) (6)

and

dϕ =
L

µr2
dr√

2
µ

(
E −

[
L2

2µr2 − Gm1m2

r

]) .. (7)

Equation 6 and Equation 7 completely specify the orbit. If one manages to integrate these expres-
sions, then the Kepler-Coulomb problem is solved. In the past the analytical techniques to perform
these integrations were not as sophisticated, therefore the solutions were expressed in terms of inte-
grals and the Kepler-Coulomb problem was said to be“solved to quadrature” [8] [15]. Fortunately,
analytical solutions to these equations have been found [8] [11] and the orbit of a particle obeying
Equation 7 is given by

r(ϕ) =
a(1− e2)

1 + e cos(ϕ− ϕ0)
, (8)
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where a and e are defined by

a = −Gm1m2

2E

e =

√
1 +

2EL2

µk2
.

Closer inspection of Equation 8 reveals that the orbiting particle traverses an ellipse with semi-major
axis a and eccentricity e.

What follows from the elliptical orbits found in Equation 8 is that the bound states of the Kepler-
Coulomb system have closed orbits, this means that the same trajectory is repeated every time. At
first glance this phenomenon might be overlooked, but having closed orbits has large implications
that are more visible when the problem description is altered. For example, the orbital motion in
position space is studied by keeping track of the combinations of spatial coordinates that are available
to the bound states. Likewise, the orbits can be studied in phase space by keeping track of both the
allowed spatial coordinates and their associated momenta. These specific combinations are encoded
as points in phase space and are interpreted as specific states of the system. The advantage of the
phase space description is that every point already contains all the information required to compute
its time evolution by utilising Hamilton’s equations. Since every point is an unique combination
of spatial coordinates and momenta, every state has a distinct time evolution. Therefore, from a
single point in phase space the specific path to all future states can be determined and the crossing
of paths in phase space is forbidden [15]. From the specific shape of the Kepler-Coulomb orbits,
one can conclude that both the radial and angular time evolution are related to each other, as this
shape is only possible when their periods are exactly identical. In addition to that, since this shape
is preserved indefinitely, this ratio must stay the same. Upon recalling the conservation of angular
momentum in Equation 4, it is known that the angular velocity ϕ̇ does not have an explicit time
dependence, therefore both the angular and radial time evolution are not allowed to change with
time. Using this knowledge combined with the fact that both the radial and angular components
are periodic, one is able to conclude that orbits in phase space are required to be periodic as well.
As a consequence of this and the fact that path is not allowed to intersect with itself, the orbit must
also be a closed curve in phase space.

The phase space curve of an orbit is directly related to the symmetries that the system admits.
For instance, for energy to be conserved Equation 5 must hold, restricting the points in phase space
that are valid for the system. In principle, the maximum number of conserved quantities coincide
with the total number of spatial coordinates and momenta, however this would only correspond to
a single state in phase space. In order to allow for dynamical behaviour, at most five independent
quantities can be conserved. For the Kepler-Coulomb system in particular, closed curves in phase
space are associated with the conservation of five independent quantities.

The previous description of the orbits in spatial coordinates only divulged the conservation of
energy and angular momentum. The former is a scalar, consisting of a single quantity, and the latter
is a vector, corresponding to three quantities. Although four of the independent constant quantities
could be discovered by scrutinizing the Lagrangian, Equation 2 does not provide any indication of
another invariant quantity. Yet, the fact that orbits are also closed in phase space would require its
existence. Since this unexpected symmetry could not be inferred from examining the Lagrangian, it
is referred by many as the “hidden” or “accidental” symmetry of the system [2].
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2.3 The LRL-vector and its implications

Perhaps the most natural response would be to search for a conserved scalar quantity, but that
turns out to be incorrect. This will be demonstrated clearly by investigating the problem using
the Newtonian definition of force. In this paper the derivations are simplified to highlight the most
important details, the full derivation can be found within [8]. Since the interaction potential is
central, the force must be radial since

F⃗ ≡ −∇⃗V (r) = f(r)
r⃗

r
,

where ∇⃗ is the del operator ∇⃗ = ( ∂
∂x ,

∂
∂y ,

∂
∂z ) and f(r) is a scalar valued function. The Newtonian

definition of force is then given by

F⃗ =
dp⃗

dt
= f(r)

r⃗

r
. (9)

By taking the outer product of Equation 9 and the angular momentum vector, the relation can be
rewritten into

d

dt
(p⃗× L⃗) = −mf(r)r2

d

dt

(
r⃗

r

)
, (10)

where from now on the reduced mass is written as µ = m. For the Kepler-Coulomb problem Equation
10 simplifies by using that

f(r) = − k

r2

resulting in
d

dt

(
p⃗× L⃗− mkr⃗

r

)
= 0, (11)

which implies the existence of a conserved vector

A⃗ = p⃗× L⃗− mkr⃗

r
. (12)

Equation 11 discloses that the final invariant object is the vector defined in Equation 12 rather than
a scalar.

The vector presented in Equation 12 is the LRL-vector. Since both the outer product p⃗ × L⃗
and the other term points in the direction perpendicular to both the linear and angular momentum,
the LRL-vector must be contained in the plane of the orbit. The LRL-vector is best visualised in
position space, where it is represented graphically by a constant vector extending from the center of
attraction, located at the leftmost focus of the ellipse, to the periapsis, the point of the orbit closest
to the center of attraction. These relations have been illustrated in Figure 2.

At first glance the discovery of the LRL-vector could seem contradictory to what was concluded
in the previous section. A vector consists of three components while the Kepler-Coulomb system can
only allow one more independently conserved quantity, therefore finding a conserved vector might
sound suspicious. Fortunately, this apparent paradox vanishes when the LRL-vector is examined in
more detail. By taking the inner product of the LRL-vector with the position vector the following
will be obtained

A⃗ · r⃗ = Ar cosϕ = (p⃗× L⃗) · r⃗ −mk.

Cyclic permutation of the triple product allows the first term to be rewritten into

(p⃗× L⃗) · r⃗ = (r⃗ × p⃗) · L⃗ = L2.
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Figure 2: This is a graphical representation of the position space orbits associated with the Kepler-
Coulomb problem. The center of attraction is located at the leftmost focus of the ellipse and repre-
sented by a white circle. The LRL-vector, defined in Equation 12, is the constant vector extending
from the center of attraction towards the periapsis, the point on the orbit that is closest to the center
of attraction. To exhibit the invariance of the LRL-vector, three points on the orbit have been chosen
where the components of the LRL-vector are explicitly drawn. This figure has been obtained from
[8].

Then the inner product between the LRL-vector and the radial vector is then described by

Ar cosϕ = L2 −mk,

which can be rearranged into
1

r
=

mk

L2
(1 +

A

mk
cosϕ). (13)

Equation 13 might not seem illuminating at the moment, but it is actually equivalent to Equation 8,
also capable of describing the orbits of the bound states. Their connection can be seen more clearly
by rewriting Equation 8 by substituting the identity

a(1− e2) =
L2

mk
,

which results into

r =
a(1− e2)

1 + e cosϕ
→ 1

r
=

mk

L2
(1 + e cosϕ). (14)

Clearly Equation 13 and Equation 14 are related. If both expressions are interpreted as representing
the same orbits, then the relationship between the constants of motion can be determined to be

A2 = (mke)2 = m2k2 + 2mEL2, (15)

which constrain what values A is allowed to have. Equation 15 has explicitly shown that the
magnitude of the LRL-vector is neither independent of energy or angular momentum. Moreover,
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from the fact that A⃗ is necessarily within the plane of motion, one can also conclude that it is
constraint by the following relation

A⃗ · L⃗ = 0.

Now the invariance of the LRL-vector becomes more comprehensible. Despite the fact that the
vector introduces three different components, these components are related to both the energy and
angular momentum in two different ways. Thus, effectively the LRL-vector only contributes one
independent conserved quantity to the system.

Although the preceding analysis of the LRL-vector has identified the final invariant quantity
of the system, its physical interpretation has yet to become clear. As Noether’s theorem relates
conserved quantities to continuous symmetries of the system, the hidden symmetry of the system
can be expected to provide clues about the physical significance of the LRL-vector. Possibly the
most straightforward method to study this symmetry is by studying the Kepler-Coulomb problem
in momentum space. It turns out that the LRL-vector enables the orbits to be described purely in
terms of momenta. This is achieved by taking the outer product of the angular momentum with the
LRL-vector. By recalling the vector triple product identity, the aforementioned outer product can
be rewritten to obtain

L⃗× A⃗ = p⃗L2 −mk
L⃗× r⃗

r
.

By describing the motion in Cartesian coordinates and orienting the axes of our reference frame such
that L⃗ = (0, 0, L) and A⃗ = (A, 0, 0), the vector product gives rise to the following two equations

pxL
2 = mk

yL

r

pyL
2 = AL−mk

yL

r
.

These relations can be combined to describe the orbits purely in terms of system characteristics,
such as the interaction strength and constants of motion, and momentum components

p2x +

(
py −

A

L

)2

=

(
mk

L

)2

. (16)

Equation 16 is recognised as the equation of a circle, therefore one can conclude that the Kepler-
Coulomb orbits are always given by perfect circles in momentum space. These momentum space
representations, shown graphically in Figure 3, are known as “hodographs” and are employed as
an alternative way to specify the state of the system. By comparing Equation 15 and Equation 16
a connection between hodographs and the energy of the state can be determined. Whenever the
momentum in the y-direction vanishes, py = 0, Equation 16 can be rewritten using Equation 15 to
read

p2x =
m2k2 −A2

L2
= −2mE, (17)

where E here is the Kepler-Coulomb bound state energy which obeys E < 0. By defining px = p0
for when py vanishes the relation becomes

p0 =
√
−2mE.

By researching this momentum representation of the system the physical interpretation of the hidden
symmetry becomes more apparent. Firstly, from Equation 17 it has become clear that the Kepler-
Coulomb problem contains energy degenerate states, which have differing magnitudes for the LRL-
vector A, the angular momentum L, and the two scalars quantifying the interaction strength m and
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Figure 3: Every bound state in the Kepler-Coulomb system can be described in momentum space as
perfect circles. The center of the circle is always a distance A

L in the py direction away from the
origin. From Equation 16 it becomes clear that the intersection of the hodograph with the px axis,
denoted symbolically by p0, is directly related to the energy of the state.

k. Secondly, Equation 15 reveals that the eccentricity of a position space orbit is dependent on the
magnitude of the LRL-vector and the interaction strength. Combining these observations together
it becomes possible to conclude that the same energy state can be obtained by a family of distinct
spatial orbits. The desired physical interpretation of the hidden symmetry is directly connected to
the operation that links these energy degenerate orbits.

The explicit form of the symmetry operation linking the previously found energy degenerate
states can actually be determined through more sophisticated approaches [11]. In one approach the
infinitesimal variation in both position and momentum, corresponding to the hidden symmetry, is
obtained by computing the Poisson brackets of the respective quantity with the LRL-vector. Then
it is shown that these infinitesimal transformations are equivalent to a variation in the eccentric-
ity, from which one can conclude that the symmetry generated by the LRL-vector is identical to
an infinitesimal rotation. Alternatively, one can work with finite transformations by using more
graphical arguments. By means of stereographic projection one is able to project the hodographs on
the surface of a four-dimensional sphere. These projected circles then become great circles on this
hypersphere. This allows the inference that transforming between energy degenerate hodographs
is achieved by the same operation that links great circles on this four-dimensional sphere, which is
given by a four-dimensional rotation. Finally, it has become possible to conclude that the hidden
symmetry of the Kepler-Coulomb problem is the same as SO(4) symmetry.

Within this chapter the characteristics of the Kepler-Coulomb system has been scrutinised by
describing the orbital motion in different perspectives. The position and phase space descriptions
revealed the existence of an additional constant of motion, an invariant vector quantity. To find
the hidden symmetry associated to this LRL-vector the problem was reformulated to its momentum
representation, which revealed that the system is invariant under four-dimensional rotations. The
discovery of an additional constant of motion could imply the existence of other hidden symmetries.
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Although the LRL-vector was relatively easy to obtain, in the case that other additional constants
of motion exist their derivation need not be straightforward or easy. Ideally, one would like to make
use of the results obtained in the Kepler-Coulomb problem and use it to investigate other systems.
Fortunately, the two-dimensional harmonic oscillator system is known to be related to the Kepler-
Coulomb problem. To attain more understanding about hidden symmetries the next chapter will
investigate the connection between the Kepler-Coulomb and the harmonic oscillator systems.

3 Kepler-Coulomb and the two-dimensional harmonic oscil-
lator

3.1 Complex notation

The Kepler-Coulomb and the harmonic oscillator systems are not only very important models used
throughout the entirety of physics, but they also happen to be very closely related. By describing
the planar orbital motion in Cartesian coordinates and reimagining the y-axis as an imaginary axis,
all vectors r⃗ = (x, y) can be rewritten compactly as a single complex number z = x + iy. In
this alternative notation a mapping between the two systems can be constructed. This connection
becomes more clear by the inspection of the variational principle in its Maupertuis’ form [12]. This
principle links the action of a system to the following integral

S =

∫
γ

ds
√
2m

√
E − V ,

where ds = vdt is the distance in generalised coordinates. For the particular case where the orbital
motion is in a plane described by the complex coordinate z this equation transforms into

S =

∫
γ

|dz|
√
2m

√
E − V (|z|). (18)

If we choose the potential V to be proportional to a harmonic oscillator potential and define a new
variable w = z2, then the potential can be expressed as

V (|z|) = |z|2 =
1

4

(∣∣∣∣dwdz
∣∣∣∣)2

.

Substituting this form of the potential into Equation 18 returns an expression for the action of a
harmonic oscillator

S =

∫
γ

|dz|
√
2m

√
E − 1

4

(∣∣∣∣dwdz
∣∣∣∣)2

. (19)

Equation 19 is very interesting, as it allows the integration variable to be changed when the differ-
ential |dwdz | is taken outside of the square root

S =

∫
γ

1

2
|dw|

√
2m

√
(4

(∣∣∣∣ dzdw
∣∣∣∣)2

)E − 1. (20)

The differential | dzdw | can be evaluated explicitly by means of the definition of w∣∣∣∣dwdz
∣∣∣∣ = 2|z|

12
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∣∣∣∣ dzdw
∣∣∣∣ = (∣∣∣∣dwdz

∣∣∣∣)−1

=
1

2|z|
(21)

and by putting Equation 21 into Equation 20 it reads

S =

∫
γ

1

2
|dw|

√
2m

√
E

|w|
− 1. (22)

This equation is very fascinating, as it can be reinterpreted as another variational principle equation
of the form

S′ =

∫
γ

|dw|
√
2m

√
E′ − V ′, (23)

where by comparison with Equation 22 one can determine that E′ < 0 and V ′ = − E
|w| . These

familiar characteristics are exhibited only by the bound states of the Kepler-Coulomb potential, this
proves that the complex mapping w = z2 connects the harmonic oscillator to the Kepler-Coulomb
system [12]. Moreover, as no information is lost during the derivation, the mapping could be applied
backwards. Consequently, by rewriting the orbits in terms of complex coordinates an invertible
mapping between both systems can be obtained.

3.2 The constraints imposed by the Kepler-Coulomb system

An interesting consequence of this mapping is that it demands the orbits in the harmonic oscillator
to be ellipses just like in the Kepler-Coulomb case [12]. This can be proven by defining a circle in
the complex plane

ζ = reiϕ

and defining the relation

z = ζ +
1

ζ
. (24)

As a result z will describe ellipses with specific characteristics. First of all, from its definition the
origin, which is equivalent to the center of attraction, is at the geometrical center of the ellipse. In
addition to that it has a the semi-major axis a = r + 1

r , a semi-minor axis b = r − 1
r , and their foci

are located at x = ±2. Applying the complex mapping to these ellipses then gives rise to

w = z2 = ζ2 +
1

ζ2
+ 2. (25)

Since the square of a circle ζ is also a circle, it can be concluded that the square of an ellipse is
another ellipse. Moreover, the constant term in Equation 25 reveals that the center of attraction is
repositioned as a result of the mapping, moving it to the leftmost focus of the ellipse. The ellipses
described by w can be thought of as the Kepler-Coulomb orbits and are illustrated in Figure 4b.
The ellipses described by z can be interpreted as the harmonic oscillator orbits, these are showcased
in Figure 4a. More generally, any ellipse given by z = a cos(ϕ)+ib sin(ϕ) with its center of attraction
at the geometrical center will be mapped onto an ellipse where this center of attraction is located
at the leftmost focus [12].

Apart from that, the complex mapping is valuable as it allows the quantities of both systems to
be expressed in terms of their counterparts. For instance, by recognising that the difference between
the total and potential energy is equivalent to the kinetic energy, the term E − V becomes

E − V = T =
1

2
mv2 +

1

2
Iϕ̇2,
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(a)Within the complex notation the harmonic os-
cillator orbits can be are described using a single
complex number z. Within the harmonic oscilla-
tor, the center of attraction O is always located at
the geometrical center of the ellipse. Upon map-
ping to the Kepler-Coulomb system O will be re-
located towards the left as is required by Equation
25.

(b) As was demonstrated by studying the har-
monic oscillator action, the complex number w,
where w = z2, can be used to describe the Kepler-
Coulomb orbits. For the Kepler-Coulomb system,
the center of attraction O is always at the left-
most focus of the orbit. When the mapping is
inverted O will reposition itself at the geometri-
cal center.

Figure 4

where |v⃗| = |dr⃗dt | =
d|z|
dt and I is the moment of inertia. Since a free particle rotating around a fixed

axis has I = mr2 and the conservation of angular momentum imposes that ϕ̇2 = L2

m2r4 , the kinetic
energy can be expressed as

E − V =
m

2

(
d|z|
dt

)2

+
L2

2m|z|2
. (26)

Upon substitution of Equation 26 into Equation 18 the variational principle becomes

S =

∫
γ

|dz|

√
m2

(
d|z|
dt

)2

+
L2

|z|2
. (27)

The connection to the Kepler-Coulomb system can be made by multiplying the previous equation
by one and recalling that ∣∣∣∣dwdt

∣∣∣∣ = ∣∣∣∣ ddt (z · z)
∣∣∣∣ = 2|z|d|z|

dt

d|z|
dt

=
1

2|z|
dw

dt
.

S =

∫
γ

|dw| 1

2
√
|w|

√
m2

(
1

2
√

|w|
dw

dt

)2

+
L2

|w|
.

S =

∫
γ

1

2
|dw|

√
m2

(
1

2|w|
dw

dt

)2

+
L2

|w|2
.

To make the previous equation resemble the form shown in Equation 27, the time derivative in the
square root can be rewritten into

S =

∫
γ

1

2
|dw|

√
m2

(
dw

dτ

)2

+
L2

|w|2
,

14
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where dτ = 2|w|dt. This observation reveals that the mapping induces a rescaling of the time
coordinate, providing the relationship between the time coordinates of the systems. Similar to the
variational principle, the angular momentum equation can also be utilised to shine some light on how
the system quantities are related. By the conservation of angular momentum, obtained by rewriting
Equation 4

LK = m|w|2 d(ϕK)

dτ
= m|w|2 · 1

2|w|
d(ϕK)

dt
= m|z|2

d(ϕK

2 )

dt
= LH ,

where the subscripts are used to differentiate between the systems. This demonstrates that in
addition to the time coordinate also the rotation angle ϕ is rescaled by the mapping.

3.3 The LRL-vector and the constants of motion

Being able to express the quantities of the two-dimensional harmonic oscillator in terms of their
counterparts of the Kepler-Coulomb system provides insight into the traits of the former. As both
systems are similar in the sense that they share having periodic closed planar orbits, the amount of
conserved quantities should be the same. Before continuing to the rest of the analysis, it is important
to highlight some choices taken in this paper. Despite the fact that the two-dimensional harmonic
oscillator can be fully described in two spatial dimensions, it has been chosen to describe the system
in three spatial dimensions. This is to preserve the vector nature of the angular momentum, which
always points perpendicular to the plane of the orbits. In principle, this is unnecessary, but the
author believes that this description is beneficial for the analyses of this paper. In the Kepler-
Coulomb system the additional constant of motion was identified, via Equation 11, to be a vector
pointing from the center of attraction to the periapsis. However, in the harmonic oscillator the origin
does not reside at one of the foci of the ellipse. In this system the center of attraction is located
at its geometric center, the point where the two axes of symmetry intersect. Therefore, the orbit
does not have a single point that is closest to the origin. This would make the concept of another
conserved vector such as A⃗ in this system hard to visualise. However, it turns out that the vector
described in Equation 12 is still related to the hidden conserved quantity when used together with
the complex mapping.

To exhibit the connection between the LRL-vector A⃗K and the hidden conserved quantity of
the harmonic oscillator, Equation 12 must be rewritten in terms of its the mapped components. To
simplify the notation of the upcoming derivation let

w = x+ iy p = px + ipy, (28)

which imply that
p× L = L(py − ipx) = −iLp.

Utilising these definitions Equation 12 simplifies into

A⃗K = −iLKpK − κ
w

|w|
, (29)

where κ is a constant and the subscripts are used to highlight that these quantities are from the
Kepler-Coulomb system. The angular momentum is defined as the outer product of the position
and momentum vector

LK = (xpy − ypx).
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This expression can be rewritten by utilising the definition of w, given in Equation 28, and recognising
that pxi

= mdxi

dτ . The angular momentum then becomes

LK =
m

2i

(
w∗ dw

dτ
− w

dw∗

dτ

)
. (30)

Equation 30 can also be reformulated in terms of z by making use of

dw

dτ
=

1

2|z|2
d

dt
(z2) =

1

z∗
dz

dt
,

which results in

LK =
m

2i

(
z∗

dz

dt
− z

dz∗

dt

)
= LH . (31)

Upon comparison of Equation 30 and Equation 31 one is able to conclude that the structure is
preserved regardless whether complex variable z or w is chosen. For the second term in Equation
29 it turns out that taking the second derivative of w with respect to τ is very illuminating. In the
following, dots are used to represent derivatives with respect to t

d2w

dτ2
=

z∗z̈ − żż∗

2z(z∗)3
=

z∗(z̈ + z)− (|ż|2 + |z|2)
2z(z∗)3

. (32)

Fortunately this expression can be simplified by recalling both the definition of the total energy and
the Newtonian equations of motion of the harmonic oscillator [12]. For simplifying the relation the
angular frequency has been set to one, then these two relations respectively reveal that

EH ≡ 1

2
|ż|2 + 1

2
|z|2 (33)

and
d2z

dt2
+ z = 0. (34)

Consequently, Equation 32 can be reformulated into

d2w

dτ2
=

−EH

z(z∗)3
= −EH

w

|w|3
.

This identity is the second derivative of the complex position coordinate, in other words, it can be
interpreted as an acceleration. By utilising Newton’s second law this can be directly related to the
inverse square law force

F⃗ = ma⃗ → −k
w

|w|3
= m

d2w

dτ2
= −mEH

w

|w|3
.

By comparing Equation 29 with Equation 12 the relation κ = mk becomes apparent and thus one
concludes that κ = m2EH . With Equation 31 and κ = m2EH it now becomes possible to rewrite
Equation 29 in terms of mapped components

A⃗K = −−m

2
(z∗ż − zż∗)

(
m

ż

z∗

)
−m2EH

w

|w|
,
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which can be rewritten using some algebra combined with both Equation 33 and Equation 34 to
obtain

A⃗K = −m2

(
1

2
z2 +

1

2
ż2
)

≡ −A⃗H . (35)

At last the LRL-vector has been expressed in terms of z and ż. As the time derivative of Equation
34 can be expressed in terms of the equations of motion, given in Equation 34, it must vanish.
Consequently, the mapped LRL-vector A⃗H can be thought of as the hidden constant of motion of
the harmonic oscillator.

Aside from that, Equation 35 becomes more illuminating when the complex coordinate z is
expanded into its real and imaginary components. As A⃗H is a constant of motion, both the real
and imaginary parts of the mapped vector need to be separately invariant. Combining this property
with the conservation of energy, it is imposed that within the harmonic oscillator system the energy
along the real and imaginary axes must also be individually conserved. From this point on there
will be no further discussion on complex coordinate w, as a result it has been decided to follow the
convention introduced in [12] and stop denoting the real and complex parts of w using x and y.
Concretely, this means that from now on instead of Equation 28 the following definitions will be
used

z = x+ iy p = px + ipy.

Using these identities Equation 35 can be expanded into

A⃗H

m2
=

1

2
(x2 − y2) +

1

2
(p2x + p2y) + i(xy + pxpy), (36)

revealing a very special structure. Upon closer inspection, it turns out that the real and imaginary
components of A⃗H can be associated with a symmetric tensor. This tensor has its origin in the
quantum mechanical description of the harmonic oscillator and has a similar role as the LRL-vector
in the Kepler-Coulomb system [4]. This means that it not only completely specifies the orbital
motion, but it also has special constraints that relates it to all of the other conserved quantities of
the system. More about the algebraic properties of the tensor itself and how one can reveal that
the harmonic oscillator obeys SU(2) symmetry can be found in [4] [12] respectively. The tensor is
defined by the following relation

Aij =
1

2
(pipj + rirj), i, j = 1, 2, 3, (37)

where as before the angular frequency has been taken as one. Upon comparison of Equation 37 and
Equation 36 it can be immediately recognised that

Im(A⃗H) = 2A12 = 2A21,

showing that A⃗H and Aij are related. Further scrutinizing their structures reveals that Re(A⃗H) can
also be expressed by the tensor as

Re(A⃗H) = A11 −A22.

Therefore, the analysis has shown that the additional constants of motion of both the Kepler and
harmonic oscillator systems are related through the complex mapping, allowing one to determine
the other by knowing either one.

This goal of this chapter is to show the relation between the Kepler-Coulomb system and the
harmonic oscillator. Just like the procedure in the previous chapter, the analysis starts with express-
ing the orbital motion of the Kepler-Coulomb problem in an alternative method. By reimagining
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the orbital plane as a complex plane, vectors have been rewritten in terms of complex numbers.
This complex notation allowed the construction of a mapping between the Kepler-Coulomb problem
and the harmonic oscillator. The connection becomes more apparent by studying the action of the
harmonic oscillator. Upon expressing the kinetic energy and angular momenta in their counterparts,
it is revealed that system characteristics such as the time and angle coordinates will be rescaled due
to the mapping. Aside from that, mapping the orbits themselves allow one to conclude that the
two-dimensional harmonic oscillator admits a hidden symmetry. Using the newly obtained relations,
the corresponding conserved quantity is determined by mapping the components of the LRL-vector,
which is concluded to be the additional constant of motion by looking at its time derivative. It has
now become obvious that, by taking advantage of a mapping between systems, the LRL-vector can
be employed to locate other hidden symmetries. Ideally one would like to generalise this approach
to other systems. However, not any mapping can be utilised for this purpose. From the phase space
analysis in section 2.2, it has become clear that only systems with closed orbits for all bound states
could permit the existence of a hidden symmetry. Thus the next chapter will explore the constraints
of these closed orbit potentials, revealing how many systems the LRL-vector could be mapped into.

4 Bertrand’s theorem: beyond the Kepler-Coulomb and the
harmonic oscillator

4.1 The closed orbit condition

As shown in the previous chapter, being able to express a system in terms of another system can
be very helpful, especially when the latter has been explored thoroughly. For instance, this allows
for the acquisition of new insights by connecting them to well-understood concepts such as the
LRL symmetry of the Kepler-Coulomb system. Naturally, this approach is more effective when the
systems share similar properties. For example, in order to make use of the aforementioned hidden
symmetry, the mapped system needs to have bound states that are described by closed planar orbits,
just like the states in the Kepler-Coulomb system. Before the set of mappings toward and from the
Kepler-Coulomb system could be sought out, it is required to know what potentials are capable of
creating such orbits in the first place.

Self-replicating orbits are special and have to obey additional constraints. Although all bound
states will have an orbit, generally, these orbits do not need to repeat themselves. Just like a position
in a plane can be expressed by the position coordinates r and ϕ, orbital motion can be separated
into a radial component and an angular component. First of all, to have periodic orbits both these
components have to be periodic themselves. In addition to this, if one demands that these orbits are
closed as well, then the radial and angular components are required to synchronise after a certain
period of time. What this last requirement means concretely, is that an integer number of radial
periods NTr must equal another integer number of angular periods MTϕ [5], where both N > 0 and
M > 0. Instead of attempting to express both periods in units of time, it turns out that they are
more readily expressed in terms of angles. Due to the fact that the potential is central, the periodic
time evolution of the radial velocity can be described by simple harmonic motion. What this means
is it will continuously go back and forth between the the radial extremes at a specific rate. As a
result, a constant angle can be defined between these extreme values with the center of attraction.
This angle, referred to as the apsidal angle ϕA, is then equal to one half of the radial period. The
definition of the aspidal angle permits the closed orbit condition to be summarised mathematically
as

2NϕA = 2Mπ → ϕA =
π

R
, (38)
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where R = N
M is a rational number. Consequently, the closed orbit condition is the same statement

as demanding that the apsidal angle is rational multiple of π.

4.2 Classical derivation

For the sake of determining the potentials that respect the closed orbit condition, given in Equation
38, one must solve the orbit equation. This equation can be obtained by taking advantage of the
familiar energy and angular momentum conservation laws. Conservation of angular momentum
introduces two constraints into the system. First of all, the orbits traversed by the particle are
constraint to be within a plane, which justify the usage of polar coordinates. Secondly, the potentials
are only allowed to be central, depending only on the distance r. The Lagrangian of a system
satisfying these conditions is given by

L =
m

2
(ṙ2 + r2ϕ̇2)− V (r).

When this Lagrangian is examined more closely, it can be noticed to be very similar to Equation
3 found in Section 2.2. In the exact same approach as was performed in that section, the orbit
equation can be determined by combining the two conservation laws to be

dr

dϕ
=

mr2

L

√
2

m

(
E −

[
L2

2µr2
+ V (r)

])
,

which shares the identical structure to Equation 7. To solve the differential equation it is prudent
to introduce a change of variables

u =
1

r
dr = −r2du.

This would then give rise to the following expression

du

dϕ
=

−m

L

√
2

m

(
E −

[
L2u2

2µ
+ V

( 1
u

)])
,

which can be rearranged into

m∗

2

(
du

dϕ

)2

+
m∗u2

2
+ V

( 1
u

)
= E, (39)

where m∗ = L2

m can be thought of as a “effective mass”. Equation 39 is reminiscent of the total
energy equation of a harmonic oscillator given by

1

2
m

(
dx

dt

)2

+
1

2
kx2 = E.

By comparison one concludes that the solution to the rewritten orbit equation is known whenever
the effective potential energy term is of the form

Veff =
m∗u2

2
+ V (

1

u
) ∝ 1

2
ku2. (40)
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For these set of effective potential energies the orbit equation simply describes a harmonic oscillator,
which solutions are already known to be

x = A cos(ωt) (41)

where ω =
√

k
m . In order to make use of this knowledge to simplify the orbit equation, it is crucial

to perform a Taylor expansion of Veff around a circular orbit.
Circular orbits are the bound states where the radial separation of the particle to the center of

attraction does not change. This becomes more illuminating when studied graphically. When the
effective potential of the Kepler-Coulomb problem and the radial separation are plotted alongside
each other, the result will be similar to what is shown in Figure 5. As the horizontal and vertical
axes represent the magnitudes of the radii and the energies respectively, the radii that are available
to each bound state can be read by studying the shape of the potential energy curve. If the effective
potential is multi-valued for any energy E, then the radii associated to these two points will represent
the range of the allowed radii of the bound state. For a circular orbit in particular, it is not only
required that the bound state only has access to a single value for the radius, but the state has to
remain bound by the system. There is only one point in Figure 5 that satisfy these criteria. The
circular orbit is located at the minimum of the curve denoted by radius r1 and energy E4. In general
circular potentials can be found for any central potential at the global maxima and global minima,
but only global minima are considered stable orbits. This is due to the fact that the bound states at
the maxima could become free particle states when the smallest amounts of energy are introduced
into the system.

Figure 5: Here the magnitude of the Kepler-Coulomb potential has been plotted against the displace-
ment from the center of attraction. The range of radii available to each bound state can be determined
by looking the energies where the potential curve is multi-valued. A particle in the minimum of the
potential has energy E4 and an unchanging radial distance r1, this is a bound state with a circular
orbit. This figure has been taken from [8].

By Taylor expanding the effective potential energy near these circular orbits the expansion sim-
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plifies. As these orbits are near the extreme values of the potential curve, the linear term in the
Taylor expansion vanishes. Aside from that, the higher order correction terms inside the expansion
can also be safely neglected by constraining the radii to be close enough to the circular orbits. If
the circular orbit is located at the radial distance r0 = 1

u0
, then the Taylor expansion becomes

Veff (u) = Veff (u0) +
1

2
(u− u0)

2V ′′
eff (u0), (42)

where V ′′
eff denotes the second derivative with respect to u. Substituting Equation 42 into Equation

39 then results into
m∗

2

(
du

dϕ

)2

+
1

2
(u− u0)

2V ′′
eff (u0) = E − Veff (u0),

which becomes more illuminating by introducing the change of variable

ρ = u− u0 du = dρ

and allows the orbit equation to be rewritten into

1

2
m∗

(
dρ

dϕ

)2

+
1

2
V ′′
eff (u0)ρ

2 = E − Veff (u0) ≡ E′. (43)

Since Equation 43 is just a harmonic oscillator equation, the solution is given by ρ = A cos(ωϕ)
where

ω =

√
V ′′
eff

m∗ .

Using the definition for Veff , provided in Equation 40, the second derivative can be determined
explicitly to give rise to the following relations

V ′
eff = m∗u− 1

u2

dV

dr
= 0

m∗ =
1

u3

dV

dr

V ′′
eff = m∗ +

2

u3

dV

dr
+

1

u4

d2V

dr2
= 3r3V ′ + r4V ′′.

Finally, the angular frequency corresponding to Equation 43 can be determined to be

ω =

√
3V ′ + rV ′′

V ′ . (44)

As the general solution to the harmonic oscillator is given by a cosine function, given in Equation
41, its angular frequency must be real. Otherwise the trigonometric function will transform into its
non-periodic hyperbolic counterpart. In addition to that, as the apsidal angle is defined as the angle
between the radial extremes and the period of a cosine is defined as 2π, the following relation is true

ϕA =
π

ω
.

Therefore, one can conclude that the angular frequency ω must be rational to respect the closed
orbit condition, given in Equation 38. These two conditions are only met when 3V ′+rV ′′

V ′ is equal to
a positive rational and real number C. This means that

3V ′ + rV ′′

V ′ = C
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rV ′′ = (C − 3)V ′,

which reveals that the only central potentials that are allowed are of the form

V =
a

C − 2
rC−2,

where a is an integration constant. When the power is rewritten into a more familiar constant
n = C − 2, the closed potentials that satisfy the closed orbit condition are given by

V =
a

n
rn, (45)

which reveals that classically only single power laws in r are capable of hosting hidden symmetries.
Moreover, it also becomes possible to rewrite the closed orbit constraint in terms of the angular
frequency

ω =
√
n+ 2, (46)

which need to be rational to have closed orbits for all bound states.
At first glance neither Equation 45 or Equation 46 seem to forbid the existence of other physical

systems with hidden symmetries. Yet, none of these presented alternatives have been observed in
nature. The answer to this apparent paradox lies within the orbit equation itself. It turns out that
merely obeying the closed orbit condition is not sufficient. In order for systems to have closed orbits
for all bound states in classical mechanics, the set of central potentials must also satisfy the orbit
equation. All of the power law potentials can be neatly divided among two groups separated by
the sign of the power in r. For the n < 0 case it is beneficial to introduce a new positive and real
constant s = −n > 0. Substituting this new definition into the potential energy then gives rise to

V =
−a

s
r−s. (47)

Now that the explicit form of the potential energy is obtained in Equation 47 it can be introduced
into the initial orbit equation found in Equation 39

m∗

2

(
du

dϕ

)2

+
m∗u2

2
− a

s
us = E.

By dividing this newfound expression by us allows it to be written into

m∗

2
u2−s

(
1

u

du

dϕ

)2

+
m∗

2
u2−s − a

s
= Eu−s.

Just like the previous differential equations this one becomes more manageable when a change of
variables is introduced

x2 = u2−s 2x =
d

dx
(u2−s) =

du

dx
(2− s)u1−s,

which can be rearranged into the relation

2

2− s

dx

x
=

du

u
.

After a simple substitution the following will be obtained

m∗

2

(
2

2− s

)2(
dx

dϕ

)2

+
m∗

2
x2 = Eu−s +

a

s
. (48)
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Equation 48 starts to resemble a harmonic oscillator, however it still contains the undesired obviously
not constant term Eu−s. Fortunately, this problematic term can be eradicated by taking a specific
limit [3] [5]. As the discussion only concerns bound states, it can be safely concluded that the
energy of the bound state may never exceed the potential energy. From inspecting the potential
energy provided in Equation 47, it becomes obvious that the potential tends to vanish for large radii,
regardless of the actual values of both a and s. Phrased differently, this means that bound states
must obey E < 0. Since the potential energy does not depend on the energy E, one is allowed to
study its behaviour at the boundary where E approaches zero [5]. This assumption is actually a bit
sketchy from the perspective of the potential, but more details on that will follow in the discussion
section.

When this specific limit E → 0− is taken Equation 48 becomes

m∗

2

(
2

2− s

)2(
dx

dϕ

)2

+
m∗

2
x2 =

a

s
,

which has the same structure as a harmonic oscillator equation. Within this interpretation the
angular frequency can be determined to be

ωs =

√
m∗

m∗( 2
2−s )

2
=

2− s

2
.

At this moment it is important to recognise that orbits need to be physical. In other words, despite
the fact that the general solution to the harmonic oscillator, given in Equation 41, allows for negative
values, in order to make sense radii are not allowed to be less than zero. The consequence of this
phenomena is perhaps best explained graphically. In general, simple harmonic motion can be thought
of as a particle rolling down the quadratic potential curve. After leaving its initial position it will
pass the potential minima at the origin and head toward the reflection of its initial position in the
vertical axis. After that it will return to its initial position by retracing the identical path and start
the cycle anew. This procedure is illustrated in Figure 6a. Due to the fact that the orbits are not
allowed to have negative radii, the harmonic motion will be slightly different. As a result of this
constraint the particle is not allowed to pass the origin. Instead it will reflect the particle back
towards the initial position and finishes its cycle much earlier. This is shown in Figure 6b. As the
constraint halves the traversed path length, the angular frequency associated to this cycle must be
twice as large as the general case. Concretely, this constraint implies that the angular frequency
associated to the physical system is given by

ω−n = 2ωs = 2− s = n+ 2.

Then comparing this expression to the closed orbit condition, given in Equation 46, results in the
observation that valid solutions require that

√
n+ 2 = n+ 2.

From all the power law potentials with negative powers only the Kepler-Coulomb potential is capable
of satisfying this constraint, excluding all other negative values of n. As the characteristics of this
system has already been explored thoroughly in the second chapter, it will not be studied again in
this section.

For the other case, when n > 0, Equation 39 can be treated in an alternative way. By substitution
of the form of the potential given in Equation 45 it becomes

m∗

2

(
du

dϕ

)2

+
m∗u2

2
+

a

n
u−n = E. (49)
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(a) Harmonic motion can in general be inter-
preted graphically as a particle rolling down the
potential landscape of the harmonic oscillator
V = 1

2
mr2. The period of the motion is defined

as the time it takes to return to this initial posi-
tion after rolling towards the origin. In princi-
ple, the system allows for negative values, so the
particle is freely allowed to move in the parabolic
curve.

(b) Harmonic motion described in Equation 4.2
has to be physical, thus additionally requiring that
r ≥ 0. This means that only half of the harmonic
potential V = 1

2
m∗x2 is available to the particle.

Consequently, after the particle rolls towards the
origin it bounces back without going into the neg-
ative values. Since the traversed path is only half
of the general case, the angular frequency is ac-
tually twice as large.

Figure 6

Just as the n < 0 case, Equation 49 becomes more comprehensible when the appropriate limits are
chosen. At small radii, thus large u, the contribution of the centrifugal term dominates. On the
other hand, at large radii the central potential in Equation 45 is the dominant contribution. Both
the very small and very large values of r correspond to the same rapid increase in the effective
potential energy. As a result, at these specific regions of r Equation 49 simplifies. In order to allow
one to study both the arbitrary small and arbitrary large radii, one only needs to take a single
limit. In the limit where the total energy E tends to infinity, all values of the radii are accessible for
discussion. Similarly to the n < 0 case, this limit is also a bit slippery for the same reason. Details
and justification will be given in the discussion section. First of all, in the small radius region the
relation becomes

m∗

2

(
du

dϕ

)2

+
m∗u2

2
= E,

which implies that

ωr→0+ =

√
m∗

m∗ = 1.

Once again, by demanding that the orbits are physical one imposes that r > 0, as a result the
angular frequency of the physical system becomes

ωn>0 = 2ωr→0+ = 2.
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Comparing this expression with the closed orbit condition directly gives rise to

ωn>0 = ω → 2 =
√
2 + n, (50)

which only solution is n = 2. From this can be concluded that for small radii in the high energy
limit, only the harmonic oscillator is capable of meeting this criteria, immediately disqualifying all
other positive powers n.

In order to check the validity of the harmonic oscillator solution, the other extreme case must
also be considered. For radii that become very large Equation 49 becomes

m∗

2

(
du

dϕ

)2

+
a

n
u−n = E.

Substituting the earlier found solution n = 2 transforms the orbit equation once again into a har-
monic oscillator. To finalise the analysis for the n = 2 solution the angular momentum is considered.
As demonstrated in section 2.2, the angular momentum equation of the harmonic oscillator can be
obtained from the Euler-Lagrange equations of motion. This expression for the angular momentum
of the harmonic oscillator happens to be equal to the relation shown in Equation 4. By rewriting
the conservation of angular momentum one can obtain

−du

dr
=

1

r2
=

m

L

dϕ

dt
,

which is the same as (
du

dϕ

)2

=

(
m

L

dr

dt

)2

.

Therefore, for the specific case n = 2 Equation 49 reduces into

m∗

2

(
m

L

dr

dt

)2

+
m∗

2r2
+

a

2
r2 = E,

which can be simplified by recalling the definition of the “effective mass” given by

m∗ =
L2

m

into
m

2
ṙ2 +

L2

2mr2
+

a

2
r2 = E. (51)

Finally, Equation 51 be rewritten for the last time by recalling the conservation of angular momentum
imposes that

L2

2mr2
=

m

2
r2ϕ̇2

and the velocity in polar coordinates is defined as

v2 = (ṙ2 + r2ϕ̇2)

to give rise to
1

2
mv2 +

1

2
ar2 = E. (52)
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Equation 52 can be recognised as the familiar textbook harmonic oscillator equation with the sub-
stitution a = k. As a result the solution n = 2 is a valid for all radii. As a side note, notice that
due to the similar structure of the angular momentum conservation, the last analysis could also be
applied to the Kepler-Coulomb system. This is done through simply changing the magnitude of the
power n and recognising that in this case a

2 = q1q2
4πϵ0

.
This section has been dedicated to studying the constraints of the orbit equation and how these

impositions relate to the closed orbit condition found in the previous section. Similarly to was
demonstrated for the Kepler-Coulomb problem, through the conservation of energy and angular
momentum an orbit equation can be constructed for any arbitrary central potential. The structure
of this newfound equation is reminiscent of the harmonic oscillator energy. To take advantage of
this, the effective potential was Taylor expanded around circular orbits. This allowed the usage of
the definition of the angular frequency, which determined the structure of the central potentials.
Together with the closed orbit condition one is able to conclude, that only single power laws of r
with rational angular frequencies can give rise to closed orbits for all bound states. However, it turns
out that closed orbit condition by itself is insufficient. By substituting the power law solution, the
orbit equation can be solved to obtain another set of angular frequencies. For the central potentials
to have closed orbits for all bound states, it is required that the angular frequencies of the orbit
equation agrees with the closed orbit condition. Within classical mechanics only two solutions for
n are able to satisfy this criterion. Thus, the only two systems in classical mechanics that give
rise to hidden symmetries are the Kepler-Coulomb and the harmonic oscillator. However, so far the
discussion has been purely classical. It is widely known that classical mechanics is unable to describe
reality in its entirety, giving rise to false predictions under specific circumstances. Therefore, the
final conclusion obtained in this section may not be valid when one leaves the realm of classical
mechanics. The next section is dedicated to study the effects of special relativistic corrections on
the existence of hidden symmetries, to check whether the classical conclusions remain valid.

4.3 Special relativistic extension

In order to generalise the classical theorem to include special relativistic effects, one has to remember
that the kinetic energy of these systems become more complicated. For a relativistic particle in
presence of a continuous central potential the Lagrangian is given by

L = −mc2
√

1− v2

c2
− V (r).

As the ultimate goal of this derivation is to find closed orbits for all bound states, once again the
conservation of energy and angular momentum is imposed. Similar to its classical counterpart, the
conservation of angular momentum is synonymous with demanding the orbits to be confined within
a plane, making it is most convenient to work in polar coordinates v2 = ṙ2+ r2ϕ̇2. As demonstrated
in section 2.2, the angular momentum equation is given by

L =
dL
dϕ̇

=
mr2ϕ̇√
1− v2

c2

= mr2γϕ̇,

where γ = 1√
1− v2

c2

is the familiar Lorentz factor. Recalling the relativistic definition of the three-

momentum
p⃗ = mγv⃗ = pr r̂ + pϕϕ̂
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and expanding v to polar coordinates reveals that

pr = mγṙ pϕ = mrγϕ̇ =
L

r
.

By taking advantage of the fact that the structure of the momentum components are very similar,
the radial momentum can be expressed in terms of its angular counterpart

pr
pϕ

=
ṙ

rϕ̇
=

dr

rdϕ
→ pr = pϕ

dr

rdϕ
.

When one recalls that pϕ is directly related to the magnitude of the angular momentum L, it becomes
possible to simplify pr into

pr =
L

r2
dr

dϕ
. (53)

The relativistic of the orbit equation is, just like its classical equivalent, determined using the
conservation of energy

E =
√
p2c2 +m2c4 + V (r),

which can be rearranged, using the relation p2 = p2r + p2ϕ, to give rise to

(E − V )2 =

(
L

r2
dr

dϕ

)2

c2 +

(
L

r

)2

c2 +m2c4. (54)

Equation 54 becomes more manageable under the familiar change of variables

u =
1

r
− r2du = dr

resulting in the following relation

(E − V )2 =

(
− L

du

dϕ

)2

c2 + (Lu)2c2 +m2c4,

which allows itself to be rewritten into(
du

dϕ

)2

+ u2 =
1

L2c2
((E − V )2 −m2c4). (55)

Equation 55 is still not very illuminating, however it can still be simplified by differentiating with
respect to d

dϕ

2
du

dϕ

d2u

dϕ2
+ 2

du

dϕ
u =

1

L2c2

(
2
du

dϕ
(E − V )

dV

du

)
,

which upon dividing by the common factor becomes

d2u

dϕ2
+ u =

(E − V )

L2c2
dV

du
. (56)

Equation 56 can be thought of as the proper relativistic generalisation of the classical orbit equation.
This becomes more obvious when the total energy equation is rewritten into the form

E = mγc2 + V → (E − V ) = mγc2,
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transforming the relativistic orbit equation into

d2u

dϕ2
+ u =

mγ

L2

dV

du
.

Finally, upon realisation that returning to classical mechanics is equivalent to taking the limit where
γ → 1, the last equation can be integrated to regain Equation 39.

Although the relativistic orbit equation has been found explicitly in Equation 56, the non-linear
equation is not informative in its current form. Fortunately, just like its classical counterpart, the
orbit equation simplifies by considering circular orbits. First of all, the notation is simplified by
defining

J(u) ≡ (E − V )

L2c2
dV

du
. (57)

Secondly, when this J is Taylor expanded around a circular orbit located at u = u0, it can be
rewritten into

J(u) = J(u0) + (u− u0)J
′(u0) +

(u− u0)
2

2
J ′′(u0) + ....

From the Taylor expansion can immediately concluded that the constant term J(u0) must equal u0.
This can be inferred from explicitly taking the limit u → u0. Consequently, all terms in the Taylor
series except for J(u0) will vanish. In addition to that, in order for the left hand side to describe a
circular orbit, the radius and therefore also u may not vary with ϕ. This solution is only included
when the linear u term and the constant term J(u0) vanish together. Secondly, by only considering
values of u near this circular orbit, the higher order terms in the Taylor expansion can be safely
neglected. Combining these findings together give rise to

d2u

dϕ2
+ u = J(u0) + (u− u0)J

′(u0),

which can be rewritten with the change of variables

x = u− u0 du = dx

into
d2x

dϕ2
+ (1− J ′(u0))x = 0. (58)

Upon closer inspection, Equation 58 can be recognised as the equations of motion for a harmonic
oscillator with an angular frequency ζ2 = (1− J ′(u0)).

By interpreting Equation 58 as a harmonic oscillator equation, additional constraints can be
determined. From the general solution of a harmonic oscillator, given in Equation 41, it can be
deduced that to have stable orbits the angular frequency needs to be real. Otherwise, the trigono-
metric solutions transform into their aperiodic hyperbolic counterparts. Aside from that, it can also
be inferred that this value has to be a constant. This can be understood by first looking at the closed
orbit condition introduced in Equation 38. Even in the relativistic case an apsidal angle ϕA can be
constructed, which is demanded to be a rational multiple of π. As the set of rational numbers is not
continuous, ϕA is only allowed to take specific values. Furthermore, this rational multiple of π is not
allowed to vary between closed orbits. This is due to the fact that the radii r are continuous. As a
result, if an orbit with radius r and another orbit with radius r + δr, where δr ≪ r, have different
angular frequencies, then problems arise when the limit is taken where δr → 0 [9]. The orbits will
tend towards each other, but as the set of allowed angular frequencies is not continuous the angular
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frequency must change discontinuously. Consequently, orbits can not be closed at this discontinuity,
this implies that ζ2 must be both constant and positive.

The angular frequency ζ combined with its accompanying constraints allow for the formulation
of a new differential equation

1− J ′(u0) = ζ2,

which can be rephrased by using Equation 57 into(
dV

du

)2

+ (V − E)
d2V

du2
= (1− ζ2)L2c2. (59)

Unlike Equation 56 which has a non-relativistic analogue, given by Equation 39, a differential equa-
tion due to the constraints on the angular frequency, such as Equation 59, was never found in the
classical derivation. This can be made more obvious by rewriting the relation in terms of the Lorentz

factor by recalling that (E−V )
mc2 = γ, this results in the following equation [9]

γ
d2γ

du2
+

(
dγ

du

)2

=
(1− ζ2)L2

mc2
,

which is not well-defined in the classical limit. It is believed that the justification of this phenomenon
can be found within the orbit equation [9]. Although the classical orbits are only dependent on the
radial separation, as the right hand side of the relativistic counterpart, the function J(u), can be
written in terms of γ, it is also dependent on the particle velocity. This discrepancy does not allow
for a well defined classical limit for Equation 59.

There are two ways Equation 59 can be approached. One method is by introducing a trial
solution into the differential equation to study its characteristics. Aside from that, one can also
search for general solutions by rewriting the differential equation in a familiar form. Inspection of
the findings from the previous section suggest the trial solution

Vtrial = −buδ,

where b > 0. Substituting this trial solution into Equation 59 returns the following

δ2b2u2(δ−1) + (δ − 1)δb2u2(δ−1) + (δ − 1)δEbuδ−2 = (1− ζ2)L2c2,

which can rearranged to obtain

(δ2b2 + (δ − 1)δb2)u2(δ−1) + (δ − 1)δEbuδ−2 = (1− ζ2)L2c2. (60)

The structure of Equation 60 simplifies by a lot for the specific case δ = 1, corresponding to the
Kepler-Coulomb potential. Performing this substitution will transform the equation into constraints
on both the angular momentum and the angular frequency of the form

b2 = (1− ζ2)L2c2 → L =
b

c
√
1− ζ2

. (61)

This not only reveals that ζ2 is not allowed to be larger than one, in order to keep the angular
momentum real, but also that the angular momentum must be larger than a specific lower bound
L > b

c . Equation 60 does not seem to simplify for any other δ, seemingly excluding the harmonic
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oscillator potential as a valid solution. Aside from this approach one can also try to find a general
solution. It turns out that the left hand side of Equation 59 can be collected into a single term

d2

du2

[
(V − E)2

2

]
= (1− ζ2)L2c2.

For a differential equation of this form, the general solution is known to be [9]

V (r)− E = −
√

d(f +
1

r
)2 + g, (62)

where d = (1 − ζ2)L2c2 and f, g are integration constants. The force accompanying this special
potential is given by

F⃗ = −∇⃗V = −
d(f + 1

r )

r2
√

d(f + 1
r )

2 + g
. (63)

From the symmetry exhibited in Equation 63 it becomes very clear that the force simplifies under
the special condition g = 0 into

F⃗ = −
√
d

r2
.

This can be directly recognised as the inverse square force law belonging to the Kepler-Coulomb
potential. Furthermore, it specifies the constant of the trial solution to be b =

√
d. However, for

all potentials where g ̸= 0 the force keeps its complex structure. Similar to the findings of the trial
solution, closer inspection of Equation 63 does seem to exclude the harmonic oscillator as a solution.
This would imply that Equation 59 excludes the harmonic oscillator as a solution regardless of the
chosen approach. As the structure provided in Equation 63 is rather unfamiliar, this would suggest
that from the currently known systems, only the Kepler-Coulomb potential could be considered as
a valid solution. However, in light of Equation 61, even the Kepler-Coulomb system does not give
rise to closed orbits for all bound states.

Using the obtained form of the potential given in Equation 62, it is possible to solve the relativistic
orbit equation explicitly. Substituting the general solution of the potential into Equation 57 will
give rise to

J(u) =
1

L2c2
(−

√
d(f + u)2 + g)(− d(f + u)√

d(f + u)2 + g
) =

d

L2c2
(f + u), (64)

which implies a linear dependence of J(u) on u. Although the linear functional dependence is very
beneficial, simplifying Equation 56 in such a way that can be solved directly, it is also a observation
that needs to be treated with care. More attention will be spend on this in the discussion section.
Equation 64 can be substituted directly into Equation 56 to obtain

d2u

dϕ2
+ u =

d

L2c2
(f + u),

which can be solved using the method of undetermined coefficients to give rise to the solution [9]

1

r
=

1

R
cos(ζϕ) +

f(1− ζ2)

ζ2
(65)

with

R = Lcζ[
f2L2c2(1− ζ2)

ζ2
+ g −m2c4]−

1
2
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Interestingly, the structure of Equation 65 can be compared directly to Equation 14. Although the
latter describes a constant ellipse, the former does not. This notion becomes more apparent when
the findings are compared to an older derivation [10], which will be done in the discussion section.

Within this section Bertrand’s theorem was generalised to include special relativistic corrections.
At first, the methodology resembled its classical counterpart. Consisting of imposing the existence
of the energy and angular momentum conservation laws and utilising them to construct an orbit
equation. Its validity was then checked by taking the limit to classical mechanics, which can be
successfully used to reproduce Equation 39. However, from here on the derivation starts the deviate.
After trying to simplify the relativistic orbit equation, by performing a Taylor expansion close to
circular orbits, a relativistic differential equation is obtained. This equation is special in the sense
that both it has no classical analogue and provides important constraints to the problem. Through
two alternative approaches this relativistic equation was explored, which gave rise to two important
observations. Firstly, the harmonic oscillator system was excluded as a solution altogether. Secondly,
only when the angular momentum is greater than a certain threshold, given by Equation 61, may
the Kepler-Coulomb system have closed orbits. Not only has the relativistic derivation revealed that
relativistic corrections have significant implications for the orbit equation, but it has also shown that
within special relativity no well-known systems have closed orbits for all bound states. The next
section will be dedicated to providing some extra detail on some important aspects of the presented
analyses.

5 Discussion

In section 3.3 the equations of motion of the harmonic oscillator have been simplified by effectively
ignoring the angular frequency. Although it is not rare in theoretical physics to simplify expressions
by setting some dimensionful quantities, such as the mass [11] [12] and the angular frequency [12],
to one, at times it might come over as rather artificial. The justification of this method seems to lie
in the physical interpretation of the system. To the best of the author’s knowledge, the system can
always be rescaled such that these quantities are equal to one. While it has been helpful during the
derivation, being required to set them to one does feel uncomfortable.

In section 4.2 a modernised version of Bertrand’s theorem [5] is introduced. The beauty of this
version lies in its relative simplicity, but the validity of some assumptions can be justifiably called
into question. In this derivation Equation 48 is simplified by studying its characteristics under
specific limits of the particle energy. The heart of the problem lies in the fact the effective potential
has been expanded in a Taylor series. The expansion was made around a circular orbit to make sure
that the first derivative vanishes. In addition to that, the higher order components of the expansion
has been ignored, implicitly constraining the description only to radii close to this circular orbit.
Yet, for both the cases n > 0 and n < 0 the performed limits can be rephrased as describing the
behaviour of the system for very large or very small radii. This contradiction is not something
that was included in Bertrand’s original derivation [13], in which he works with extreme values of
r that differ infinitesimally. Perhaps a less straightforward but more technically elegant method
is demonstrated in [3], where for the n > 0 case a new scaled effective potential veff =

Veff

E is
defined. This scaled effective potential implies that, for energies that tend to infinity, the effective
potential reduces to a harmonic potential with a vertical wall at the origin. This description is
similar to the one shown in Figure 6b. Unfortunately both [3] and [5] do not seem to justify the
limit E → 0−, seemingly implicitly assuming that the radii are sufficiently close the circular orbit.
The best justification the author think of is the fact that one searches potentials that are valid over
all radii. As the single power laws in r are the only central potentials that could give rise to closed
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orbits near the potential minimum, the set of potentials that are valid for the entire radial spectrum
must be within this set of potentials. Aside from that, by utilising the orbit equation in section 2.2
and recalling the complex mapping in section 3.1, one can conclude that both the Kepler-Coulomb
and the harmonic oscillator do have closed orbits for all bound states. These observations do seem
to be consistent with each other, suggesting that the used assumptions might not have been too
far-fetched.

Although the linear dependence of J(u), found in section 4.3, is very helpful, one must be
careful to avoid circular reasoning. J(u) was first Taylor expanded to obtain a more manageable u
dependence. The expansion was chosen specifically to be around a circular orbit as this would allow
the constant term J(u0) to be inferred. Aside from that, all terms with a quadratic or higher order
dependence on (u − u0) have been neglected. These imposed constraints simplify the expressions
enough to be solved analytically. However, one could also say that during this process a linear J(u)
solution has been constructed artificially. Consequently, it would not be strange that the solution
to Equation 59, which follows from the substitution of this specific form of J(u) into Equation 56,
would give rise to a potential that ensures that J(u) is linear. The fact that the neglected higher
order expansion terms of J(u) happen to vanish by themselves is suspicious, possibly arising due to
the self-imposed restrictions.

In section 4.3 the search for closed orbits was extended to include systems obeying special rel-
ativity. After finding the linear dependence of J(u) Equation 56 could be solved analytically to
find orbits described by Equation 65. This conclusion is actually very interesting when compared
to an earlier result. In The Classical Theory of Fields [10] the same generalisation was performed
specifically for a Kepler-Coulomb potential. In this book it has been shown that the Kepler-Coulomb
potential may only have constant elliptical orbits when the constraint√

1− α2

c2L2
= 1 (66)

is satisfied. In Equation 66 α is interaction strength of the potential given by

V =
α

r
.

The only way the constraint can be fulfilled is when the second term in the square root vanishes.
This occurs only under three different conditions, namely when α = 0, L → ∞ or c → ∞. Firstly,
setting α to zero is equivalent to removing the potential energy in its entirety, in other words, getting
rid of the particle interaction. In order to study the mechanics of the Kepler-Coulomb system this
limit may not be taken, thus excluding this possibility. Secondly, requiring the angular momentum L
to approach infinity is physically problematic. As this quantity is defined as the outer product of the
position and momentum vector, if L approaches infinitely high values, then either one of the vectors
will also have to tend to these large magnitudes. However, allowing that would make the physical
system very difficult to understand. An infinitely large position vector can not possibly be thought
of as a closed orbit and an infinitely large momentum is hard to conceptualise by itself. The last
way to satisfy Equation 66 is by letting the speed of light to approach infinity. At first glance this
might also seem strange, but in theoretical physics this limit is actually not that unfamiliar. Despite
the fact that light does have a finite speed, by constraining systems to be and stay within classical
mechanics, this upper limit will never be felt. As a result, within this specific realm of physics the
speed of light can be considered to have an infinite large value. From the previous analysis it would
seem that only classical systems qualify for possessing constant elliptical orbits.

The previous paragraph might confuse one into believing that the results found within section
4.3 and the The Classical Theory of Fields [10] disagree with each other, but that is simply false.
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Although it has not been explicitly worked out in the latter, if the notion of closed elliptical orbits
is let go in favor of closed orbits in general, then Equation 66 transforms into√

1− α2

c2L2
= ζ. (67)

Just like in section 4.3, ζ found within Equation 67 symbolises a rational number. This relation can
immediately be rewritten into

α2

c2L2
= 1− ζ2

α2

c2(1− ζ2)
= L2

L =
α

c
√
1− ζ2

.

The final expression is identical to Equation 61, which was found when the Kepler-Coulomb potential
was substituted as a trial solution to Equation 59. This observation confirms that both results are
actually consistent with each other.

As was observed in section 4.3, the inclusion of the special relativistic corrections into Bertrand’s
theorem have given rise to a vastly different conclusion than its classical analogue. By comparing
this relativistic extension with its classical counterpart, it becomes obvious that the former is still
a relative new concept. If one would like to continue to explore hidden symmetries, then it might
be most beneficial to either continue looking for alternative ways to generalise Bertrand’s theorem
or to explore the characteristics of its solutions. Exploring these subjects would not only allow one
to better understand the validity of the presented derivation, but it could also inform about what
systems or behaviour one should look for.

6 Conclusion

By scrutinising the characteristics of the Kepler-Coulomb system, the existence of a hidden symmetry
was inferred. Using the Newtonian equations of motion and the conservation of angular momentum,
the constant of motion associated to this hidden symmetry was shown to be the LRL-vector A⃗. From
the existence of energy degenerate hodographs, the physical interpretation of the hidden symmetry
is understood as the transformation between these energy degenerate states, which turns out to be
equivalent to four-dimensional rotations. By expressing the Kepler-Coulomb problem in terms of
complex numbers, a mapping to the two-dimensional harmonic oscillator can be constructed. This
mapping allows one to rewrite the harmonic oscillator quantities in terms of their Kepler-Coulomb
counterparts and vice versa. Allowing one to learn that the two-dimensional harmonic oscillator also
contains a hidden symmetry. Upon mapping the LRL-vector it becomes clear that its components
are related to a very special tensor, which demonstrates that the mapping is able to relate the
additional constants of motion to each other. In order to determine whether other potentials could
be studied in a similar fashion, the characteristics of closed orbits were researched. By studying
a modernised version of Bertrand’s theorem it has been revealed that within classical mechanics,
only the Kepler-Coulomb and the harmonic oscillator systems are able to satisfy both the closed
orbit condition and the classical orbit equation. As a result excluding the existence of other hidden
symmetries. When one extends Bertrand’s theorem to include special relativistic effects the final
conclusion changes. The relativistic corrections change the orbits fundamentally, resulting in both
the exclusion of the harmonic oscillator solution and introduces a restriction on the Kepler-Coulomb
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solution. Consequently, it seems that no well-known potential is capable of having closed orbits for
all bound states in special relativistic systems.
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