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Introduction

What is a knot? How can we study it topologically? Those are the ques-
tions that this thesis seeks to answer. We study the knot complement as
topological space and apply techniques found in algebraic topology.

To start of, this thesis introduces the reader to knots and equivalence of
knots. We talk about knot invariants and in particular, the knot complement,
a topological space that is studied in detail in this thesis.

Secondly, we study Seifert surfaces. The existence of Seifert surfaces is
proven using Seifert’s algorithm. Then, we use the genus of the Seifert surface
to compute its fundamental group.

In the third chapter, the reader is introduced to the infinite cyclic cover of
the knot complement. We first use the homology of the knot complement to
prove the existence of the infinite cyclic cover, and then construct it explicitly
by cutting the knot complement along a Seifert surface.

Fourthly, we zoom in to a specific type of knot, called the fibred knot. The
reader is first introduced to some theory on fibre bundles, which we use to
compute the commutator subgroup of the knot complement for fibred knots.

To finish of this thesis, we construct a space that is homotopy-equivalent to
the knot complement and somewhat easier to grasp. We study the homology
of the infinite cyclic cover of this space and give ideas on how this space can
be used to give the homology group a Z[t±]-module structure.

Many of the techniques used in this thesis are techniques from algebraic
topology. As of writing this thesis, the University of Groningen does not have
a bachelor course on algebraic topology. Therefore many bachelor students
may struggle reading this thesis. In case the reader is interested in learning
about algebraic topology, the author recommends reading chapters 11-14 of [4]
and chapter 13 of [6].

3



CHAPTER 1

Knot theory basics

The aim of this chapter is to provide the reader with the basic definitions
in knot theory. To be specific, we define what a knot is and how they are
classified. Furthermore, knot invariants are defined and it is proven that the
knot complement is a knot invariant.

1. Definition of a knot

In order to define knots, we first recall the definition of an embedding.

Definition 1.1. Let X and Y be topological spaces. An embedding of X
in Y is a continuous map f : X → Y such that the restriction f : X → f(X)
is a homeomorphism.

Sometimes, the notation X ↪→ Y may be used to express that X is embed-
ded in Y , without needing to give the map a name.

It is clear that an embedding is injective. Note however that not every
continuous injective map is an embedding, as the inverse of the restriction
may not be continuous.

The definition of an embedding is enough to give the definition of a knot.

Definition 1.2. A knot is an embedding k : S1 ↪→ S3. The image of this
map is also called a knot and is also denoted k.

The ambiguity of this notation is not an issue, as it is always clear from
context whether k refers to an embedding S1 ↪→ S3 or the image of that
embedding.

One should recall that S3 is the one point compactification of R3. Therefore
S3 can be viewed as R3 ∪ {∞}. Consequently, by thinking of knots as embed-
dings S1 ↪→ R3 with a point at infinity, it becomes much easier to visualise
and draw them.

Example 1.3 (Unknot and trefoil knot). We give some examples of knots.
Firstly, there is the trivial embedding S1 ↪→ S3, as seen in the left drawing of
figure 1.1. This knot is called the unknot.

Secondly, there is the embedding S1 ↪→ S3 that is drawn on the right in
figure 1.1. This knot is called the trefoil knot.

As with many objects in mathematics, we need a method to classify knots.
The image of a knot is not of use of us here, as every image of a knot is
homeomorphic with the circle S1. So instead, we need to take the surrounding
space into account. This leads us to the following definition:
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Figure 1.1. The unknot (left) and the trefoil knot (right).

Definition 1.4. Two knots k1 : S
1 ↪→ S3 and k2 : S

1 ↪→ S3 are equivalent
if there exists an orientation-preserving homeomorphism h : S3 ∼−→ S3 that
carries k1 into k2, i.e. h ◦ k1 = k2.

It is clear that the above definition is an equivalence relation.
The definition of a knot presented above lacks a property that will be used

extensively in future chapters. To be specific, we require our knots to have a
tubular neighbourhood, which is a neighbourhood that is homeomorphic with
S1×D2. An example of a knot that doesn’t have this property is the infinitely
nested knot presented in figure 1.2, as no tube can be formed around the (limit)
point L.

Despite appearing as if you can unravel the knot from the right side, it can
be shown that this knot is not equivalent to the unknot.

Figure 1.2. An knot with infinitely nested crossings, from [2].

Examples of knots that clearly have a tubular neighbourhood are those
that satisfy the following:

Definition 1.5. A polygonal knot is a knot whose image is the union of a
finite number of line segments.

It is clear that the knots presented in figure 1.1 are polygonal knots. These
knots turn out to be precisely the ones we are interested in.

Theorem 1.6. Let k be a knot. The following statements are equivalent:

(1) The knot k is equivalent to a polygonal knot;
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(2) there exists a neighbourhood k that is homeomorphic to S1×D2. This
neighbourhood is called a tubular neighbourhood of k, denoted V (k).

Proof. This theorem is not proven in this thesis. A proof of a stronger
version of this theorem is given in [8]. ,

Definition 1.7. A knot is called tame if it satisfies the equivalent condi-
tions (1) and (2) in theorem 1.6. A knot that is not tame is called wild.

From now on, all knots in this thesis are assumed to be tame.

2. Knot invariants

The concept of equivalence of knots has been presented in definition 1.4.
This definition is quite straightforward and knot theorists have developed a
method to show that two knots are equivalent involving the use of drawings.
This method is called equivalence by Raidemaister moves and an in-depth
explanation can be found in the first chapter of [2].

On the contrary, a problem that is omnipresent in knot theory is showing
two knot are not equivalent. It is difficult to directly show no orientation-
preserving homeomorphism of S3 exists that carries one knot to another. For
instance, it is tough to show that the knots in figure 1.1 are not equivalent.
Therefore knot theorists turn to knot invariants instead to show two knots are
not equivalent.

Definition 1.8. A knot invariant is a map

{knots k : S1 ↪→ S3}/(equivalence) −→ Z,

where Z is any set. An knot invariant is called complete if it is injective.

So a knot invariant assigns to any knot a quantity (in a very broad sense)
that does not change under equivalence of knots. The main focus of knot
theory is to find knot invariants and compute them. As of the publication of
this thesis, no easily computable complete knot invariant exists. Finding such
an invariant would be the pinnacle achievement of knot theory.

The focus of this thesis is on the knot complement, defined below.

Definition 1.9. Let k : S1 ↪→ S3 be a knot. The space S3 \ Im k is called
the knot complement of k.

The knot complement turns out to be a knot invariant, up to homeomor-
phisms (denoted ∼=).

Proposition 1.10. The following map is a knot invariant:

C : {knots k : S1 ↪→ S3}/(equivalence) −→ {S3 \ Im k | k : S1 ↪→ S3}/ ∼=
k 7−→ S3 \ Im k.

Proof. We need to show that C is well-defined.
Let k1 : S

1 ↪→ S3 and k2 : S
1 ↪→ S3 be two equivalent knots and h : S3 ∼−→

S3 an orientation-preserving homeomorphism such that h ◦ k1 = k2. It is clear
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that h(Im k1) = Im k2, and therefore the restriction

h|S3\Im k1 : S
3 \ Im k1 −→ S3 \ Im k2

x 7−→ h(x)

is a homeomorphism. We conclude that C is well-defined. ,
A noteworthy fact about the knot complement is that it is a complete

invariant. A proof of this can be found in [5]. As mentioned before, no known
easily computable knot invariants exists. Indeed, it is tough to determine
whether the knot complements of two knots are homeomorphic. Instead, we
choose to focus on computing topological invariants of the knot complement,
which is done in the remainder of this thesis.
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CHAPTER 2

Seifert surfaces

Before studying topological invariants of the knot complement, we need to
take a detour to the theory of Seifert surfaces. These surfaces will be required
to construct a covering map of the knot complement in chapter 3, called the
infinite cyclic cover of the knot complement.

In this chapter, we discuss Seifert surfaces and their existence, as well as
compute their fundamental group in terms of their genus.

1. Existence of Seifert Surfaces

Definition 2.1. A Seifert surface of a knot is an orientable surface with
boundary equal to the knot.

The existence of Seifert surfaces is non-trivial, but does turn out to be
guaranteed. An algorithm called Seifert’s algorithm allows us to construct a
Seifert surface explicitely for any knot.

Theorem 2.2 (Seifert’s algorithm). Every knot admits a Seifert surface.

Proof. Let k be a knot. We will construct an orientable surface S satis-
fying ∂S = k.

First, choose an orientation and a knot diagram for k. Then, at each
crossing of the knot in the diagram, alter k as shown in figure 2.1.

Figure 2.1. The creation of Seifert cycles, from [2].

After this, we end up with a disjoint union of oriented simple closed curves.
These curves are called Seifert cycles. Recall that an oriented simple closed
curve is the boundary of an oriented surface. For each Seifert cycle, choose such
a surface and embed them into S3 such that their boundaries are the Seifert
cycles, while keeping the surfaces disjoint. The surface can be kept disjoint by
lifting them up or down to create a three-dimensional stack of surfaces. These
surfaces are call Seifert cells

Lastly, we undo the process of ‘cutting’ the knot in figure 2.1 by merging
the Seifert cells together. This is done by adding a half-twisted strip at each
position that there used to be a crossing, see figure 2.2. We let the half-twists
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cross in the same way as the original crossing, creating a connected surface S
satisfying ∂S = k.

Figure 2.2. Twisted bands merging the surfaces, from [2].

The Seifert cells are orientable and due to the twisted bands from figure 2.2
we find that S itself is also orientable. We conclude that S is a Seifert surface
of k. ,

To further clarify the algorithm presented above, a Seifert surface of the
so-called ‘figure eight’ knot is constructed in figure 2.3.

Figure 2.3. Applying Seifert’s algorithm to the figure eight
knot, from [3].

A fact that may strike interest into the reader is that Seifert surfaces are
not unique. Every knot has infinitely many non-homeomorphic Seifert surfaces.
This statement is easily proven using topological surgery, but this is not done
in this thesis.

2. Genus of a surface

In this section, we discuss the concept of the genus of the surface. When
defining the genus, it is important to distinguish between surfaces with- and
without boundary.

2.1. Surfaces without boundary. The genus is defined as follows for
orientable surfaces (without boundary):

Definition 2.3. Let S be a connected and orientable surface. Then the
genus of S is the maximum number of simple closed curves that S can be cut
along without the reulting surface being disconnected.
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When talking about surfaces, it is useful to consider the classification of
surfaces. This classification is a useful aid in finding the fundamental group of
Seifert surfaces in the next section.

Proposition 2.4 (Classification of surfaces). Any connected surface is
homeomorphic with one of

(1) the 2-sphere;
(2) the torus;
(3) the projective plane,

or connected sums of these surfaces.

Recall that the connected sum of two connected surfaces S and T is ob-
tained by removing an open disc in S and T and then identifying their respec-
tive boundaries. Note that the connected sum of two spheres is a single sphere,
and the connected sum of two tori is a torus with two holes, see figure 2.4.

Figure 2.4. The connected sum of two tori is a torus with
two holes.

Since the projective plane is non-orientable, we can classify the connected
orientable surfaces as tori with n holes, where the sphere is the torus with 0
holes.

With this information, we can find the genus of all connected orientable
surfaces:

Proposition 2.5. A torus with n holes has genus n.

Proof. There are two different simple closed curves that can be cut out of
a torus without the resulting surface being disconnected. One of them yields a
cylinder, and the other an annulus, which are homeomorphic. No simple closed
curve can be taken out of these surface without making the result disconnected.

By performing either of these cuts at every hole of the torus with n holes,
we obtain a connected sum of n cylinders. No more cuts can be done to this,
without making disconnecting the space, so we conclude that the torus with
n holes has genus n. ,
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2.2. Surfaces with boundary. We can view surfaces with boundary as
closed surfaces with discs taken out of them. To be specific, S is said to be a
connected surface with n boundary if for some connected surface C,

S = C \

(
n⊔
i=1

D2

)
.

Here D2 is the open disc. We can now define the genus of a surface with
boundary:

Definition 2.6. Let S = C \ (
⊔n
i=1D

2) be a surface with boundary. Then
the genus of S is the genus of C.

It should be noted that defining the genus of a surface with boundary as
the number of simple closed curves that can be cut from the surface, without
disconnecting it, would result in an equivalent definition. This fact is not
shown in this thesis.

One example of a connected and orientable surface with boundary is a
Seifert surface. The genus of the Seifert surface is of interest to us, but it turns
out that not all Seifert surfaces of a knot have the same genus. Therefore, we
define the concept of the genus of a knot as follows:

Definition 2.7. The genus of a knot is the minimal genus of its Seifert
surfaces.

3. Fundamental group of Seifert Surfaces

Consider a knot k of genus g. Let S be a Seifert surface of k of genus g.
The boundary of S is k, so since k has 1 connected component we see that S
is a surface with 1 boundary. As S is orientable, the classification of oriented
surfaces tells us that S is homeomorphic with a torus with g holes and 1 disc
taken out of it. Now that we can grasp the Seifert surface more easily, we can
compute its fundamental group.

Proposition 2.8. The fundamental group of a connected and oriented
surface with genus g and 1 boundary is F2g, the free group with 2g generators.

Proof. Let S be a connected and oriented surface with genus g and 1
boundary. Then by the classification of surfaces we find that S is a torus with
g holes and a disc taken out of it. This space can be retracted to the bouquet
of 2g circles, see figure 2.5. The fundamental group of the bouquet with 2g
circles is F2g. This completes the proof. ,

Corollary 2.9. The fundamental group of a Seifert surface of genus g is
F2g.
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Figure 2.5. The torus with n holes and a disc 1 boundary
can be retracted to the bouquet of 2g circles.
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CHAPTER 3

Cyclic coverings

In this chapter we start studying the knot complement. If k is a knot with
tubular neighbourhood V = V (k), then we denote the knot complement by

C. By knot complement we mean one of the spaces S3 \ k, S3 \ V , S3 \ k or

S3 \ V . Even though these spaces are not homeomorphic, they are homotopy-
equivalent. Seeing as we are studying the homology groups and fundamental
group of the knot complement, this does not turn out to be a problem.

The fundamental group of the knot complement is of great interest to
knot theorists, as it is a very powerful invariant. However, computing this
group explicitly turns out to be a difficult task that has yet to be overcome.
Therefore, knot theorists prefer to study invariants of this group, such as the
first homology group or the commutator subgroup.

The aim of this chapter is to compute the homology of the knot comple-
ment, and explictely construct a space that has the commutator subgroup as
its fundamental group. This space is studied in-depth in future chapters.

It should be noted that the knot complement is assumed to be a connected
3-manifold. This is non-trivial, but is not proven in this thesis.

1. Homology of the knot complement

In this section, the homology of the knot complement is computed. The
following tool is required to compute this homology.

Theorem 3.1 (Mayer-Vietoris). Let X be a topological space and U1, U2 ⊂
X open subspaces such that U1∪U2 = X. Consider the group homomorphisms
induced by the inclusion maps:

Hp(U1)

Hp(U1 ∩ U2) Hp(X)

Hp(U2)

k⋆i⋆

j⋆ l⋆

Also consider the group homomorphism ∂⋆ : Hp(X) → Hp(U1 ∩ U2) given
by ∂⋆[c] = ∂⋆[c1 − c2] = [∂c1] = [∂c2], where c1 and c2 are p-chains in U1 and
U2 respectively. Recall that any cycle in X can be written in this way.

The following sequence of groups is exact:
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· · · Hp+1(U1)⊕Hp+1(U2) Hp+1(X)

Hp(U1 ∩ U2) Hp(U1)⊕Hp(U2) Hp(X)

Hp−1(U1 ∩ U2) Hp−1(U1)⊕Hp−1(U2) · · ·

· · · H0(U1)⊕H0(U2) H0(X) 0

k⋆−l⋆

∂⋆

i⋆⊕j⋆ k⋆−l⋆

∂⋆

i⋆⊕j⋆

k⋆−l⋆

Proof. This theorem is assumed to be prior knowledge to the reader. A
proof can be found in chapter 13 of [6]. ,

The Mayer-Vietoris theorem is used not only to proof the following theo-
rem, but also to proof several theorems in chapter 5. Therefore it is imperative
that the reader has a good understanding of this theorem.

Proposition 3.2 (Homology of the knot complement). Let k be a knot,
V = V (k) a tubular neighbourhood and C = S3 \ k the corresponding knot
complement, then

Hp(C) =

{
Z if p = 0, 1,
0 if p > 1.

Proof. It is assumed without proof that the knot complement is a con-
nected 3-manifold. Therefore C is path-connected and H0(C) = Z.

The Mayer-Vietoris theorem is used to findHp(C) for p > 0. In this case, let
X = S3, U1 = C and U2 = V . Since V is homeomorphic with a solid torus, it’s
homotopy-equivalent with the circle S1. The intersection U1∩U2 = C ∩V is a
solid torus with a circle taken out of it, i.e. homeomorphic with S1×(D2\{∗}).
The space D2 \{∗} is homotopy-equivalent with S1, so U1∩U2 is is homotopy-
equivalent with the torus T .

Recall the following results from algebraic topology:

Hp(S
1) =

{
Z if p = 0, 1,
0 if p > 1,

Hp(S
3) =

{
Z if p = 0, 3,
0 if p = 1, 2 or p > 3,

Hp(T ) =

 Z if p = 0, 2,
Z⊕ Z if p = 1,
0 if p > 2.

Applying Mayer-Vietoris yields the following exact sequence for p > 3:

Hp(C ∩ V ) Hp(C)⊕Hp(V ) Hp(S
3)

Since Hp(T ) = Hp(S
1) = Hp(S

3) = 0, we find that Hp(C) = 0 for p > 3. In
addition, there is the following exact sequence at the bottom of the sequence:
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H3(C ∩ V ) H3(C)⊕H3(V ) H3(S
3)

H2(C ∩ V ) H2(C)⊕H2(V ) H2(S
3)

H1(C ∩ V ) H1(C)⊕H1(V ) H1(S
3)

∂⋆

i⋆⊕j⋆ k⋆−l⋆

As H1(S
3) = H2(S

3) = 0 we find that H1(C ∩ V ) = H1(C) ⊕ H1(V ), so
Z⊕ Z = H1(C)⊕ Z. Thus H1(C) = 0.

If we view C ∩ V as the torus by the homotopy-equivalence, then any
2-cycle on the torus is the boundary of a 3-chain in S3. Because our knot is
tame, this 3-chain can be made so that it does not intersect the knot anywhere.
Therefore the inclusion H2(C ∩V ) → H2(C) is trivial so Im i⋆ ⊕ j⋆ = 0. From
the homomorphism theorem we get (H2(C) ⊕ H2(V ))/ ker(k⋆ − l⋆) = H2(S

3)
so by exactness H2(C)⊕H2(V ) = H2(C) = 0.

Since ker i⋆ ⊕ j⋆ = Z we find that ∂⋆ is surjective, so since H3(S3) = H2(C∩
V ) = Z we find that ker ∂⋆ = 0. Furthermore, H3(C∩V ) = 0 thusH3(C∩V ) →
H3(C)⊕H3(V ) is trivial. We conclude by exactness that H3(C)⊕H3(V ) = 0

and therefore H3(C) = 0. ,
2. Existence of cyclic coverings

In the previous section, it was shown that the first homology group of
the knot complement is independent of the knot, and is always infinite cyclic.
In this section, this is used to prove the existence of a cyclic covering of the
knot complement of which the fundamental group is equal to the commutator
subgroup of the fundamental group of the knot complement.

We first recall the notion of a regular covering and the Galois Correspon-
dence of covering maps.

Definition 3.3. Let p : Y → X be a covering with Y connected and X
locally path-connected. The covering p is called regular if it is a G-covering
for some group G.

Theorem 3.4 (Galois Correspondence). Let X be a topological space that
is connected, locally path-connected and semi-locally simply connected. Let S
be the set of pointed regular coverings p : (Y, y) → (X, x), up to isomorphism.
Let P be the set of subgroups of π1(X, x). The map

S −→ P
p 7−→ p⋆(π1(Y, y))

is a bijection. This bijection is called the Galois Correspondence.
A covering p ∈ S is regular if and only if its corresponding subgroup

of π1(X, x) is normal. If this is the case, then p : (Y, y) → (X, x) is a
π1(X, x)/p⋆(π1(Y, y))-covering.

Proof. This theorem is assumed to be prior knowledge to the reader. A
proof can be found in chapter 13 of [4]. ,
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The existence of the cyclic coverings described below is an immediate con-
sequence of the Galois Correspondence.

Proposition 3.5 (Existence of cyclic coverings). There exists a unique
regular Z-covering of the knot complement p∞ : C∞ → C that satisfies

p∞⋆(π1(C∞)) ∼= [π1(C), π1(C)].

For n ∈ Z≥2 there exists a unique regular Z/nZ-covering of the knot comple-
ment pn : Cn → C that satisfies

pn⋆(π1(Cn))
∼= nZ⊕ [π1(C), π1(C)].

Proof. Recall that the commutator subgroup [π1(C), π1(C)] of π1(C) is a
normal subgroup. Furthermore, recall from Hurewicz’ Theorem that H1(C) ∼=
π1(C)/[π1(C), π1(C)] and that H1(C) ∼= Z by proposition 3.2. Therefore we
find by the Galois Correspondence (theorem 3.4) that there exists a unique
regular Z-covering p∞ : C∞ → C that satisfies

p∞⋆(π1(C∞)) ∼= [π1(C), π1(C)].

By further quotienting H1(C) to Z/nZ we find the Z/nZ-covering, again by

the Galois Correspondence. ,
These coverings are significant enough in this thesis to be given their own

name:

Definition 3.6. The Z-covering of proposisition 3.5 is called the infinite
cyclic covering and the Z/nZ-covering is called the finite (n-fold) cyclic cov-
ering.

3. Cutting along a surface

A technique that is used to construct the cyclic covering of the knot com-
plement is called cutting a 3-manifold along a surface. The most intuitive
way to cut a 3-manifold M along a surface S in M would be to consider the
subspace M \ S. However, this space is not closed in M . This turns out to
be problematic when constructing the cyclic cover. Therefore the technique
below is used to cut along a surface instead.

Definition 3.7 (Cutting a 3-manifold along a surface). Let M be a 3-
manifold and S an oriented surface inM . Consider a neighbourhood U around
S such that U ∼= S × [−1, 1]. Then U \ S = U1 ∪ U2 with U1 ∩ U2 = ∅ and
U1, U2

∼= S × (0, 1].

Let M ′
0, U

′
1 and U ′

2 be homeomorphic copies of M \ U , U1 and U2 respec-

tively, with homeomorphisms f0 :M \ U ∼−→M ′
0 and fi : Ui

∼−→ U ′
i for i ∈ {1, 2}.

The spaceM ′ is obtained from the disjoint unionM ′
0⊔U ′

1⊔U ′
2 by identifying

f0(x) with fi(x) when x ∈ M \ U ∩ Ui = ∂(M \ U) ∩ ∂Ui (i ∈ {1, 2}). The
space M ′ is a 3-manifold and is called the space obtained by cutting M along
S.
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First of all, it should be noted that the space constructed above is home-
omorphic with M \ U , which is closed in M , solving our problem mentioned
earlier

Additionally, Through the homeomorphisms fi there is a natural map

i :M ′
0 ⊔ U ′

1 ⊔ U ′
2 −→M

x 7−→

 f0(x) if x ∈M ′
0

f1(x) if x ∈ U ′
1

f2(x) if x ∈ U ′
2.

In turn, this map induces a natural map ι : M ′ → M called the identification
map, not to be confused with the quotient map M ′

0 ⊔ U ′
1 ⊔ U ′

2 →M ′.
As an example, we can cut the solid torusy S1 × D2 along a disc D2 to

obtain a solid cylinder [0, 1]×D2 with two copies of the disc D2 as boundary.
This can be seen in figure 3.1. It should be noted that the identification map
maps points in the red discs of the solid cylinder to the corresponding points
in the red disc of the solid torus.

Figure 3.1. Cutting a solid torus along a disc.

4. Construction of the cyclic covering

In this section, we construct the cyclic coverings of the knot complement.
Let k be a knot, let V = V (k) be a tubular neighbourhood of k and let S ′

be a Seifert surface of k. Furthermore, let C = S3 \ V be the knot complement
and let S = S ′ ∩C. Lastly, define λ = ∂S ′ ∩ V , which is a simple closed curve
along the boundary of V .

Now cut C along S to obtain the 3-manifold C⋆. The boundary of C⋆ is a
connected surface that consists of an annulus that is obtained by cutting the
torus ∂V along λ, and two disjoint parts S+ and S− that are homeomorphic
to S. A local overview of this can be seen in figure 3.2.

Let r : S+ ∼−→ S− be the homeomorphism that maps a point of S+ to the
point of S− which corresponds to the same point of S. You can think of this
as drawing vertical lines between S+ and S− in figure 3.2 and sending points
in S+ along those lines to the corresponding point in S−.

Take homeomorphic copies (C∗
i )i∈Z of C⋆ with homeomorphisms (hi : C

⋆ ∼−→
C⋆
i )i∈Z. The space C∞ is obtained from the disjoint union

⊔
i∈ZC

⋆
i by identi-

fying hi(x) and hi+1(r(x)) when x ∈ S+ and i ∈ Z. Furthermore, the space
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Figure 3.2. Local overview of cutting the knot complement
along a Seifert surface, from [2].

Figure 3.3. Moving between layers in C∞ and Cn, from [2].

Cn is obtained from
⊔n−1
i=0 C

⋆
i by identifying hi(x) with hi+1(r(x)) and hn−1(x)

with h0(r(x)) for i ∈ {1, 2, . . . , n− 1} and when x ∈ S+.
The spaces Cn and C∞ are stacks of C⋆, where one can move from one

layer up or down through S+ or S− respectively. In Cn, going up through S+

in C⋆
n−1 puts you in C⋆

0 . To illustrate this moving between layers, see figure
3.3.
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The covering maps can now be introduced. Let ι : C⋆ → C be the identi-
fication map. We define the maps

p∞ : C∞ −→ C

x 7−→ ι(h−1
i (x)) if x ∈ C⋆

i

and

pn : Cn −→ C

x 7−→ ι(h−1
i (x)) if x ∈ C⋆

i .

It is clear that these maps are coverings of the knot complement. It remains
to be shown that they are the cyclic coverings of the knot complement.

Consider the map

t : C∞ −→ C∞

x 7−→ hi+1(h
−1
i (x)) if x ∈ C⋆

i .

The map t moves a point up a layer in C∞. We have an even action of Z on C∞
through z · x := tz(x), for z ∈ Z and x ∈ C∞. Since the orbits of Z are equal
to the fibres of p∞, we find that p∞ is a Z-covering. Since C∞ is connected
and C is locally path-connected, p∞ is in fact a regular Z-covering. Hence p∞
is the infinite cyclic cover of the knot complement from definition 3.6.

The proof that pn is the n-fold cyclic covering of the knot complement is
analogous.
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CHAPTER 4

Fibred knots

The focus of this chapter is on a specific type of knots, called fibred knots.
As the name suggests, fibred knots have something to do with fibre bundles.
The first section introduces fibre bundles and the pullback bundle and the
second section relates this pullback bundle to homotopy. In the last section,
we are ready to introduce fibred knots and prove the main theorem on fibred
knots, which has to do with the commutator subgroup of the fundamental
group of the knot complement.

1. Fibre bundles

A fibre bundle is defined as follows:

Definition 4.1. A fibre bundle is a continuous surjection π : E → B with
a fibre F satisfying the following property:

For every p ∈ B there exists an open neighbourhood U and a homeo-
morphism φ : π−1(U)

∼−→ U × F such that the following diagram commutes
(U × F → U is the projection map):

π−1(U) U × F

U

φ

π

The duplet (U,φ) is called the local trivialisation of p. From the above property
it follows that π−1({p}) ∼= F for all p ∈ B.

The space B is called the base space of the bundle, E the total space. The
map π is called the projection of the bundle.

A fibre bundle π : E → B is called trivial if there is a homeomorphism
ψ : B × F

∼−→ E such that π ◦ ψ is the projection onto B.

To aid in the readers understanding of fibre bundle, we give some examples
of fibre bundles.

Example 4.2. The cylinder and the Möbius strip are both fibre bundles
over the circle with fibre [0, 1], see figure 4.1. Note that the cylinder is a trivial
fibre over the circle as the cylinder is homeomorphic with S1 × [0, 1]. On the
contrary, the Möbius strip is a non-trivial fibre over the circle.

Another example of a fibre bundle that strikes our interest is a covering
map.

Proposition 4.3. Let p : Y → X be a map. The following two statements
are equivalent:
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Figure 4.1. The Möbius strip and the cylinder as fibre
bundles over the circle, from [7].

(1) p is a covering map with homeomorphic fibres;
(2) p is a fibre bundle with a discrete fibre.

In the above statement, discrete fibre means that the fibre has the discrete
topology. Recall that a covering over a connected space has homeomorphic
fibres, so this extra condition in (1) is usually satisfied.

Proof of proposition 4.3. (1) =⇒ (2): Let p : Y → X be a covering
with homeomorphic fibres and let x ∈ X. We prove that p is a fibre bundle
with fibre p−1({x}).

Let z ∈ X, then there exists an open neighbourhood U of z such that

p−1(U) =
⊔

y∈p−1({z})

Vy with Vy open,

and the restriction p|Vy : Vy → U is a homeomorphism. Let ψ : p−1({z}) ∼−→
p−1({x}) be a homeomorphism. Define the map

φ : p−1(U)
∼−−→ U × p−1({x})

w 7−→ (p(w), ψ(y)) if w ∈ Vy.

Then φ is a homeomorphism such that the following diagram (with U ×
p−1({x}) → U projection) commutes:

p−1(U) U × p−1({x})

U

φ

p

We conclude that p : Y → X is a fibre bundle with fibre p−1({x}).
(2) =⇒ (1): Let p : Y → X be a fibre bundle with discrete bundle F . Let

x ∈ X, then there exists an open neighbourhood U of x and a homeomorphism
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φ : p−1(U)
∼−→ U × F such that the following diagram commutes:

p−1(U) U × F

U

φ

p

Since F has the discrete topology, the subspace U × {f} ⊂ U × F is open for

all f ∈ F . Also note that the projection U × {f} ∼−→ U is a homeomorphism.
We conclude that

p−1(U) =
⊔
f∈F

φ−1(U × {f}),

so p−1(U) is a disjoint union of opens such that the restriction p|φ−1(U×{f}) is
a homeomorphism, hence p is a covering map with homeomorphic fibres (each

fibre is homeomorphic to F ). ,
We don’t need a lot of theory on fibre bundles in this thesis, but there is

one more definition that we require, namely that of the pullback bundle.

Definition 4.4 (pullback bundle). Let π : E → B be a fibre bundle with
fibre F and let f : B′ → B be a continuous map. Consider the space

f ⋆E = {(b′, e) ∈ B′ × E | f(b′) = π(e)}.
Let π′ : f ⋆E → B′ be the projection onto the first coordinate, and h : f ⋆E → E
the projection onto the second coordinate. Then π′ is a fibre bundle with fibre
F and the following diagram commutes:

f ⋆E E

B′ B

h

π′ π

f

The fibre bundle π′ : f ⋆E → B′ (with fibre F ) is called the pullback bundle of
π along f .

If (U,φ) is a local trivialisation of (a point in) E, then (f−1(U), ψ) is a
local trivialisation of (a point in) B′. Here ψ is given by

ψ : π′−1(f−1(U)) −→ f−1(U)× F

(b′, e) 7−→ (b′, proj2(φ(e)),

with proj2 the projection onto the second coordinate. So π′ : f ⋆E → B′ is in
fact a fibre bundle with fibre F .

2. Homotopy invariance of the pullback bundle

The following theorem is the relation between fibre bundles and homotopy.
This is called the homotopy-invariance of the lifting property or the homotopy-
lifting property of the fibre bundle. Despite being of great importance to prove
the main result of the theorem on fibred knots, this theorem of is not proven
in this thesis.
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Theorem 4.5. Let π : E → B be a fibre bundle. Let f, g : B′ → B be two
homotopic maps, then their pullbacks are homeomorphic:

f ⋆E ∼= g⋆E.

Proof. This theorem is proven in chapter 11 of [10]. ,
The following corollary of this theorem is used to prove the main theorem

on fibred knots.

Corollary 4.6. A fibre bundle over a contractible space is trivial.

Proof. Let π : E → B be a fibre bundle with B contractible and with
fibre F . Let idB : B → B be the identity and f : B → B a constant map.

By the definition of the pullback we find that

id⋆BE = {(b, e) ∈ B × E | idB(b) = π(e)}

=
⊔
b∈B

{b} × π−1({b})

∼= E.

The homeomorphism in the last step is⊔
b∈B

{b} × π−1({b}) −→ E

(b, e) 7−→ e.

Furthermore, we find that

f ⋆E = {(b, e) ∈ B × E | f(b) = π(E)}
= B × π−1(f(B))
∼= B × F.

By theorem 4.5 we find that there is a homeomorphism ψ : B × F
∼−→ id⋆BE

and that the following diagram commutes:

B × F E

B B.

id′B◦ψ

π

idB

Therefore we conclude that the fibre bundle π is trivial. ,

3. Fibred knots and the commutator subgroup

We are ready to define fibred knots.

Definition 4.7. Let k be a knot with complement C and S a Seifert
surface of k of genus g. The knot k is a fibred knot if there is a fibre bundle
π : C → S1 with fibre S.

It turns out to be difficult to prove that a knot is fibred. The simplest
example of a fibred knot is the unknot.
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Proposition 4.8. The unknot is a fibred knot.

Proof. We construct a fibre bundle. However, we first require to view the
unknot in an alternative way. Recall that S3 is the one point compactification
of R3. Furthermore, recall that there is a homeomorphism S1 ∼−→ R ∪ {∞}
called the stereographic projection. The stereographic projection maps every
point x of S1 to the point on the real line that intersects the line through x
and the north pole of S1. The north pole is mapped to ∞, see figure 4.2.

Figure 4.2. The stereographic projection of S1.

Therefore there is a knot S1 k
↪−→ S3 equivalent tot the unknot such that

Im k = {(0, 0, z) | z ∈ R} ∪ {∞}(∼= S1).

Therefore the knot complement C = S3 \ Im k is R3 minus the z-axis.
A Seifert surface of this unknot is

S = {(x, 0, z) | x ∈ R+ and z ∈ R} ⊂ S3.

The space C is homeomorphic with R× (C \ {0}). Elements of C are written
as elements of R× (C \ {0}) from now on. By writing S1 = {z ∈ C | ∥z∥ = 1},
the following fibre bundle is constructed:

π : C −→ S1

(x, z) 7−→ z

∥z∥
.

In addition, there is a homeomorphism

φ : C
∼−−→ S1 × S

(x, z) 7−→
(

z

∥z∥
, (∥z∥ , 0, x)

)
.

This homeomorphism leads to a global trivialisation (S1, φ) because the fol-
lowing diagram commutes:

π−1(S1) S1 × S

S1

φ

π

,
In the previous section, we prepared the proof of the main theorem on

fibred knots, presented below.
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Theorem 4.9. Let k be a fibred knot with complement C and as fibre a
Seifert surface of genus g. Then

[π1(C), π1(C)] ∼= F2g.

Proof. Let k be a fibred knot with complement C. Let S be a Seifert
surface of genus g and π : C → S1 a fibre bundle with fibre S.

Consider the universal covering u : R → S1 of S1 given by the quotient
R → R/Z. Since Z acts even on R, the universal cover u is a regular Z-covering.
By proposition 4.3 u is a fibre bundle.

By taking the pullback along both of these fibre bundles, we obtain the
spaces

u⋆C = {(r, c) ∈ R× C | u(r) = π(c)}
and

π⋆R = {(c, r) ∈ C × R | π(c) = u(r)}.
It is clear that u⋆C ∼= π⋆R. The pullback fibre u⋆C → R is a fibre bundle
with fibre S. Since R is contractible, the bundle is trivial by corollary 4.6. So
u⋆C ∼= R× S.

In addition, the pullback fibre π⋆R → C is a Z-covering by proposition 4.3
as Z has the discrete topology. Since π⋆R ∼= R× S is connected, the fibre is a
regular Z-covering of C. This means that π⋆R is the infinite cyclic cover space
of C.

Consequently, the infinite cyclic cover is homeomorphic with R × S, so
homotopy-equivalent with S. By proposition 3.5 and corollary 2.9 we find

[π1(C), π1(C)] ∼= F2g,

concluding the proof. ,
A remarkable fact about fibred knots, is that the previous theorem has a

converse. Said converse is not proven in this thesis, but a proof can be found
in [9]. Below you can find the theorem in its stronger form.

Theorem 4.10. Let k be a knot of genus g with complement C. The
following are equivalent:

(1) The knot k is fibred;
(2) The commutator subgroup [π1(C), π1(C)] is finitely generated;
(3) The commutator subgroup [π1(C), π1(C)] is isomorphic with F2g.
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CHAPTER 5

A different way to study the knot complement

In this chapter, we present a space called the knot tube that is homotopy-
equivalent to the knot complement. Therefore we can study the fundamental
group of the knot tube, rather than that of the knot complement. Computing
this fundamental group is still a difficult task, but studying the infinite cyclic
covering of the knot tube is significantly easier.

In the first two sections, we construct the knot tube. In the following two
sections, we construct the infinite cyclic covering of the knot tube and compute
its first homology group.

1. The metro station

Before constructing the knot tube, we need to define the following space,
which is used to construct the knot tube in the following section.

Definition 5.1. Let X1, X2 and X3 be three homeomorphic copies of
the square [0, 1] × [0, 1] with homeomorphisms fi : [0, 1] × [0, 1]

∼−→ Xi for
i ∈ {1, 2, 3}.

The metro station is obtained from the disjoint union X1 ⊔ X2 ⊔ X3 by
identifying the corresponding points in the following sets:

(1) Identify f1([0, 1]×{0}) with f2([0, 1]×{0})) and f1([0, 1]×{1}) with
f2([0, 1]× {1});

(2) identify f3({0} × [0, 1]) with f2({0} × [0, 1]) and f3({1} × [0, 1]) with
f2({1} × [0, 1]).

A drawing of the metro station can be found in figure 5.1.

Figure 5.1. The metro station. Only the boundary is drawn
of the middle square X2.
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By means of Mayer-Vietoris (theorem 3.1), the first homology group of the
metro station can be found.

Proposition 5.2. Let M be the metro station, then H1(M) ∼= Z2.

Proof. LetM be the metro station as constructed in definition 5.1. Since
M is path connected we have H0(M) ∼= Z. Let

U =M \ (f2([0, 1]× {0}) ∪ f2({0} × [0, 1])

and
V =M \ (f2([0, 1]× {1}) ∪ f2({1} × [0, 1])).

Using figure 5.1 it can be verified that U and V are contractible, and that
U∩V is homotopy-equivalent to the discrete space with three points. Applying
Mayer-Vietoris with this decomposition yields the following exact sequence:

0 H1(M)

Z3 Z2 Z 0

From this exact sequence we deduce that H1(M) ∼= Z2. ,

2. The knot complement as a tube

In this section, we display a new way of viewing the knot complement.
Under homotopy-equivalence, many parts of the knot complement can be re-
tracted. The resulting space, called the knot tube, is obtained by gluing to-
gether metro stations from definition 5.1. Before constructing this space, we
need two definitions from graph theory, that the reader may be unfamiliar
with.

Definition 5.3. Given a compact graph embedded in a 2-manifold, a face
of the graph is a connected component of the complement of the graph.

Definition 5.4. Consider a compact and connected graph that is embed-
ded in a 2-manifold. The dual graph of this graph is the graph that has a
vertex in each face and an edge between every pair of vertices of which the
connected components share an edge. See figure 5.2.

We are now ready to construct the knot tube.
Let k be a knot that passes through infinity (this means that ∞ ∈ k when

viewing S3 as R3 ∪ {∞}). It is intuitive that any knot is equivalent to such a
knot. While constructing the space, we use the trefoil knot as example. The
trefoil knot can be viewed as a knot that passes through infinity as in figure
5.3a. There is a natural way to view a knot as a graph in S2, by seeing each
crossing as a vertex and the lines connecting the crossings as edges. Consider
the dual graph of the knot graph, as seen in figure 5.3b. If k has crossings
c1, c2, . . . , cn, then the dual graph has n + 1 faces. With the exception of the
outer face, each face contains one of the crossings of k. Furthermore, the four
ends of these crossings each go to one of the four edges of the face. At each
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Figure 5.2. The red graph is the dual graph of the blue
graph.

(a) The trefoil knot as a knot that
passes through infinity.

(b) The dual graph of the trefoil graph,
given in red.

Figure 5.3. A different way to view the trefoil knot.

crossing ci, i ∈ {1, 2, . . . , n}, let Fi be the face of the dual graph containing ci.
This face is homeomorphic with the square [0, 1]× [0, 1].

Let M be the metro station from definition 5.1 constructed by gluing to-
gether the squaresX1,X2 andX3 with homeomorphisms fj : [0, 1]×[0, 1]

∼−→ Xj

(j ∈ {1, 2, 3}). Let M1,M2, . . . ,Mn be homeomorphic copies of the metro sta-

tion M with homeomorphisms hi :Mi
∼−→M .

We now make identifications in the disjoint union
⊔n
i=1Mi. For every pair

of faces Fi and Fk that are connected to each other (i.e. next to each other),
identify the corresponding points inMi andMk given in figure 5.4 in a natural
way.

The space obtained from this identification process is called the knot tube.
Making the necessary identifications to the metro stations of the trefoil knot
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Identify hi(f2([0, 1] × {1})
with hk(f1({0} × [0, 1]);
identify hi(f3([0, 1] × {1})
with hk(f2({0} × [0, 1]).

Identify hi(f2([0, 1] × {1})
with hk(f2([0, 1]× {0});
identify hi(f3([0, 1] × {1})
with hk(f3([0, 1]× {0}).

Identify hi(f1({1} × [0, 1])
with hk(f2([0, 1]× {0});
identify hi(f2({1} × [0, 1])
with hk(f3([0, 1]× {0}).

Identify hi(f1({1} × [0, 1])
with hk(f2({1} × [0, 1]);
identify hi(f2({0} × [0, 1])
with hk(f3({0} × [0, 1]).

Figure 5.4. The identification process of the metro stations.

yields the space that can be found in figure 5.5. In this figure, all the adja-
cent metro stations are connected by the identifications shown in figure 5.4.
Furthermore, the trefoil knot is still drawn in this figure as a visual aid, but
the knot itself is not a part of the knot tube. It should also be noted that the
top and bottom sides of the top and bottom metro stations are also connected
together, as their corresponding crossings are connected through the point at
infinity.

3. Homotopy-equivalence of the knot complement and the knot
tube

As mentioned in previous sections, the knot tube is homotopy-equivalent
to the knot complement. This section seeks to provide an explicit homotopy-
equivalence between these two spaces.
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Figure 5.5. The knot tube of the trefoil knot.

However, before constructing the homotopy-equivalence, we introduce the
following theorem that is used to create a decomposition of the knot comple-
ment.

Theorem 5.5 (Alexander-Schoenflies). Let i : S2 ↪→ S3 be a piecewise
linear embedding. Then there are closed balls B1 and B2 such that

S3 = B1 ∪B2 and i(S2) = B1 ∩B2 = ∂B1 = ∂B2.

Proof. A proof of this theorem can be found in [1]. ,
The term piecewise linear may be unfamiliar to the reader. This thesis

does not provide an explanation of this, but a good explanation can be found
in [8]. Nevertheless, the requirement that the embedding S2 ↪→ S3 is piecewise
linear does not hamper any of the arguments presented here.

The Alexander-Schoenflies theorem provides us with a new way to view
the 3-sphere, namely as two closed balls whose boundaries are identified with
each other. This decomposition of S3 is used to construct the homotopy-
equivalence.

Let k be a knot that passes through infinity and let C = S3 \ k be its
complement. As before, the trefoil is used as example and passes through
infinity as shown in figure 5.3a. The knot k can be separated into two parts:
the knotted part which has all the crossings in it, and the line through infinity
that connects the knotted part to itself. Let B1 be a closed ball with a line
taken out of it; let B2 ⊂ C be a closed ball around the knotted part of k. See
figure 5.6. The knot complement C can be constructed by identifying the the
boundaries of the closed balls at the corresponding points, making sure that
the knotted parts are connected together.
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(a) The closed ball with a line taken out,
denoted B1.

(b) The closed ball around the knotted
part of k, denoted B2.

Figure 5.6. The closed balls B1 and B2.

The missing line fromB1 can be ‘thickened up’ under homotopy-equivalence
to attain the space in figure 5.7a. As a result, gluing together B1 and B2

yields the space given in figure 5.7b. This space is homotopy-equivalent, even
homeomorphic, with B2.

(a) The thickened up line in B1. (b) B1 and B2 glued together.

Figure 5.7. The thickening and identification.

In summary, the knot complement is homotopy-equivalent to B2. It’s time
to introduce the dual graph used to construct the knot tube. When construct-
ing the dual graph, we make sure that the vertices corresponding to the outer
faces of the graph are placed on the boundary of B2 and that the edges con-
necting these vertices are also on the boundary of B2. In this manner, the
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boundary of the ball in figure 5.6b corresponds with the outer edges of the
dual graph in figure 5.3b.

To contract B2 to the knot tube, first recall that the punctured discD2\{∗}
can be retracted to the circle S1. At each of the faces of the dual graph, B2

is a closed ball with two lines taken out of it that together form a crossing,
see 5.8. By splitting this ball up into an upper and lower half, separated

Figure 5.8. B2 in a neighbourhood of each face.

by the face of the dual graph, we obtain two spaces homeomorphic with the
punctured solid cylinder [0, 1]×D2 \{∗}. Contracting both halves to cylinders
(so homeomorphic with [0, 1] × S1) gives us the upper and lower part of the
metro station from figure 5.1. Applying this process to all the faces of the dual
graph shows that the B2 is homotopy-equivalent to the knot tube, completing
the proof.

4. The cyclic covering of the metro station

The metro station M admits an infinite cyclic covering. It can be con-
structed as follows:

For all i ∈ Z, let Xi, Yi and Zi be homeomorphic copies of the square
[0, 1]× [0, 1] with homeomorphisms

fi : [0, 1]× [0, 1]
∼−−→ Xi

gi : [0, 1]× [0, 1]
∼−−→ Yi

hi : [0, 1]× [0, 1]
∼−−→ Zi

respectively. The infinite cyclic covering space C is obtained from the disjoint
union (

⊔
i∈ZXi)⊔ (

⊔
i∈Z Yi)⊔ (

⊔
i∈Z Zi) by identifying the corresponding points

in the following sets:

(1) Identify gi([0, 1] × {0}) with fi([0, 1] × {0}) and gi([0, 1] × {1}) with
fi+1([0, 1]× {1});

(2) identify hi({0} × [0, 1]) with fi({0} × [0, 1]) and hi({1} × [0, 1]) with
fi+1({1} × [0, 1]).

Let X̃1, X̃2 and X̃3 be the squares from definition 5.1 with homeomorphisms
f̃j : [0, 1]× [0, 1]

∼−→ X̃j (j ∈ {1, 2, 3}). The covering map p : C → M is given
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by

p : C −→M

x 7−→


f̃2(f

−1
i (x)) if x ∈ Xi

f̃1(g
−1
i (x)) if x ∈ Yi

f̃3(h
−1
i (x)) if x ∈ Zi.

Consider the map

t : C
∼−−→ C

x 7−→

 fi+1(f
−1
i (x)) if x ∈ Xi

gi+1(g
−1
i (x)) if x ∈ Yi

hi+1(h
−1
i (x)) if x ∈ Zi.

The map t sends elements of Xi, Yi and Zi to the corresponding elements in
Xi+1, Yi+1 and Zi+1 respectively. This induces a natural even Z-action on C
that is compatible with p. Therefore p is a Z-covering, as was required.

The infinite cyclic cover is a double staircase, at each level Xi, you can
‘move up’ to Xi+1 via Yi or Zi. Stepping down is done similarly. These steps
up and down are the lifts of the two loops in the metro station.

One can think of the infinite cyclic covering of the metro stations as ‘fold-
ing open’ the upper and lower squares of infinitely many metro stations and
connecting them together in such a way to form a staircase in two directions.
To visualise this, one can consider two staircases as given on the left in figure

Figure 5.9. The infinite cyclic cover as two merged staircases

5.9 and then merge them together by identifying the corresponding points in
the black squares. This way we obtain the space given on the right in figure
5.9. Only the boundary of the covering is drawn in this figure to improve
clarity. The squares Xi are given in black, Yi in red and Zi in blue. It appears
as if the blue and red squares intersect, but topologically they don’t.
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Proposition 5.6. Let C be the infinite cyclic cover of the metro station,
then

H1(C) ∼=
⊕
i∈Z

Z.

Proof. This proposition is proven using Mayer-Vietoris. Let U be a small
open neighbourhood of C \ (

⋃
i∈Z Yi) and V a small open neighbourhood of

C \(
⋃
i∈Z Zi), such that U and V are homotopy-equivalent to C \(

⋃
i∈Z Yi) and

C \ (
⋃
i∈Z Zi) respectively. Both of these spaces are infinite (single) staircases,

thus contractible. The intersection U ∩ V is homotopy-equivalent to
⋃
i∈ZXi,

which in turn is homotopy-equivalent to the countable discrete space D. Using
that H0(D) ∼=

⊕
i∈Z Z, Mayer-Vietoris provides the exact sequence

0 H1(C)

⊕
i∈Z Z Z2 Z 0.

From this sequence we conclude that H1(C) ∼=
⊕

i∈Z Z. ,
5. The cyclic covering of the knot tube

Since the knot tube is homotopy-equivalent with the knot complement,
the knot tube has a unique (regular) infinite cyclic covering. The goal of this
chapter is to construct this space and find its first homology group. This done
by gluing G-coverings. The result we are proving is the following:

Theorem 5.7. Let C be the infinite cyclic cover of a knot tube, then

H1(C) ∼=
⊕
i∈Z

Z.

Recall from algebraic topology that if you glue together two spaces with
G-coverings, then this induces a natural gluing map on the covering spaces
such that we obtain a new G-covering of the glued space.

This gluing of G-coverings does require the glued spaces to both be con-
nected, locally path-connected, and semi-locally simply connected. In addition,
the G-covering needs to be regular. More information in gluing G-coverings
can be found in chapter 14 of [4].

Another tool we require to prove this theorem is the following lemma that
may be familiar to the reader.

Lemma 5.8. Let the following sequence of five groups be exact:

A B C D E.
f g h i

Then this induces a short exact sequence of groups:

0 B/Im f C ker i 0.
g h

Proof. The proof of this lemma is a straightforward application of the
definition of an exact sequence. ,
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The knot tube is constructed by gluing together metro stations. The metro
station and its infinite cyclic covering satisfy the requirements to apply the
gluing of G-coverings, so we can glue together the infinite cyclic covering of
the metro station, to obtain the infinite cyclic covering of the knot tube.

Figure 5.10. The trefoil knot with two numbered edges.

The infinite cyclic covering of the knot tube is constructed in steps. The
metro stations are connected one edge at a time, and after each step we keep
track of what happens to the infinite cyclic cover and its homology. To compute
the first homology group we use Mayer-Vietoris (theorem 3.1).

To further clarify the steps for the reader, the infinite cyclic cover of the
trefoil knot is constructed here. In particular, the trefoil knot as a knot that
passes through infinity, as shown in figure 5.10. The construction is analogous
for all other knots, but the process is easier to visualise when using an example.
To further clarify the process, a drawing is presented of the cyclic cover at each
step. Only two full layers of the cyclic cover are drawn to make it easier to
visualise the identifications.

Two of the ‘edges’ between the crossing in figure 5.10 are numbered. Our
proof commences by making the identifications required to connect edge 1.
The resulting space is denoted C1. The required identifications are shown in
figure 5.11. Note that the bottom crossing is displayed on the left in figure 5.11
and the top crossing on the right. The first homology group of C1 can easily be
computed using Mayer-Vietoris. Let U be a small open neighbourhood around
the left cover (meaning that it includes a small open around the identification
line in the right cover), and let V be an open neighbourhood around the right
cover. Then U and V are each homotopy-equivalent to the cyclic cover of the
metro station, so

H1(U)⊕H1(V ) ∼=

(⊕
i∈Z

Z

)
⊕

(⊕
i∈Z

Z

)
∼=
⊕
i∈Z

Z.
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Figure 5.11. The glued cyclic covers, denoted C1.

Furthermore, the intersection U ∩V is homeomorphic with R× (0, 1) thus con-
tractible. Applying Mayer-Vietoris with these opens yields the exact sequence

0
⊕

i∈Z Z H1(C1)

Z Z2 Z 0,

from which we deduce that H1(C1) ∼=
⊕

i∈Z Z.
Secondly, the identifications required for the edge labelled 2 in figure 5.10

are made. The resulting space is denoted C2. These identifications can be
seen in figure 5.12. Again, the first homology group of C2 can be computed
using Mayer-Vietoris. Let U be C2 minus the identification line (this is open
as the identification line is closed), and let V be a small open neighbourhood
around the identification line. Then U is homotopy-equivalent to C1 and V is
homeomorphic with R × (0, 1) hence contractible. The intersection U ∩ V is
homeomorphic with R × (0, 1) ⊔ R × (0, 1), so U ∩ V is homotopy-equivalent
with the discrete two-point space. The Mayer-Vietoris sequence of this decom-
position is as follows:

0
⊕

i∈Z Z H1(C3)

Z2 Z2 Z 0.
f g

By exactness, we get Im g ∼= Z and hence ker g ∼= Z (by the homomorphism
theorem). Also by exactness, deduce that Im f ∼= Z and therefore ker f ∼= Z.
Now apply lemma 5.8 to the first five groups of the sequence to obtain the

36



Figure 5.12. The glued cyclic covers, denoted C2.

following short exact sequence:

0
⊕

i∈Z Z H1(C3) Z 0.

All the groups in this sequence are abelian, and Z is a free abelian group.
Therefore the sequence splits, and hence H1(C3) ∼=

(⊕
i∈Z Z

)
⊕ Z ∼=

⊕
i∈Z Z.

For the remaining four edges of the trefoil knot, the proof that the first
homology group remains

⊕
i∈Z Z is analogous. We are either connecting two

disjoint covers, in which case we can use the proof used for edge 1 above; or
there is a connecting of a cover to itself, in which case the proof used for edge
2 can be used.

In fact, this proof can be applied to any knot. Since knots are assumed to
be tame, there is a finite number of identifications to be made and after every
one of them the proofs above can be used to show that the first homology
group is still

⊕
i∈Z Z.

6. The homology of the cyclic cover as Z[t±]-module

In the previous section, it was shown that the first homology group of the
infinite cyclic cover of the knot tube is

⊕
i∈Z Z. Despite being an invariant of

the knot, this is a trivial invariant and therefore not very interesting. However,
this group does have its uses in knot theory. By turning the first homology
group into a module, a well-known invariant called the Alexander polynomial
can be created. This invariant is not studied in this thesis, but a comprehensive
overview can be found in [2]. Instead, we look at how the first homology group
could be turned into such a module.

Let C∞ be the infinite cyclic covering of the knot tube given in the pre-
vious section. Furthermore, consider the homeomorphism t : C∞

∼−→ C∞ that
sends an element to the corresponding element one layer higher in the cyclic
covering. Furthermore, consider the ring of Laurent polynomials Z[t±], which
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is isomorphic with the polynomial ring Z[x, y]/(xy − 1). Then the induced

isomorphism t⋆ : H1(C∞)
∼−→ H1(C∞) provides a natural way to make H1(C∞)

a Z[t±]-module.
When using the infinite cyclic cover as constructed in section 4 of chapter

3, it is difficult to say something about t⋆. The idea behind the infinite cyclic
cover constructed in the previous section, is that it is easier to see how t⋆
moves the generators of H1(C∞). However, despite the infinite cyclic cover
being easier to visualise, it is still difficult to say what happens to any of the
generators when applying t⋆.

Consequently, the knot tube has not yet proven itself to be very useful.
There is also no existing literature on the knot tube, so no inspiration can be
taken from that. In conclusion, the knot tube would have to be studied more
thoroughly in order to make sense of what happens when applying t⋆.
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Conclusion

This thesis covers a wide variety of topics in knot theory. The main results
of the thesis are briefly summarised in this conclusion.

To start of, a constructive proof of the existence of Seifert surfaces is given.
Then, we introduce the concept of the genus of a surface and use this to
compute the fundamental group of a Seifert surface.

Secondly, a computation of the first homology group of the knot comple-
ment leads to a proof that the knot complement has a unique infinite cyclic
covering. This infinite cyclic covering is then constructed by cutting the knot
complement along a Seifert surface and stacking infinitely many copies of this
space on top of each other.

Thirdly, this thesis contains an introduction to fibre bundles and basic
theorems concerning them. Then this is used to find the commutator subgroup
of the fundamental group of the knot complement in case the knot omits a fibre
bundle to the circle.

To finish of the thesis, we provide a new way to look at the knot comple-
ment, up to homotopy-equivalence. This space is called the knot tube and
is constructed by gluing together so-called metro stations. By constructing
the infinite cyclic covering of the knot complement, we can compute the first
homology group of the infinite cyclic coverings. This turns out to be

⊕
i∈Z Z

for all knots and is therefore a trivial invariant.

In the future, more research could be done on the knot tube. To be specific,
more attempts could be made at properly describing the map t⋆ : H1(C∞) →
H1(C∞) so that in turn H1(C∞) could be described as a Z[t±]-module. In
theory, this should lead to a different way to find the Alexander polynomial
of a knot. This new method may be useful when computing the Alexander
polynomial of large knots.
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