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Abstract

Graph theory is a field within discrete mathematics, which is concerned with graphs and their
properties. A graph whose set of edges is determined randomly is called a random graph. Such
graphs are researched in the field of random graph theory, which lies at an intersection of graph
theory and probability theory. The central concept of this paper is the chromatic number. The
chromatic number of a graph is the minimum number of colors which one needs to use to color
the vertices of the graph in such a way that whenever a pair of vertices is connected by an edge,
those two vertices are assigned different colors. Clearly, in case of a random graph, its chromatic
number is a random variable. This thesis explains Annika Heckel’s article “Non-concentration of
the chromatic number of a random graph”. The article provides a revolutionary result on the lower
bound on the concentration of the chromatic number of the binomial random graph Gn,1/2. While
the majority of research has been focused on finding an upper bound on the length of the interval
where the chromatic number lies with high probability, Heckel is the first to provide a non-trivial
lower bound. In this thesis, we provide an introduction into graph theory and random graph theory,
followed by the history of research into the bounds on the chromatic number of random graphs.
Finally, we walk the reader through Annika Heckel’s proof and raise some open questions related
to the chromatic number of random graphs.
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1 Introduction

This paper is based on the article “Non-concentration of the chromatic number of a random graph”
by Annika Heckel, published in 2021 in Journal of the American Mathematical Society [14]. We
explain the results of that paper in a way which is understandable for bachelor students of mathe-
matics in their final year.

Graph theory is a field within discrete mathematics, which is concerned with graphs: objects, which
are made up of a set of vertices and a set of edges, which connect (some of) the vertices. It also
explores properties of those graphs. The property we are especially interested in is the chromatic
number. It is the smallest number of colors which need to be used to color the vertices of a graph
in such a way that whenever two vertices are connected by an edge, those vertices are assigned
different colors. Random graph theory is a particular area, which focuses on graphs whose set
of edges is determined by a probability distribution. Thus, the properties such as the chromatic
number are random variables and except for trivial cases, we do not know the outcomes. We can,
however, analyze their probability distributions and determine probability bounds on them.

Annika Heckel’s paper focuses on Gn,1/2 - a random graph on n vertices, where the probability
that there is an edge between any pair of vertices is equal to 1/2. She proves that there exists no
sequence of intervals of length less than n1/4−ϵ, such that they contain the chromatic number of
Gn,1/2 with high probability. In this paper, we explain what this statement means, provide sufficient
(random) graph theory background and explain Heckel’s ingenious argument.

2 Fundamentals

2.1 Basic definitions of graph theory

In this section we define some basic concepts of graph theory. The definitions are based on section
I.1. in [3].

A graph G is an ordered pair of disjoint sets (V,E), where V is the set of vertices of G, and E is the
set of edges. The set of vertices of graph G is commonly denoted with V (G), and the set of edges
with E(G). Their cardinalities are denoted with v(G) and e(G), respectively. If it is clear from
context which graph is being referred to, we will write V for V (G) and E for E(G) for simplicity.
Let us notice that E ⊂

(
V
2

)
, where

(
V
2

)
is the set of all unordered pairs of vertices on the vertex set

V . Clearly, the cardinality of
(
V
2

)
is
(
v(G)
2

)
=: N .

1

2

3

4

5

Figure 1: Graph G with V = {1, . . . , 5} and E = {{1, 2}, {1, 4}, {2, 4}, {4, 5}}.

If for some x, y ∈ V we have {x, y} ∈ E, then the vertices x and y are joined by an edge. If there
exists an edge between two vertices, the vertices are called adjacent.
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Subgraphs of G are formed by taking subsets of V and E. Namely, G′ = (V ′, E′) is a subgraph of
G = (V,E) if V ′ ⊂ V and E′ ⊂ E. A particular type of a subgraph is an induced subgraph. G′ is
the induced subgraph of G on some set V ′ ⊂ V if G′ contains all edges of G that join vertices of
V ′. The induced subgraph of G on vertex set V ′ is denoted with G[V ′].

1

2

3

Figure 2: Induced subgraph of G on the subset V ′ = {1, 2, 3}.

A graph is called complete if all of its vertices are adjacent, i.e., if we have {x, y} ∈ E whenever
x, y ∈ V . Conversely, a graph is called empty if none of its vertices are adjacent, i.e., E = ∅.
A complete subgraph is called a clique, while the vertex set of an empty subgraph is called an
independent set (in some literature, for example in [17] , it is called a stable set). In figure 1,
{1, 3, 5} is an independent set, while the induced subgraph on {1, 2, 4} is a clique.

Lastly, the graph Ḡ is the complement of G if V (Ḡ) = V (G) = V and E(Ḡ) =
(
V
2

)
\E(G). In other

words, for any two vertices x, y ∈ V we have {x, y} ∈ E(G) ⇐⇒ {x, y} /∈ E(Ḡ).

2.2 Introduction to random graphs

Random graph theory is an especially interesting discipline, which lies on an intersection of graph
theory and probability theory. It is concerned with random graphs and their properties. The
definitions in this section are based on section 1.1 in [17].

A random graph is a graph on a fixed set of vertices, whose set of edges is determined randomly
by a probability distribution. In general, the set of vertices is V = [n] = {1, . . . , n}. Two common
models of random graphs are the binomial model and the uniform model.

In case of the binomial random graph, Gn,p, the vertex set is [n] and the probability that there is
an edge between any pair of vertices is p. One may understand this as deciding on the presence
or absence of an edge by flipping a coin. Suppose that we have a coin such that the probability
of heads is p, while the probability of tails is q = 1 − p. We choose a pair of vertices in [n] and
toss the coin. If it falls on heads, we draw an edge between the two vertices, otherwise we do not.
Then, we repeat the process for each pair of vertices exactly once. This way, we obtain a binomial
random graph. The probability of obtaining a particular graph G with e(G) edges is

P(G) = pe(G)q(n2)−e(G). (1)

The uniform random graph, Gn,m, also has the vertex set [n]. However, the number of edges is
equal to m, which is constant. The graph is produced by choosing m pairs of vertices, uniformly
at random without replacement, and drawing an edge between each of the chosen pairs of vertices.
The probability of obtaining a particular graph G is

P(G) =
1(
N
m

) , (2)
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where N =
(
n
2

)
.

Annika Heckel’s article focuses on Gn,1/2 - the binomial random graph on n vertices, with probability
of each edge occurring in the graph equal to 1/2. Moreover, as a corollary, she asserts that the
results she presents about the chromatic number of Gn,1/2 also hold for the uniform random graph

with m = ⌊n2

4 ⌋.

2.3 Independent sets and vertex coloring

The central topic of this thesis is the chromatic number of a random graph. In this section, we
introduce that concept and explore its connection with some other notions in (random) graph
theory.

The chromatic number stems from vertex coloring of a graph. Although there exist other ways of
coloring a graph, such as for example edge coloring, they are not relevant for this thesis. Hence,
in this paper, the term coloring specifically refers to vertex coloring. A (vertex) coloring is an
assignment of colors to vertices, such that no two adjacent vertices are assigned the same color [3].
More formally, we may say that a k-coloring of graph G is a map ϕ : V (G) → [k], such that if
{x, y} ∈ E(G) then ϕ(x) ̸= ϕ(y). The chromatic number of graph G, denoted with χ(G), is the
smallest number k, such that a k-coloring of the graph G is possible.

Another important notion is that of an independent set. As previously mentioned in section 2.1,
a subset of vertices is an independent (or stable) set if the induced subgraph on these vertices is
empty. The cardinality of the largest independent subset of vertices of G is called the independence
number (or the stability number) of G, and is denoted with α(G) [17].

The opposite notion of the stability number is the clique number of G. The clique number of G is
the cardinality of the vertex set of the largest clique in G. Let us notice that if some set V ′ forms
a clique in G, then it forms a stable set in the complement of G [4].

Of course, in case of a random graph, the chromatic number is a random variable. There are several
remarkable results on its concentration and its asymptotic value. Some of them will be mentioned
in section 3.1.

Intuition implies that there is a relationship between the chromatic number and the stability number
of a graph. All vertices which form a stable set can be assigned the same color, as none of them
are adjacent. Conversely, the vertices of a complete subgraph must all be assigned a different color
as there is an edge joining every single pair of them. If graph G has multiple independent sets of
size α(G) and they are disjoint, ideally each of those sets should make up a color class for optimal
coloring (i.e., to minimize the number of colors used). This connection between the stability number
and the chromatic number of a graph will play an important role in the main proof.

2.4 Asymptotics

A major part of known results in random graph theory explores what happens to a particular
property of Gn,p asymptotically, i.e. as n → ∞. This is also the case for Annika Heckel’s article.
Thus, it is important to define some notions related to asymptotics and introduce some frequently
used notation.

If for a sequence of events (En)n∈N we have P(En) → 1 as n → ∞, we say that the sequence holds
with high probability [14]. In some literature, for example [17], the term asymptotically almost surely
is used instead.
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Moreover, the article frequently uses the o(.), O(.), and Θ(.) notation. The following definitions
come from [17].

• an = o(bn) means that for all ϵ > 0 there exists nϵ ∈ N such that |an| < ϵbn whenever n ≥ nϵ.
In other words, an/bn → 0 as n → ∞.

• an = O(bn) means there exists a constant C ∈ R and n0 ∈ N such that an < Cbn whenever
n ≥ n0. Notably, we have log n = O(n).

• an = Θ(bn) means that that there exist constants C, c > 0 and n0 such that cbn ≤ an ≤ Cbn
whenever n ≥ n0. In other words, there exist constants, such that, for a sufficiently large n,
an is bounded above and below by bn multiplied by those constants.

Moreover, we say that an and bn are asymptotically equivalent if an
bn

→ 1. We denote it with
an ∼ bn.

3 Discussion of A. Heckel’s article

3.1 Context

In 1947, Paul Erdös laid foundation for the later development of graph theory. His paper “Some
Remarks on the Theory of Graphs” [9] is recognized as the first instance of use of probabilistic
methods to solve graph theory problems. He later developed this notion in [7] and [8]. Works of
Erdös and Rényi [11][10], where they presented the uniform random graph model, are considered
to be the birth of random graph theory. The binomial model was introduced by Gilbert in 1959
[12].

One of the earliest results about the chromatic number of random graphs is from Grimmett and
McDiarmid [13]: in their 1975 paper, they established its order of magnitude. Thirteen years later,

Bollobás proved that almost every random graph had chromatic number (12 + o(1)) log
(

1
1−p

)
n

logn

[5]. Several improvements to that result have been made later, for example by McDiarmid [20].

Regarding the concentration of the chromatic number, the vast majority of results provides upper
bounds on the length of intervals containing χ(Gn,p); in other words, they prove that the chromatic
number is highly concentrated around a few consecutive values. Moreover, a lot of research has
been focused on the case p = p(n) → 0 as n → ∞. It has been known since 1991, due to the
work of  Luczak [18], that for p < n−5/6−ϵ the chromatic number is concentrated around two values
with high probability. Subsequently, Alon and Krivelevich set the upper bound at two consecutive
values for p < n−1/2−ϵ in 1997 [1] .

Annika Heckel published her paper “Non-concentration of the chromatic number of a random graph”
[14] in 2020. In it she finds and proves a lower bound on the concentration of the chromatic number
of Gn,1/2. With her paper, she addressed two under-researched areas. Firstly, very little was known
about the length of the interval containing χ(Gn,p) for the case when p was constant. The work
of Shamir and Spencer [21] from 1987 showed that for any sequence p = p(n) the length of the

intervals should be about
√
n. Later, this was improved by Alon to

√
n

logn for p = 1/2 (chapter 7.9,
exercise 3 in [2]). Secondly, Annika Heckel’s paper became the first one to provide a lower bound
on the length of the interval (i.e., the non-concentration of the chromatic number), in contrast to
many papers providing upper bounds.
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3.2 Main assertion and outline of the proof

Below we present the main result of Annika Heckel’s paper [14]. Proving it will be the objective of
the remainder of chapter 3.

Theorem 3.1. For any constant c < 1
4 , there is no sequence of intervals of length nc which contain

χ(Gn, 1
2
) with high probability.

In other words, the chromatic number of Gn,1/2 is not concentrated with high probability on fewer

than n1/4−ϵ consecutive values, for some ϵ > 0.

Suppose that [sn, tn] is a sequence of intervals, which contains the chromatic number of Gn,1/2 with
high probability. Theorem 2 in [14] (first published in [15]) states that with high probability

χ(Gn,1/2) =
n

2 log2 n− 2 log2 log2 n− 2
+ o

(
n

log2 n

)
. (3)

This gives us an interval of length o(n/ log2 n), which contains the chromatic number of Gn,1/2 with
high probability. Let us set

sn = f(n) + o

(
n

log2 n

)
, f(n) =

n

2 log2 n− 2 log2 log2 n− 2
. (4)

Let us define the length of the interval as ln = tn − sn. In order to prove theorem 3.1, we must
show that there exists some n∗ such that ln∗ > (n∗)c, where c ∈ (0, 1/4).

We will outline the steps of the proof below. The proof is based on Annika Heckel’s original
argument, with the level of details adapted for the level of bachelor students of mathematics. Each
of the steps below is dedicated a separate section.

1. Estimation of the number of independent a-sets. An a-set is a set of vertices of cardinality
a, where a is roughly equal to α(Gn,1/2) (this will be formally derived in section 3.3.1). We
show that the number of independent a-sets, Xa, is approximately Poisson distributed with

mean µ = E[Xa] =
(
n
a

)
(12)(

a
2).

2. Comparison of Gn,1/2 and Gn′,1/2, where n′ is slightly larger than n. We define r = ⌊√µ⌋
and take n′ = n + ar. We investigate how the distributions of Xa and X ′

a (the number of
independent a-sets in Gn′,1/2) differ. We discover the stability numbers of those two random
graphs are very close, and that the expected values of Xa and X ′

a only differ by o(1). Thus,
Xa and X ′

a are almost identically distributed.

3. Coupling of the distributions of conditional random graphs. We construct random graphs H
and H ′ on [n] and [n′], respectively, conditional on some typical values of Xa and X ′

a in such a
way, that H is an induced subgraph of H ′, and their difference can be partitioned into r inde-
pendent a-sets. We show that χ(H ′) ∈ [sn′ , tn′ ] and χ(H) ∈ [sn, tn] with significant probabil-
ity. Thanks to that, we can make conclusions about the relationship of the interval endpoints,
which are deterministic variables. We conclude that sn′ ≤ χ(H ′) ≤ χ(H) + r ≤ tn + r, which
implies ln ≥ sn′ − sn − r.

4. Beating the error term. If we ignore the error term o(n/ log2 n) and take sn ≈ f(n), we find
that ln ≥ Θ(r(n)/ log n). The error term o(n/ log2 n) is much larger than Θ(r(n)/ log n), thus,
we need to find a way to tackle it. We apply previously established results to an appropriately
chosen finite sequence of integers (ni)i and find a lower bound on the sum of corresponding
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intervals lni = li. Hence, we find that there is some index n∗ such that ln∗ > (n∗)c, which
concludes the proof.

3.3 Proof

3.3.1 The distribution of Xa

The first step of the proof is approximating the distribution of Xa - the number of independent
sets of cardinality a, where a is roughly equal to the stability number of Gn,1/2. Before discussing
how a is defined, let us explain the link between the clique number and the stability number of a
random graph.

Let Yr be the number of cliques of size r, where r is roughly the clique number. Let us consider
a random graph Gn,p, and let V ′ be a subset of vertices, such that |V ′| = k ≤ n. Then, following
from equation 1, we have

P(subgraph on V ′ is complete) = p(k2), P(subgraph on V ′ is empty) = q(k2).

In this case, we have p = q = 1
2 , so all graphs on [n] are equiprobable. This also applies to its

subgraphs. Hence, we can make conclusions about the distribution of Xa based on information
about the distribution of Yr. Thus, the derivations about the stability number and the distribution
of Xa will be analogous to those found in sections 11.1 and 11.2 in [4], which concern the clique
number and the distribution of Yr.

As found previously, the probability that a subgraph on k vertices is empty is (1/2)(
k
2). There are(

n
k

)
possible choices of the k vertices, thus we have

E[Xk] =

(
n

k

)(
1

2

)(k2)
(5)

Due to the combination factor, the function E[Xk] has a sharp drop towards zero past a certain
value of k [19]. We are searching for a value of k, such E[Xk] is much larger than 0 and E[Xk+1] is
close to 0. In other words, we are searching for the largest k, such that we expect that the random
graph G will have an independent set of size k. This happens around α0 + o(1), where α0 is as
follows from [6]:

α0 = α0(n) = 2 log2 n− log2 log2 n + 2 log2

(e
2

)
+ 1 (6)

This can be verified by plugging α0 into

f(k) = (2π)−1/2nn+1/2(n− k)−n+k−1/2k−k−1/2

(
1

2

)k(k−1)/2

,

which is just the expression from equation 5 with
(
n
k

)
substituted with its Stirling approximation

[4]. As E[Xk] approaches 0 very quickly for k > α0 + o(1), we know that the stability number is
⌊α0 + o(1)⌋. For most graphs we actually have α(Gn,1/2) = ⌊α0⌋ =: a [14]. Thus, we have defined
a.

Similarly to Yr, the number of a-sets in the random graph Gn,1/2 is approximately Poisson dis-
tributed with mean µ, where µ is as follows:

µ = µ(n) =

(
n

a

)(
1

2

)(a2)
= nx (7)

for some x = x(n), such that o(1) ≤ x(n) ≤ 1 + o(1).
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3.3.2 Comparing Gn,1/2 and Gn′,1/2

The next step is the comparison of Gn,1/2 and Gn′,1/2, where n′ is slightly larger than n. We define

n′ = n+ar, and choose r = ⌊nx/2⌋ = ⌊√µ⌋. Note that r is roughly equal to the standard deviation
of Xa. Now, let X ′

a be the number of a-sets on Gn′,1/2, µ
′ = µ(n′), a′ = a(n′) and α′

0 = α0(n
′). We

will show that the distributions of Xa and X ′
a are almost identical. First, we find a relationship

between α0 and α′
0.

α′
0 = 2 log2 n

′ − 2 log2 log2 n
′ + 2 log2

(e
2

)
+ 1 (8)

= 2 log2(n + ar) − 2 log2 log2(n + ar) + 2 log2

(e
2

)
+ 1 (9)

= 2 log2

(
n
(

1 +
ar

n

))
− 2 log2 log2

(
n
(

1 +
ar

n

))
+ 2 log2

(e
2

)
+ 1 (10)

= 2 log2 n + 2 log2

(
1 +

ar

n

)
− 2 log2 log2 n− 2 log2 log2

(
1 +

ar

n

)
+ 2 log2

(e
2

)
+ 1 (11)

= α0 + 2 log2

(
1 +

ar

n

)
− 2 log2 log2

(
1 +

ar

n

)
(12)

= α0 + O
(

log2

(
1 +

ar

n

))
(13)

= α0 + O

(
log
(
1 + ar

n

)
log 2

)
(14)

= α0 + O
(ar
n

)
(15)

= α0 + o(1) (16)

where the last line is because we have a = O(log n) and r = O(nx/2), so

lim
n→∞

ar

n
= 0. (17)

Now, let us compare µ and µ′. First, let us note that we have

a−1∏
i=0

n′ − i

n− i
=

n′(n′ − 1) . . . (n′ − a + 2)(n′ − a + 1)

n(n− 1) . . . (n− a + 2)(n− a + 1)
(18)

=
n′(n′ − 1) . . . (n′ − a + 2)(n′ − a + 1)

n(n− 1) . . . (n− a + 2)(n− a + 1)
· (n′ − a)!

(n− a)!
· (n− a)!

(n′ − a)!
(19)

=
n′!

(n′ − a)!
· (n− a)!

n!
. (20)

Moreover, if i = 0, . . . , a− 1, then

n′ − i

n− i
=

n + ar − i

n− i
= 1 +

ar

n− i
= 1 + O

(ar
n

)
. (21)

Finally, as r = O(nx/2) and a = O(log n), we have

O
(ar
n

)
= O

(
(log n)2

n1−x/2

)
= o(1), (22)

9



because x < 1. Combining the results above, we obtain

µ′ =

(
n′

a

)(
1

2

)(a2)
=

n′!

a!(n′ − a)!

(
1

2

)(a2)
(23)

=
n!

(n− a)!

(n− a)!

n!

n′!

a!(n′ − a)!

(
1

2

)(a2)
(24)

=
n!

(n− a)!a!

(n− a)!

n!

n′!

(n′ − a)!

(
1

2

)(a2)
(25)

= µ
n′!

(n′ − a)!
· (n− a)!

n!
(26)

= µ
a−1∏
i=0

n′ − i

n− i
(27)

= µ

a−1∏
i=0

(
1 + O

(ar
n

))
(28)

= µ
(

1 + O
(ar
n

))a
= µ

(
1 + O

(
ra2

n

))
= µ + o(1). (29)

Hence, the parameter of Xa and X ′
a differs only by some term which approaches 0. We conclude

that these two random variables are almost identically distributed.

3.3.3 Coupling of distributions

In this section, we will make use of conditional distributions of random graphs of n and n′ vertices
to make conclusions about the relationship between [sn, tn] and [sn′ , tn′ ]. Note that sn and sn′ are
deterministic variables (i.e., determined entirely by a function, not random). This will be important
at the end of this section.

First, let us show that if we condition on some typical values of Xa and X ′
a, and on the events

that all independent a-sets of conditional G and G′ are disjoint, then the chromatic numbers of the
conditional graphs still lie in the intervals typical for (unconditional) G and G′ with a significant
probability. This notion is expressed more formally in the lemma below. This is lemma 8 from [14].

Lemma 3.2. Let G ∼ Gn,1/2 and G′ ∼ Gn′,1/2. Let E and E ′ be the events that all independent
a-sets in G and G′ are disjoint, respectively. Then, if n is large enough, there is an integer A =
A(n) ∈ [12n

x, 2nx] such that

P(χ(G) ∈ [sn, tn] | {Xa = A} ∩ E) >
3

4
(30)

P(χ(G′) ∈ [sn′ , tn′ ] | {X ′
a = A + r} ∩ E ′) >

3

4
(31)

Before proving the lemma, let us make (and prove) the following claim.

Claim 1. Events E and E ′ hold with high probability.

Proof. We will prove that E holds with high probability, i.e., that all a-sets in [n] are disjoint with
high probability. The proof for E ′ is analogous as µ′ = µ + o(1).
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The proof is based on the proof of theorem 4.5.1 in [2]. Let AS = {S is an independent a-set}.
Note that Xa can be expressed as follows:

Xa =
∑
|S|=a

1AS
. (32)

Let us fix an independent a-set S. Then, for any randomly chosen set T , the events AS , AT are
not independent if and only if the sets S and T share i vertices, where i is at least 2 and strictly
less than a (if both S and T are a-sets and share a vertices, they are the same set). Hence, let us
define

∆∗ = P(AT | AS ∩ {AS , AT are not independent}) =

a−1∑
i=2

(
a

i

)(
n− a

a− i

)
2(i

2)−(a2). (33)

Now, let us divide ∆∗ by E[Xa].

∆∗

E[Xa]
=

∑a−1
i=2

(
a
i

)(
n−a
a−i

)
2(i

2)−(a2)(
n
a

)
(12)(

a
2)

=
a−1∑
i=2

g(i), (34)

where

g(i) =

(
a
i

)(
n−a
a−i

)(
n
a

) 2(i
2). (35)

Note that
(ai)(

n−a
a−i)

(na)
is the probability that a randomly chosen a-set T shares i vertices with S, while

2(i
2) is the factor by which P(AT ) increases if that is the case. Hence, we have

∆∗

E[Xa]
≥ P(T ∩ S ̸= ∅) ≥ P({T ∩ S ̸= ∅} ∩AT ) (36)

= P(T is an independent a-set not disjoint from S). (37)

Thus, in order to prove the statement, it suffices to prove that
∑a−1

i=1 g(i) = o(1).

Calculations which can be found in [2] show that g(2) ≤ o(n−1), and g(a− 1) ≤ o(n−1). Moreover,
g(i) for other values of i (i.e. i = 3, . . . , a − 2) are also negligible and so is their sum. Thus, we
have

P({T ∩ S ̸= ∅} ∩AT ) ≤
a−1∑
i=2

g(i) ≤ o(1). (38)

From that we conclude that any randomly chosen independent a-set T is disjoint from other inde-
pendent a-sets with high probability.

Having proved that events E and E ′ occur with high probability, we may prove lemma 3.2.

Proof of lemma 3.2. First, let us notice that for any events A,B,C we have P(A | B ∩ C) ≥
P(A ∩B | C). This is because

P(A | B ∩ C) =
P(A ∩B ∩ C)

P(B ∩ C)
≥ P(A ∩B ∩ C)

P(C)
= P(A ∩B | C). (39)
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Let us now define the following events:

F = {χ(G) ∈ [sn, tn]} ∩ E (40)

F ′ = {χ(G) ∈ [sn′ , tn′ ]} ∩ E ′. (41)

Due to inequality 39, in order to prove the theorem, it suffices to show that there exists some integer
A such that P(F | Xa = A) > 3/4 and P(F ′ | X ′

a = A + r) > 3/4. The intervals [sn, tn] are defined
in such a way that they contain χ(Gn,1/2) with high probability. Moreover, by claim 1, events E , E ′

hold with high probability. Thus, F and F ′ also hold with high probability.

Let A be the set of all values of A such that P(F | Xa = A) > 3/4. Then, as F holds with high
probability, we have

P(F | Xa ∈ A) + P(F | Xa /∈ A) = P(F) = 1 − o(1). (42)

Note that P(F | Xa /∈ A) ≤ 1/4, so P(Fc | Xa /∈ A) ≥ 1/4. This way we obtain

o(1) = P(Fc) =
∑
A/∈A

(P(Fc | Xa = A)P(Xa = A)) ≥ 1

4
P(Xa /∈ A). (43)

Analogously, letting A′ be the set of values of A such that P(F ′ | X ′
a = A + r) > 3/4, we obtain

o(1) ≥ 1

4
P(X ′

a /∈ A′ + r). (44)

Hence, with high probability Xa ∈ A and X ′
a ∈ A′+r. Due to an argument related to total variation

distance, which is beyond the scope of this paper, we find A∩A′ ∩ [12µ, 2µ] ̸= ∅. We conclude that
there exists a value of A which lies in [12µ, 2µ] which ensures both P(χ(G) ∈ [sn, tn] | {Xa = A} ∩ E) > 3

4
and P(χ(G′) ∈ [sn′ , tn′ ] | {X ′

a = A + r} ∩ E ′) > 3
4 .

Let us now define some conditional graphs, which later will help us make conclusions about
χ(Gn,1/2) and χ(Gn′,1/2). We will denote the distribution of graph Gn,p conditioned on event
P with Gn,p | P . Now, we will need to construct two graphs, H and H ′, such that they fulfill the
following criteria:

• H is a random graph with vertex set [n] and edge probability 1
2 , such that Xa = A and all

of its independent a-sets are disjoint. H ′ is a random graph with vertex set [n′] and edge
probability 1

2 , such that X ′
a = A + r and all of its independent a-sets are disjoint.

• H is an induced subgraph of H ′.

• Their difference, i.e., the induced subgraph of H ′ on {n + 1, . . . , n′}, can be partitioned into
r independent a-sets.

Let V = [n] and V ′ = [n′]. In order to satisfy the first criterion, let us fix some arbitrary disjoint
a-sets: S1, . . . , Sr, . . . , Sr+A ⊂ V ′. A of those sets must be contained in V . As the sets are arbitrary,
and H is an induced subgraph of H ′, let us label them in such a way that S1, . . . , Sr ⊂ V ′ \ V and
Sr+1, . . . , Sr+A ⊂ V . Finally, in order to satisfy the third criterion, there may not be any vertices in
V ′ \V which are not contained in Si for some i ∈ [r]. Thus, V ′ \V = ∪r

i=1Si. A diagram portraying
the desired structure of graphs H and H ′ is shown below.
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Figure 3: Simplified diagram showing the structure of graphs H and H ′ from [14]. The difference
of the graphs consists entirely of r independent disjoint a-sets, S1, . . . , Sr. The graph H contains
independent disjoint a-sets Sr+1, . . . , Sr+A, and perhaps some other vertices, which do not form an
independent a-set. For any pair of vertices which do not belong to the same a-set Si, i ∈ [A + r],
the probability that there is an edge connecting them is 1

2 .

Now, we will define four events, such that random graphs H and H ′ conditioned on them will fulfill
the three criteria above. The events are as follows:

• D1: The a-sets S1, . . . , Sr are independent.

• D2: The a-sets Sr+1, . . . , Sr+A are independent.

• U1: There are no independent a-sets with at least one vertex in V ′ \ V , other than the a-sets
S1, . . . , Sr (which may or may not be independent).

• U2: There are no independent a-sets completely contained in V , other than the a-sets
Sr+1, . . . , Sr+A (which may or may not be independent).

Note that the event D1∩D2∩U1∩U2 means that the sets S1, . . . , Sr+A are independent and no other
independent a-sets in V ′ exist. Immediately we notice that we can obtain the required distributions
of H,H ′ by setting H ′ ∼ Gn,1/2 | D1∩D2∩U1∩U2

and taking H to be the induced graph of H ′ on V :
H = H ′[V ].

Let us obtain Ĥ ′ by a random permutation of H ′, and Ĥ = Ĥ ′[V ]. As no edges are added or re-
moved, Ĥ ′ still has exactly A+r disjoint independent a-sets. Thus, we have Ĥ ′ ∼ Gn′,1/2 | {X′

a=Ar}∩E ′ .

Moreover, as only the vertex labels have been changed, Ĥ ′ has the same chromatic number as H ′.
Hence, from 3.2 we can easily conclude

P(χ(H ′) ∈ [sn′ , tn′ ]) = P(χ(Ĥ ′) ∈ [sn′ , tn′ ]) = P(χ(G′) ∈ [sn′ , tn′ ] | {X ′
a = A + r} ∩ E ′) >

3

4
(45)

Unfortunately, as the vertices have been permutated, we do not necessarily have A independent

13



a-sets in Ĥ. Thus, χ(H) may be different from χ(Ĥ). However, we may bind the probability that
H has a certain property B, which is invariant under vertex permutation, by the probability that
Gn,1/2 | {Xa=A}∩E has the same property. For example, B may be the property that the chromatic
number of H lies in a certain interval. The following is claim 2 in [14].

Lemma 3.3. Let B be an event for the set of graphs with vertex set V which is invariant under
the permutation of vertex labels. Then

P(H ∈ B) ≤ (1 + o(1)) P(Gn,1/2 | {Xa=A}∩E ∈ B). (46)

In order to prove the lemma above, we will need the following result (based on lemma 9 in [14]):

Lemma 3.4. Let Y be the number of independent a-sets with at least one vertex in V ′ \ V , other
than the sets S1, . . . , Sr. Then, E[Y | D1 ∩ D2] = o(1).

The proof is a fairly straightforward, yet tedious calculation. Hence, we will only provide a sketch
in this paper.

Sketch of proof. Let T be a set of vertices which counts towards Y . That means, T is an independent
a-set with at least one vertex in V ′ \V , and is not equal to any of the sets S1, . . . , Sr. We partition
T into vertices which are included in S1, . . . , SA+r, and remaining vertices. Thus, we have

T = ∪M
j=1Tj ∪ Trest, (47)

where Tj ̸= ∅, Tj ⊂ Sij for ij ∈ [A + r], and Trest ⊂ V . Let us order the subscripts i1 < · · · < iM ,
which we are allowed to do because S1, . . . , SA+r are arbitrary. In order to ensure that at least one
vertex of T is in V ′ \ V , we need i1 ∈ [r]. This also implies that M ≥ 1. Moreover, as |T | = a, we
have M ≤ a.

Let tj := |Tj |. As Tj is not empty for all j ∈ [M ], and Tj is not equal to Sij , we have

1 ≤ tj ≤ a− 1. (48)

Let T be a set of all possible pairs (M, t), where t = (t1, . . . , tM ). Fix M and t. Now let us
find the number of possible sets T that correspond to t and M . We need to choose i1 ∈ [r],
{i2, . . . , iM} ⊂ [A+r], tj out of a vertices out of each Sij , and the remaining vertices of Trest. Note
that |Trest| = a−

∑
j tj . Thus, we obtain

r

(
A + r

M − 1

) M∏
j=1

(
a

tj

)( n

a−
∑

j tj

)
≤ r

A + r

(
n

a

) M∏
j=1

A + r
(
a
tj

)
a!

(a− tj)!(n− a)tj
. (49)

The details on how the upper bound was obtained can be found in the proof of Lemma 9 in [14].

Now that we have found an upper bound on the number of potential sets T , let us find P(T | D1∩D2).
As we condition on the events that the sets S1, . . . , SA+r are independent and by definition those
sets are disjoint, we are guaranteed that the sets T1, . . . , TM are independent. Hence, we only have
to consider the vertices of Trest. This way, we obtain

P(T is independent | D1 ∩ D2) =

(
1

2

)(a2)−
∑

j (tj
2
)

= 2
∑

j (tj
2
)−(a2). (50)
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Multiplying the probability above by the upper bound on the number of possible sets T , and
summing over all possible (M, t) ∈ T , we obtain an upper bound on the conditional expectation of
Y :

E[Y | D1 ∩ D2] ≤
∑

(M,t)∈T

2
∑

j (tj
2
)−(a2)

r

A + r

(
n

a

) M∏
j=1

A + r
(
a
tj

)
a!

(a− tj)!(n− a)tj

 =
rµ

A + r

∑
(M,t)∈T

M∏
j=1

σtj ,

(51)
where

σt =
(A + r)

(
a
t

)
a!2(t

2)

(a− t)!(n− a)t
. (52)

By another set of calculations we obtain

σt ≤ σ1 = O∗(nx−1), (53)

where f = O∗(g) means that there exist constants C, n0 such that |f(n)| ≤ (log n)Cg(n) whenever
n ≥ n0. This way, using the fact that 1 ≤ tj ≤ a − 1, we can further bound the conditional
expectation of Y :

E[Y | D1 ∩ D2] ≤
rµ

A + r

∑
(M,t)

σM
1 ≤ rµ

A + r

∑
M≥1

(aMσM
1 ) = O∗(

rµσ1
A + r

) = O∗(n3/2x−1) = o(1). (54)

Having shown that E[Y | D1 ∩ D2], we may now prove lemma 3.3.

Proof of lemma 3.3. Let us first express the distribution of Gn,1/2 | {Xa=A}∩E in terms of events
D1,D2,U1 and U2. The conditional graph is conditioned upon having A independent a-sets, all of
which all are disjoint. That is equivalent to conditioning on events D2 and U2, and then performing
a random permutation of vertex labels. Hence, we have

P(Gn,1/2 | {Xa=A}∩E ∈ B) = P(B | D2 ∩ U2), (55)

as B is invariant under vertex permutation. As event D1 applies to vertex set V ′ \ V , so it is
independent from B, which by definition applies to vertex set V . Moreover, event D1 is also
independent from D2 and U2. Hence, we have

P(B | D2 ∩ U2) = P(B | D1 ∩ D2 ∩ U2). (56)

Now, let us consider the distribution of H. As determined previously, we have H ′ ∼ Gn,1/2|D1∩D2∩U1∩U2
,

and H is an induced subgraph of H ′ on vertex set V . Hence, we have

P(H ∈ B) = P(B | D1 ∩ D2 ∩ U1 ∩ U2) =
P(B ∩ U1 | D1 ∩ D2 ∩ U2)

P(U1 | D1 ∩ D2 ∩ U1)
≤ P(B | D1 ∩ D2 ∩ U1)

P(U1 | D1 ∩ D2 ∩ U1)
. (57)

This comes down to

P(H ∈ B) ≤ 1

P(U1 | D1 ∩ D2 ∩ U1)
P(Gn,1/2 | {Xa=A}∩E ∈ B), (58)

so all we need to show to prove the statement is

1

P(U1 | D1 ∩ D2 ∩ U1)
= 1 + o(1), (59)
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or equivalently,
P(U1 | D1 ∩ D2 ∩ U1) = 1 − o(1). (60)

This is because if the inverse of P(U1 | D1∩D2∩U1) is equal to one plus some term which approaches
zero, then P(U1 | D1 ∩ D2 ∩ U1) must be slightly smaller than one, and approaching one.

For reasons related to measure theory, which are beyond the scope of this paper, we have

P(U1 | D1 ∩ D2 ∩ U2) ≥ P(U1 | D1 ∩ D2). (61)

This is a result of applying Harris’ lemma, which requires knowledge of product probability spaces.
Readers of this paper who have the required background are encouraged to verify the inequality
above.

Now, in order to prove the lemma, it is sufficient to prove that P(Uc
1 | D1 ∩ D2) = o(1). Let Y

be defined the same as in lemma 3.4. Note that the event Uc
1 means that there is at least one set

which counts towards Y (i.e., an independent a-set with at least one vertex in V ′ \ V , other than
S1, . . . , Sr). Hence, the event Uc

1 occurs if and only if Y ≥ 1. As a result, E[Y | D1 ∩ D2] = o(1)
implies P(Uc

1 | D1 ∩ D2) = o(1), which concludes the proof.

Let us take B = {χ(H) /∈ [sn, tn]}. The chromatic number is invariant under vertex permutations,
so we may apply lemma 3.3 to this event. Then, we have

P(H ∈ B) ≤ (1 + o(1)) · P(χ(Gn,1/2 | {Xa=A}∩E) /∈ [sn, tn]) < (1 + o(1)) · 1

4
(62)

and hence, for a large enough n,

P(H /∈ B) = P(χ(H) ∈ [sn, tn]) >
3

4
· (1 + o(1)) >

1

2
. (63)

We know that V ′ \ V is made up of r disjoint independent sets, so we need to use no more than r
colors to color the difference of H and H ′. Hence, we have

χ(H ′) ≤ χ(H) + r. (64)

From inequality 45 we know that χ(H ′) is greater than sn′ with probability greater than 3/4.
Similarly, by 63, for a large n the probability that χ(H) is smaller than tn is at least 1/2. Combining
that with inequality 64 we obtain

sn′ ≤ χ(H ′) ≤ χ(H) + r ≤ tn + r, (65)

which holds at least with probability 1/4. However, the intervals [sn, tn] and [sn′ , tn′ ], as defined
in equation 4, are deterministic. Hence, we may disregard the probability and conclude that we
simply have

sn′ ≤ tn + r. (66)

Thus, subtracting sn from both sides, we may conclude the following about ln:

ln = tn − sn ≥ sn′ − sn − r. (67)

Because of that, we may form the following conclusion (based on lemma 10 in [14]):

Lemma 3.5. For any ϵ ∈ (0, 14) there exists Nϵ, such that if n ≥ Nϵ and µ(n) = nx(n) with
ϵ ≤ x(n) ≤ 1

2 , then
ln ≥ sn′ − sn − r,

where r = r(n) = ⌊nx(n)/2⌋ and n′ = n + a(n)r.
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3.3.4 Beating the error term

In the previous section, we have concluded that ln ≥ sn′ − sn − r. Recall from equation 4 that
sn = f(n) + o(n/(log2 n)). For a moment, let us ignore the error term and take sn ≈ f(n). Then,
we have

sn′ − sn − r ≈ f(n′) − f(n) − r, (68)

where r = r(n). By a calculation which can be found in the appendix of [14], we obtain

f(n′) − f(n) = r +
(1 − x)r

a
+ o

(r
a

)
= r + (1 − x + o(1))

r

a
> r +

r

2a
. (69)

Combining that with inequality 67, we obtain

ln >
r

2a
= Θ

(
r

log n

)
. (70)

Note that the error term o(n/(log2 n)) is much larger than the order of r/2a. Thus, ignoring the
error term will not suffice and we need to find a way to beat it. In order to do that, we will apply
the results above to a finite sequence of numbers (ni)i. First, we will choose n1 such that x(n1)
fits in a chosen narrow range. Then, we will inductively define subsequent terms. Finally, we will
choose an appropriate final term nimax .

Let us now recall how we defined x = x(n), as it will be important to define the sequence (ni)i;
x(n) is a sequence of values which satisfies:

• x ∈ [o(1), 1 + o(1)];

• x = α0 − ⌊α0⌋ + o(1);

• µ = nx, where µ = E[Xa].

Note that if a graph has more vertices, we expect that there will appear more independent a-sets.
Thus, for m ≥ n we have x(m) ≥ x(n).

To define n1, we will need the following lemma (lemma 4 from [14]:

Lemma 3.6. Let 0 ≤ c1 < c2 ≤ 1 and N > 0. There is an integer n ≥ N such that x(n) ∈ (c1, c2).

Let us take a constant c ∈ (0, 14), and define ϵ = 1
4(14−c) < 1/16. Taking c1 = 1

2−4ϵ and c2 = 1
2−3ϵ,

we know by lemma 3.6 that there exists some arbitrarily large n1, such that

1

2
− 4ϵ < x(n1) <

1

2
− 3ϵ. (71)

Now, we will define the subsequent terms of the sequence. Let a = a(n1), xi = x(ni) and ri =

⌊nxi/2
i ⌋. Then

ni+1 = ni + ari, (72)

for i = 1, . . . , imax.

Finally, we will find imax. Let M be the largest integer such that for any n1 ≤ n ≤ M we have

α0(n) < a(n1) +
1

2
− 2ϵ. (73)

Then, imax is the largest index, such that ni ≤ M . Thus, all the terms of the sequence fulfill
inequality 73.

Let us now formulate the following lemma about the sequence (ni)
imax
i=1 .
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Lemma 3.7. Let (ni)
imax
i=1 be a sequence, defined inductively as

ni+1 = ni + ari, i = 1, . . . , imax − 1 (74)

where a = a(n1), xi = x(ni) and ri = ⌊nxi/2
i ⌋. Then, there exists an index n∗, such that ln∗ > (n∗)c.

Note that for a fixed i, ni and ni+1 correspond to previously used n and n′, respectively. Thus,
proving the lemma above, also proves the main assertion.

Again, we will only provide a sketch of the proof, as it consists of straightforward calculations.
However, it is important to understand the asymptotic order of M and nimax . Let us start by
noticing that M − n1 = Θ(n1). This is due to the fact that α0(n) ∼ 2 log2(n), and hence also
a(n) ∼ 2 log2(n). Thus, we have

M−n1 ∼ 2α0(M)/2−2a(n1)/2 < 2
1
2
(a(n1)+1/2−2ϵ)−2

1
2
a(n1) = 2

1
2
a(n1)(21/4−ϵ−1) ∼ n1(2

1/4−ϵ−1), (75)

where C = 21/4−ϵ − 1 > 0 because ϵ < 1/16. Moreover, as M is defined as the largest integer
satisfying inequality 73, M − n1 is also bounded away from 0. From this result it also follows that
nimax − n1 = Θ(n1), and thus nimax = Θ(n1).

Sketch of proof of lemma 3.7. First, let us find a lower bound on the sum of the li’s;

imax−1∑
i=1

li ≥
imax−1∑
i=1

(si+1 − si − ri) =

imax−1∑
i=1

(si+1 − si) −
imax−1∑
i=1

ri = simax − s1 −
imax−1∑
i=1

ri. (76)

Via a series of straightforward calculations on page 11, Annika Heckel in [14] finds more specific
lower bounds, namely

simax − s1 >

imax−1∑
i=1

(
ri +

ri
2a

)
+ o

(
n1

log2 n1

)
(77)

and
imax−1∑
i=1

ri
a

= Θ

(
n1

log2 n1

)
. (78)

Combining those, we obtain

imax−1∑
i=1

li >

imax−1∑
i=1

ri
2a

+ o

(
n1

log2 n1

)
=

imax−1∑
i=1

ri
2a

+

imax−1∑
i=1

ri
a

≥
imax−1∑
i=1

ri
3a

(79)

In order for the inequality above to hold, there must be at least one index i∗, such that for n∗ = ni∗

we have
ln∗ >

ri∗

3
. (80)

In fact, the terms of this sum may be distributed in various ways. In order for the inequality 79
to hold, we may have several shorter intervals which add up to a larger sum (e.g., li >

ri
10a), or

we may have one very long interval such that li > ri. Suppose the latter is the case. Recall that
ri∗ = ⌊(n∗)x(n

∗)/2⌋ ≥ ⌊(n∗)x(n1)/2⌋ as n∗ ≥ n1. Thus, we obtain

ln∗ > (n∗)x(n1)/2 > (n∗)
1
2
( 1
2
−4ϵ) = (n∗)

1
4
−4ϵ = (n∗)c. (81)

Hence, we have proven that there exists some integer n∗, such that ln∗ > (n∗)c, where c ∈ (0, 1/4).

This concludes the proof of the main result, theorem 3.1.
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4 Further research

After becoming familiar with Annika Heckel’s research, several directions of research appear as a
natural next step. Primarily, the paper in question is the first piece of research that provides a lower
bound on the length of the interval containing the chromatic number with high probability. After
Heckel has found the lower bound for p = 1/2, it appears intriguing to explore whether or not such
a bound exists for other values of p. In general, the majority of research on the chromatic number of
random graphs has focused on small values of p and especially on p = p(n) → 0 as n → ∞. We know
that for those values of p, χ(Gn,p) tends to have an extremely narrow concentration. Nevertheless,
it is interesting to find out if a lower bound on that concentration exists. However, much less is
known about graphs where p does not approach 0. One might be interested in researching the
case where p is a constant other than 1/2, or where p = p(n) approaches a value other than 0, for
example p(n) → 1 as n → ∞.

Another direction that research could focus on is the uniform random graph. This was briefly
touched upon in [14], where Annika Heckel asserts that the conclusions of the article are true for
Gn,m with m = ⌊n2/4⌋, as it corresponds to the binomial random graph Gn,1/2. Similarly to the
binomial graph, one might focus on the case that m is constant, or m depends on n and approaches
a certain value as n → ∞. Almost all research on the chromatic number of random graphs focuses
on binomial random graphs, thus results on uniform random graphs could be particularly insightful.
Moreover, exploring the correspondence between Gn,p and Gn,m for particular values of p and m
could aid the discovery of new bounds regarding Gn,p via the knowledge about Gn,m and vice versa.

One might also wonder if the chromatic number of Gn,p follows any known probability distribution
(at least for some values of p) and if so, try to find that distribution. Perhaps as n → ∞, the
distribution of χ(Gn,p) approaches some extremal distribution, which could be used to approximate
confidence intervals on its value for a large n.

Annika Heckel herself has chosen to search for a more accurate lower bound on the length of the
interval containing the chromatic number. In the 2021 preprint which she wrote together with
Oliver Riordan, they claim the width of the interval containing χ(Gn,1/2) is at least n1/2−o(1) [16].
As mentioned previously, Alon had established the upper bound on the length of the interval at√

n
logn for p = 1/2 [2]. This means that Heckel and Riordan have managed to match the lower bound
to the uppper bound, up to the error term.

Many concepts in graph theory may be researched via their connection with other concepts. For
example, in this case we exploited the opposition of the stability number and the clique number.
This certainly facilitates the finding of new results, as existing results may be applied to comple-
ments of graphs to make conclusions about related concepts. Despite that, although graph theory
has been a dynamic area of research ever since its foundation in the 1950’s, there are still many
open questions in this field.
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