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Abstract: Since the amount of data that companies and individuals use globally is increasing
exponentially, processing performance should increase at the same rate. However, an exponential
increase in processing power is no longer achievable due to the physical limitations of traditional
computers. Neuromorphic computing represents a promising alternative because it is faster and
more energy efficient. One example is brain-inspired learning using memristors, as the resistance
of these devices varies based on the voltage history. Hence, they can be a natural fit for simulating
synapses, whose weights vary as a function of time. The phenomenon is known as spike timing-
dependent plasticity, which we aim to model. This study uses empirical data obtained from
the Ni/Nb:SrTiO3 Schottky interface to propose a physically plausible mathematical model.
This model is then used to show that spike timing-dependent plasticity can indeed be simulated
using the Ni/Nb:SrTiO3 memristive device. Since synapses are at the core of brain-inspired
learning and we can artificially simulate them, our study strengthens the belief that neuromorphic
computing could one day replace the outdated traditional approach.

1 Introduction

The volume of data has exploded in the past
decades and is predicted to continue its exponen-
tial growth, with an estimate that global data will
reach 175 zettabytes by 2025 [1].

However, processing large volumes of data is be-
coming more difficult. Most processing units are
still built using the von Neumann [2] architecture.
This architecture is characterised by the separation
of processing and memory, with data travelling be-
tween the two units. Since processing speed has
been increasing more rapidly than memory speed,
the memory wall problem became apparent [3].
This problem describes how the overall speed of
the computer is slowed down due to the processor
pausing while data is in the memory unit. Still, this
architecture has been in use for decades because it
benefited from the exponential increase of process-
ing power described by Moore [4]. Since Moore’s
law is approaching its end due to physical limita-
tions [5, 6], the feasibility of the von Neumann ar-
chitecture is questioned once more. Thus, the need
for a new architecture arises.

Meant to overcome the limitations of von Neu-
mann computing, neuromorphic computing has
gained popularity as an alternative approach [7,
8, 9, 10]. Inspired by computation in the human
brain, the benefits of neuromorphic architectures
are energy efficiency, co-located memory and pro-
cessing units, parallel processing as well as an in-
herent ability to successfully adapt and deal with
various forms of data [11, 12].

The brain is able to process data and learn
through synapses, which connect the axon termi-
nal of one neuron and the dendrites of a second
neuron. The strength of the connection is linked
to the action potential initiated by the presynaptic
neuron and the potential spike of the postsynaptic
neuron [13]. An important mechanism that deter-
mines the synaptic weights is the dependence of
synaptic weights on the timing between the pre-
and postsynaptic spikes [14]. This phenomenon
is now known as spike timing-dependent plasticity
(STDP), which has also been biologically confirmed
[15].

This phenomenon has been extensively stud-
ied within the scope of neuromorphic computing
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[16, 17, 18]. In these studies, STDP has been sim-
ulated using memristors. A memristor (memory
resistor) is a passive two-terminal circuit element
similar to resistors, where resistance switches be-
tween a low resistance state (LRS) and a high re-
sistance state (HRS) depending on voltage history
[19]. However, the resistance itself can take any
value between the maximum value of the HRS and
the minimum value of the LRS. Since both memris-
tors and synapses are history-dependent as well as
two-terminal, this makes memristors viable candi-
dates for simulating synapses and for subsequently
exhibiting STDP behaviour.
Memristors have been physically realised in 2008

[20]. Since then, different types of memristive de-
vices, with different physical properties, have been
proposed [21, 22, 23]. Some types of memristive de-
vices need an additional electroforming step to ex-
hibit switching behaviour [24, 25]. Thus, the focus
of this study is on the less studied interface-based
memristors because they possess the benefit of not
requiring electroforming [23, 26].
The goal of this paper is to propose a physically

plausible memristor model for the Ni/Nb:SrTiO3

(Ni/Nb:STO) Schottky interface memristive device
[23]. This type of memristor is of particular interest
because it has not been modelled in the past and
is simpler to work with due to not needing an elec-
troforming step. A physically plausible memristor
model would further bridge the gap between neuro-
science and materials science, allowing neuroscien-
tists to easily take advantage of the physical prop-
erties of memristors while simulating brain-inspired
phenomena. To further stress the potential of neu-
romorphic computing, we aim to use our model to
simulate STDP. This would provide evidence that
the physical memristive device could also be able
to achieve STDP behaviour.
In the next section, we will describe an exist-

ing model able to adapt to a variety of memris-
tors, the physical properties of Ni/Nb:STO, and
how STDP has been modelled in previous studies.
Next, our precise methods for fitting Ni/Nb:STO
devices of three radii and modelling STDP will be
presented. The results, the discussion, and the con-
clusions will follow. The discussion will touch upon
the physical plausibility of our model, which device
size might be most beneficial, the outcome of STDP
modelling, possible improvements, and further re-
search.

2 Literature Review

The Yakopcic Memristor Model

One of the popular memristor models is Yakop-
cic’s model [27]. The model can accurately fit a
broad range of memristors and their characteris-
tics. Hence, our choice is to use it as the basis of
our implementation.

The model describes the current-voltage (I-V)
curve as a mixture between a function h1, which
represents the HRS, and a function h2, which rep-
resents the LRS. This can be observed in Equation
(2.1), where x(t), the state variable, modulates the
switch between LRS and HRS. The choice of h1 and
h2 was specific to the type of device modelled.

i(t) = h1(V (t))x(t) + h2(V (t))(1− x(t)) (2.1)

The state variable changes according to Equation
(2.2), where η ∈ {−1, 1} defines the direction of the
change, g(V (t)) implements the effect of voltage
thresholds and f(x) models ion motion.

dx

dt
= ηg(V (t))f(x(t)) (2.2)

The function g(V (t)), as defined in Equation
(2.3), is suitable for memristors that have a positive
and/or negative voltage threshold. If the applied
voltage V (t) is between the two thresholds, the de-
vice does not change state. Otherwise, it changes
according to the other two cases. The magnitudes
Ap and An control how fast the change is.

g(V (t)) =


Ap(e

V (t) − eVp), V (t) > Vp

−An(e
−V (t) − eVn), V (t) < −Vn

0, −Vn ≤ V (t) ≤ Vp

(2.3)

The function f(x) is responsible for modelling
nonlinear ion motion. Ion motion influences how
fast the state variable changes as it approaches ei-
ther the positive boundary xp, in Equation (2.4),
or the negative boundary xn, in Equation (2.5).

f(x) =

{
e−(x−xp)wp(x, xp), x ≥ xp

1, x < xp

(2.4)
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f(x) =

{
e(x−xn)wn(x, xn), x ≤ xn

1, x > xn

(2.5)

The windowing functions wp and wn ensure that
the state variable stays between zero and one. As a
result of Equation (2.6), f(x) would be zero when
the state variable is equal to 1. Similarly, Equation
(2.7 causes f(x) to be zero when the state variable
is equal to zero.

wp(x, xp) =
xp − x

1− xp
+ 1 (2.6)

wn(x, xn) =
x

xn
(2.7)

An alternative to Equations (2.4) and (2.5) is
defining nonlinear ion motion through Equations
(2.8) and (2.8). The additional αp and αn parame-
ters account for more variation, necessary because
ion motion differs based on the device [28].

f(x) =

{
e−αp(x−xp)wp(x, xp), x ≥ xp

1, x < xp

(2.8)

f(x) =

{
eαn(x−xn)wn(x, xn), x ≤ xn

1, x > xn

(2.9)

The Ni/Nb:SrTiO3 Memristor

In this paper, we aim to model the memristive de-
vice described in [23]. The memristive behaviour
of this device is given by the Schottky interface of
Nb-doped SrTiO3 with a metal layer of Ni and Au,
as illustrated in Figure 2.1.

Figure 2.1: Schematic of the Ni/Nb:STO device.
Adapted from [23].

In forward bias (for positive applied voltage),
the current density of the device follows thermionic
emission, characterised by Equation (2.10) [23],

J(V ) = A∗T 2e
− qΦB

kBT (e
qV

nkBT − 1) (2.10)

where A∗ represents the Richardson constant, T
the temperature, q the elementary charge, ΦB the
height of the Schottky barrier, kB the Boltzmann
constant, V the voltage and n the ideality factor.
However, in reverse bias (for negative applied volt-
age), tunneling takes place. The effects of electron
tunneling can be modelled through Equation (2.11)
[29],

I ≈ β sinh(αV ) (2.11)

where α and β are fitting parameters and V is the
voltage. Since we did not want to assume any spe-
cific type of tunneling, we used Equation (2.11) be-
cause it is a generalised interpretation [30].

The interaction between tunneling and
thermionic emission has been previously modelled
through Equation (2.12) [31],

I = (1−w)α[1− exp(−βV )]+wγ sinh(δV ) (2.12)

where w is the internal state variable, V is the volt-
age, α and β are the Schottky transmission fitting
parameters and γ and δ are the tunneling fitting
parameters. In Equation (2.12), the first term is
a simplification of Equation (2.10), whereas the
second term is modelled precisely after Equation
(2.11).

STDP Modelling

STDP has been modelled by applying a series of
pre- and postsynaptic voltages to achieve synap-
tic weights that follow Equation (2.13) [32]. In
this equation, ∆w is the change in synaptic weight
and ∆t is the timing difference between the pre-
and postsynaptic spikes. A+ and A− represent
the maximum synaptic modification when ∆t → 0,
whereas τ+ and τ− are time constants. The equa-
tion describes long term depression (LTD) when
∆t < 0 and long term potentiation (LTP) when
∆t > 0. Figure 2.2 provides a visual representation
of Equation 2.13.

∆w = ξ(∆t) =

{
A+e

∆t/τ+ , ∆t < 0

−A−e
−∆t/τ− , ∆t ≥ 0

(2.13)

In computational models of STDP, ∆w is the
change in conductance (∆G) and has been de-
scribed by Equation (2.14) [18], where Gbefore and
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Figure 2.2: Example of standard STDP be-
haviour.

Gafter are the conductances before and after the
pre- and postsynaptic spikes.

∆G =
Gafter −Gbefore

Gbefore
· 100 (2.14)

The type of spike applied to a memristor is rele-
vant, as it influences the STDP curve. An overview
of possible types of spikes is provided in [33]. The
range of pre- and postsynaptic voltages is quite
vast. Triangular waves, step pulses and exponential
pulses are all possible options.
Additionally, to set ∆t in a biologically informed

manner, one can follow the proposal of Bi and Poo
[15]. They experimentally showed that there is a
critical 40 ms window for ∆t such that it induces
synaptic change.

3 Methods

Memristor Model

The model we propose is based on Yakopcic’s model
[27]. To model the I-V curve, change in state vari-
able, bias thresholds and positive windowing func-
tion we still use Equations (2.1), (2.2), (2.3) and
(2.6).
However, we propose Equations (3.1) and (3.2)

to model h1 and h2, respectively. The parameters
gminn, bminn, gmaxp and bmaxp are compact rep-
resentations of the physical quantities present in
Equation (2.10). Moreover, gminp, bminp, gmaxn

and bmaxn ensure flexibility in modelling tunnel-
ing for different types of devices [28]. The h1 and
h2 functions need to be polarity dependent, since
the behaviour of our device is highly influenced by

the bias [23]. Additionally, each bias is dependent
on Equation (2.12) to model the interaction be-
tween tunneling and thermionic emission specific
to Ni/Nb:STO. The ordering of the equations used
in each bias is now arbitrary. That being said, x0

and η will be set to appropriate values, such that
the model uses more thermionic emission in forward
bias and more tunneling in reverse bias.

h1 =

{
gmin p · sinh(bmin p · v), v ≥ 0

gmin n · (1− e−bmin n·v), v < 0
(3.1)

h2 =

{
gmax p · (1− e−bmax p·v), v ≥ 0

gmax n · sinh(bmax n · v), v < 0
(3.2)

To model ion motion, we will use Equations (2.8)
and (2.9), as they account for more variability than
Equations (2.4) and (2.5).

An overview of all equations used by this model
can be observed in Table 3.1.

Parameter Tuning

The model previously described will be fit using
experimental data. Such data was obtained for de-
vices of 10 µm, 32 µm and 100 µm. Each device
went through multiple voltage sweeps, for which the
current was measured. Figure 3.1 is an example of
an experimentally obtained I-V relation. The volt-
age sweep applied to all devices is plotted in Figure
3.2.

The first step was making sure that the model
uses more thermionic emission in forward bias and
more tunneling in reverse bias, so that it uses more
h2 in both cases. To achieve this, we set η = 1
and x0 = 0. As η = 1, dx/dt will increase when
a positive voltage is applied and decrease from the
negative voltage.

Since the behaviour of the memristor is given
by the change in state variable, fitting the
model becomes solving a differential equation.
The numerical method used to integrate dx/dt
is fifth-order Radau IIA, implemented by the
scipy.integrate.solve ivp Python function. To use
this method, we needed some initial state, a set of
parameters that already represent a reasonable fit.
Thus, we manually fitted the measurement from
Figure 3.1 and used the parameter values as initial
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Table 3.1: Model equations

I-V characteristic

i(t) = h1(V (t))x(t) + h2(V (t))(1− x(t))

LRS equation

h1 =

{
gmin p · sinh(bmin p · v), v ≥ 0

gmin n · (1− e−bmin n·v), v < 0

HRS equation

h2 =

{
gmax p · (1− e−bmax p·v), v ≥ 0

gmax n · sinh(bmax n · v), v < 0

Threshold-induced state variable change

g(V (t)) =


Ap(e

V (t) − eVp), V (t) > Vp

−An(e
−V (t) − eVn), V (t) < −Vn

0, −Vn ≤ V (t) ≤ Vp

Nonlinear ion motion

f(x) =

{
e−αp(x−xp)wp(x, xp), x ≥ xp

1, x < xp

f(x) =

{
eαn(x−xn)wn(x, xn), x ≤ xn

1, x > xn

Windowing functions

wp(x, xp) =
xp − x

1− xp
+ 1

wn(x, xn) =
x

xn

State variable motion

dx

dt
= ηg(V (t))f(x(t))

estimates to fit all other measurements. The initial
estimate can be seen in Table 3.2 and its resulting
behaviour in Figure 3.3.
We then integrated all measurements of all device

sizes using the values from Table 3.2 as the initial
state. This was done to observe if any parameters
appear to be constant regardless of the dimension
of the device. Table 3.3 represents the parameters
that we have set as constant. Since the description
of the physical device does not indicate any voltage
thresholds, the values of Vn and Vp have been set
to 0. The other parameters set to a constant value
are Ap, αp, x0 and xp, as they showed almost no
variation.
Then, we integrated all experimental measure-

Figure 3.1: I-V characteristic for a voltage
sweep applied to the 10 µm device

Figure 3.2: Voltage sweep applied to the model
and all physical devices

ments once more using the same type of Radau
integration as before. This time, the constant pa-
rameters were set to the values specified in Table
3.3, while all other parameters were variable. The
initial estimate for the variable parameters was the
same as in Table 3.2. To get the final parameter
sets, we averaged the parameters resulting from fit-
ting the devices at the three different scales.

To assess how device radius influences the en-
ergy consumption of the memristor, we computed
the energy that each memristor model uses during a
voltage sweep such as the one in Figure 3.1. The en-
ergy was calculated by integrating the power, which
is the voltage multiplied by the current, over time.
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We used the scipy.integrate.quad Python function
to integrate the power over time.

Parameter Value
An 0.0255
Ap 0.071
Vn 0
Vp 0
αn 1
αp 9.2

bminn 6
bminp 5.5
bmaxn 3.13
bmaxp 0.01
gminn 1.05e-05
gminp 0.00027

gmaxn 1.95e-05
gmaxp 0.04

x0 0
xn 0.152
xp 0.11

Table 3.2: Initial parameter estimate

Figure 3.3: I-V curve of device from Figure 3.1
with parameters from Table 3.2

Figure 3.4: Circuit diagram of how the pre- and
postsynaptic spikes have been applied to the
memristor models.

Parameter Value
Ap 0.071
Vn 0
Vp 0
αp 9.2
x0 0
xp 0.11

Table 3.3: Constant parameters

STDP Model

To simulate STDP, we used the three memristor
models we had previously obtained for the three dif-
ferent device sizes. The models were implemented
in LTspice, a SPICE (Simulation Program with In-
tegrated Circuit Emphasis) simulator. SPICE en-
ables users to design electronic circuits and observe
their behaviour by allowing them to measure vari-
ous physical quantities throughout the circuits.

To each SPICE memristor model, we applied
a series of presynaptic (Vpre) and postsynaptic
(Vpost) spikes to their top electrodes (TEs) and bot-
tom electrodes (BEs), respectively. A visual repre-
sentation of the process is provided by Figure 3.4.

The timing between the two spikes (∆t = Vpre −
Vpost) was set to ∆t ∈ {−50, 50} ms, since it was
close to the range described by [15] as appropriate.

Figure 3.5 represents the Vpre we used. Vpre is an
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adaptation of one of the spikes for which STDP was
achieved in [33]. However, we set the positive pulse
to 1 V and the negative pulse to -2 V, so that it is
similar to Figure 3.2, for which we fitted our mod-
els. The negative peak was applied before the posi-
tive one, as the models start in HRS and we wished
for the conductance to decrease with a decrease in
voltage. All other parameters were manually fitted.
Vpost was obtained similarly to Vpre, the differ-

ence being that its delay was 50 ms +∆t.

Figure 3.5: Presynaptic voltage used to simulate
STDP

To measure the conductance after each set of
spikes, we applied a reading voltage (Vread) to the
top electrode of the memristor. Vread was a pulse
of 1 V amplitude, 10 ms width and 200 ms delay.
Gafter was read at 206 ms.

Next, the conductances were normalised accord-
ing to Equation (2.14), with Gbefore measured at
t = 0 ms.

4 Results

Memristor Model

The final parameter values, alongside their stan-
dard deviations (SDs), can be consulted in Table
4.1. The values were averaged by device radius,
taking into account all experimental data available.
Alternatively, for a visual representation of param-
eter variation as a function of device radius, Figure
4.1 can be referred to. From Table 4.1 and Fig-
ure 4.1, we can infer that (1) An, αn and xn are

positively correlated to device radius, (2) gmaxp,
bmaxp and gmaxn are negatively correlated to de-
vice radius, and (3) gminn, gminp, bminp and
bminn are independent of device radius.
The sets of final parameters were used to

plot Figure 4.2, where each model was plotted
against the corresponding averaged experimental
data based on device radius. The plot indicates a
positive correlation between the device radius and
the magnitude of the current.

For a quantitative evaluation, we computed the
relative error between the model and the averaged
data for each of the three device sizes. The relative
errors for the 10 µm, 32 µm and 100 µm devices
were 12.45%, 11.06% and 9.37%, respectively. The
mean relative error was obtained by averaging the
three relative errors and is approximately 11%.

The energy consumption of the three modelled
memristive devices can be observed in Figure 4.3.
We can notice two convergence areas for each de-
vice: Level 1 and Level 2. Level 1 corresponds to
the model switching from HRS to LRS, whereas
Level 2 corresponds to the model switching from
LRS to HRS. Additionally, Figure 4.3 provides an
overview of energy consumption based on device
radius at each level. There appears to be a posi-
tive correlation between radius and energy for both
switching levels.

STDP

The results of the STDP simulation for all three
device sizes were plotted in Figure 4.4. The plot
represents the change in conductance as a function
of the change in time. The curves that resulted
follow the same overall shape regardless of radius.
That is, the change in conductance decreases ex-
ponentially from zero to the absolute minimum for
a negative ∆t, and it decreases exponentially from
the absolute maximum to zero for a positive ∆t.
For all device sizes, we can observe that the ab-
solute minimum change in conductance occurs at
negative zero, whereas the absolute maximum oc-
curs at around 10 ms.

However, the radius of the memristor does cause
one difference in STDP behaviour, namely the neg-
ative correlation between device size and conduc-
tance change magnitude. The magnitude decreases
by about an order of magnitude as the size of the
device increases.
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10 µm device 32 µm device 100 µm device
Parameter Value SD Value SD Value SD

An 0.02662694665 1.70e-03 0.02568872249 2.40e-04 0.02428911723 1.88e-03
Ap 0.071 0 0.071 0 0.071 0
Vn 0 0 0 0 0 0
Vp 0 0 0 0 0 0
αn 0.2786493102 3.75e-01 0.2759870683 3.84e-01 0.2497672659 2.22e-01
αp 9.2 0 9.2 0 9.2 0

bminn 6.350156295 3.25e-01 5.787371639 1.67e-01 6.062818548 5.54e-02
bminp 4.933182609 1.40e-01 4.961102879 4.40e-01 5.187989524 9.30e-02
bmaxn 3.423278358 1.35e-01 2.560255673 1.52e-01 2.124988927 2.31e-02
bmaxp 0.002600090748 1.16e-03 0.03291352402 1.46e-02 0.06881418488 1.15e-02
gminn 8.86e-06 9.75e-07 4.51e-05 1.25e-05 3.26e-05 7.14e-06
gminp 0.0004344794763 6.43e-05 0.0006774071723 3.36e-04 0.0006158328101 9.26e-05
gmaxn 1.30e-05 1.27e-06 0.0003318341419 1.50e-04 0.001672677617 4.63e-05
gmaxp 0.0186210065 1.13e-02 0.05988630616 9.69e-03 0.08546184476 1.12e-02
x0 0 0 0 0 0 0
xn 0.1379470483 7.34e-03 0.1343531482 1.40e-02 0.09869126936 1.01e-02
xp 0.11 0 0.11 0 0.11 0

Table 4.1: Parameter values and their standard deviation for the 10 µm, 32 µm and 100 µm
devices

Figure 4.1: (a) An, αn and xn variation as a function of device radius. (b) gmaxp, bmaxp and
gmaxn variation as a function of device radius. (c) gminn, gminp, bminp and bminn variation as
a function of device radius.
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Figure 4.2: (a) I-V curve of the averaged 10 µm experimental data and the 10 µm model. (b)
I-V curve of the averaged 32 µm experimental data and the 32 µm model. (c) I-V curve of the
averaged 100 µm experimental data and the 100 µm model.

Figure 4.3: (a) Energy levels of the 10 µm model over time. (b) Energy levels of the 32 µm model
over time. (c) Energy levels of the 100 µm model over time.

Figure 4.4: Change in conductance plotted against spike timing difference for (a) the 10 µm device,
(b) the 32 µm device and (c) the 100 µm device.
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5 Discussion

Since neuromorphic computing is a promising alter-
native [7, 8] to the current and limited computing
architecture [3, 4, 5], we proposed a mathematical
model for the Ni/Nb:STO memristors [23]. These
memristive devices have not been modelled before,
although their advantage is that they do not require
electroforming. We then aimed to simulate STDP
using the proposed model. Accurately simulating
synapses and their properties, namely STDP in this
study, presents evidence that brain-inspired learn-
ing can be artificially achieved.

Model Evaluation

Our model was optimised for Ni/Nb:STO devices
of three radii, namely, 10 µm, 32 µm, and 100 µm.
There appears to be a correlation between the ra-
dius and some parameters, which leads us to search
for a physical interpretation.
The parameters An and αn, which influence how

fast the state variable changes, decrease as the ra-
dius increases. A decrease in An and αn results
in a smoother decrease in dx/dt. Thus, in reverse
bias, larger devices result in a less abrupt drop
towards using only tunneling (h2). Because the
tunneling probability is inversely proportional to
the potential barrier width [30], we can hypothe-
sise that smaller devices have a thinner potential
barrier than larger devices. Similarly, the nega-
tive correlation between xn and device radius also
indicates that electrons might be able to tunnel
sooner in smaller devices. A larger xn means a
higher range of x for which f decreases. This rep-
resents a quicker decrease in dx/dt for smaller de-
vices, which was confirmed as physically plausible
by Anouk Goossens during a meeting on June 27,
2022.
In forward bias, the parameters correlated to de-

vice size are gmaxp and bmaxp. These two pa-
rameters are responsible for thermionic emission,
the main effect of the forward bias. If we compare
the positive side of h2 (Equation (3.2)) to Equa-
tion (2.10), we can observe that gmaxp is propor-
tional to the height of the Schottky barrier, whereas
bmaxp is inversely proportional to the ideality fac-
tor. According to the same meeting with Anouk
Goossens on June 27, 2022, the increase in gmaxp is
physically plausible, as we would expect the Schot-

tky barrier height to increase with the size of the
device. Moreover, the increase in bmaxp is also
physically plausible, as we would expect the ideal-
ity factor to decrease with device size. The other
two parameters responsible for the forward bias are
gminp and bminp. However, considering that this
effect is not representative of the positive bias, any
variation in gminp or bminp cannot be categori-
cally tied to any physical conclusions.

In reverse bias, the main effect is tunneling,
which has gmaxn and bmaxn as associated pa-
rameters. The tunneling magnitude is controlled
by gmaxn, which is proportional to the device ra-
dius. This is in accordance with the behaviour we
can notice in Figure 4.2. As the device radius in-
creases, the current that results from applying -2 V
decreases. Thus, the effect has a larger magnitude.
On the other hand, bmaxn is inversely proportional
to the radius. Normally, this would mean that tun-
neling magnitude would be inversely proportional
to the radius. Nevertheless, this is not the case due
to gmaxn increasing by about an order of magni-
tude per device size and resulting in a more signif-
icant effect than the decrease in bmaxn. Although
not as significant as tunneling, thermionic emission
plays a role as well. The parameters describing
this phenomenon are gminn and bminv. Unlike
the (gmaxp, bmaxp) pair, the (gminp, bminn) pair
seems independent of radius, while being roughly
constant in all three cases. We could then conclude
that the Schottky barrier height and ideality factor
do not vary depending on device radius in reverse
bias. However, since thermionic emission is not the
main effect of this bias, the outlook provided by
gminn and bminn is not substantial.

All other parameters used by the model are con-
stant. Vp and Vn have been both set to zero, per
the physical description of the device that does not
indicate the presence of voltage thresholds [23]. We
have also set x0 and η to constant values to ensure
that the model uses more thermionic emission in
forward bias and more tunneling in reverse bias.
An exact description of the choice of x0 and η was
provided in Section 3. When it comes to Ap, αp and
xp, one can draw a parallel with the reverse bias
correspondents, An, αn and xn. In reverse bias,
we concluded that smaller devices lead to a quicker
change in the state variable. However, since Ap, αp

and xp are constant, the change in state variable is
not dependent on device radius in forward bias.
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Figure 4.2 provides an indication that our model
does qualitatively match the behaviour of the phys-
ical devices. If one wishes to decrease the 11 %
mean relative error, then the model could be made
less general by modifying the h1 and h2 functions.
For example, instead of using a generalised tunnel-
ing equation like Equation (2.11), one could analyse
the type of tunneling that occurs in this device and
choose a more appropriate function. To improve
the fit in forward bias, one could simplify Equation
(2.10) less than we did in our model. However, we
were not concerned with specificity, as it would re-
sult in a less generalisable model that is harder to
fit and physically interpret.
The energy consumption was also calculated for

all devices, as seen in Figure 4.3. We can con-
clude that smaller devices are more energy-efficient
than larger devices, which was expected since less
current flows through smaller devices (Figure 4.2).
Thus, if energy efficiency is of concern, the 10 µm
device is the optimal choice.
Overall, our model is physically plausible and a

qualitatively good fit. Given the low amount of
experimental data used during fitting, and choosing
generalisability over specificity, we also managed to
reach a mean relative error of only 11 %. That
being said, if one application of the model would
require a closer fit, then the h1 and h2 functions
should be altered to be more specific to the physical
properties of the Ni/Nb:STO device.

STDP Evaluation

The results of simulating STDP using each mem-
ristor model can be observed in Figure 4.4. To as-
sess whether STDP was achieved, we will compare
our results to the goal behaviour, Equation 2.13
and Figure 2.2. The negative side of ∆t matches
LTD. Additionally, the conductance for positive ∆t
does decrease overall, resembling LTP. Thus, we
will conclude that we have achieved STDP by us-
ing the Ni/Nb:STO memristor models as artificial
synapses.
However, it is worth mentioning that the LTP be-

haviour is somewhat atypical, as the absolute max-
imum change in conductance occurs at 10 ms in-
stead of positive zero. We believe that this is caused
by not fully anticipating how the model would be-
have on the application of Vpre − Vpost. The atyp-
ical increase in conductance between positive zero

and 10 ms might be a result of the model chang-
ing states at around 10 ms instead of zero. In the
future, experimenting with different pre- and post-
synaptic spikes could result in LTP behaviour that
is closer to the standard.

If one wishes to focus on modelling STDP with
one particular device size, we would recommend
the 10 µm device. One advantage of the smaller
devices is that they are more energy-efficient, as
represented by Figure 4.3. Another advantage is
that they show a more significant change in con-
ductance than their larger counterparts, for which
the conductance changes by less than 1% overall,
as illustrated in Figure 4.4.

6 Conclusions

We proposed a mathematical model for the
Ni/Nb:SrTiO3 Schottky interface memristive de-
vice. The model was designed to consider the ef-
fects of tunneling and thermionic emission, which
were the two phenomena regulating the behaviour
of the memristor. We then optimised the model for
devices of three different radii. The model proved
to be physically plausible and a good fit for the
physical memristive device. However, if one needs
a less general model and wishes to decrease the
11% mean relative error, then the functions used
to model tunneling and thermionic emission should
be less general than the ones we have used.

Our trial of simulating STDP behaviour was
successful but did not result in standard STDP
curves. Despite achieving standard long-term de-
pression behaviour, we were not able to obtain stan-
dard long-term potentiation. Future research could
look into how this memristor model behaves during
STDP simulations with different pre- and postsy-
naptic spikes.

This study also provided evidence that smaller
devices are generally preferred, as they are
more energy-efficient and lead to more significant
changes in conductance during STDP simulations.

Code Availability

The code used to fit the memristor model and to
implement STDP is available at https://github.
com/alina-dima/Memristor-Models.
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